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0. Abstract 38 

While research on auditory attention in complex acoustical environment is a thriving field, 39 

experimental studies thus far have typically treated participants as passive listeners. The pre-40 

sent study – which combined real-time covert loudness manipulations and online probe detec-41 

tion –investigates for the first time the effects of acoustic salience on auditory attention during 42 

live interactions, using musical improvisation as an experimental paradigm. We found that 43 

musicians were more likely to pay attention to a given co-performer when this performer was 44 

made sounding louder or softer; that such salient effect was not due to the local variations 45 

introduced by our manipulations but rather likely to be driven by the more long-term context; 46 

and that improvisers tended to be more strongly and more stably coupled when a musician 47 

was made more salient. Our results thus demonstrate that a meaningful change of the acousti-48 

cal context not only captured attention but also impacted the ongoing musical interaction it-49 

self, highlighting the tight relationship between attentional selection and interaction in such 50 

social scenario, and opening novel perspectives to address whether similar processes are at 51 

play in human linguistic interactions. 52 

 53 

1. Introduction 54 

 55 

Research on auditory attention in complex acoustical environment is a thriving field. Starting 56 

with Cherry’s seminal paper (1953) – which coined the expression “cocktail party effect” to 57 

describe our ability to focus on selected aspects of a given acoustic scene while blocking out 58 

non-relevant sonic streams – an impressive amount of psychophysical as well as neuroimag-59 



ing research has been conducted on both sides of the “cocktail party problem” (McDermott, 60 

2009): how do we segregate concurrent sonic streams that are somehow mixed?; and how do 61 

we direct our attention to a source of interest while ignoring other sources? 62 

Strikingly, the whole field was thus started by the description of an imaginary situation – the 63 

cocktail party – in which agents participate to the acoustic scene in which they are immerged 64 

in. They are not merely passive listeners, observing the scene from afar; rather, they direct 65 

their attention from one source to another as part of broader dialogic interests – namely, iden-66 

tifying the conversation(s) they are going to engage with, thus adding their own voice to the 67 

overall acoustic scene. However, this interactional aspect has all but disappeared from extent 68 

psychophysical studies addressing the cocktail party problem from the perspective of speech 69 

intelligibility with multiple concurrent talkers. Baring a few recent exceptions of a rather ob-70 

servational nature (e.g., Miles et al., 2023 or Ryan et al., 2023), it is fair to say that most stud-71 

ies approach speech-on-speech situations from an experimental perspective in which the par-72 

ticipants are treated as external listeners of a scene rather than as agents involved in that scene 73 

(see Bidelman & Yoo, 2020 for a recent example). While there are obvious methodological 74 

reasons for this state of affair (studying participants’ auditory attention in sound-proof booths 75 

using precisely calibrated sounds presented through headphones or spatialized speakers al-76 

lows for maximum experimental control), disconnecting attention from interaction might also 77 

come at a cost. This is particularly clear when it comes to the problem of selective auditory 78 

attention – whose underlying mechanisms are arguably less studied than the mechanisms al-79 

lowing for smooth sound segregation (McDermott, 2009). Selective auditory attention is in-80 

deed often seen as being strongly impacted by bottom-up factors – often described by the ge-81 

neric term “salience” to refer to acoustical events that draw auditory attention independently 82 

of volition, either because they possess acoustic characteristics that are known to catch audito-83 

ry attention such as high levels of sound intensity or roughness (Arnal et al., 2019) or because 84 



they stand out from the local sonic context (Dalton & Lavie, 2004). However, one might 85 

wonder whether stimulus-driven factors such as acoustic salience still play a significant role 86 

in shaping auditory attention over time in interactional contexts in which volitional attentional 87 

selection processes might seem to be predominant (Koch et al., 2011). Moreover, it could be 88 

the case that agents are typically less sensitive to local variations in the acoustic context in 89 

settings which are more cognitively demanding (as interactional settings typically are, com-90 

paratively to more passive settings), in line with already established effects of cognitive load 91 

on sound evaluation or auditory susceptibility (see Steffens et al., 2020; Van der Heiden et al., 92 

2023). This would constitute yet another case of a finding on social attention obtained from 93 

studies in which participants merely observe an interaction between agents (for example by 94 

relying on pictures or videos) that does not straightforwardly generalize to participants’ be-95 

haviors during live interactions (Dawson & Foulsham, 2022).  96 

The present paper precisely seeks to investigate the impact of such acoustic salience on audi-97 

tory attention during live interactions, by introducing a novel experimental paradigm involv-98 

ing musicians freely improvising together in a trio setting. Music provides a highly ecological 99 

setting – and yet still largely unexplored (but see Faraco et al., 2024, for a recent example) – 100 

to study selective auditory attention in interactive contexts, as music is, most often than not, a 101 

collective affair (Blacking, 1973), presenting simultaneously different instrumental or vocal 102 

parts. In performances, this means that musicians must navigate within a complex acoustic 103 

environment, focusing their attention on such or such aspect of the sonic tapestry collectively 104 

produced to fulfill various performance goals – which typically means focusing their auditory 105 

attention on such or such musician (or sub-group of musicians) (Keller 2001). Amongst the 106 

wide variety of collective musical practices, free improvisation is a particularly interesting 107 

case for our purpose, if only because joint improvisation plays such a central role in most of 108 

our social interactions (Noy et al., 2011). In collective free improvisation (CFI from now on), 109 



musicians aim at spontaneously creating music without relying on pre-defined plans or pre-110 

existing musical structures (Saint-Germier & Canonne 2020). CFI is thus in stark contrast 111 

with score-based, well-rehearsed performances, in which the distribution of musicians’ audi-112 

tory attention is likely to be mostly guided by the structural information contained within the 113 

score (e.g., where the melodic part lies) or the “ideal sound” and other performance goals that 114 

are slowly built through rehearsals. In CFI, on the contrary, how musicians distribute their 115 

auditory attention is an integral part of the interactional dynamics, and plays a crucial role in 116 

shaping how the performance will unfold (Clarke, 2005).  117 

But while CFI might provide a highly relevant setting to assess whether acoustic salience play 118 

a significant role in driving musicians’ auditory attention, a crucial problem is to find a way to 119 

track such auditory attention over the course of the performance. Recent advances in auditory 120 

attention decoding, based on the modeling of neural information collected through mobiles 121 

EEG (Straetmans et al., 2022) offer promising perspectives, but we are still far from being 122 

able to use such methods in a setting as sonically and interactionally complex as collective 123 

free improvisation. Relying on post-hoc verbalizations through interviews with musicians 124 

(Seddon, 2005) is of course also an option but such verbalizations tend to focus on conscious 125 

decisions made by the musicians (Canonne & Garnier, 2012), which might make the method-126 

ology ill-suited to study non-intentional shifts of musicians’ auditory attention. In the follow-127 

ing study, we thus relied on a behavioral approach, using a probe-based method which al-128 

lowed us to assess, each time a probe is sent, whether or not a given musician in a trio was 129 

paying close auditory attention to one of the two other musicians. This probe-based method 130 

was then combined with real-time manipulations of the salience of the acoustic signals pro-131 

duced by the musicians. As they were playing together, and unknowingly to them, the musi-132 

cians’ individual signals were selectively made, for short periods of time of a few seconds, 133 

either a bit louder or a bit softer – a manipulation which presents the advantage of being ap-134 



plicable in the same way to every musical instrument, contrary to manipulations that would 135 

involve, e.g., real-time manipulation of the spectral information. This novel experimental par-136 

adigm thus made it possible to systematically study, for the first time, whether and how a 137 

change in loudness – which has been shown in previous studies to act as a salient cue (Dalton 138 

& Lavie, 2004) – could shape selective auditory attention in a context in which participants 139 

are able to freely interact with one another. On the one hand, contrasting the effects of both 140 

“louder” and “softer” manipulations on musicians’ attention allowed us to assess whether this 141 

loudness manipulation was more a matter of intrinsic acoustic cues (which would predict that 142 

louder events are more salient than softer events) or of contextual cues (which would predict 143 

that both louder and softer events can act as salient cues when they stand out of given context, 144 

as was found in Dalton & Lavie, 2004). On the other hand, our repeated loudness manipula-145 

tions combined with our probe-based methodology – with probes being sent to participants 146 

both during the manipulations and at various points after the manipulations – allowed us to 147 

assess whether such potential salience effect would be rather driven by the short-term devia-148 

tion in loudness or more long-term contextual changes in musicians’ typical loudness.  149 

But beyond studying the impact of loudness changes on musicians’ attention, our paradigm 150 

also allowed us to directly assess whether such events would impact the ongoing interaction. 151 

Attention and action have indeed been found to be closely related (Humphreys et al., 2010), to 152 

the point that a recent influential philosophical account of attention has explicitly defined at-153 

tention in terms of action selection (Wu, 2014). More specifically, studies have shown that 154 

acoustic salience within musical stimuli was associated with spontaneous muscle activity 155 

from the participants exposed to such stimuli (Schultz et al., 2021), and that joint attention 156 

increased feelings of connectedness between participants (Wolf et al., 2015). All this makes 157 

plausible that musicians would be more likely to interact more strongly with their co-158 

improvisers when they are more acoustically salient, and our experimental design made it 159 



possible to test for this hypothesis. In other words, by assessing its impact on both attention 160 

and interaction, our study investigates how acoustic salience can act as a full-fledged commu-161 

nicational strategy in social settings.  162 

 163 

2. Methods 164 

 165 

2.1. Participants 166 

Fifteen musicians participated in the experiment (mean age = 40.5 years, SD = 9.5, 9 male, 2 167 

female, 1 non-binary and 3 that did not provide the information), divided into five trios. They 168 

were highly trained musicians (with a mean of 28.8 years of musical practice, SD = 8.6 years) 169 

and had a significant experience with collective free improvisation (with a mean of 19 years 170 

of practice, SD = 9.5), which they all practiced in a professional proficiency (invitation to 171 

important festivals; numerous live and studio recordings published on well-regarded labels; 172 

etc.). They were recruited from the Parisian Free Improvisation scene, that comprises a high 173 

number of musicians with a wide variety of different stylistic backgrounds (Roueff, 2006).  174 

The overall instrumentation was saxophone (N = 4), guitar (N = 3), trumpet (N = 2), drums, 175 

piano, clarinet, contrabass clarinet, double bass and electronics (N = 1). One participant also 176 

used their voice during the improvisations. In each trio, the three musicians always played 177 

different instruments in order to minimize timbral – and thus source – confusion for the 178 

participants.  179 

Trios were intentionally composed to minimize potential effects of familiarity on selective 180 

attention (i.e., avoiding that participants paid more attention to the musicians they were used 181 

to play with). Consequently, the majority of musicians within each trio were unacquainted or 182 

had not previously collaborated together. Participants assessed their prior familiarity with the 183 



other members of their trio using a 7-point Likert scale. As expected, mean familiarity was 184 

low (M = 2.06; SD = 0.93).  185 

All participants gave their informed written consent and were compensated at the standard 186 

rate for the employment of professional musicians in France.  187 

 188 

2.2. Procedure  189 

The experiment was held in a professional recording studio. Each musician of the trio was 190 

allocated to an individual booth, and was equipped with headphones (Beyerdynamics DT 770 191 

pro, 80 ohms) in order to listen to each other. Musicians could thus not see each other, so that 192 

communication between them would only be based on acoustic information. Importantly, 193 

musicians’ headphones were panned in such a way that they heard one improviser completely 194 

on the right side and one completely on the left side, while hearing themselves in the center. 195 

The panning (i.e., which musician is heard on the right side, which is heard on the left side) 196 

was made randomly.   197 

Each trio performed between four and six improvisations so as to improvise for a total of 198 

approximatively 40 minutes (mean = 42 minutes, SD = 2.5 minutes). They had a 30-minute 199 

break after having performed the first two or three improvisations, depending on the duration 200 

of those first improvisations. The recording was made on Protools (version 2022.9) by a 201 

professional sound engineer. 202 

While the musicians were playing, we introduced at various points real-time manipulations of 203 

the RMS level (i.e., average loudness) of a given musician during approximatively a 10-204 

second window. There were two distinct patterns of variation. Taking the musician’s actual 205 

loudness as the baseline, the louder pattern featured an +5 dB increase  in the signal’s 206 

amplitude for a duration comprised between 1.76s and 3.13s (randomly drawn from a 207 

gaussian distribution with mean=2.5s and SD=0.25), sustained the heightened level for a 208 



duration comprised between 4.29s and 5.69s (randomly drawn from a gaussian distribution 209 

with mean=5s and SD=0.25), and then decreased for a duration comprised between 1.85s and 210 

3.27s (randomly drawn from a gaussian distribution with mean=2.5s and SD=0.25) back to 211 

the baseline. Conversely, the softer pattern started with a -5 dB decrease from the baseline for 212 

approximatively 2.5s (drawn from the same distribution as for the louder pattern), maintained 213 

the reduced level for approximatively 5s, and finally increased for approximatively 2.5s back 214 

to the baseline.  215 

As these manipulations were repeated numerous times over a given performance, the 216 

variations of durations described above were meant to make the manipulations more 217 

unpredictable, and thus less recognizable. Moreover, since the musicians did not see each 218 

other while playing, and that their interactions was entirely mediated by the sounds perceived 219 

in their headphones, they had no way to know that the level heard in their headphones was not 220 

the one at which the musicians were actually playing. The 5 dB increase/decrease was pre-221 

tested by the authors of the present paper, in order to identify a threshold value that would be 222 

both perceivable but would not sound too “unnatural” (see Supplementary Material for the 223 

presentation of a perceptual follow-up study which confirmed, in a post-hoc fashion, the 224 

naturalness of our manipulations). 225 

In order to implement these manipulations, six different 15-minute automation tracks were 226 

created for each trio, each of them defining the moments in which these RMS manipulations 227 

would occur for each musician. For each musician A in a given trio, 2 automation tracks were 228 

created: one applied to B’s signal as received in A’s headphones and one applied to C’s signal 229 

as received in A’s headphones. Note that musicians always heard themselves as they actually 230 

played, i.e., without any RMS manipulation. A Max/MSP patch was designed to synchronize 231 

in real time those automation tracks with the ongoing Protools recording session.  232 



The following four constraints were used in the random generation of the automation tracks 233 

for a given trio to minimize the impact of our manipulations on the ongoing group interaction, 234 

while still collecting as many data points as possible. First, a given musician never heard both 235 

of their co-improvisers modified at the same time. Second, for a given musician, RMS 236 

manipulations were never applied to a same co-improviser twice in a row. Third, if a given 237 

musician’s RMS was being modified for their two co-improvisers, then one co-improviser 238 

heard that musician through a louder pattern, and the other through a softer pattern. Fourth, 239 

and finally, when considering the 6 automation tracks of a given trio as a whole, RMS 240 

manipulations occurred continuously, with a 1-second buffer period between two successive 241 

manipulations. 242 

To track the auditory attention of the participant in real time, participants had to perform a 243 

detection task while improvising. Target sounds were indeed added at different times to the 244 

music improvised by the musicians and the musicians were asked to press a MIDI pedal 245 

(ROLAND DP-10 Piano style Sustain Pedal) each time they noticed one of those target 246 

sounds – thus triggering a signal recorded as a separate MIDI track in the Protools session. 247 

Musicians were free to place their pedal wherever they felt it would be more convenient for 248 

them to press it while playing. At the beginning of each session, a 3-minute training period 249 

was organized so that musicians could familiarize themselves with the target sounds as well 250 

as with the pedal pressing. 251 

Each target sound was associated to a given musician, meaning that the two other musicians 252 

heard the target sound on the channel associated to that musician. Musicians also never heard 253 

the target sounds associated with themselves. For example, every time a target sound was 254 

associated to musician A, the two other musicians B and C heard the target sound on the side 255 

attributed to musician A in their headphones panning (i.e., either the left or the right side) 256 

while A did not hear it (see Figure 1).  257 



The target sound was composed of two bursts of noise of 60ms each, with 40ms of attack and 258 

20ms of release and without any inter-onset interval, so as to make detection harder. The first 259 

burst was filtered between 400 and 1600 Hz and the second one between 320 Hz and 1280 260 

Hz, with a strong decrease outside of the passing band (~ -300 dB/octave). Importantly, the 261 

level of the target sound, was always 1.5 dB louder than the level of the musician’s track at 262 

the moment at which it was embedded. This was implemented through a Max/MSP patch 263 

which performed a real-time analysis of the RMS level of all the recorded tracks during the 264 

performance. The choice of this value for the emergence level of the target sound was made 265 

on the basis of observations from the experimenters during a pilot session in which several 266 

values were tested, trying to ensure sufficient audibility (which was also assessed in a post-267 

hoc fashion, see section 2.3 below) while limiting salience, and thus avoiding both floor and 268 

ceiling effects regarding target detection performance.   269 

 270 

 271 

Figure 1. Experimental procedure. Musicians A, B and C are improvising together, without seeing each other 272 

and hearing each other through a panned mixed in their headphones. B hears A’s signal through a “softer 273 



pattern” real-time manipulation (see the smaller amplitude) and C hears A’s signal through a “louder pattern” 274 

real-time manipulation (see the larger amplitude). A target sound (represented here by a purple star) is associated 275 

to musician A during these manipulations. B and C hear the target sound on the side on which they hear 276 

musician A (i.e., the left channel for musician B and the right channel for musician C). B detected the target 277 

sounds and pressed the pedal while C did not detect the target sound and did not press the pedal. 278 

 279 

Target sounds appeared every 7 to 14 seconds (randomly drawn from a uniform distribution). 280 

Since musicians did not hear the target sounds associated to their own musical track, this 281 

means that, on average, a musician heard a target sound every 15.75 seconds. For each trio, 282 

three 15-minute sound files were created beforehand with all the target sounds associated to 283 

each of the three musicians. Each sound file was then superposed to the two different 284 

automation tracks associated with that musician (one for each of their co-improvisers within 285 

the trio) so that roughly 75% of the target sounds would be heard at moments where the level 286 

of the musician associated with the target sound was manipulated. The remaining target 287 

sounds were heard when no RMS manipulation was happening and were thus used as a 288 

baseline. On average, each participant heard 137 target sounds (SD = 20) over the duration of 289 

the whole experiment. This resulted in a total of 2170 target sounds to be detected by the 290 

musicians. 291 

Importantly, in order to decrease potential learning effects, target sounds and RMS 292 

manipulations were not systematically associated and the distribution of the time intervals 293 

between two successive target sounds heard by a same participant was quite wide (see 294 

Supplementary Material for further analyses on potential learning effects). Furthermore, the 295 

first 30 seconds of each improvisation were without target sounds nor RMS modification, so 296 

that the musical interaction between the three musicians would begin in a way as natural as 297 

possible.  298 



Two video examples of the improvisations produced during this experiment by two different 299 

trios, and edited in such a way as to visually illustrate our experimental procedure, can be 300 

seen in the Supplementary Material.  301 

Ethical approval for this study was obtained at [Anonymized] (Protocol ID: 2023-16). All 302 

methods were carried out in accordance with their guidelines and regulations. 303 

 304 

2.3. Estimating the target sounds’ perceptual emergence 305 

Since the music was entirely improvised, the difficulty to detect a target sound was likely to 306 

vary depending on the moment at which it appeared, regarding not only the acoustical charac-307 

teristics of the track in which it was embedded, but also that of the other tracks. We assumed 308 

that the latter aspect was minimal in the present context, since the tracks were separated in the 309 

mix and therefore only subject to contralateral masking effects. However, regarding the for-310 

mer aspect, the masking effects related to the track associated with the target sound could 311 

have influenced detection. Indeed, even though target sounds were always inserted in a track 312 

using a constant level offset of +1.5 dB, their perceptual emergence is likely to have depended 313 

on more complex acoustical parameters of that specific track (e.g., average level, spectral con-314 

tent of the track, etc.). Thus, to ensure that the observed performance to detect these target 315 

sounds would mainly reflect the degree of attention to the track with which it was associated, 316 

and not simply their perceptual emergence at a pure psychoacoustical level, we estimated 317 

such perceptual emergence based on a well-adopted computational model of the human audi-318 

tory system (King et al., 2019). This model allowed us to compute a perceptual emergence 319 

score for each one of the target sounds triggered during the experiment (see Supplementary 320 

Material for more details), and thus to assess whether our experimental manipulation had an 321 

effect on the detection of target sounds, over and beyond their perceptual emergence.  322 

 323 



2.4. Acoustical features  324 

As the musicians were recorded in separate studio booths, we had access to each musician’s 325 

individual tracks. This allowed us to calculate audio descriptors of interest and explore 326 

potential relationships between these descriptors and our salience manipulations. Specifically, 327 

we computed two main audio descriptors often used to account for interaction between the 328 

musicians in collective free improvisation: Root Mean Square (RMS) and spectral centroid 329 

(Goupil et al., 2021). RMS is indicative of the loudness in each musician’s signal, while the 330 

spectral centroid provides information on the signal’s timbre (more specifically on its 331 

brightness). These two audio descriptors were computed using the python library Librosa 332 

(McFee et al., 2015) from each musician’s individual WAV files, with a 100ms window size. 333 

 334 

2.5. Variables 335 

The target sounds presented to the performers were divided into three categories:  336 

- “louder” target sounds: the target sounds associated to a musician heard through a 337 

louder pattern;  338 

- “softer” target sounds:  the target sounds associated to a musician heard through a 339 

softer pattern; 340 

- baseline target sounds: the target sounds associated to a musician heard without any 341 

RMS manipulation. 342 

This provided us with our main independent variable: RMS manipulations (base-343 

line/softer/louder). 344 

To account for the effects of RMS manipulations on attention, a target sound was considered 345 

to be detected by a given musician if the musician’s pedal was pressed in the 7 seconds fol-346 

lowing the triggering of the target sound (7 seconds was the minimal temporal distance be-347 



tween two successive target sounds).
1
 This provided us with our first dependent variable: De-348 

tection (yes/no). Note that the false alarms (i.e., pressing the pedal in the absence of a target 349 

sound) were rare (mean number of false alarms per participant = 5.133, SD = 3.631), amount-350 

ing to less than 3% of the total number of target sounds participants had to detect. Since there 351 

was moreover no clear method for assigning them to a given experimental category (i.e., base-352 

line, “louder pattern”, or “softer pattern”), they were ultimately not taken into account in our 353 

analysis.  354 

In order to assess whether the potential effects of RMS manipulations on attention were due to 355 

a change in the local acoustic context, we were also interested in investigating whether target 356 

sounds that would occur immediately after a RMS manipulation (and thus, immediately after 357 

a change back to the baseline level) would be better detected that target sounds that would 358 

occur farther away from a RMS manipulation. Baseline target sounds were thus further divid-359 

ed into two sub-categories: Baseline 1 – containing the target sounds occurring less than 10 360 

seconds after the end of a RMS manipulation (i.e., during a time window of the same length 361 

as our patterns); and Baseline 2 – containing the target sounds occurring more than 10 se-362 

conds after the end of a RMS manipulation. 363 

We were finally interested in assessing whether RMS manipulations would impact the 364 

musicians’ interactions. Since all of our target sounds were associated with one of our three 365 

experimental conditions, we relied on the timings of such target sounds to estimate the 366 

interaction between a given pair of musicians (the musician who had to detect the target sound 367 

and the musician with who the target sound was associated). For each musician, we thus 368 

extracted the time series corresponding to our two audio descriptors (RMS and spectral 369 

centroid) over a 7-second window (the minimum temporal distance between two target 370 

sounds, so that there would never be any overlap in successive measurements) centred around 371 

                                                 

1
 See Supplementary Material for a replication of our main analysis using a much shorter time window but 

yielding similar results. 



the target sound under consideration. Note that 14 target sounds appeared less than 3.5s 372 

before the end of a performance and were thus discarded from our analyses as they did not 373 

allow us to extract complete time series following the procedure described above. To assess 374 

the interaction between any two improvisers, we then used cross-recurrence quantification 375 

analysis (CRQA) – a method that provides insights into various correlational characteristics 376 

between two or more time series and that has been widely used in joint action studies (Wallot 377 

& Leonardi, 2018). 378 

After identifying the relevant hyperparameters (see Supplementary Material for more details), 379 

we performed the CRQA using the PyRQA library in Python (Rawald, Sips & Marwan, 2017) 380 

on the extracted pairs of RMS time series and pairs of Spectral Centroid time series. Three 381 

metrics were used as variables to describe the interaction between the musicians, namely:  382 

- Determinism (DET), which corresponds to the proportion of recurrent points that 383 

forms diagonal lines in the cross-recurrence plot. Diagonal lines represent periods 384 

where the two time-series follow similar trajectories for an extended period, meaning 385 

that there are patterns in one time-series that are also found in the other time-series. 386 

This provides an estimation of the degree to which the two musicians had similar 387 

behaviors.   388 

- Laminarity (LAM), which measures the proportion of recurrent points that form 389 

vertical lines in the recurrence plot. Vertical lines indicate periods of time where the 390 

system remains in the same state or a similar state for an extended period, reflecting 391 

phases of low variability. This provides an estimation of the degree of stability of the 392 

interaction between the two musicians.  393 

- Divergence (DIV), which is calculated as 1/Lmax, Lmax being the longest diagonal 394 

line. The higher this metric, the more chaotic is the relation between the two time 395 

series. This provides an estimation of the degree of independence of the two musicians  396 



As mentioned above, the CRQA was performed for both RMS and spectral centroid. For each 397 

moment of RMS manipulation, and for each one of our three metrics (Determinism, 398 

Laminarity, Divergence), we thus obtained two values (one for RMS and one for spectral 399 

centroid). Those two values were then averaged, resulting in a total of three Interaction 400 

variables (Average Determinism, Average Laminarity, Average Divergence) which, taken 401 

together, provides a rich picture of the interaction between the musician who had to detect the 402 

target sound and the musician with who the target sound was associated (see Figure 2).  403 

 404 

 405 

Figure 2. Computation of the three interaction variables. 406 

 407 

2.6. Statistical analyses 408 

As the duration of the improvisations were different each time, each participant ended up 409 

being presented with a different number of targets. To best account for this aspect and the fact 410 

that the overall detection performance greatly varied not only across individuals, but also 411 

within participants, depending on the musician (i.e., left or right) the target sounds were 412 

associated with, we relied on general linear mixed models for our statistical analyses, and 413 

. . .
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used the grouping between Detecting Participant (i.e., the participant that has to press the 414 

pedal) and Detected Participant (i.e., the participant with who the target sound is associated) 415 

as our random intercept.  416 

To test the impact of our RMS manipulations on detection, we did a four-scale hierarchical 417 

regression by comparing nested models, starting with a null model (m0), then adding the 418 

emergence score as a predictor (m1), and finally adding the RMS category to which the target 419 

sound belongs (i.e., baseline, louder or softer) as a second predictor (m2). A last model was 420 

fitted which included the interaction term between our two predictors (m3). The models were 421 

fitted with the function glmer from the R package lme4 (using a binomial family), and 422 

compared using a likelihood ratio test. “Baseline” was used as a base level whenever models 423 

included RMS manipulations as a predictor. 424 

To test whether Baseline1-target sounds were better detected than Baseline2-target sounds, 425 

we did a two-scale hierarchical regression by comparing nested models starting with a model 426 

with only the emergence score as a predictor (m1), and then adding “Baseline type” 427 

(Baseline1 or Baseline2) as a second predictor. The models were fitted with the function 428 

glmer from the R package lme4 (using a binomial family), and compared using a likelihood 429 

ratio test. “Baseline2” was used as a base level. 430 

To test the impact of our RMS manipulation on the musicians’ interactions, we did a series of 431 

two-scale hierarchical regressions by comparing nested models, with each one of our three 432 

Interaction variables as our dependent variables. We started with a null model (resp. m4, m6, 433 

and m8) and then added the RMS category (i.e., baseline, louder or softer) to which the 434 

interaction score under consideration was associated as our predictor (resp. m5, m7 and m9), 435 

using “Baseline” as the base level. The models were fitted with the function lmer from the R 436 

package lme4, and compared using a likelihood ratio test.  437 



We also performed pairwise post-hoc tests using estimated marginal means, with Kenward-438 

Roger degrees of freedom method and Benjamin-Hochberg method for p-values adjustment, 439 

using the emmeans package in R. 440 

 441 

3. Results 442 

3.1. RMS manipulations impact musicians’ attention 443 

The likelihood ratio test for model comparison between the null model (m0) and the model 444 

with perceptual emergence as a predictor (m1) was significant (X2=103.93, p<0.001). The 445 

likelihood ratio test for model comparison between m1 and the model with both perceptual 446 

emergence and RMS manipulations as predictors (m2) was also significant (X2=8.343, 447 

p=0.015), but adding the interaction term (m3) did not result in a better fit (X2=1.964, 448 

p=0.375). As expected, our model m2 showed a highly significant effect of perceptual emer-449 

gence on detection (Estimate=2.496, SE=0.256, z=9.739 and p<0.001): target sounds which 450 

emerged more strongly from the musician’s acoustic signal were better detected. But more 451 

importantly, the model also showed a significant effect of the “louder pattern” condition on 452 

detection (Estimate=0.343, SE=0.122, z=2.813, p=0.005) as well as a significant effect of the 453 

“softer pattern” condition on detection (Estimate=0.239, SE=0.119, z=2.008, p=0.045), as 454 

compared to the base level (“Baseline”). In other words, musicians were more likely to detect 455 

the target sounds when such sounds happened during a loudness manipulation, and such ma-456 

nipulations had an effect on our participants over and beyond the effects of the perceptual 457 

emergence of target sounds. Strikingly, a post-hoc pairwise test also showed that there was no 458 

significant difference in the participants’ detection rate between the “louder pattern” and 459 

“softer pattern” conditions (Estimate=0.104, SE=0.119, z=0.873, p=0.382), suggesting that 460 

the effects of our manipulations on attention was not a matter of intrinsic acoustic features 461 



(i.e., the louder, the more salient), but rather of dynamic contrast – in line with most current 462 

theories of salience (Kaya et al., 2020).  463 

Note however that the effect size of the manipulations remained small (Cohen’s d=0.097 for 464 

louder patterns and 0.114 for softer patterns). This might be due to the subtleness of our ma-465 

nipulations, which was precisely designed to be as undisruptive as possible.  466 

  467 

3.2. The impact of RMS manipulations on musicians’ attention is not driven by short-term 468 

contrasts  469 

While we established that both louder and softer patterns had an effect on our participants’ 470 

auditory attention, the reason why they did so remains unclear. In line with the many studies 471 

highlighting the link between surprise and attention (see Hortsmann, 2015, for a review), 472 

prevalent accounts of acoustic salience generally highlight the role of contrasts on both short-473 

term and long-term contexts (Huang & Elhilali, 2017; Kaya et al., 2020), but it is not clear 474 

that they necessarily have the same weight, particularly in an interactional setting. 475 

If the salience of our RMS manipulations was mainly driven by contrastive variations within 476 

the local sonic context, this would imply that the target sounds that occur immediately after a 477 

change back to the baseline (Baseline 1) should also be better detected than the target sounds 478 

that occur farther away from the end of the manipulation (Baseline 2), during periods of over-479 

all RMS stability. However, the likelihood ratio test for model comparison between m1 and 480 

our model with Baseline Type as an additional predictor was not significant (X2=0.130, 481 

p=0.718), suggesting that whether a target sound immediately followed or not a loudness 482 

change did not make a difference in the participants’ detection score. 483 

It thus seems plausible that the effect of our manipulations on the participants’ attention was 484 

driven by the more long-term context, although the precise temporal scale of such long-term 485 

context remains unknown. The change back to the baseline could be less salient than the de-486 



parture from the baseline simply in virtue of being the second loudness change within a 10-487 

second interval, thus making it less surprising. Alternatively, it could be less salient because it 488 

simply signals a return to a “normal” state of affair. To further substantiate this latter interpre-489 

tation, we ran two additional analyses. First, we computed the amount of time a musician was 490 

hearing a given co-improviser under each one of our 3 conditions (baseline, louder pattern, 491 

softer pattern). We found that, on average, a participant heard a given co-improviser in the 492 

baseline condition 78% of the time, 10.8% of the time in the louder pattern condition, and 493 

11.2% of the time in the softer pattern. Second, we computed, for each participant, the mean 494 

RMS level they received from their two co-improvisers’ across our 3 conditions, confirming 495 

that, on average, co-improvisers were indeed heard significantly louder in the “louder pattern” 496 

condition, and significantly softer in the “softer pattern” condition, as compared to the base-497 

line (see Supplementary Material for more details). In other words, participants were exposed 498 

on a long-term basis to the typical sound of their co-improvisers as heard in the baseline con-499 

dition, so that in particular, the RMS range perceived during the baseline condition was much 500 

more likely to occur than the RMS range perceived during the experimental manipulations. 501 

This makes it highly plausible that the improvisers formed internal models of the standard 502 

sound of their co-improvisers based on how they typically sounded during the baseline condi-503 

tion, and that the experimental manipulations disrupted the broader expectations associated 504 

with these models. The ensuing prediction error is likely to have resulted in a heightened at-505 

tention to what the manipulated musician was playing (Den Ouden et al., 2012), and thus in a 506 

better detection score when a target sound occurred during that same period.   507 

 508 

3.3. RMS manipulations impact musicians’ interactions in a targeted manner 509 

The likelihood ratio tests for model comparisons between the null models (m4, m6 and m8) 510 

and the models with RMS manipulation as a predictor (m5, m7 and m9) were significant (X2 511 



= 13.747, p = 0.001; X2 = 23.326, p < 0.001; and X2 = 7.569, p = 0.022, respectively). Model 512 

m5 showed a significant effect of the “louder pattern” condition on the average determinism 513 

(Estimate=0.03, SE=0.014, t=2.172, p=0.03) as well as a significant effect of the “softer pat-514 

tern” condition (Estimate=0.05, SE=0.013, t=3.70, p< 0.001), as compared to the base level 515 

(“Baseline”). Model m7 also showed significant effects of both the louder pattern (Esti-516 

mate=0.049, SE=0.014, t=3.382, p<0.001) and softer pattern (Estimate=0.067, SE=0.014, 517 

t=4.725, p< 0.001) on average laminarity. Finally, m9 showed significant effects of both the 518 

louder pattern (Estimate=-0.03, SE= 0.012, t=-2.440, p= 0.015) and softer pattern (Estimate=-519 

0.029, SE=0.012, t=-2.366, p= 0.018) on average divergence.  520 

In other words, our results suggest that the detecting musician and the detected musician had 521 

more similar musical behaviors (i.e., similar recurring patterns were more likely to be found 522 

for the two musicians), had a more stable interaction (i.e., the two musicians were more likely 523 

to reach a state that persisted over time with little variation), and were less independent from 524 

one another (i.e., the two musicians’ behaviors were more likely to be predictive of one an-525 

other) during louder and softer patterns as compared to the baseline.    526 

Once again, the effect sizes were small (Cohen’s d=0.058 for louder patterns and 0.143 for 527 

softer patterns on average determinism; Cohen’s d=0.124 for louder patterns and 0.213 for 528 

softer patterns on average laminarity; Cohen’s d=0.106 for louder patterns and 0.106 for soft-529 

er patterns on average divergence). The highly complex and ever-changing nature of the mu-530 

sic produced in a CFI context means that results obtained through algorithmic tools primarily 531 

designed to extract acoustical features from much simpler musical signals (e.g., pop music) 532 

are bound to be very noisy. What is remarkable here is not so much the effect sizes them-533 

selves but rather that a significant effect on all three of our interaction metrics was found for 534 

both patterns, despite the noisy nature of the acoustical data, suggesting a clear and consistent 535 

effect of salient cues on the musicians’ interactional dynamics.  536 



 537 

4. Discussion 538 

 539 

Our study – which combined real-time covert loudness manipulations and online probe detec-540 

tion – made it possible to systematically investigate for the first time the effects of acoustic 541 

salience on auditory attention during live and complex interactions, using musical improvisa-542 

tion as an experimental paradigm. We found, first, that musicians were more likely to pay 543 

attention to a given musician when this musician had been made sounding louder or softer; 544 

second, that such salience cue appeared to be primarily driven by the long-term acoustic con-545 

text, as no significant salience-like effect was observed when loudness returned back (increas-546 

ing or decreasing) to the baseline value after our manipulation; and third, that salient cues also 547 

had an effect on the ongoing musical interaction – with improvisers tending to interact more 548 

strongly and in a more stable way with a musician that had been made sounding louder or 549 

softer. Taken together, these results shed new light on the role of salience in social-attentional 550 

processes and extend previous experimental observations to a full-fledge, complex interac-551 

tional setting. 552 

Attention can take many forms and objects, and attentional processes in musical contexts are 553 

no exception: musicians’ attention can be alternatively mostly focused on themselves or on 554 

the other performers, depending on one’s own musical part – i.e., how demanding or virtuosic 555 

it is – or on coordination requirements – i.e., how the sonic and temporal unfolding of your 556 

own part is dependent of that of the other performers (Keller, 2001; Faraco et al., 2024; 557 

Abalde et al., 2024); it can also shift from deep absorption to something more akin to mind-558 

wandering (Høffding, 2019). But – as hinted by the observed inter-participant variability in 559 

detection score (see Figure S3 in Supplementary Material) – improvisers’ attentional profiles 560 

can also be widely different from one another, for reasons that might have to do with the in-561 



strument they play and the musical functions that are traditionally associated with such in-562 

strument (e.g., in a jazz context, whether one own’s instrument is usually part of the frontline 563 

or of the rhythm session, see Monson, 1996), their musical background, and their own repre-564 

sentations of the practice of improvisation itself. Our paradigm opens new avenues to address 565 

these questions empirically. 566 

In contexts as indeterminate and open-ended as collective improvisations, it can become cru-567 

cial for agents to come up with strategies that can capture their co-agents’ attention as a way 568 

to signal a given intention (e.g., the intention to end the performance, see Goupil et al., 2021). 569 

Previous observational works on musical collective improvisation (Canonne & Garnier, 2012) 570 

have suggested that modifying one’s own production in such a way as to make it more salient 571 

within the group precisely is one of these strategies. Our results provide considerable addi-572 

tional ground to this suggestion by demonstrating that the interactional impact of our loudness 573 

manipulations goes over and beyond simple behavioral adaptations such as the Lombard ef-574 

fect (which was indeed also present in our study, see Supplementary Material): on the one 575 

hand, improvisers’ interactions were also impacted when someone in the group was made to 576 

be perceived as playing softer (whereas the Lombard effect is only observed when the ambi-577 

ent noise increase); and on the other hand, salient events also impacted the very dynamics of 578 

the interaction between improvisers, creating points of stability within the musical flux. In 579 

other words, we should not think of acoustic salience as only a set property of a given audito-580 

ry stream; it is also something that can be actively manipulated by the agents themselves for 581 

communicative purposes. Acoustic salience thus acts as a kind of ostensive gesture which 582 

guide not only attention but also the various inferential processes that are bound to emerge in 583 

most forms of social communication (Frith, 2008).  584 

The salience effect of our loudness manipulations can be further interpreted in the light of 585 

studies on attentional selection. Most studies on salience have considered the salience of local 586 



events in the auditory signal in a stimulus-driven, purely bottom-up way, and thus have de-587 

veloped models that mostly approach events’ salience with respect to the emergence of their 588 

instantaneous acoustical statistics in a short-term context (see Kaya & Elhilali, 2014) and 589 

more recently to their semantics (Kothinti & Elhilali, 2023). But it might also be relevant to 590 

frame acoustic salience within a more general predictive-coding/Bayesian theory (Friston et 591 

al., 2012), and approach it not through the event/context relationship as this is typically done 592 

but rather through the short-term/long-term statistical relationship. In that respect, it is inter-593 

esting to mention three factors that have been found to lead to an enhancement of attentional 594 

selection beyond perceptual emergence (see Theeuwes et al., 2019, for a review): (i) history-595 

driven selection – which relates to statistical learning, with stimuli that belong to high-596 

probability categories leading to less attentional capture compared to those associated to low-597 

probability categories; (ii) value-driven selection – where a reward associated to a stimulus 598 

can enhance its attentional capture; and (iii) goal-driven selection – where a change in stimu-599 

lus feature that is useful for a particular task can enhance attentional capture. Beyond the role 600 

of the statistical structure of the stimuli in explaining the effect of loudness manipulations on 601 

attentional capture observed here, one might wonder whether a change in a specific musi-602 

cian’s overall loudness carries an intrinsic musical value in this context, e.g., by providing 603 

opportunities for the group to renegotiate the interactional dynamics. Yet, since disentangling 604 

those various mechanisms was not the initial purpose of our research, new studies with specif-605 

ic experimental designs would be needed to further explore the different factors shaping 606 

attentional selection in collective musical improvisation, beyond the too simple bottom-607 

up/top-down dichotomy (Awh et al., 2012). It would also be interesting to study whether other 608 

acoustic dimensions would play a comparable role in such a musical context, e.g., whether 609 

experimentally-induced variations in timbre or average pitch would lead to similar effects on 610 

the other musician’s attention and interaction. We could hypothesize that as soon as these 611 



changes are meaningful musically-speaking, that they would induce comparable effects. This 612 

remains to be tested empirically.   613 

The preeminence of the long-term context over the short-term context observed in our study 614 

might also precisely be due to its interactional nature. The sonic information perceived by the 615 

participants was not treated as mere acoustical cues but also as full-fledged behavioral cues, 616 

ultimately providing them with a sense of their (musical) personalities. This certainly led the 617 

improvisers to pay particular attention to the acoustic cues that were highly informative about 618 

their co-performers. In that perspective, a sonic event that strongly stands out from the local 619 

acoustic context might be less relevant than a less spectacular sonic event that does not match 620 

with the expected sonic and musical personality of a given co-improviser – as typically in-621 

ferred over a longer time scale. The complex relations between short-term and long-term con-622 

texts, as well as between acoustic cues and interactional cues, should provide an exciting topic 623 

for further experimental explorations.  624 

It is also important to acknowledge that the effects of our loudness manipulations (on both 625 

attention and interaction) were quite small. Our main motivation for selecting such a subtle 626 

loudness variation as our experimental manipulation was to make the manipulation as unno-627 

ticeable as possible, so as to not artificially disrupt the interactions between the musicians. As 628 

such, it remains an open question whether our small effect size is due to a slightly too subtle 629 

manipulation, or whether more overt acoustic manipulations would have yield similarly small 630 

effects, because, in this kind of context, musicians’ attention is merely driven by top-down 631 

factors (associated to specific interactional goals or idiosyncratic musical intentions) rather 632 

than salient cues. Further studies could shed light on this issue by manipulating top-down at-633 

tention at the same time (e.g., by providing musicians with dynamical attentional scripts that 634 

they must follow as they improvise) to assess the relative importance of both factors. On the 635 

other hand, our diotic-based target detection paradigm could be directly transferred to further 636 



address such questions in lab-based experiments with isolated participants, extending previous 637 

psychophysical paradigms to assess auditory attention (Huang & Elhilali, 2017). Participants 638 

would not be interacting with the music played in their headphones but rather performing an 639 

additional unrelated cognitively demanding task, while we would measure how their perfor-640 

mance for detecting a target appearing in one ear or the other of a diotic auditory scene varies 641 

with both bottom-up and top-down factors. Results from such in-lab experiments could pro-642 

vide insightful benchmarks for interpreting the size of the effects observed in online experi-643 

ments, where the active task of the listener is arguably the most demanding.  644 

Another interesting issue is the extent to which our results could generalize to other forms of 645 

sonic interactions between humans. In particular, it is an open question whether loudness ma-646 

nipulations could play a similar role in impacting interactions in multi-speaker conversations 647 

in natural languages. CFI is mainly a hedonistic practice, devoid of any practical concerns, 648 

making it possible for the improvisers to simply follow whatever catch their attention, and to 649 

let the music emerge from the ongoing interactions. Moreover, the lack of a clear musical 650 

semantics also means that salience is bound to play an even greater role in making the com-651 

munication between the musicians possible, as it is often the case in semantically undeter-652 

mined contexts (Kecskes, 2013). In contrast, it might well be the case that the role of auditory 653 

salience is lessen in the regulation of verbal interactions in which participants have more prac-654 

tical concerns (which might strongly constrain how the interaction will unfold) and can all 655 

rely on clear semantic resources. Here, we believe that our experimental procedure could be, 656 

in a principled-way, easily and fruitfully transposed to the study of complex multi-speaker 657 

conversations, allowing us to contrast effectively the role of auditory salience in both verbal 658 

interactions and musical interactions. Further studies addressing the respective impact of 659 

short-term feature emergence vs. changes in long-term stimulus statistics will thus be key for 660 



a better understanding of how meaningful dynamics in speech prosody are integrated and con-661 

sequently shape conversational interactions. 662 

Finally, although our study suggests a link between attention and interaction, its exact nature 663 

remains unclear. Two concurrent explanations could account for this connection. On the one 664 

hand, attention might be seen as a condition for interaction: paying more attention to a fellow 665 

agent might make it more likely to engage in an interaction with them. But on the other hand, 666 

it is also possible that attention (to someone) emerges from the interaction itself – considered 667 

as an autonomous system made of mutual couplings (De Jaegher et al., 2010): what is felt or 668 

noticed first is the interaction, which then increases the attention towards the other parts of the 669 

interactive network. This hints at a variety of communicational strategies that are mediated 670 

either through interaction or through attention, and which could be more sharply teased apart 671 

in further studies. Moreover, while our study shed light on the dyadic musical interactions 672 

between the manipulated musician and the musician that listened to the manipulated musician, 673 

further experimental protocols have to be set up in order to fully understand how these in-674 

duced changes in salience on a single musician shape the interactional dynamics at the broad-675 

er group level. In particular, one could assume that if musicians rely on a constant amount of 676 

interactional resources (Keller, 2001), the strengthening of the interaction with the salient 677 

musician would necessarily come at the cost of a weaker interaction with the non-salient mu-678 

sicians. Addressing such questions of course requires further conceptual elaboration as well as 679 

the development of novel experimental protocols that can also provide information about the 680 

overall amount of attention deployed by each musician, but doing so might produce key data 681 

to further develop theoretical models of musical interaction.    682 

Systematically studying attention in the wild – and moving from individual lab booths to 683 

more complex interactional settings – is arguably one of the most pressing challenges for so-684 

cial cognition research. Music – and in particular CFI – might provide a relevant experimental 685 



paradigm for such research program, allowing us to balance experimental control with ecolog-686 

ical validity in a satisfying way (D’Ausilio et al., 2015). Our study illustrates once again the 687 

value of musical settings for investigating social cognition, by providing a first attempt at 688 

tracking auditory attention in real-time during complex interactions. While music is arguably 689 

a much more harmonious environment than the standard noisy cocktail party situation, there 690 

is no doubt that it has still a lot to reveal on the inner workings of auditory attentional pro-691 

cesses in highly social contexts.  692 



 693 

References 694 

 695 

Abalde, S. F., Rigby, A., Keller, P. E., & Novembre, G. (2024). A framework for joint music 696 

making: behavioral findings, neural processes, and computational models. Neuroscience & 697 

Biobehavioral Reviews, 105816. 698 

 699 

Arnal, L. H., Kleinschmidt, A., Spinelli, L., Giraud, A. L., & Mégevand, P. (2019). The rough 700 

sound of salience enhances aversion through neural synchronisation. Nature communica-701 

tions, 10(1), 3671. 702 

 703 

Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional 704 

control: A failed theoretical dichotomy. Trends in cognitive sciences, 16(8), 437-443. 705 

 706 

Bidelman, G. M., & Yoo, J. (2020). Musicians show improved speech segregation in competi-707 

tive, multi-talker cocktail party scenarios. Frontiers in Psychology, 11, 1927. 708 

 709 

Blacking, J. (1973). How musical is man?. University of Washington Press. 710 

 711 

Canonne, C., Garnier, N. (2012). Cognition and Segmentation in Collective Free Improvisa-712 

tion: An Exploratory Study. Proceedings of the 12th International Conference on Music Per-713 

ception and Cognition 8th Triennial Conference of the European Society for the Cognitive 714 

Sciences of Music, Thessaloniki, Greece. 715 

 716 



Cherry, E. C. (1953). Some experiments on the recognition of speech, with one and with two 717 

ears. The Journal of the acoustical society of America, 25(5), 975-979. 718 

 719 

Clarke, E. (2005). Ways of listening: An ecological approach to the perception of musical 720 

meaning. Oxford University Press. 721 

 722 

Dalton, P., & Lavie, N. (2004). Auditory attentional capture: Effects of singleton distractor 723 

sounds. Journal of Experimental Psychology: Human Perception and Performance, 30(1), 724 

180. https://doi.org/10.1037/0096-1523.30.1.180  725 

 726 

D’Ausilio, A., Novembre, G., Fadiga, L., & Keller, P. E. (2015). What can music tell us about 727 

social interaction?. Trends in cognitive sciences, 19(3), 111-114. 728 

 729 

Dawson, J., & Foulsham, T. (2022). Your turn to speak? Audiovisual social attention in the 730 

lab and in the wild. Visual Cognition, 30(1-2), 116-134. 731 

 732 

De Jaegher, H., Di Paolo, E., & Gallagher, S. (2010). Can social interaction constitute social 733 

cognition?. Trends in cognitive sciences, 14(10), 441-447. 734 

 735 

Den Ouden, H. E., Kok, P., & De Lange, F. P. (2012). How prediction errors shape percep-736 

tion, attention, and motivation. Frontiers in psychology, 3, 548. 737 

 738 

Faraco, A., Schwarz, A., Vincent, C., Susini, P., Ponsot, E., & Canonne, C. (2024). Listening 739 

Behaviors and Musical Coordination in Collective Free Improvisation. Music & Science, 7, 740 

20592043241257023. 741 

https://psycnet.apa.org/doi/10.1037/0096-1523.30.1.180


 742 

Friston, K., Adams, R. A., Perrinet, L., & Breakspear, M. (2012). Perceptions as hypotheses: 743 

saccades as experiments. Frontiers in psychology, 3, 151 744 

 745 

Frith, C. D. (2008). Social cognition. Philosophical Transactions of the Royal Society B: Bio-746 

logical Sciences, 363(1499), 2033-2039. 747 

 748 

Goupil, L., Wolf, T., Saint‐ Germier, P., Aucouturier, J. J., & Canonne, C. (2021a). Emergent 749 

shared intentions support coordination during collective musical improvisations. Cognitive 750 

Science, 45(1), e12932. 751 

 752 

Høffding, S. (2019). A phenomenology of musical absorption. Springer. 753 

 754 

Horstmann, G. (2015). The surprise–attention link: A review. Annals of the New York Acade-755 

my of Sciences, 1339(1), 106-115. 756 

 757 

Huang, N., & Elhilali, M. (2017). Auditory salience using natural soundscapes. The Journal 758 

of the Acoustical Society of America, 141(3), 2163-2176. 759 

 760 

Humphreys, G. W., Yoon, E. Y., Kumar, S., Lestou, V., Kitadono, K., Roberts, K. L., & 761 

Riddoch, M. J. (2010). The interaction of attention and action: From seeing action to acting on 762 

perception. British Journal of Psychology, 101(2), 185-206. 763 

 764 

Kaya, E. M., & Elhilali, M. (2014). Investigating bottom-up auditory attention. Frontiers in 765 

human neuroscience, 8, 327. 766 



 767 

Kaya, E. M., & Elhilali, M. (2017). Modelling auditory attention. Philosophical Transactions 768 

of the Royal Society B: Biological Sciences, 372(1714), 20160101. 769 

 770 

Kaya, E. M., Huang, N., & Elhilali, M. (2020). Pitch, timbre and intensity interdependently 771 

modulate neural responses to salient sounds. Neuroscience, 440, 1-14. 772 

 773 

Kecskes, I. (2013). Cross-cultural and intercultural pragmatics. Oxford University Press. 774 

 775 

Keller, P. E. (2001). Attentional resource allocation in musical ensemble perfor-776 

mance. Psychology of Music, 29(1), 20-38. 777 

 778 

King, A., Varnet, L., & Lorenzi, C. (2019). Accounting for masking of frequency modulation 779 

by amplitude modulation with the modulation filter-bank concept. The Journal of the Acousti-780 

cal Society of America, 145(4), 2277-2293. 781 

 782 

Koch, I., Lawo, V., Fels, J., & Vorländer, M. (2011). Switching in the cocktail party: explor-783 

ing intentional control of auditory selective attention. Journal of Experimental Psychology: 784 

Human Perception and Performance, 37(4), 1140. 785 

 786 

Kothinti, S. R., & Elhilali, M. (2023). Are acoustics enough? Semantic effects on auditory 787 

salience in natural scenes. Frontiers in Psychology, 14, 1276237. 788 

 789 

McDermott, J. H. (2009). The cocktail party problem. Current Biology, 19(22), R1024-790 

R1027. 791 



 792 

McFee, B., Raffel, D., Dawen L., Ellis, D., McVicar, M., Battenberg, E., Nieto, O. (2015). 793 

"librosa: Audio and music signal analysis in python." Proceedings of the 14th python in sci-794 

ence conference, pp. 18-25.  795 

 796 

Miles, K., Weisser, A., Kallen, R. W., Varlet, M., Richardson, M. J., & Buchholz, J. M. 797 

(2023). Behavioral dynamics of conversation, (mis) communication and coordination in noisy 798 

environments. Scientific Reports, 13(1), 20271. 799 

 800 

Monson, I. (1996). Saying something: Jazz improvisation and interaction. University of Chi-801 

cago Press. 802 

 803 

Noy, L., Dekel, E., & Alon, U. (2011). The mirror game as a paradigm for studying the dy-804 

namics of two people improvising motion together. Proceedings of the National Academy of 805 

Sciences, 108(52), 20947-20952. 806 

 807 

Rawald, T., Sips, M., Marwan, N. (2017). PyRQA. Conducting Recurrence Quantification 808 

Analysis on Very Long Time Series Efficiently. Computers and Geosciences, 104, pp. 101-809 

108. doi: https://doi.org/10.1016/j.cageo.2016.11.016. 810 

 811 

Roueff, O. (2006). L’invention d’une «scène» musicale, ou le travail du réseau: La program-812 

mation d’un club de musiques improvisées entre radicalisation et consécration (1991-813 

2001). Sociologie de l’Art, (1), 43-76. 814 

 815 

https://doi.org/10.1016/j.cageo.2016.11.016


Ryan, F., Jiang, H., Shukla, A., Rehg, J. M., & Ithapu, V. K. (2023). Egocentric auditory at-816 

tention localization in conversations. In Proceedings of the IEEE/CVF Conference on Com-817 

puter Vision and Pattern Recognition (pp. 14663-14674). 818 

 819 

Saint-Germier, P., Canonne, C. (2020). Coordinating free improvisation: An integrative 820 

framework for the study of collective improvisation. Musicae Scientiae, 26(3), 455–475, 821 

https://doi.org/10.1177/1029864920976182. 822 

 823 

Schultz, B. G., Brown, R. M., & Kotz, S. A. (2021). Dynamic acoustic salience evokes motor 824 

responses. Cortex, 134, 320-332. 825 

 826 

Seddon, F. A. (2005). Modes of communication during jazz improvisation. British Journal of 827 

Music Education, 22(1), 47-61. 828 

 829 

Steffens, J., Müller, F., Schulz, M., & Gibson, S. (2020). The effect of inattention and cogni-830 

tive load on unpleasantness judgments of environmental sounds. Applied Acoustics, 164, 831 

107278. 832 

 833 

Straetmans, L., Holtze, B., Debener, S., Jaeger, M., & Mirkovic, B. (2022). Neural tracking to 834 

go: auditory attention decoding and saliency detection with mobile EEG. Journal of neural 835 

engineering, 18(6), 066054. 836 

 837 

Theeuwes, J. (2019). Goal-driven, stimulus-driven, and history-driven selection. Current 838 

opinion in psychology, 29, 97-101. 839 

 840 

https://doi.org/10.1177/1029864920976182


Van der Heiden, R. M., Kenemans, J. L., Donker, S. F., & Janssen, C. P. (2022). The effect of 841 

cognitive load on auditory susceptibility during automated driving. Human factors, 64(7), 842 

1195-1209. 843 

 844 

Wallot, S. & Leonardi, G. (2018). Analyzing Multivariate Dynamics Using Cross-Recurrence 845 

Quantification Analysis (CRQA), Diagonal-Cross-Recurrence Profiles (DCRP) and Multidi-846 

mensional Recurrence Quantification Analysis (MdRQA) – A Tutorial in R. Frontiers in Psy-847 

chology, 9(2232). DOI: doi: 10.3389/fpsyg.2018.02232. 848 

 849 

Wolf, W., Launay, J., & Dunbar, R. I. (2016). Joint attention, shared goals, and social bond-850 

ing. British Journal of Psychology, 107(2), 322-337. 851 

 852 

Wu, W. (2014). Attention. Routledge. 853 

854 



 855 

Supplementary information 856 
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 858 

1. Video examples 859 

 860 

The two video examples provided show musicians from two different trios improvising dur-861 

ing our experimental protocol. The videos are displayed in such a way as to illustrate our ex-862 

perimental procedure. Each line is meant to represent the subjective perspective of the musi-863 

cian displayed in the center. The musician shown on the left was the musician heard on the 864 

left channel of their headphones, and the musician shown on the right was the musician heard 865 

on the right channel of their headphones. RMS manipulations applied to these musicians (i.e., 866 

louder and softer patterns) are shown through changes in brightness (the video of a musician 867 

gets darker when this musician is heard through a softer pattern, and the video of a musician 868 

gets brighter when this musician is heard through a louder pattern). Finally, sudden flashes in 869 

the video happen at times a target sound associated with that musician was presented. 870 

Those videos were filmed and edited by Elsa Laurent.  871 

 872 

2. Additional information on the participants 873 

 874 

We also tested our participants for hearing losses. Audiometric thresholds were measured 875 

between 0.25 and 8 kHz in all participants, using an Echoscan device. Importantly, we 876 

ensured that participants had clinically-normal thresholds (<15 dB HL) in the frequency range 877 

(from 0.25 to 2 kHz) of the probe used for the detection task. Most of them also had a normal 878 

hearing at high frequencies, except for two participants who had a moderate hearing loss: one 879 

at 4 kHz and one at 8 kHz. For both of them, the loss was predominant in the left ear (~ 40 dB 880 

HL) in regard of the right ear (25 dB HL). Both participants were aware of this. As their 881 

results were similar to the others, and because the target sounds were lower in frequency and 882 

never presented at threshold, we decided to keep them in the analysis. 883 

 884 

3. Assessing the naturalness of the RMS manipulations. 885 

 886 

This follow-up experiment was designed to estimate, in a post-hoc fashion, the degree of 887 

naturality of the RMS manipulations introduced during our recording session. In particular, 888 

we were wondering whether external listeners would be more likely to perceive the overall 889 

musical output as less natural when one of the musicians was subjected to a RMS manipula-890 

tion, as compared to the same output but without the RMS manipulation.  891 

 892 

3.1. Participants 893 

27 participants took part in study 2 (mean age = 26 years, SD = 5, 14 women and 13 men). 894 

They all had practiced music for at least 5 years (mean number of years = 12.5 years, SD = 895 

5.5).  All participants gave their informed written consent and were paid at a standard rate. 896 

 897 

3.2. Stimuli  898 

18 audio excerpts were chosen randomly at moments where one musician’s RMS level was 899 

modified (either with a high-level pattern or a low-level pattern) for another musician. Those 900 

excerpts were directly taken from the audio tracks heard by the improvisers in their head-901 

phones. Each excerpt was 15 seconds long, corresponding to the 10-second period of the 902 

RMS manipulations, with the addition of two 2.5-second buffer zones at the start and at the 903 

end of the excerpt. For each excerpt, we then created two alternative versions: one containing 904 



the opposite pattern from the one originally applied (i.e., a louder pattern instead of a softer 905 

pattern); and one with no RMS manipulation whatsoever. This resulted in a total of 54 ex-906 

cerpts. Finally, 50-ms fade-ins/fade-outs were imposed at the beginning and the end of each 907 

excerpt to avoid clipping. 908 

 909 

3.3. Procedure 910 

The following cover story was provided to the participants: “We are testing an artificial intel-911 

ligence designed to help sound engineers in mixing various instruments playing live together. 912 

For each rough recording given to the AI, the AI offers various mixes. In this study, you will 913 

have to compare, for several different excerpts, two of the mixes that were created by the AI. 914 

We ask you to tell us which version you think sounds the most natural”. Our design thus fol-915 

lowed a two alternative forced choice (2-AFC) procedure. For each trial, two versions of the 916 

same musical excerpt (e.g., the same music but once with a high-level pattern applied to one 917 

of the musicians of the trio, and the other time with a low-level pattern applied to the same 918 

musician) were successively presented to the participants (with a 2-second gap in between), 919 

and participants had to select the version that felt the most “natural” for them.  920 

The participants heard the stimuli through headphones (Beyerdynamics DT 770 pro, 80 ohms) 921 

and answered via a custom-made interface designed with Max/MSP. 922 

Over the course of the experiment, participants had to compare each one of the three versions 923 

of each musical excerpt to the other two (i.e., louder pattern vs softer pattern; louder pattern 924 

vs no-manipulation; softer pattern vs no-manipulation). This resulted in a total of 54 trials, 925 

which were divided in three successive blocks of 18 trials. The order of the stimuli was pseu-926 

do-randomized so that, over all trials and participants, each stimulus was presented an equal 927 

number of times as the first excerpt and as the second excerpt. Participants were invited to 928 

take a break in between blocks.  929 

 930 

 931 

3.4. Statistics 932 

A two-scale hierarchical regression was conducted by comparing nested models, starting with 933 

a null model and adding our experimental condition (i.e., whether the stimulus belong to the 934 

no-pattern, softer pattern or louder pattern category). The effect of our experimental condition 935 

on whether a stimulus was chosen to sound more natural than the comparison stimulus was 936 

tested through a mixed binomial regression model with Condition as predictor and partici-937 

pants’ choice (natural: yes/no) to be predicted. “No-pattern” was used as our model base lev-938 

el. In the random structure we included the random slope for each listener. The models were 939 

fitted with the function glmer from the R package lme4 and compared using a likelihood ratio 940 

test.  941 

 942 

3.5. Results 943 

Figure S1 shows the results of this follow-up experiment. The likelihood ratio test for model 944 

comparison was not significant (X2=3.730, p=0.155), suggesting that whether the RMS of a 945 

musician had been modified or not did not make a clear difference in third-party listeners’ 946 

naturalness judgments. In particular, it does not seem that listeners were more likely to find 947 

the excerpt’s sound more natural when we presented them with the musicians’ signals as ac-948 

tually played by them – without any RMS manipulations. This shows that our RMS manipula-949 

tions were indeed subtle enough to not be clearly noticeable by external listeners, suggesting 950 

that they could have passed as real musical intentions (i.e., playing a bit louder or a bit softer) 951 

during the improvisers’ interactions.  952 

 953 



 954 
 955 

Figure S1. Bars represent the probability of a snippet from a certain Condition (No-pattern, Louder pattern, or 956 
Softer pattern) to be chosen as more natural than the comparison snippet. There were 36 datapoints for each 957 

participant and condition (36 * 3 = 108 datapoints per participant), which were averaged per participant (N = 27) 958 
and Condition before they were used in the plot. Error bars show standard error.  959 

 960 

 961 

4. Analyses suggest that participants did not merely learn to associate RMS manipulations and 962 

target sound occurrences.  963 

 964 

In order to decrease potential learning effects, target sounds and RMS manipulations were not 965 

systematically associated: on the one hand, roughly 31% of the target sounds occurred in the 966 

“baseline” condition, during which no RMS manipulation was applied; on the other hand, 967 

roughly 6.5% of the RMS manipulations were not associated to any target sound. Similarly, 968 

the distribution of the time intervals between two successive target sounds heard by a same 969 

participant was quite wide (see Figure S2 below), making it unlikely that the participants 970 

would press their pedals based on their learning a typical interval between two consecutive 971 

target sounds. 972 

Post-hoc analyses of our results were performed to ensure that the effects of RMS 973 

manipulations on target sound detection was not the mere result of a learning effect. As our 974 

participants were asked to perform several improvisations during the experiment, we were 975 

able to compare detection scores for their first and last improvisations. Our reasoning was that 976 

if that there was any RMS-driven learning association issue, the effect of loudness patterns on 977 

target detection would be larger in the last improvisation (i.e., after learning) compared to the 978 

first improvisation. To do so, a hierarchical regression was conducted by comparing nested 979 
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models starting with a model with only the emergence score as a predictor (m1), second, 980 

adding “Order” (First improvisation or Last improvisation) as a predictor (m2), and third, the 981 

interaction term between Order and RMS manipulations (baseline, louder pattern, softer 982 

pattern) as a predictor (m3). The likelihood ratio test for model comparison between m1 and 983 

m2 was significant (X2=13.763, p<0.001). Our model m2 showed a highly significant effect 984 

of Order on detection (Estimate=0.059, SE=0.160, z=3.692 and p<0.001): target sounds were 985 

indeed better detected in the last improvisation than in the first performance. However, the 986 

likelihood ratio test for model comparison between m2 and m3 was not significant 987 

(X2=8.553, p=0.073), showing that participants were not significantly better to detect the 988 

target sounds associated with higher or louder patterns in the last improvisation than in the 989 

first improvisation. Hence, these analyses support the view that the effect of patterns on 990 

detection could not be simply explained by a RMS-driven learning association. 991 

 992 

 993 
Figure S2. Distribution of the time intervals between two consecutive target sounds heard by a same participant 994 

 995 

5. Computing the perceptual emergence of target sounds 996 

 997 

Although target sounds were embedded in real time in the musical mix at a constant signal-to-998 

noise ratio, this did not account for masking effects and therefore did not guarantee equal 999 

“audibility” of all target sounds. To account for such effects, we a posteriori estimated the 1000 

“perceptual emergence” associated to each embedded target using the auditory modulation 1001 

filterbank model (MFB), a computational model
2
 of the human auditory system that mimics 1002 

the main peripheral and central processing stages and can therefore account for basic percep-1003 

tual masking effects and target-in-noise psychometric characteristics.  1004 

We used the MFB implementation of King et al. (2019) using the code provided by the Audi-1005 

tory Modelling Toolbox (Majdak et al., 2022; AMToolbox v. 1.5.0). A detailed description of 1006 

                                                 

2
 The model is built from a cumulative body of works since the 90’s (Dau et al., 1997) and is now used to 

account for a large range of human perceptual capacities ranging from complex targets detection in noise to 

speech recognition in noise (e.g., Relaño-Iborra et al., 2016).  



the MFB model and its different processing stages can be found in Ponsot et al. (2021). The 1007 

main parameters of the MFB model were chosen to best reflect auditory processing of nor-1008 

mal-hearing listeners (frequency range of analysis was limited to that of the target, i.e., 100-1009 

2000Hz; N=10 cochlear filters with ERB=1; Q-value of modulation filters = 1; modulation 1010 

phase cut-off at 5 Hz). Importantly, since we the overall sound pressure level of the mix re-1011 

ceived by the musicians in their headphones remained unknown (each musician could indeed 1012 

freely adjust the overall level of the mix that they received), we used a linear version of the 1013 

model with respect to sound level and entered a value of 1 for the compression parameter (i.e., 1014 

no compression), meaning that the model did not attempt to account for level-dependence of 1015 

masking and other more complex non-linear effects with respect to sound level.  1016 

We used the 3-D internal representation {frequency channels x modulation channels x time} 1017 

of sounds provided at the output of the MFB model. We began by computing the internal 1018 

model representation of the target sound alone (i.e., without any additional musical signal) to 1019 

create a ‘clean template’. Next, we extracted from each individual track 1-second temporal 1020 

segments corresponding to the temporal windows of the overall mix at which target sounds 1021 

were inserted, and computed their model representations, which yielded ‘noisy templates’. 1022 

The similarity between the clean and each noisy template (matrix were transformed into 1-D 1023 

vectors) was then evaluated using Pearson correlation. This provided, for each extract, a sca-1024 

lar value of “perceptual emergence” of the target sound, which is assumed to reflect the 1025 

amount of perceptual evidence that the target sound was present in the acoustical signal from 1026 

the viewpoint of a human auditory observer. By controlling for the degree of “perceptual 1027 

emergence” of each target sound on detection performance in the regression models, we 1028 

aimed to more precisely assess the degree of attention to the track with which it was associ-1029 

ated, so as to optimally probe the attentional dynamics of the musicians during the perform-1030 

ance.  1031 

 1032 

6. Identifying the hyperparameters for the cross-recurrence quantification analysis 1033 

CRQA has been described as “a class of multivariate and generalized correlational analyses, 1034 

that are suited for joint action data because they make very few assumptions and are 1035 

particularly robust in case of non-linearities, non-stationary dynamics and time-series with 1036 

extreme outliers” (Wallot & Leonardi, 2018, p. 2). As such, CRQA has been widely used in 1037 

joint action studies, such as ones involving synchronized arousal between performers in 1038 

collective rituals (Konvalinka et al., 2011), conversations between medical doctors and 1039 

patients (Angus et al, 2012), communicative interaction between children (Lira-Palma et al, 1040 

2018), and interaction between parents and children (Dale & Spivey, 2006; Reddy et al., 1041 

2013).  1042 

CRQA involves reconstructing two or multiple time series in a phase space, identifying 1043 

recurrent states within the system. In other words, the analysis detects moments when the time 1044 

series return to similar states, focusing on patterns of recurrence that can reveal the 1045 

deterministic or stable nature of the dynamics between the two time-series. In order to 1046 

perform the analysis, we followed the procedures described in Wallot & Leonardi (2018) and 1047 

Wallot & Monster (2018). In order to do so, we needed to estimate the hyperparameters for 1048 

the CRQA, namely the embedding dimension, the time delay and the radius. The time delay 1049 

defines the number of time steps between consecutive points in the phase space 1050 

reconstruction, while the embedding dimension refers to how many consecutive points of the 1051 

time series are considered together when reconstructing the phase space. As for the radius, it 1052 

sets the threshold for considering two points in the phase space as “close” or recurrent, 1053 

determining the “sensitivity” of the recurrence. To achieve this, we first normalized our time 1054 

series data (RMS and spectral centroid) by rescaling them. This step was important for two 1055 

reasons: (1) as we used the average of the found optimal radii as a fixed parameter (see 1056 



below), both time series needed be on the same scale for the radius to be meaningful; and (2) 1057 

since our interaction measurements are based on the average of the CRQA metrics, both time 1058 

series needed to be standardized to the same scale for accurate comparison. Second, we 1059 

looped over all pairs of segments (comprised of the detecting participant and the detected 1060 

participant) for both RMS and spectral centroid and found the optimal time delay by using the 1061 

average mutual information function, and the embedding dimension by using the false 1062 

nearest-neighbors algorithm (both functions are taken from Wallot & Monster (2018) and 1063 

were adapted from MATLAB to Python). Third, we used the average time delay and 1064 

maximum embedding dimension to calculate the optimal radius based on an iterative process 1065 

that finds the radius in which the percentage of recurrence (%REC) is between 1-10% (Wallot 1066 

& Leonardi, 2018). Fourth, we averaged all hyperparameters thus identified.  1067 

 1068 

7. Participants’ detection scores and response times 1069 

Figure S3 shows, for each participant and each experimental condition, the number of target 1070 

sounds they had to detect as well of the number of target sounds they actually detected. Figure 1071 

S4 shows the distribution of the participants’ response time for the detection of target sounds, 1072 

revealing a fair amount of inter-participant variability, which is probably due to the large vari-1073 

ety of instruments involved (e.g., it might have been easier to press a pedal for the saxophone 1074 

players than for the drummers, who already have to use their feet to play their instrument). 1075 

That being said, most pedal presses occurred quite shortly after the target sound occurrence 1076 

(M = 2.224; SD = 0.541), suggesting that, when a target sound was detected, participants were 1077 

rather fast at pressing their pedal, despite the very demanding setting they were placed in. 1078 

 1079 

 1080 
Figure S3. Target sounds presented and detected for each participant in each condition 1081 

 1082 



 1083 
Figure S4. Occurrences of pedal presses as a function of response time for individual participants. The vertical 1084 

dashed red line shows the cutoff for the 95% percentiles of these distributions. 1085 
 1086 

 1087 

8. Replicating our analyses using a much shorter time window for detection yields similar 1088 

results 1089 

 1090 

To ensure that the pattern of results reported in our main analysis did not depend on the time 1091 

window we chose to compute the participants’ detection score (a target sound was considered 1092 

to be detected by a participant if the participant pressed their pedal in the 7 seconds following 1093 

the target sound), we ran the same analyses using a much shorter time window, different for 1094 

each participant, corresponding to the 95% percentile shown in Figure S4 (which was below 3 1095 

seconds for every participant). Strikingly, changing the size of the time window in such a way 1096 

did not modify our pattern of results. The model still revealed a significant effect of the 1097 

“louder pattern” condition (Estimate = 0.343, SE = 0.119, z = 2.872, p = 0.004) and a signifi-1098 

cant effect of the “softer pattern” condition (Estimate=0.258, SE=0.116, z=2.216, p=0.027). 1099 

 1100 

 1101 



9. Computing the RMS level received by each participant from their two co-improvisers 1102 

across the three experimental conditions 1103 

 1104 

For each pair of detecting participant/detected participant, we segmented the audio track of 1105 

the detected participant in 10-s windows. Each window was ascribed to one of our 3 condi-1106 

tions (baseline, louder pattern, and softer pattern) depending on the manipulation (or absence 1107 

of manipulation) applied to the detected participant during that window. The RMS level was 1108 

then averaged over each window. On average, the mean RMS received by a given performer 1109 

from a co-performer in the baseline condition was -31.493 dB; the mean RMS received by a 1110 

given performer from a co-performer in the louder pattern condition was -23.097 dB; and the 1111 

mean RMS received by a given performer from a co-performer in the softer pattern was -1112 

37.502 dB (see Figure S5). 1113 

We then conducted a statistical analysis. As the RMS data did not follow a normal distribu-1114 

tion, we did a ranked transformation of our RMS data using the R library bestNormalize. This 1115 

allowed us to run a two-scale hierarchical regression by comparing nested models, starting 1116 

with a null model and then adding our experimental condition (i.e., whether the window be-1117 

long to the baseline, softer pattern or louder pattern category) as a predictor. The likelihood 1118 

ratio test for model comparison was significant (X2=537.22, p<0.001). Our model with the 1119 

experimental condition as a predictor showed that the RMS level received from musicians 1120 

exposed to a louder pattern was significantly higher as compared to the baseline (Estimate = 1121 

0.688, SE=0.034, t= 20.087, p<0.001), and that the RMS level received from musicians ex-1122 

posed to a softer pattern was significantly lower as compared to the baseline (Estimate = -1123 

0.321, SE=0.033, t=-9.713, p<0.001). 1124 

 1125 

 1126 

Figure S5. Mean RMS level received by each participant from their two co-improvisers across the three experi-1127 
mental conditions. Error bars show the standard deviation. 1128 

 1129 

 1130 

 1131 

10. Improvisers were susceptible to a Lombard-like effect   1132 

 1133 

We were interested to explore whether our participants would tend to play louder when they 1134 

heard one of their co-improvisers under a louder pattern (and thus, heard this co-improviser 1135 

playing louder than usual). This would be in line with the many studies on the so-called Lom-1136 

bard effect in the speech literature (Kunc et al., 2022), which showed that humans tend to 1137 

speak louder as the ambient noise increase – a phenomenon that has also be identified in cho-1138 

ral singing (Tonkinson, 1994).  1139 



First, we segmented the recorded audio track of each participant in 10-s windows. Each win-1140 

dow was ascribed to one of our 3 conditions (baseline, louder pattern, and softer pattern) de-1141 

pending on the manipulation (or absence of manipulation) applied to their co-improvisers 1142 

during that window. Second, we eliminated the windows in which the mean RMS was < -60 1143 

dB (meaning that the musician was simply not playing at that time). Averaging RMS values 1144 

over each type of window revealed that musicians played +1.58 dB louder (SE = 0.43) when 1145 

exposed to a louder pattern (as compared to the baseline) and +0.6 dB (SE = 0.41) louder 1146 

when exposed to a softer pattern (as compared to the baseline).  1147 

We then conducted a statistical analysis. As the RMS data did not follow a normal distribu-1148 

tion, we did a ranked transformation of our RMS data using the R library bestNormalize. This 1149 

allowed us to run a two-scale hierarchical regression by comparing nested models, starting 1150 

with a null model and adding our experimental condition (i.e., whether the window belong to 1151 

the baseline, softer pattern or louder pattern category). The likelihood ratio test for model 1152 

comparison was significant (X2=8.768, p=0.012). Our model with the experimental condition 1153 

as a predictor showed that musicians indeed tended to play significantly louder when exposed 1154 

to a louder pattern (Estimate = 0.126, SE=0.023, t=2.954, p=0.003). Conversely, no signifi-1155 

cant effect was found for the softer pattern (Estimate = 0.048, SE=0.042, t=1.141, p=0.254). 1156 

 1157 
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