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Abstract  

 

Doses deposited outside the treatment field during external photon-beam 

radiotherapy, known as out-of-field doses, appear to favor the appearance 

of radiation-induced cancer and hematological toxicities. These low 

doses are not currently estimated on a routine clinical basis, due to the 

lack of a suitable solution. 

With this proof of concept, we demonstrate the value of deep learning for 

the development of a tool enabling rapid, routine-compatible out-of-field 

dose estimation. For this purpose, a 3D U-Net, considering as inputs the 

in-field dose, as computed by the treatment planning system, and the 

patient's anatomy, was trained to predict out-of-field dose maps, using a 

dataset of 3151 pediatric whole-body dose maps estimated with 

analytical methods as ground truth. Consistent results in line with the 

literature were obtained (RMSD of 0.28, 0.41 and 0.32 cGy.Gy-1 for the 

training, validation and testing), arguing in favor of the use of neural 

networks for out-of-field dose estimation. 

1 Introduction 

 

In external beam radiotherapy (EBRT) with photons, non-

zero doses are inevitably delivered outside the treatment 

field; often referred to as out-of-field or peripheral dose. 

The out-of-field doses are mostly low dose values (< 4 Gy), 

but the question of their potential impact on the probability 

of radiation-induced adverse events, such second cancers 

(1) and immunological dysfunctions like radiation-induced 

lymphopenia (2) is of the utmost importance. In particular, 

it has recently been shown that even very low doses 

resulting from computed tomography (CT) scans contribute 

to the development of radiation-induced cancers (3). In 

radiotherapy, this topic is currently experiencing renewed 

interest, particularly as modulated treatments (such as 

volumetric modulated arc therapy (VMAT) or intensity-

modulated radiation therapy (IMRT)) are now routinely 

used in clinical care and are known to be associated with 

higher peripheral doses due to longer beam on times and 

larger irradiated volumes when compared to three-

dimensional conformal radiotherapy (3D-CRT) (3,4) 

 

 Treatment planning systems (TPS) are used in clinical 

routine to estimate in-field dose distribution, but have been 

shown to systematically underestimate out-of-field dose for 

3D conformational radiotherapy treatments, for intensity 

modulated treatments and for CyberKnife devices 

(Accuray, Sunnyvale, USA) (5–8). Thus, despite clear 

clinical potential, the out-of-field dose computation is 

currently not available in clinical practice. Two methods are 

currently used in the literature for out-of-field dose 

estimation for research purposes: Monte Carlo simulations 

and analytical approaches. These methods can provide 

accurate out-of-field dose estimation (7) but are 

inappropriate for clinical routine implementation, because 

of their lack of versatility and their cumbersome application 

(9). 

 

Artificial intelligence and in particular technologies based 

on deep learning (DL) have drastically changed clinical 

practice in radiotherapy in recent years, allowing notably 

the automation of several time-consuming tasks, including 

segmentation and treatment planning, or the generation of 

virtual images (synthetic images), demonstrating their 

ability to identify complex hierarchical features from 

spatially structured data (10). Three main components 

contribute to the out-of-field dose: patient scatter, head 

scatter and head leakage. Apart from leakage, which is a 

signature specific to each accelerator and whose signal is 

minimal in the irradiation field, the other components 

exhibit a valuable in-field signal for assessing the out-of-

field dose. Based on the assumption that the in-field dose 

map associated with the patient's anatomy contains most of 

the information needed to calculate the out-of-field dose, 

our objective was to evaluate the ability of a unique deep 

learning-based out-of-field dose estimation algorithm to 

adapt to a wide variety of configurations, bringing an 

answer to the problems of computation time, information 

extraction, and versatility, making it compatible with 

clinical use. 

2 Materials and Methods 
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Three thousand one hundred fifty-one whole-

body dose maps, from the French childhood 

cancer survivor study (FCCSS) cohort were 

used as ground truth for the development of 

our neural network. With the goal to develop a 

deep learning model for out-of-field dose 

estimation suitable for megavoltage photon 

irradiations, we only selected patients treated 

with a photon beam and using linear 

accelerators with a high voltage (> 1 MV) or 
60Co irradiators. Whole-body dose maps were 

estimated using an analytical method 

originally developed for epidemiological 

purposes (11,12). Twenty-five irradiation 

devices were represented in our dataset and 

were grouped into 3 categories: standard 

linacs, cobalt units and betatron units. Our 

dataset included 38 different pathologies, of 

which the most represented were 

nephroblastoma and other nonepithelial renal 

tumors (695 patients), Hodgkin lymphomas 

(449 patients) and astrocytomas (235 patients). 

 

Several preprocessing steps were applied to the analytical 

dose maps to make them deep-learning compliant. These 

included: 1) padding into [370, 242, 1131] matrix sizes, 2) 

resampling of padded files (originally in Statistical Analysis 

System (SAS) format) to [128, 128, 512] sizes, 3) extraction 

of in-field and out-of-field dose maps from whole-body 

dose maps (a 5% isodose threshold was chosen in this goal 

considering the maximum dose per patient as the reference 

dose), 4) creation of binary masks from the whole-body 

dose maps by a thresholding method separating the 

background from the foreground. An on-the-fly 

preprocessing pipeline was then applied using Medical 

Open Network for Artificial Intelligence (MONAI 0.8.0) 

(13), including in the following order: loading, 

normalization, resampling, and concatenation. During the 

normalization step, 3D dose maps intensities were 

normalized by dividing by 100 Gy, to provide the neural 

network with values within [0,1]. The on-the-fly 

resampling step was implemented to test the impact of batch 

size as a function of available VRAM (video random-access 

memory). A nearest neighbor interpolation strategy was 

used for the resampling step. Finally, we transformed the 

data to fit a multi-dimensional structure denoted as 

B×2×H×W×D. In this expression, B refers to the batch size 

used during the training phase of the process. C indicates 

the number of channels present, while H, W, and D 

correspond to the height, width, and depth of the matrix, 

respectively. Figure 1 summarizes the preprocessing 

pipeline. 

 

A conventional 3D U-Net (14,15), composed of four down-

sampling blocks followed by four up-sampling blocks, was 

implemented (Figure 1). The Mean Square Error (MSE) 

evaluated only on the foreground voxels outside the 5% 

isodose, i.e. only in the region considered as the out-of-field 

dose, was selected as loss function. Learning rate and 

weight decay were considered in the ranges [1𝑒 − 7, 1𝑒 −
3] and [1𝑒 − 8, 1𝑒 − 4], respectively, with 1e-4 and 1e-6 

providing the optimal results. The Adam optimizer was 

used to update the network parameters. Instance 

normalization was preferred. Batch size of 20 

corresponding to a resampled size of 64 × 64 × 256 was 

selected. The 3D U-Net was trained for 600 epochs (~50 

hours) on a Nvidia RTX A6000. No early stopping was 

used. Weight based on best performance on validation loss 

were saved. 

 

The dataset of 3151 patients was conventionally split into 

training (N = 2213), validation (N = 505), and test cohorts 

(N = 433). The test set was divided into 5 sub-cohorts, 

including two classic linear accelerators (names of 

accelerator model unavailable) operating at 6 MV and 16 

MV, two cobalt 60 units (Alcyon and Mobiletron), and 

finally a betatron operating at 1.25 MV. All patients treated 

with betatron devices were voluntarily kept into the test set, 

because of its very specific design compared with a 

conventional linear accelerator or a cobalt unit. None of the 

devices in the test set were included in the training and 

validation sets. This was made in order to test the 

generalizability of the trained network on unknown devices. 

 

We finally performed 2 additional experiments. The first 

aimed at evaluating if the inclusion of betatron-treated 

patients in the training set could improve performance for a 

subgroup of 46 patients here considered as a new sub-test 

set. The second additional experiment aimed to study the 

Figure 1 Dose map preprocessing pipeline and comprehensive design of the implemented 3D 

U-Net. Dose maps are displayed using logarithmic scale 
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benefits of a custom model, compared with the use of a 

generalized model. In this aim, we selected 100 of the 128 

patients treated with a 60Co-Alcyon, and trained the 3D U-

Net from scratch considering only these data. Finally, as a 

last experiment, we fine-tuned the original model using the 

100 60Co-Alcyon training patients for 2000 epochs and 

tested the performance of this fine-tuned model on the 28 
60Co-Alcyon patients included in the test set. We used the 

root mean square deviation (RMSD) (corresponding  to the 

root of the MSE) as performance evaluation metric. 

3 Results 

 

Best performances were achieved at epoch 467/600. For 

visual purposes, Figure 2 shows three examples of out-of-

field dose maps generated by our trained network from test 

sets for patients with good (RMSD of 0.16 cGy.Gy-1), 

median (RMSD of 0.29 cGy.Gy-1) and poor performance 

(RMSD of 1.00 cGy.Gy-1). RMSD of 0.28 ± 0.08 and 0.41 

± 0.26 cGy.Gy-1 were obtained for the training and 

validation datasets, respectively. Values of 0.27 ± 0.06, 0.26 

± 0.07, 0.28 ± 0.06, 0.30 ± 0.12 and 0.45 ± 0.25 cGy.Gy-1 

were achieved for the 6 MV linac, 16 MV linac, 60Co-

Alcyon, 60Co-Mobiletron, and betatron devices test sets, 

respectively, demonstrating overall performance similar to 

or better than that of the validation set, except for the fifth 

test set, corresponding to the betatron device. A RMSD 

threshold value of 0.6 cGy.Gy-1 was considered to separate 

good from poor out-of-field dose reconstructions. 87 out of 

505 patients showed weaker performances in the validation 

set; 85 of whom being treated with a single device: a 

Sagittaire linear accelerator operating at 25 MV. This value 

was equal to 24 (out of 433 patients) in the test set, with 21 

of the 24 patients identified having been treated with the 

betatron accelerator. 

Retraining the neural network using the original patient 

training set plus the 46 betatron patients kept aside resulted 

in a mean RMSD of 0.64 ± 0.41 cGy.Gy-1, to be compared 

with 0.26 ± 0.11 cGy.Gy-1 for the same 46 patients as a 

benchmark value (no betatron patients included at the 

training stage). For the second additional experiment, mean 

RMSDs of 0.16 ± 0.01 cGy.Gy-1, 0.53 ± 0.22 cGy.Gy-1 and 

0.13 ± 0.05 cGy.Gy-1 were obtained for the benchmark 

configuration, configuration considering training with only 

the 100 60Co-Alcyon training set patients, and configuration 

considering the original model fine-tuned with the 100 
60Co-Alcyon training set patients, respectively. 

4 Discussion 

 

The results are rather encouraging, with RMSD values of 

the same order of magnitude in the test sets (mean value of 

0.32 ± 0.15 cGy.Gy-1 in the test set) as in the validation set 

(0.41 ± 0.26 cGy.Gy-1) or the training set (0.28 ± 0.08 

cGy.Gy-1), suggesting that the neural network has acquired 

a strong degree of robustness and generalization. However, 

we notice that significantly lower results were observed for 

test set corresponding to the betatron accelerator. In 

addition, most of the poorest results in the validation set 

concerned patients treated with the Sagittaire accelerator 

operating at 25 MV (the highest voltage of the linear 

accelerators considered in the training set was equal to 20 

MV). These results logically highlight the fact that the 

generalization capabilities of the neural network cannot be 

extended to out-of-distribution cases including non-

conventional or highly atypical linear accelerators, i.e. with 

different spectral characteristics, shielding properties, or 

head geometries. Another limitation of our proof of concept 

is the tendency by the neural network to systematically 

overestimated doses at locations farthest from the field. 

This discrepancy appears to stem from our choice 

of cost function (MSE), which minimizes absolute 

dose errors. Consequently, the greatest relative 

deviations are observed in these distant regions, 

where the lowest dose are expected. 

 

The first additional experiment shows that adding 

betatron patients to the training set resulted in an 

unexpected decline in performance (0.26 ± 0.11 

cGy.Gy-1 for the benchmark compared to 0.63 ± 

0.41 cGy.Gy-1 when considering betatron patients 

in the training set). We hypothesize that the number 

of betatron cases in the training set is too small to 

allow the neural network to converge towards a 

solution tailored to this accelerator, and that this 

accelerator may be too unusual and confuses the 

network. The results obtained from the second 

additional experiment demonstrated that the model 

developed from 100 60Co-Alcyon patients showed 

poorer averaged performance on the 28 60Co-

Alcyon test patients than the original model, trained 

Figure 2 Comparison of out-of-field dose maps predicted by the 3D U-Net (a) and 

computed by the analytical model, the ground truth (b), for 3 patients. Patient 1 

(RMSD=0.16 cGy.Gy-1, into the 5% percentile) corresponds to a 15-year-old girl 

diagnosed for a primary pathology of retinoblastoma in 1982 and treated with a Neptune 

6 MV device. Patient 2 (RMSD=0.29 cGy.Gy-1, in ± 1% of median) is also a 15-year-old 

girl who was diagnosed and treated in 1982 for an intracranial neoplasm using an Alcyon 

60Co device. Patient 3 (RMSD=1.00 cGy.Gy-1, below 95% percentile) is a 5-year-old girl 

diagnosed in 1982 treated the same year with a 1.25 MV betatron device for an 

astrocytoma. 
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without any 60Co-Alcyon data, but on more than 2000 

patients (0.53 ± 0.22 cGy.Gy-1 for the custom model versus 

0.16 ± 0.01 cGy.Gy-1 for the benchmark). This suggests that 

the inclusion of a wider variety of patient anatomies and 

irradiation configurations allows the network to better 

predict out-of-field dose distributions than focusing on a 

model that has been trained on data from a single 

accelerator, but with a smaller number of patients and 

diversity of treatment conditions. The results of the fine-

tuned model nevertheless demonstrate the benefits of 

specializing the model to a certain extent. Indeed, the fine-

tuned model makes it possible to achieve hitherto 

unequalled performance (0.13 ± 0.05 cGy.Gy-1). This 

approach appears to be the most promising since it enables 

both optimizing performance on a particular machine of 

interest and using the vast diversity of treatment conditions 

found in the original database. 

 

To address the identified limitations (overestimation of the 

lowest dose values far from the field and limited application 

for the most atypical linear accelerators), a strategy 

involving the incorporation of a relative or local component 

in the network's cost function, along with the inclusion of 

additional data in the training dataset, could offer remedies. 

Furthermore, a separate research team is collaboratively 

working on developing whole-body dose maps for 

contemporary linear accelerators and treatments, such as 

intensity modulation, using Monte Carlo simulation. 

Retraining the network with these new data will enhance its 

applicability to modern irradiation conditions. Finally, we 

carried out experimental measurements (and are still 

continuing this campaign) on a whole-body 

anthropomorphic phantom using radiophotoluminescent 

dosimeters with the aim of experimentally validating the 

whole-body dose maps generated by deep learning. 

5 Conclusion 

 

Based on this proof of concept, we have shown that deep 

learning is a relevant tool for addressing the limitations of 

analytical methods or MC simulations for out of field dose 

estimation. Thanks to its generalization capabilities and 

short inference times of just a few seconds, this tool should 

make it possible to move forward for routine clinical 

application and mass application in retrospective studies. 

We are convinced that a tool for estimating out-of-field dose 

in clinical routine would be a powerful aid for optimizing 

modern radiotherapy treatments. 
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