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Beyond R-barycenters: an effective averaging
method on Stiefel and Grassmann manifolds

Florent Bouchard, Nils Laurent, Salem Said, Nicolas Le Bihan

Abstract—In this paper, the issue of averaging data on a
manifold is addressed. While the Fréchet mean resulting from
Riemannian geometry appears ideal, it is unfortunately not
always available and often computationally very expensive. To
overcome this, R-barycenters have been proposed and success-
fully applied to Stiefel and Grassmann manifolds. However, R-
barycenters still suffer severe limitations as they rely on iterative
algorithms and complicated operators. We propose simpler, yet
efficient, barycenters that we call RL-barycenters. We show that,
in the setting relevant to most applications, our framework yields
astonishingly simple barycenters: arithmetic means projected
onto the manifold. We apply this approach to the Stiefel and
Grassmann manifolds. On simulated data, our approach is
competitive with respect to existing averaging methods, while
computationally cheaper.

Index Terms—Means on matrix manifolds; R-barycenters;
Riemannian geometry; Stiefel manifold; Grassmann manifold

I. INTRODUCTION

In statistical signal processing and machine learning, it is
often necessary to average data. Indeed, this is for instance
leveraged for classification (e.g., nearest centroid classifier [1],
[2]), clustering (e.g., K-means [3]), shrinkage (to build the
target matrix) [4], [5], batch normalization [6], etc. When data
possess a specific structure, e.g., when they belong to a smooth
manifold, one should expect their average to possess the same
structure and be adapted to the geometry of the manifold. In
such a case, the arithmetic mean is not well-suited. Examples
of such structured data are covariance matrices, which are
symmetric positive definite matrices (see, e.g., [7] for a full
review oriented on geometry); orthogonal matrices, which
are embedded in the Stiefel manifold [8]–[10]; or subspaces,
which correspond to the Grassmann manifold [8]–[13]. While
this letter aims to deal with generic smooth manifolds, a spe-
cial attention is given to the Stiefel and Grassmann manifolds.
These are especially useful in the context of dimensionality
reduction (see e.g., [14] with an application to clustering) or
deep learning [15].

To average data on a smooth manifold, Riemannian geom-
etry is often exploited. Riemannian geometry indeed induces
geodesics, which generalize the notion of straight lines, and
a distance on the manifold; see, e.g., [9], [10]. These in turn
lead to the definition of the Fréchet mean, which perfectly fits
the geometry of the manifold. While such a Fréchet mean
appears ideal, it is unfortunately not always available and
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often computationally quite expensive. Indeed, the distance
is not always known in closed form – e.g., for the Stiefel
manifold – or involves complicated operators – such as the
matrix logarithm for Grassmann [8], [11]–[13]. Even when
available, an iterative algorithm is usually needed to compute
the Fréchet mean; see e.g., [7], [16] for SPD matrices or [11],
[12] for Grassmann. This algorithm relies on two objects: the
Riemannian exponential, which maps tangent vectors onto the
manifold following geodesics, and its inverse, the Riemannian
logarithm.

To overcome the limitations of the Riemannian Fréchet
mean, [17], [18] have proposed simpler averaging methods
on manifolds: the so-called R-barycenters. They are defined
through a fixed-point equation that mimics the one that
characterizes the Riemannian Fréchet mean. The Riemannian
exponential is replaced by a simpler tool: a retraction [9],
which can simply be a first order approximation of the
Riemannian exponential. The Riemannian logarithm is then
replaced by the inverse of the chosen retraction. This approach
has been successfully applied on the Stiefel and Grassmann
manifolds in [17], [18]. While the R-barycenter framework is
simpler than Riemannian Fréchet means, it still features major
drawbacks. Indeed, an iterative procedure is still needed and
one has to combine a retraction with its exact inverse. This
second point appears as the most limiting one. Indeed, for all
considered retractions in [17], [18], either the retraction or its
inverse involves costly and possibly unstable operations.

In this letter, we follow a different path, recalling that the
idea behind retractions is to simplify Riemannian exponentials.
Rather than choosing the inverse retraction to replace the
Riemannian logarithm, we propose to leverage simpler liftings,
which map points on the manifold onto tangent spaces, hence
approximating the Riemannian logarithm. This yields the so-
called RL-barycenters. Choosing the widely spread projection
based retraction [19] and the simplest lifting built on the
Riemannian projection onto tangent spaces, we find out that
the resulting RL-barycenter is astonishingly simple. Indeed,
it is just the projection onto the manifold of the arithmetic
mean of the data. Applied to the Stiefel manifold, we show
that the resulting barycenter is in fact a closed form solution
of the R-barycenter associated to the orthographic retraction
from [17]. We also extend our result to the projection based on
QR decomposition, showing that the resulting projected mean
is also an RL-barycenter. In order to apply our approach on
the Grassmann manifold, we derive the projection from the
ambient space onto the manifold. Numerical experiments are
conducted on simulated data. Our projected means perform
better than existing R-barycenters on Stiefel. We also do
not lose too much accuracy as compared to the Riemannian
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Fréchet mean on Grassmann. Due to their simplicity and
reasonable complexity, on Stiefel and Grassmann manifolds,
our proposed projected means appear very advantageous as
compared to other existing averaging methods.

To ensure reproducibility, the code is available at https://
github.com/flbouchard/projection barycenter.

II. BACKGROUND

A. Stiefel and Grassmann manifolds
The real Stiefel manifold is the homogeneous space of p×k

orthogonal matrices [8]–[10], i.e.,

Stp,k = {U ∈ Rp×k : U>U = Ik}. (1)

The projection map from Rp×k onto Stp,k according to the
Euclidean distance is [20, Theorem 4.1]

PStp,k(X) = argmin
U∈Stp,k

‖X −U‖22 = uf(X), (2)

where uf(·) returns the orthogonal factor of the polar decom-
position. The tangent space of Stp,k at U is [8]–[10]

TUStp,k = {ξ ∈ Rp×k : U>ξ + ξ>U = 0}. (3)

Since Stp,k is a submanifold of the Euclidean space Rp×k, it
can simply be turned into a Riemannian manifold by endowing
it with the Euclidean metric

〈ξ,η〉U = tr(ξ>η). (4)

The corresponding orthogonal projection from Rp×k onto
TUStp,k is [8]–[10]

P
Stp,k
U (Z) = Z −U sym(U>Z), (5)

where sym(·) returns the symmetrical part of its argument.
The Grassmann manifold is the manifold of k-dimensional

subspaces in the Euclidean space Rp [8]–[13]. There exist
various ways of representing it. For instance, it can be viewed
as a quotient manifold of the Stiefel manifold Stp,k with the
orthogonal group Ok [8]–[13]. In this article, as in [12], [13],
we identify it with the set of orthogonal rank k projectors, i.e.,

Grp,k = {P ∈ Sp : P 2 = P , rank(P ) = k}, (6)

where Sp denotes the Euclidean space of p × p symmetric
matrices. This representation of the Grassmann manifold Grp,k
is linked to the Stiefel manifold Stp,k through the projection
mapping

π : U ∈ Stp,k 7→ UU> ∈ Grp,k. (7)

Even though the formula is quite intuitive and related to
principal component analysis, we could not find the projection
map from Sp onto Grp,k identified as (6) in the literature. We
thus provide it in Section III, which contains our contributions.
The tangent space of the Grassmann manifold identified as (6)
at P ∈ Grp,k is [13]

TP Grp,k = {ξ ∈ Sp : Pξ + ξP = ξ}. (8)

Since, in this case, Grp,k is a submanifold of Sp, it can also
be turned into a Riemannian manifold by endowing it with the
Euclidean metric (4). The corresponding orthogonal projection
from Sp onto TP Grp,k is [13]

P
Grp,k
P (Z) = 2 sym((Ip − P )ZP ). (9)

B. Barycenters on matrix manifolds

When aiming to compute a barycenter on a Riemannian
matrix manifold M, the ideal solution appears to employ
the Riemannian mean. Such manifold is equipped with a
Riemannian metric 〈·, ·〉·, which yields a Riemannian distance
δ(·, ·) on M. This distance can be exploited to define the
corresponding Riemannian mean (or Fréchet mean). Given
samples {M i}ni=1 in M, their Riemannian mean G ∈ M
is the solution to the optimization problem [21]

G = argmin
G∈M

n∑
i=1

δ2(M i,G). (10)

It is usually not known in closed form. To compute it, one
can employ the Riemannian gradient descent, which yields
the following fixed-point algorithm [21], [22]

G(t+1) = expG(t)

(
1

n

n∑
i=1

logG(t)(M i)

)
, (11)

where expG : TGM → M and logG : M → TGM
are the Riemannian exponential and logarithm at G ∈ M.
The Riemannian exponential is defined through the geodesics,
which generalize the notion of straight lines to Riemannian
manifolds. The Riemannian logarithm is its (local) inverse.

Unfortunately, even though it seems the most natural option,
the Riemannian mean is often very complicated to compute
in practice. This is because Riemannian exponential and loga-
rithm operators are computationally expensive in many cases.
In fact, they are not always known in closed form (especially
the Riemannian logarithm) and, even when they are, their
computation usually involves costly operations. For instance,
for the Stiefel manifold, the Riemannian exponential involves
a matrix exponential [8], [9], [23] while the Riemannian
logarithm is not known in closed form and can only be
computed with a heavy iterative algorithm [23]–[25].

To overcome the fact that the Riemannian exponential is
often too expensive, a simpler tool to map tangent vectors onto
the manifold has been designed in the context of optimization:
the retraction [9]. A retraction is, at G ∈M, a mapping RG :
TGM→M such that RG(ξ) = G+ξ+ o(‖ξ‖). Retractions
are (at least) first order approximations of the Riemannian
exponential. Notice that on a manifold, there are often several
retractions available. Beyond optimization, retractions have
been leveraged to design barycenters on manifolds: the so-
called R-barycenters [17], [18]. The goal is to propose simpler
barycenters than the Riemannian mean while respecting the
structure of the manifold. This appears particularly attractive
for manifolds whose Riemannian exponential and/or logarithm
are not known in closed form such as the Stiefel manifold. The
idea is to mimic (11), replacing the Riemannian exponential
and logarithm with a retraction and its inverse [17], [18].
Formally, the resulting fixed-point algorithm is

G(t+1) = RG(t)

(
1

n

n∑
i=1

R−1
G(t)(M i)

)
. (12)

https://github.com/flbouchard/projection_barycenter
https://github.com/flbouchard/projection_barycenter
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In practice, this approach has been exploited on the Stiefel
manifold with various retractions [17]. The first one is the
one based on the projection (2) (polar decomposition), i.e.,

Ruf
U (ξ) = PStp,k(U + ξ) = uf(U + ξ). (13)

The second one is based on the QR decomposition, i.e.,

Rqf
U (ξ) = qf(U + ξ), (14)

where qf(·) returns the orthogonal factor of the QR decompo-
sition. For these two retractions, computing the inverse is not
straightforward. In both case, it involves solving equations not
admitting closed form solutions. The third retraction is the so-
called orthographic retraction [17]. This has a straightforward
inverse, while the retraction itself is implicitly defined and
involves solving a Ricatti equation. The inverse retraction
exploits the orthogonal projection (5) and is given by

Ro −1
U (V ) = P

Stp,k
U (V −U). (15)

For all above R-barycenters, a simple expression exists
either for the retraction R·(·) or the inverse retraction R−1· (·),
but numerically solving an equation, possibly costly and unsta-
ble, is necessary for the other operation. Indeed, as explained
in [17], a solution to such equation is only guaranteed in
a neighborhood of U ∈ Stp,k. Hence, the resulting proce-
dure (12) appears quite complicated and heavy. Moreover, the
motivation behind retractions is to simplify the Riemannian
exponential. Exactly taking the inverse retraction, which is
complicated, does not seem to follow this philosophy.

III. PROJECTION BASED BARYCENTERS

This section contains our contribution. Our original idea
is to simplify (12) by dropping the requirement of choosing
the inverse retraction. We rather replace that with a lifting,
which, at G ∈ M, is a mapping LG : M → TGM
such that LG(M) = M − G + o(‖M‖). The resulting
barycenters, named retraction-lifting barycenters, and denoted
RL-barycenters, are defined in Definition 1.

Definition 1 (RL-barycenters). Given the retraction R· :
T·M → M and lifting L· : M → T·M, the so-called RL-
barycenter G ∈M of samples {M i}ni=1 in M, if it exists, is
solution to the fixed-point equation

G = RG

(
1

n

n∑
i=1

LG(M i)

)
.

Notice that the point G ∈ M is solution if it verifies
1
n

∑n
i=1 LG(M i) = 0.

This formalism of RL-barycenters encompasses the existing
ones of Riemannian means – with RG(·) = expG(·) and
LG(·) = logG(·) – and R-barycenters – with LG(·) = R−1G (·).
It is more general since a wider range of choices of liftings
is possible. Hence, it allows to select retractions and liftings
known in closed form and not too expensive to compute. One
can thus expect to obtain more tractable algorithms with this
setting. Choosing simple yet natural retraction and lifting is
our goal in the following. As we will see, doing so yields
astonishingly simple barycenters.

In this work, we are particularly interested in the retrac-
tions that arise from the projection from the ambient space
E to the matrix manifold M [19], defined as P(X) =
argminG∈M ‖X −G‖22. The corresponding retraction is

RG(ξ) = P(G+ ξ). (16)

For the lifting, we consider the orthogonal projection mapping
on tangent spaces corresponding to the Euclidean metric of E .
At G ∈M, it is denoted PG : E → TGM. The lifting is

LG(M) = PG(M −G). (17)

This retraction and lifting appear as the simplest natural
choices on M. Interestingly, as shown in Proposition 1, we
soon realised that the resulting barycenter admits a simple
closed form expression: it is the projection on M of the
arithmetic mean of {M i}ni=1 (which belongs to E).

Proposition 1 (Projection based barycenters). Given the
retraction (16) and the lifting (17), the RL-barycenter of
{M i}ni=1, according to Definition 1, is

G = P

(
1

n

n∑
i=1

M i

)
.

Proof. By definition, G = argminG∈M ‖ 1n
∑n

i=1M i−G‖22.
Let F (G) = ‖ 1n

∑n
i=1M i −G‖22. The directional derivative

of F at G ∈ M in direction ξ ∈ TGM is dF (G)[ξ] =
〈G− 1

n

∑n
i=1M i, ξ〉, where 〈·, ·〉 denotes the Euclidean metric

on E . Since ξ ∈ TGM, one has

dF (G)[ξ] = 〈PG(G− 1
n

∑n
i=1M i), ξ〉.

By identification, it follows that the Riemannian gradient of
F at G is ∇F (G) = PG(G − 1

n

∑n
i=1M i). Moreover, by

definition of the projected mean G, ∇F (G) = 0. Hence,
PG( 1n

∑n
i=1(M i −G)) = 1

n

∑n
i=1 LG(M i) = 0.

In particular, this approach can be employed with the Stiefel
manifold Stp,k with the retraction and lifting resulting from
projections (2) and (5). It is interesting to notice that both
the retraction and lifting were previously considered in the
context of R-barycenters. Indeed, the retraction corresponds
to the polar retraction (13) while the lifting corresponds to the
inverse retraction (15) of the orthographic retraction. One of
the results of the present paper is that, as a direct consequence
of Proposition 1, G = uf( 1n

∑n
i=1M i) is a closed form

solution for the R-barycenter with the orthographic retraction.
Hence, in this case, the iterative procedure (12) is no longer
necessary. To apply our approach on the Grassmann manifold
Grp,k, the projection map from Sp onto Grp,k is required. It
is provided in Proposition 2.

Proposition 2 (Projection on the Grassmann manifold). The
projection map from Sp onto Grp,k according to the Euclidean
distance is

PGrp,k(X) = argmin
P∈Grp,k

‖X − P ‖22 = V kV
>
k ,

where V k is composed of the k eigenvectors corresponding
to the k largest eigenvalues of X .



4

20 50 70 100 200 500
−60

−50

−40

−30

−20

n

er
r S

t p
,k
(G

St
p
,k
,Ĝ
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Fig. 1. Medians (solid lines), 10% and 90% quantiles (filled areas) over 100 realizations of error measure (19) of mean estimators on the Stiefel manifold
Stp,k . “R polar” and “R QR” correspond to R-barycenters with polar and QR retractions. “proj polar” and “proj QR” correspond to the projected arithmetic
means with the projections on Stp,k based on the polar and QR decompositions, respectively. In these simulations, p = 10 and k = 5.
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Fig. 2. Medians (solid lines), 10% and 90% quantiles (filled areas) over
100 realizations of error measure (20) of mean estimators on the Grassmann
manifold Grp,k . In the legend, “proj evd” corresponds to the projected
arithmetic mean with the projection on Grp,k based on the eigenvalue
decomposition. In these simulations, p = 10, k = 5 and σ = 0.5.

Proof. See Supplementary materials.

We further believe that our results extend to more generic
projections, i.e., mappings P̃ : E → M such that P̃2(X) =
P̃(X). From [19], we know that, in the case of P :X ∈ E 7→
argminG∈M ‖X − G‖22, we have PG(Z) = dP(G)[Z].
Hence, if we set RG(ξ) = P̃(G + ξ) and LG(M) =
d P̃(G)[M − G], then the corresponding RL-barycenter is
the arithmetic mean projected on M with P̃ , i.e., G =
P̃( 1n

∑n
i=1M i). To obtain this, it is needed to show that, with

G = P̃( 1n
∑n

i=1M i), we have d P̃(G)[ 1n
∑n

i=1M i −G] =
0. Intuitively, this seems to be the case but proving it is
beyond the scope of the present letter in the general case.
In supplementary materials, we show that this actually works
on Stp,k with the projection based on the QR decomposition,
i.e.,

G = qf

(
1

n

n∑
i=1

M i

)
(18)

is the RL-barycenter of {M i}ni=1 with the QR retraction (14)
and the lifting LG(M) = d qf(G)[M −G].

IV. NUMERICAL EXPERIMENTS

In this section, numerical experiments on simulated data
are conducted to evaluate the performance of the proposed
projected arithmetic means from Proposition 1 on Stiefel and
Grassmann manifolds. The projected mean (18) based on the
QR decomposition is also considered. For the Stiefel manifold
Stp,k, the performance of proposed means are compared to
the ones of R-barycenters [17] exploiting the polar (13),

QR (14) and orthographic (15) retractions. For the Grassmann
manifold, the projected mean is compared to the Riemannian
mean; see, e.g., [11], [12]. In every cases, iterative algorithms
are initialized with the first sample of the dataset to average.

Let us now describe how simulated data are obtained. For
the Stiefel manifold, a random center GStp,k by taking the k
first columns of a p×p orthogonal matrix uniformly drawn on
Op. From there, n random samplesU i are generated according
to U i = expm(σΩi)GStp,k , where σ > 0 and Ωi is obtained
by taking the skew-symmetrical part of a p× p matrix whose
elements are independently drawn from the centered normal
distribution with unit variance. For Grassmann, the random
center GGrp,k as well as the random samples P i are obtained
by projecting GStp,k and U i on Grp,k through (7).

To measure the performance on Stp,k, we rely on the same
similarity measure as in [17], i.e.,

errStp,k(GStp,k , Ĝ) = ‖G>Stp,kĜ− Ik‖
2
2. (19)

For Grp,k, we employ the Riemannian distance [13], yielding

errGrp,k(GGrp,k , Ĝ) = ‖ 12 logm((Ip− 1
2GGrp,k)(Ip− 1

2Ĝ))‖22.
(20)

Obtained results are displayed in Figures 1 and 2. Notice
that, on Stp,k, the results obtained with the R-barycenter asso-
ciated to the orthographic retraction are not displayed since, as
expected, it yields the same results as the projected arithmetic
mean with the projection based on the polar decomposition (in
all considered cases, the difference is lower than 10−10). We
observe that our proposed projected means perform well on
both Stiefel and Grassmann manifolds as compared to other
considered barycenters on these simulated data. On Stiefel, R-
barycenters based on polar and QR retractions do not perform
well as the distance of samples to the mean increases, while
our proposed projected arithmetic means remain competitive.

V. CONCLUSION AND PERSPECTIVES

In conclusion, due to their performance and simplicity, our
proposed projected arithmetic means appear advantageous as
compared to state-of-the-art, computationally expensive, itera-
tive mean estimators both on Stiefel and Grassmann manifolds.
We believe that our approach can also be employed to other
manifolds such as the one of symmetric positive semi-definite
matrices; see, e.g., [26], [27].
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SUPPLEMENTARY MATERIALS

A. Projection on the Grassmann manifold

This section contains the proof of Proposition 2. Due to
the structure of the solution, it is better to rely on the
representation of Grassmann corresponding to the quotient of
the Stiefel manifold Stp,k by the orthogonal group Ok [8],
[9]. In this case, the equivalence class at U ∈ Stp,k is
{UO : O ∈ Ok}. The mapping linking this quotient
representation of Grassmann to Grp,k identified as the rank k
projector space (6) is the one in (7). With this parametrization,
given X ∈ Sp, the optimization problem becomes

argmin
U∈Grp,k

f(U) = ‖X −UU>‖22.

One can show that the directional derivative of f is

d f(U)[ξ] = 2 tr((UU> −X)(Uξ> + ξU>))

= 4 tr((UU> −X)Uξ>)

= 4 tr((Ip −X)Uξ>)

From there, the Euclidean gradient of f is

∇Ef(U) = (Ip −X)U .

The Riemannian gradient of f on Stiefel Stp,k is then obtained
by projecting this Euclidean gradient with the projection (5),
which yields

∇f(U) = (Ip −UU>)(Ip −X)U .

This also directly corresponds to the Riemannian gradient
of f on the quotient representation of Grassmann thanks to
the invariance property of f along equivalence classes. The
critical points of f are matrices V k ∈ Stp,k composed of k
eigenvectors of X . Indeed, let V k ∈ Stp,k, V p−k ∈ Stp,p−k,
Λk ∈ Dk (k × k diagonal matrices) and Λp−k ∈ Dp−k
correspond to the eigenvalue decomposition of X , i.e.,

X = V kΛkV
>
k + V p−kΛp−kV

>
p−k

=
[
V k V p−k

] [Λk 0
0 Λp−k

] [
V >k
V >p−k

]
One further has Ip = V kV

>
k +V p−kV

>
p−k and V >k V p−k =

0. It follows that

∇f(V k) =

V p−k
[
0 Ip−k

] [Ik −Λk 0
0 Ip−k −Λp−k

] [
Ik
0

]
.

Hence, ∇f(V k) = 0, and V k is a critical point.
It remains to determine the set of k eigenvectors ofX which

yields the minimum. To do so, let’s look at the cost function
at V k, which is

f(V k) = ‖X − V kV
>
k ‖22 = ‖Λk − Ik‖22 + ‖Λp−k‖22.



6

In order to minimize f , we must select the eigenvalues such
that ‖Λk−Ik‖22 is the smallest possible. These thus correspond
to the largest eigenvalues of X , which concludes the proof of
Proposition 2.

B. RL-barycenter on Stiefel based on the QR decomposition

We consider the RL-barycenter from Definition 1 on the
Stiefel manifold Stp,k with the retraction based on the QR
decomposition defined in (14) and with the lifting LG(M) =
d qf(G)[M−G]. Given samples {M i}ni=1, the corresponding
fixed-point equation is

G = qf

(
G+

1

n

n∑
i=1

d qf(G)[M i −G]

)
.

A solution, if it exists, is such that d qf(G)[A − G] = 0,
whereA = 1

n

∑n
i=1M i. Our objective here is to show that the

projected arithmetic mean G = qf( 1n
∑n

i=1M i) is a solution.
First, we compute the differential of the QR decomposition

in order to get the expression of d qf(G). Let B = QR,
where Q ∈ Stp,k and R ∈ Tk (space of upper triangular
matrices). It follows that dB = dQR + QdR, where
dQ ∈ TQStp,k and dR ∈ TRTk ' Tk (Tk is a vec-
tor space). From [9], we know that there exists Ω ∈ Ak

(space of skew-symmetric matrices) and K ∈ R(p−k)×k,
such that dQ = QΩ + Q⊥K, where Q⊥ ∈ Stp,(p−k) is
an orthogonal complement of Q, i.e., Q>⊥Q = 0. From
there, one gets dB = Q(ΩR + dR) + Q⊥K. It follows
that Q> dBR−1 = Ω + dRR−1 and Q>⊥ dB = K.
Since dR, R ∈ Tk, and Ω ∈ Ak, one can deduce that
Ω = tril(Q> dBR−1) − tril(Q> dBR−1)>, where tril(·)
cancels the diagonal and upper triangular elements of its
argument. One thus gets

d qf(B)[dB] = Q⊥Q
>
⊥ dB

+Q(tril(Q> dBR−1)− tril(Q> dBR−1)>).

We are interested in d qf(G)[A−G]. By construction, G ∈
Stp,k and A = GR. Hence,

d qf(G)[A−G] = G⊥G
>
⊥(GR−G)

+G(tril(G>(GR−G))− tril(G>(GR−G))>).

By definition, we have G>⊥G = 0. Moreover, tril(G>(GR−
G)) = tril(R − Ik) = 0. It is enough to conclude that G =
qf( 1n

∑n
i=1M i) is indeed an RL-barycenter on Stp,k with the

retraction based on the QR decomposition defined in (14) and
with the lifting LG(M) = d qf(G)[M −G].
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