
HAL Id: hal-04905626
https://hal.science/hal-04905626v1

Submitted on 22 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

GATE 10: A new versatile Python-driven Geant4
application for medical physics

N Krah, L Maigne, M Favaretto, A F Resch, C Trigila, G Mummaneni, E
Roncali, M Jacquet, T Baudier, A Pereda, et al.

To cite this version:
N Krah, L Maigne, M Favaretto, A F Resch, C Trigila, et al.. GATE 10: A new versatile Python-driven
Geant4 application for medical physics. XXth International Conference on the use of Computers in
Radiation therapy, David Sarrut; Simon Rit, Jul 2024, lyon, France. �hal-04905626�

https://hal.science/hal-04905626v1
https://hal.archives-ouvertes.fr


XXth International Conference on the use of Computers in Radiation therapy 8 - 11 July 2024, Lyon, France

GATE 10: A new versatile Python-driven Geant4 application for medical
physics

N. Krah1, L. Maigne2, M. Favaretto3, A.F. Resch3, C. Trigila4, G. Mummaneni4, E. Roncali4, M. Jacquet1, T. Baudier1, A. Pereda2,
H.Fuchs5, A.Coussat6, and D. Sarrut1

1CREATIS, CNRS, Centre Léon Bérard, INSA Lyon, France
2LPC, CNRS, University of Clermont Auvergne, France

3MedAustron Ion Therapy Centre, Wiener Neustadt, Austria
4University of California at Davis, USA

5Medical, University of Vienna, Vienna, Austria
6Jagiellonian University in Kraków, Poland

Abstract In this contribution, we present GATE 10, the new version
of the long-standing Geant4 application GATE, dedicated to medical
physics, e.g. radiation imaging and radiation therapy systems. It
features a Python-based user interface and integration of artificial
intelligence methods. Moreover, being a Python package, GATE 10
can be easily integrated into external software, e.g. as a Monte Carlo
dose engine. The user interface is easy to use, yet provides access
to the rich functionality of Geant4 and preconfigured components of
GATE (e.g. actors, sources).
GATE 10 is currently under rapid development and a first non-beta
release is planned for May 2024. The software is open-source and
available via the GitHub platform. Installation is performed via the
Python package manager (pip). In this contribution, we present an
overview of GATE 10 and a selection of new features and improve-
ments.

1 Introduction

Since the beginning of GATE almost 20 years ago, users
configure a simulation via macro commands grouped in text
files [1, 2] similar to those in Geant4 [3]. Since then, the
rise of high-level programming languages such as Python
and new machine learning approaches have revolutionized
scientific computing. The new version GATE 10 features
a Python-based user interface and integration of artificial
intelligence methods. Moreover, GATE 10 can be easily
integrated as Python package into external software, e.g. as a
Monte Carlo dose engine.

We have designed and implemented GATE 10 completely
from scratch building onto the legacy of previous versions.
On the one hand, it retains most of the features contributed to
the code over time. This includes actors as well as preconfig-
ured particle sources. Actors are collections of user actions to
hook into Geant4’s particle tracking to extract physics quan-
tities, e.g. particle distributions, energy deposit, etc. GATE’s
particles sources are preconfigured primary particle genera-
tors including spatially distributed sources inside a patient
for the use in nuclear medicine and imaging. On top of that,
GATE 10 includes numerous new features and improvements,
of which we will present a selection in this contribution.

2 Design principle of GATE 10

We have been developing GATE 10 with the following goals
in mind:

1. Ease of use: The user should be able to concentrate on
configuring the simulation rather than worrying about
technical aspects of the software.

2. The Python script through which the simulation is set
up should appear like an input file with the advantage
of having access to all the computational tools available
in Python and Python libraries (e.g. numpy [4]).

3. Give the user access to the rich Geant4-functionality,
with a focus on applications in medical physics and
medical imaging.

4. Provide an inner code structure with interfaces within
which contributors can implement new features.

5. Keep a reasonable resemblance to the logic of older
versions of GATE, i.e. version 9 and older.

6. Support a multitude of platforms including Linux,
MacOS, and Windows.

7. Provide functionality to facilitate the logistics of running
GATE simulations.

8. Do not compromise the simulation speed or even im-
prove simulation speed compared to older versions of
GATE.

3 Code structure

GATE 10 is composed of a part implemented in C++ and
a part implemented in Python. The C++ library includes
functionality that has a relevant impact on computational
speed, i.e. mainly functions frequently called during particle
tracking, e.g. after each step or at the beginning of each
new track. This mainly concerns scoring (actors) and pri-
mary particle generation (sources). By implementing this
part of GATE 10 in C++, Geant4 does not need to execute
callbacks into Python code which would be associated with
a computational overhead. Together with Geant4 classes and



XXth International Conference on the use of Computers in Radiation therapy 8 - 11 July 2024, Lyon, France

Figure 1: Workflow of a GATE 10 simulation from set-up to
simulation run.

functions, the C++-portion of GATE 10 is exposed to Python
via pybind11 [5].
The pure Python part of GATE 10 provides a user interface
to build simulations and an internal interface to Geant4. In
particular, GATE 10 has two distinct kinds of classes which
handle a simulation. Managers provide an interface to the
user to set-up and configure a simulation and collect and
organize user parameters in a structured way. Engines pro-
vide the interface to Geant4 and are responsible for creating
all Geant4 objects. Managers and engines are divided into
sub-managers and sub-engines responsible for certain logical
parts of a simulation, such as geometry, physics, primary
particle generation (sources), and scoring (actions, actors).
Additionally, many components in GATE are implemented as
classes which provide interfaces to the managers and engines.
Figure 1 shows a scheme of the simulation workflow. The
user sets up a simulation starting with the Simulation class,
the main manager. It collects general parameters, e.g. about
verbosity and visualization, and it manages the way the sim-
ulation is run (e.g., in a subprocess or not). Sub-managers
are: VolumeManager, PhysicsManager, ActorManager,
SourceManager. These managers can be thought of as
bookkeepers. For example, the VolumeManager keeps a
dictionary of all the volumes added to a simulation, a dictio-
nary of all the parallel world volumes, etc. Furthermore, it
also provides the user with methods to perform certain tasks,
e.g. VolumeManager.add_parallel_world().
The SimulationEngine is the main driver of the
Geant4 simulation. Given a simulation object sim,
it creates a new SimulationEngine every time
the user calls sim.run(), which in turn creates all
the sub-engines: VolumeEngine, PhysicsEngine,
SourceEngine, ActorEngine, ActionEngine. The
method SimulationEngine.run_engine() actually
triggers the construction and run of the Geant4 simulation.
It takes the role of the main.cc file in a pure Geant4
simulation. When the Geant4 simulation has terminated,
SimulationEngine.run_engine() returns the simulation
output which is then collected by the Simulation object.
GATE classes representing a Geant4 object (or multiple
Geant4 objects combined as, e.g., in the Volume classes)
are designed to do multiple things:

• Store user parameters. Example: the Region
class holds the user parameters user_limits,

production_cuts, and em_switches.
• Provide interface functions to the user and to man-

ager classes to configure the object or inquire
about it. Examples: Region.associate_volume(),
Region.need_step_limiter()

• Provide interface functions to the engines to handle the
Geant4 objects, such as initialize() and close().

• Provide convenience functionality such as yield-
ing the object’s configuration as a dictionary
(to_dictionary()), reloading it from a dictio-
nary (from_dictionary()), dumping info about the
object (e.g. Region.dump_production_cuts()),
and copying the configuration from another object
(volume2.copy_user_info(volume1)).

• Handle technical aspects such as serialization via pick-
ling (e.g. for subprocesses dispatching) in a unified
way.

4 Example: Dose calculation

In this section, we present a simple example to illustrate
the use of GATE 10. The simulation consists of a patient
parametrised via a CT image and a conversion table from
CT numbers (in Hounsfield units) to material, a proton beam
source, and a dose actor which scores dose on a voxel grid at-
tached to the patient geometry. Secondary electrons are only
produced inside the patient if their range is greater than 3 mm.
The option start_new_process=True lets GATE 10 run
the Geant4 simulation in a separate process. In this way, the
simulation can be run multiple times in a loop, each time
with a different beam energy. Dispatching to a subprocess
also allows the user to run the same simulation multiple times
in an interactive Python session, such as ipython or jupyter.

import opengate as gate
sim = gate.Simulation()
mm = gate.g4_units.mm
MeV = gate.g4_units.MeV
patient = sim.add_volume("Image", name="patient")
patient.image = "patient-4mm.mhd"
patient.mother = "world"
patient.voxel_materials = [

[-2000, -900, "G4_AIR"],
[-900, -100, "Lung"],
[-100, 0, "G4_ADIPOSE_TISSUE_ICRP"],
[0, 300, "G4_TISSUE_SOFT_ICRP"],
[300, 800, "G4_B-100_BONE"],
[800, 6000, "G4_BONE_COMPACT_ICRU"]]

patient.set_production_cut(
particle_name="electron",
value=3 * mm)

src = sim.add_source("GenericSource", name="p_src")
src.particle = "proton"
src.position.type = "sphere"
src.position.radius = 10 * mm
src.position.translation = [0, 0, -140 * mm]
src.n = 1e4 # number of primaries
src.direction.type = "momentum"
src.direction.momentum = [0, 0, 1]
dose = sim.add_actor("DoseActor", "dose")



XXth International Conference on the use of Computers in Radiation therapy 8 - 11 July 2024, Lyon, France

dose.mother = "patient"
dose.size = [99, 99, 99]
dose.spacing = [2 * mm, 2 * mm, 2 * mm]
dose.img_coord_system = True
dose.translation = [2 * mm, 3 * mm, -2 * mm]
for en in [130, 140, 150, 160]:

src.energy.mono = en * MeV
dose.output = f"patient_dose_energy_{en}.mhd"
sim.run(start_new_process=True)

5 Memory management between Python and
Geant4

In this section, we describe a rather technical detail about the
combination of Geant4 and Python which is, however, crucial
to make simulations work correctly. GATE 10 creates certain
kinds of Geant4 objects within code on the Python-side while
other Geant4 objects are created on the C++-side, in partic-
ular by Geant4 itself. To avoid memory leakage, Geant4
objects need to be deleted at the end of a simulation, either
by the C++-side, usually meaning Geant4, or by the garbage
collector on the Python-side. This requires some understand-
ing of how lifetime is managed in Geant4. GATE 10 uses
the G4RunManager to initialize, run, and deconstruct a sim-
ulation. The G4RunManager’s destructor triggers a nested
sequence of calls to the destructors of many objects handled
by the run manager, e.g. geometry and physics. Volumes,
for example, are created through code on the Python-side,
but they should never be deleted on the Python-side because
the G4RunManager is responsible for deletion. Segmenta-
tion faults occur if the objects no longer exist at the time of
supposed destruction triggered by the G4RunManager. This
is achieved by correct configuration of the wrapping in py-
bind11.
There is also an important aspect on the Python-side concern-
ing Geant4 objects that are deleted by the G4RunManager:
Python usually stores a reference to the Geant4 objects whose
creation is implemented on the Python-side. This reference
will not find the object anymore once the G4RunManager
has deleted it upon its own destruction. Therefore, we have
implemented a mechanism that makes sure that references
to Geant4 objects are unset before the G4RunManager is
garbage collected (and thus its destructor is called).
GATE 10 is now very robust in terms of memory handling
and segmentation faults.

6 Novel features

GATE 10 includes several novel features compared to previ-
ous versions. We briefly describe a selection of them in this
section.

6.1 Native Geant4 multithreading

As a new feature in GATE 10, native Geant4 multithread-
ing capability is available (for most of the functionalty

so far). The user simply sets the number of threads, e.g.
sim.number_of_threads=4 and the SimulationEngine
automatically sets up the G4MTRunManager appropriately.

6.2 Export to structured file, e.g. JSON

A simulation can be exported as a structured plain-text file
in JSON format. This JSON file can be reloaded at a later
stage to re-create the simulation. The user can choose, via an
option, whether such as JSON file is automatically created
and stored alongside the simulation output:

import opengate as gate
sim = gate.Simulation()
sim.store_json_archive = True
sim.store_input_files = True
sim.json_archive_filename = "simu_iccr.json"
sim.output_dir = "output"
...
sim.run()

The above example creates a JSON file in a folder called
output, and alongside with it also stores a copy of all potential
input files (images, material descriptions, etc.). The JSON
file is structured, human-readable, and compact in size. The
simulation can be re-run later by:

import opengate as gate
sim = gate.Simulation()
sim.from_json_file("output/simu_iccr.json")
sim.run()

This feature helps a lot in data analysis and is particularly
interesting in applications where simulation output needs to
be archived, such as clinical dose calculation. It can also
be helpful for dispatching simulations in a cluster environ-
ment and for debugging. The functionality could be easily
extended to other file formats such as XML.

6.3 Generative Adversarial Networks for phase-
space generation

GATE 10 gives the user the possibility to generate particles
via a generative adversarial network (GAN) instead of using,
e.g., a conventional phase space file. The idea behind this
approach is that particles are not tracked from the sources
on, but generated at a later stage, thereby skipping part of the
simulation geometry [6–8]. The GAN is also more conve-
nient to store than typically huge phase space files. GATE 10
relies on the torch library and provides functionalities to
train and apply the neural network.

6.4 User-friendly repeated volumes

Many simulations in medical imaging require geometries
which contain many repetitions of the same kind of volume
in space. For example, a detector head could consist of a grid
of crystal segments where all segments share the same shape,
size, and physical properties. Geant4 allows volumes to be



XXth International Conference on the use of Computers in Radiation therapy 8 - 11 July 2024, Lyon, France

present in multiple locations in space by associating multiple
G4PhysicalVolumes to the same G4LogicalVolume. Pre-
vious versions of GATE already allowed the user to repeat
volumes, but GATE 10 now exposes this feature in a simple
manner to the user, as can be seen in the following example
snippet:

crystal = sim.add_volume("Box", "crystal")
crystal.size = [1 * cm, 1 * cm, 1 * cm]
crystal.translation = [

[1 * cm, 0 * cm, 0],
[0.2 * cm, 2 * cm, 0],
[-0.2 * cm, 4 * cm, 0],
[0, 6 * cm, 0]]

crystal.material = "LYSO"

Instead of setting translation to a single vector to define
the placement of the crystal volume, we provide a list of trans-
lation vectors. GATE 10 automatically creates the correct set
of G4PhysicalVolumes, thereby effectively replicating the
volume 4 times in space. Similarly, a list of rotation matrices
can be set instead of a single matrix, to inform GATE 10 how
each copy of the volume should be rotated.
Multiple utility functions are available to automatically gen-
erated sets of translation vectors and/or rotation matrices for
common geometric dispositions, such as cartesian grids and
circular arrangements, e.g. for PET simulation.

6.5 Voxelized representation of the geometry

The user can generate a voxelized representation of the sim-
ulation geometry or a portion thereof. The output is a label
image and a lookup table where each voxel contains a la-
bel which corresponds to a volume name in the lookup table.
Slices of such an image can be easily visualised with common
Python libraries such as matplotlib [9]. Such an image
helps checking and verifying a geometry or can be used in
post-processing simulation data. The user can specify the
spatial binning and the extent of the geometry to be voxelized.
For the latter, it is possible to provide a list of volumes and
GATE 10 will automatically determine the suitable extent
which encompasses all volumes.

7 Discussion

GATE 10 is currently under fast development, with new fea-
tures being added at least at a monthly frequency. The current
version as of writing this is beta7, which is stable, fully us-
able, and which includes more than 80% of functionality
offered by previous GATE versions. A first non-beta release
is planned for May 2024 and will be presented at the ICCR
conference.
Until then, we will refactor the actors and sources to make
the code more efficient and the user experience more intu-
itive. We are also working on improving computation speed
of the dose actor (and derived variants) in multithreading
mode. Special physics such as optical surfaces are currently

being implemented as well as tesselated volumes. Several
institutions are already using GATE 10 for their software
projects. For example, it is currently being integrated into
the IDEAL 1.2 platform for independent dose calculation in
light ion beam therapy [10].
Part of our development strategy is that every feature in
GATE 10 must have a test case to ensure code integrity
over time. Currently, more than 140 test simulations are run
automatically each time the code is modified. These tests
also serve as examples for users.

8 Conclusion

GATE 10 is open-source and available via the GitHub plat-
form [11]. Installation is performed via the Python package
manager (pip), which allows for a simple installation pro-
cess with one single command. All major platforms, i.e.
Linux, MacOS, and Windows are supported. The user is not
required to manually install Geant4 as it ships pre-compiled
with GATE 10. GATE 10 can be easily used by other software
as an external library.

References

[1] S. Jan, D. Benoit, E. Becheva, et al. “GATE V6: A major enhance-
ment of the GATE simulation platform enabling modelling of CT
and radiotherapy”. Physics in Medicine and Biology 56.4 (2011),
pp. 881–901. DOI: 10.1088/0031-9155/56/4/001.

[2] D. Sarrut, M. Bardiès, N. Boussion, et al. “A review of the use and
potential of the GATE Monte Carlo simulation code for radiation
therapy and dosimetry applications”. Medical Physics 41.6Part1
(May 2014), p. 064301. DOI: 10.1118/1.4871617.

[3] S. Agostinelli, J. Allison, K. Amako, et al. “GEANT4 - A sim-
ulation toolkit”. Nuclear Instruments and Methods in Physics
Research, Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment 506.3 (2003), pp. 250–303. DOI: 10.1016/
S0168-9002(03)01368-8.

[4] Numpy python package. URL: https://numpy.org.

[5] Pybind11. URL: https://github.com/pybind/pybind11.

[6] D. Sarrut, N. Krah, and J. M. Létang. “Generative adversarial
networks (GAN) for compact beam source modelling in Monte
Carlo simulations”. Physics in Medicine & Biology 64.21 (Oct.
2019), p. 215004. DOI: 10.1088/1361-6560/ab3fc1.

[7] D. Sarrut, A. Etxebeste, N. Krah, et al. “Modeling complex parti-
cles phase space with GAN for Monte Carlo SPECT simulations:
a proof of concept”. Physics in Medicine & Biology 66.5 (Mar.
2021), p. 055014. DOI: 10.1088/1361-6560/abde9a.

[8] A. Saporta, A. Etxebeste, T. Kaprelian, et al. “Modeling families
of particle distributions with conditional GAN for Monte Carlo
SPECT simulations”. Physics in Medicine & Biology 67.23 (Dec.
2022), p. 234001. DOI: 10.1088/1361-6560/aca068.

[9] Matplotlib python package. URL: https://matplotlib.org.

[10] L. Grevillot, D. J. Boersma, H. Fuchs, et al. “The GATE-
RTion/IDEAL Independent Dose Calculation System for Light
Ion Beam Therapy”. Frontiers in Physics 9 (Aug. 2021). DOI:
10.3389/fphy.2021.704760.

[11] OpenGATE github repository. URL: https://github.com/
OpenGATE/opengate.

https://doi.org/10.1088/0031-9155/56/4/001
https://doi.org/10.1118/1.4871617
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1016/S0168-9002(03)01368-8
https://numpy.org
https://github.com/pybind/pybind11
https://doi.org/10.1088/1361-6560/ab3fc1
https://doi.org/10.1088/1361-6560/abde9a
https://doi.org/10.1088/1361-6560/aca068
https://matplotlib.org
https://doi.org/10.3389/fphy.2021.704760
https://github.com/OpenGATE/opengate
https://github.com/OpenGATE/opengate

	Introduction
	Design principle of GATE 10
	Code structure
	Example: Dose calculation
	Memory management between Python and Geant4
	Novel features
	Native Geant4 multithreading
	Export to structured file, e.g. JSON
	Generative Adversarial Networks for phase-space generation
	User-friendly repeated volumes
	Voxelized representation of the geometry

	Discussion
	Conclusion

