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Abstract: The INterpolated FLOod Surface (INFLOS) tool was developed to meet the oper-
ational needs of the Copernicus Emergency Management Service (CEMS) Rapid Mapping
(RM) component, which delivers critical crisis information within hours during and after
disasters. With increasing demand for accurate and real-time flood depth estimates, INF-
LOS provides a rapid, adaptable solution for estimating floodwater depth across diverse
flood scenarios, using remotely sensed data and high-resolution Digital Terrain Models
(DTMs). INFLOS calculates flood depth by interpolating water surface elevation from
sample points along flooded area boundaries, derived from satellite imagery. This tool
is capable of delivering flood depth estimates in a rapid mapping context, leveraging a
multistep interpolation and filtering process for improved accuracy. Tested across fourteen
regions in Europe and South America, INFLOS has been successfully integrated into CEMS
RM operations. The tool’s computational optimisations further enhance efficiency, improv-
ing computation times by up to 15-fold, compared to similar techniques. Indeed, it is able
to process areas of up to 6000 ha in a median time of 5.2 min, and up to 30 min at most.
In conclusion, INFLOS is currently operational and consistently generates flood depth
products quickly, supporting real-time emergency management and reinforcing the CEMS
RM portfolio.

Keywords: flood depth; interpolation; digital terrain model; remote sensing; emergency
management

1. Introduction
1.1. Context

Floods are among the most destructive natural disasters worldwide, affecting millions
of people and causing significant economic and environmental damage. Climate change
and its complex feedback mechanisms have made monitoring the hydrological cycle,
including flood events, increasingly challenging. Research indicates that precipitation
patterns, flood frequency, and intensity are experiencing anomalies [1], with a notable
increase in reported floods since 1950, according to the Emergency Events Database (EM-
DAT) repository [2], as illustrated in Figure 1. Moreover, flood-related events accounted for
more than 33% of all reported disasters in 2023. This surge highlights the inadequacy of
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current flood prevention, management, and monitoring systems, owing to the erratic and
changing climate and weather patterns [3].

Number of reported disasters
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Figure 1. Number of reported natural and technological disasters, between 1900 and 2023, according
to EM-DAT [2]. The EM-DAT classification scheme was changed to better align with CEMS RM main
disaster classes. The CEMS RM “Other” class includes the following EM-DATA classes: “Epidemic”,
“Humanitarian”, “Algae bloom”, “Collapse of a dumping site”, “Heavy snowfall”, and “Iceberg”.
Historical events, prior to 2000, are subject to biases. The year 2024 is omitted, for data validation is
still pending.

As a result, approximately 1.47 billion people worldwide face a high risk of severe
flooding [4]. Urban areas pose a significant concern, due to their high population density
and proximity to large watercourses and coastlines, resulting from economic drivers [5].
In Europe, for example, 51% of the population lives in coastal regions [6], and the median
distance between people and the nearest water body is 3 km [7]. This emphasises the
need for robust flood management strategies to protect these densely populated areas. The
rapid pace of urbanisation, which is expected to add 2.5 billion people to urban centres by
2050 [8], will further exacerbate flood risks.

As urban expansion continues, it is essential for policymakers, urban planners, and
civil security services to have access to reliable data to support flood management, mitiga-
tion efforts, and recovery strategies. Traditional monitoring methods, such as ground-based
surveys and aerial photography, provide precise information, but may not offer real-time
data during crises. Remotely sensed satellite imagery and advanced computer vision
techniques offer a more efficient, timely, and comprehensive solution for flood monitoring
and damage assessment [9]. This approach has become the leading solution for crisis data
collection and provision, especially due to the increased frequency of major disasters [10].
The growing availability of high-resolution satellite images has significantly improved the
accuracy and timeliness of flood mapping. Typical workflows include the use of optical
imagery and Synthetic Aperture Radar (SAR) [11]. Optical sensors capture images in the
visible and infrared spectra, which can help identify water bodies, flood traces, mudflows,
and other flood-related features. However, their effectiveness may be limited by the time of
acquisition and atmospheric conditions. On the other hand, SAR systems use microwaves
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that can penetrate clouds and capture data both day and night. This makes them particu-
larly valuable for mapping flood extents, especially during high-precipitation events with
dense cloud cover.

Numerous global services utilise remotely sensed data to provide information on
floods and their impact, including the Copernicus Emergency Management Service (CEMS),
an integral component of the European Union’s Copernicus Programme. The CEMS is
dedicated to delivering timely and accurate geospatial information to support disaster
management and civil protection authorities globally. Authorised users, such as national
civil protection authorities, European Commission services, and the European External
Action Service, can access crisis information by triggering the service. The CEMS operates
24/7/365, with the rapid mapping (RM) framework serving as its core. This framework
delivers geospatial information within hours or days following a disaster [12] for various
events, including floods, wildfires, earthquakes, and landslides. Examples of provided
information include delineation maps that outline the geographical extent of a disaster
and grading maps that assess the impact on populations and assets, such as buildings
or transportation networks. From satellite imagery reception to crisis product delivery,
operators have up to 7 and 10 h, respectively, for delineation and grading product delivery,
highlighting the importance of efficient and reliable workflows.

More specifically, floods and related events, such as tsunamis, storms, and mudflows,
depending on the context, are the most common disasters for which the CEMS is activated,
accounting for over 46% of the total (Figure 2). CEMS RM users, including EU Directorate
Generals and Member State Civil Protection agencies, have requested information on flood
depths to enhance emergency relief and impact assessment. This demand requires the
development of a rapid and operational methodology that can adapt to various scenarios
and integrate into CEMS RM tools. Furthermore, the methodology must be compatible
with flood extents derived from different satellite sources, including high-resolution (HR),
and Very High-Resolution (VHR) imagery, as well as optical and radar sensors.

Figure 2. Number of Copernicus Emergency Management Service—Rapid Mapping activations
between 2012 and 2023. When applicable, flood activations may also include tsunamis, storms, and
mudflows, depending on the context of a given event.
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1.2. State of the Art

Several methodologies have been developed to estimate flood depth. The most com-
mon techniques involve hydrological and hydraulic modelling. These models integrate
various inputs, such as meteorological data, land use information, and elevation, to simu-
late water flow and forecast flood behaviour. However, before integrating these inputs into
a modelling solution, several pre-processing steps are required. Furthermore, benchmarks
of solutions like HEC-RAS [13], LISFLOOD-FP [14], or FLO-2d [15] suggest simulations that
can last for several hours, contingent upon the anticipated precision and spatial resolution
relevant for CEMS RM activities [16]. This is particularly true for VHR elevation data,
crucial in the context of urban flood mapping [17].

Techniques such as cellular automata (CA) can simplify the physical principles of
these models by employing rule sets that describe the behaviour of floodwater in a discrete
space, based on topography, adjacent water cells, and other ancillary data if required. This
simplification allows CA-based solutions, such as CA-ffé, to run up to 95% faster than
conventional methods like HEC-RAS, while producing comparable flood depth results to
hydraulic modelling [18]. Further optimisations, such as parallelisation, Graphic Processing
Unit (GPU) computing, or memorisation, can further reduce computation times [19], as
demonstrated by the Cellular Automata Dual-DralnagE Simulation (CADDIES) project [20].
However, a limitation of CA in rapid mapping is the requirement of an initial state, such
as a water volume distribution across the Area Of Interest (AOI), flow rate, or rain gauge
readings [21]. These data can be challenging for operators to acquire, given their time
constraints and the need for knowledge of local platforms for accessing such information.
Typically, CEMS users provide these data when available during an activation, without
any guarantee of delivery time, data quality, or compatibility with the CA-based model’s
expected input.

Alternatively, machine learning-based techniques demonstrate promising results,
characterised by rapid inference times and minimal ancillary data or initial state require-
ments [22]. These methods primarily rely on the flood extent extracted from remotely
sensed imagery and a Digital Terrain Model (DTM), from which various topographic
indexes can be derived [23]. However, feature engineering can become time-consuming,
depending on AOI size, DTM resolution, and necessary topographic information. More-
over, these models require an extensive training dataset and are susceptible to over-fitting,
among other drawbacks [24], which can lead to inaccurate flood depth patterns.

To reduce the requirement for large computational resources and ancillary data, tech-
niques have been developed that rely solely on remotely sensed information and DTMs to
estimate water depths across various flood scenarios [25,26]. FWDET [27] is an example of
such a method, which leverages delineated flooded polygons to extract elevations from
a DTM along the flood boundary. After filtering out samples based on terrain slope, this
information is propagated across the flood area using the Nearest Neighbour interpolation
technique to compute floodwater elevations. The final flood depth is determined by sub-
tracting the DTM from the flood surface, with an optional iterative smoothing procedure.
This tool has applications in both riverine and coastal flooding, with the updated FWDET
v2.0 addressing coastal complexities and improving computational efficiency [28]. FwDET
is widely used in emergency response and disaster resilience research, providing generally
accurate and timely flood management support. Although the underlying strategy is
promising, testing in the context of CEMS RM activations has proven unsuccessful. Firstly,
the iterative Nearest Neighbour interpolation of elevations results in tessellated artefacts,
leading to a discrete spatial distribution of depth values despite using a low-pass filter to
smooth the associated flood surface. Moreover, sample refinement with terrain slope is
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insufficient to account for artefacts in the DTMs and their variability, which has proven to
be a recurrent issue in an operational setting.

Considering this context, the INterpolated FLOod Surface (INFLOS) tool was devel-
oped to fulfil CEMS RM requirements. It utilises an existing flood extent polygon layer
derived from remotely sensed imagery combined with the best available DTM. To ensure
consistency and robustness across a wide range of applications, several key steps have been
implemented, taking reference data and topographic context into consideration. As a result,
the proposed approach was operationally tested on more than 180 products worldwide.
This paper aims at illustrating the different steps involved in rapidly estimating flood
depths from satellite imagery and elevation data, and provides key considerations for both
operators and stakeholders when using the generated products.

2. Materials and Methods

The INterpolated FLOod Surface (INFLOS) technique integrates reference and crisis
information gathered, processed, or generated by operators during CEMS RM activations
for floods and associated events. The main dependencies of the proposed methodology
include data on flooded areas, hydrography, and elevation, as illustrated in Figure 3. Refer-
ence information describes the baseline, pre-event conditions, encompassing hydrography
and elevation data. Crisis information refers to dynamic data that specifically characterise
changes induced by the event, such as newly formed or expanded water bodies. This
category also includes any updates to hydrographic features and alterations in terrain
or assets caused by the event. The crisis information is obtained through the analysis of
Synthetic Aperture Radar (SAR) images—including Sentinel 1, COSMO-SkyMed, PAZ, and
RADARSAT-2— optical images—including Pléiades, Pléiades Neo, GeoEye, World View-2,
and Sentinel-2—or aerial photographs, supported by remote sensing software and libraries
such as eoreader [29].

( L £ ) (NA

DTM ] | Hydrography ][ AOI ( Not analysed ] ( Flooded area ]

Flood depth

Figure 3. Simplified workflow and data model for INFLOS.

Table 1 presents the required and optional datasets for INFLOS. The combination
of flooded area data and hydrographic information indicates the full water extent. Hy-
drography data are typically sourced from open-source spatial databases, such as Open-
StreetMap [30], or national topographic repositories. Consequently, flooded areas are
derived by subtracting hydrography from the overall water extent. In addition to these
mandatory datasets, operators can provide ancillary features that define the domain inside
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which flood depths are estimated. These include the AOI and any areas within the AOI
that were not analysed due to incomplete crisis imagery coverage. They are essential for
reducing computation time and removing edge samples.

Table 1. List of required and optional input datasets for INFLOS.

Dataset Acquisition Comment

Downloaded from available
Elevation data sources (end-user, CORDA, Highest available resolution
FABDEM [31], etc.)

Downloaded from

Hydrography OpenStreetMap, digitised from Refinement might be necessary
reference imagery
AOI Provided by the CEMS Should encompass the whole
RM end-user flooded domain
Derived from the AOI and Optional, to be provided
Not analysed areas . . .
crisis image footprint when applicable
Flooded areas Derived from crisis image Should l?e of .
appropriate quality

Reference and crisis data were collected and generated for 14 activations, representing
a total of 69 areas of interest and over 180 products (Table 2). Spanning several European
countries and Europe, these activations cover a wide range of landscapes, from coastal to
mountainous areas.

Table 2. List of CEMS RM activations processed with INFLOS from September 2023 to May 2024.
The number of areas of interest and generated flood depth products are indicated for each activation.
All related products are accessible through the CEMS RM portal: https:/ /emergency.copernicus.eu/
mapping/list-of-activations-rapid (accessed on 12 January 2025).

Activation Country and Region Al\(I)OI.s Prolj(l)licts
EMSR692  £= Greece (Thessaly) 7 28

EMSR697  £= Greece (Thessaly, Sterea Ellada) 4

EMSR698 == United Kingdom (Scotland) 3

EMSR705 B lItaly (Tuscany) 8 7
EMSR706 Bl France (Pas-de-Calais) 7

EMSR708 Bl Belgium (Flanders) 3

EMSR711 Bl France (Charente-Maritime) 3

EMSR712 ™= Germany (Lower Saxony) 10 71
EMSR713 ™= Germany (Saarland) 1 1

EMSR718 W B Ireland (Roscommon County) 2 2

EMSR720 K& Brazil (Rio Grande do Sul) 5 7

EMSR722 ™= Germany (Saarland) 2 7
EMSR725 &= Sweden (Norbotten County) 4 3

EMSR728 ™R Germany (Bavaria, Baden-Wiirttemberg, Hesse, Saxony, Saxony-Anhalt, Thuringia) 10 23

To estimate flood depth, INFLOS is based upon four assumptions, three of which are
illustrated in Figure 4:

(A) Flood depth, referred to as fd, can be determined by initially estimating a flood surface,
denoted as fs. This is achieved by subtracting elevation data e from the flood surface.
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Consequently, fd = fs — e. Negative values of fd correspond to areas unaffected by
the flood and located outside the boundaries of the observed event layer.

(B) Flood depth at the edges of flooded areas can be approximated as zero, as described
by the formula fd ~ 0 < e ~ fs for edge vertices.

(C) Considering the large analysis scales of CEMS RM, cross-sections of a flooded area
should approximate a flat water surface, with slopes of a dozen centimetres per kilo-
metre at most [32]. Indeed, INFLOS does not take local hydrodynamic processes into
account, but rather focusses on the effects of gravity on water. As a result, processes
such as water surface bulging in the concave bank of a meandering river are not
accounted for [33].

(D) It is not possible to consistently infer the bathymetry of hydrological features or
the corresponding water depth from the various DTM specifications made available

during flood activations.

Hydrography

Flood surface fs

Flood depth fd

Figure 4. Cross-section of a watercourse, illustrating terminology and concepts used for describing
flood depth. It includes hydrography and elevation (e), available to the operator as inputs. INFLOS
generates a flood surface estimate (fs), used to derive flood depth (fd).

The proposed methodology involves a two-stage interpolation process, consisting of
the following steps: (1) preparation of sample points and outlier filtering, (2) first-pass
interpolation to generate a preliminary flood surface, (3) removal of additional outliers and
densification of robust samples, (4) second-pass interpolation, where the final flood surface
is estimated, and (5) flood depth computation.

2.1. Preparation of Sample Points

INFLOS operates on the basis of interpolating a flood surface using a set of sample
points located along the edges of flooded areas, where the water depth can be approximated
to zero, as per assumptions (A) and (B). The distance between samples is contingent upon
the resolution of the crisis image, allowing for an adaptive technique that is applicable
across a wide range of sensors. To ensure statistical significance for subsequent statistical
filtering, at least 30 samples are drawn [34]. The result of this sampling process is illustrated
in Figure 5.

Furthermore, the same principle can be extended to include hydrography features
adjacent to flooded areas, leading to a more accurate representation of the flood domain.
This could potentially enable bathymetry estimation from suitable elevation data.

In line with assumption (B), it is recommended to select only samples located on the
periphery of the full water extent for analysis. It can be reasonably assumed that samples
situated within this domain will have non-zero positive depth values. Consequently, IN-
FLOS excludes all samples situated along the boundaries where both the flooded areas
and hydrography are adjacent. Furthermore, samples extracted from flooded areas and
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positioned near or beyond the limits of the AOI or image footprint are also removed, as they
do not align with the actual limits of the observed water extent (Figure 5). This selective

sampling methodology ensures a faithful representation of the actual event.

© Hydrography |
“ Flooded area 7

General information
[ Area of interest

Sensor metadata
I_ _" Image footprint
// Not analysed

Hydrography
[ surface water

Crisis information
[ Flooded area

Figure 5. Spatial distribution of sample points, prior to the initial interpolation phase. Each point
draws its elevation value directly from a DTM. This example is based on an on-demand CEMS RM
delineation product delivered for EMSR722 AOI02 Saar (Germany). DTM (10 m) courtesy of GeoBasis-
DE/BKG (2018). All related products can be accessed through the official viewer for EMSR722:
https:/ /rapidmapping.emergency.copernicus.eu/EMSR722/ (accessed on 12 January 2025).

After completing the sampling process, the elevation of each point is calculated using
the DTM. In the context of rapid mapping, the reliability of elevation data may not be
guaranteed entirely, even with the utmost operator expertise. As a result, the accuracy of
mapped water boundaries could be locally inconsistent. This issue is particularly prevalent
in Synthetic Aperture Radar (SAR) imagery, where radar shadows from features like hedges
can be misleading, as they may resemble water due to similar amplitude values.

As a result, significant inaccuracies must be rectified by the operator before proceeding
with the rest of the workflow, to guarantee the accuracy and reliability of flood depth
values. However, to address these challenges, INFLOS has been developed to handle minor
inconsistencies in both elevation data and flood delineation. Indeed, pre-processing steps
are implemented to remove potential height value outliers among the sampling points.
To achieve this, a filtering technique based on the standard score is employed. For each
flood polygon, the distribution of its samples” height is used to compute the standard score,
as per Formula (1), where x corresponds to a sample’s height, u# to the mean height for
samples belonging to a given polygon, and ¢ to the standard deviation of heights.

z=2"F (1)

Any sample where |z| > 1 is considered an outlier and is removed, retaining only
the most optimal 68% of the initial set of sample points. Optionally, the standard score
threshold can be adjusted to account for data quality and specific hydro-geomorphological
features of the landscape. Such features include entrenchment, gullies, or abrupt terrain
changes, common in highly dissected landscapes or floodplains with braided rivers. These
geomorphological features lead to rapid local variations in elevation, and require flexible
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thresholds to minimise discarding valid values. Incorporating this adaptability ensures that
INFLOS remains robust across diverse terrain types, from steep mountainous regions to low-
gradient coastal plains. This also does not account for georeferencing and orthorectification
issues that can result in misalignments between satellite imagery and elevation data.
Nonetheless, manipulating the standard score threshold would require extensive testing
for each use case, which is unfeasible during production. This explains the rationale behind
proposing a default value.

2.2. First-Pass Interpolation

The sample set obtained from the previous step is used to interpolate a flood surface.
This interpolation process involves propagating elevation data from the sample points
to a broader domain of interpolation, which is typically defined by the convex hull of all
sample points. Various interpolation techniques are available, each with specific trade-offs
in terms of accuracy, smoothing, parameterisation, and processing speed, among other
factors [35,36]. Several spatial interpolation techniques were explored during development,
with three main criteria guiding selection:

1.  Exact spatial interpolation is mandatory to ensure border samples have a flood depth
of 0, satisfying assumption (B), which states fd ~ 0 < e ~ fs.

2. Given the time constraints of CEMS RM, the interpolation technique must produce
results as fast as possible.

3.  The interpolation method should operate without requiring fine-tuning of parameters,
as it requires expertise and time to test multiple configurations. Preferably, only sample
locations and heights should be needed as input. Indeed, an important objective of
this development for rapid mapping is that the operator does not intervene.

The Nearest Neighbour interpolation method is the simplest and fastest, making it
suitable for rapid mapping. This technique is notably used for FWDET [27]. It assigns
the elevation of the nearest sample point to each unsampled location in the interpolation
domain [37]. While computationally efficient, this approach frequently results in a stepped
surface appearance, particularly evident in complex landscapes like entrenched valleys.
Furthermore, the reliance on the nearest sample renders it particularly susceptible to out-
liers. To address these issues, FwWDET employs a modified version of this algorithm, where
the average elevations of neighbouring samples are iteratively assigned to unsampled areas
within a moving window.

Alternative methods were also explored, such as Inverse Distance Weighting
(IDW) [38] and kriging [39]. However, both of the above-mentioned methods require
the user to set some input parameters (e.g., the value of the power parameter for IDW or
the semi-variogram model for kriging) [40], making the results operator-dependent and
potentially less replicable. With IDW, the power hyperparameter p is influenced by the
density of sample points. Indeed, higher values of p give greater influence to closer points,
whereas lower values of p tend to produce smoother results by increasing the priority of
more distant points [41]. With regard to INFLOS, the density is highly dependent on the
crisis image’s spatial resolution and the filtering strength of the standard score threshold.
To mitigate this issue, alternative techniques can be used, such as kriging, which accounts
for spatial autocorrelation and ensures accurate and unbiased interpolation results [42,43].
Unfortunately, kriging is computationally intensive in both time and memory [44], mak-
ing it impractical for large AOIs under tight time constraints and varying workstation
specifications across the CEMS RM consortium.

As a result, INFLOS uses the natural neighbour algorithm, representing the best trade-
off between all the requirements for CEMS RM. It is based on the principles of Voronoi
tessellation [45-47] and does not require any input parameter to be set by the operator.
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This method identifies the nearest subset of samples to an unsampled point and calculates
interpolated values by weighting the elevations based on their proportional areas, as well
as the overlap between the Voronoi polygon for a given data point and that of neighbouring
samples [48]. These concepts are formalised in Formulas (2) and (3), where

*  f(x) is the interpolated value at point x.

*  f; are the values of neighbouring data points.

* N is the number of neighbouring data points contributing to the interpolation.

*  w;is the weight assigned to a neighbour i.

e V;is the area of the overlap between the Voronoi polygon of neighbour i and that of
the interpolated point.

® Voo is the total area of the Voronoi polygon for the interpolated point.

i=1
flx) =) wif; )
N

Vi
= 3)
Vtotal

wi

This ensures that the interpolated surface is smooth and continuous. Another advan-
tage of natural neighbour interpolation is its ability to adapt to irregularly spaced data
without fine-tuning parameters. However, this technique has more computational require-
ments than Nearest Neighbour interpolation or IDW, due to the complexity of working
with Voronoi polygons. Nevertheless, the natural neighbour algorithm is a more robust
option for the timely and accurate mapping of flood depths, due to answering all three
criteria enumerated earlier.

The trade-offs between interpolation techniques considered in this study are sum-
marised in Table 3.

Table 3. Comparison of exact interpolation techniques analysed for INFLOS. The listed pros and cons
consider CEMS RM requirements specifically, mostly processing speed and required hyperparame-
ter tuning.

Method Pros Cons
*  Hyperparameter p depends on point density [41].
IDW e  Fast processing. *  Sensitive to outliers [49].
Does not account for spatial autocorrelation.
*  Accounts for spatial autocorre- .
Kriging lation [42,43]. glc"]wrplr‘}’fessingr[i]' ters to fine-tune [50]
¢  Robust to outliers [42,43]. cveral hyperparameters to fne-tune ’
*  Fast processing. . .
Natural neighbour » No hyperparameter to fine- Does not account for spatial autocorrelation.

tune [51].

Dependency on Voronoi tesselation quality [51].

2.3. Sample Refinement and Densification

After the initial interpolation of the flood surface, the sampling set undergoes further
refinement to guarantee accuracy and robustness. As stated in assumption (C), the cross-
sections of the interpolated flood surface should approximate a flat profile. To achieve this,
samples that introduce excessive slope in the flood surface, defined by a threshold of 0.5°,
are identified and removed. This step is crucial, because slope within the flood surface may
indicate anomalous data points, which could lead to inaccurate flood depths.

Subsequently, this curated dataset is densified to improve the robustness and smooth-
ness of the interpolated flood surface. This is achieved by meshing flooded areas and
extracting vertices from this mesh (Figure 6). Vertex density is proportional to the spatial
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resolution of the crisis image, thus enabling an adaptive process. Additional points are
added along the buffered geometry of the water extend to maintain a flat flood surface
plane and prevent edge effects. All these points are assigned an elevation value based
on the 10 closest border sample points and a weighted-distance approach, before being
integrated back into the full sample set. This step not only helps generate a smooth flood
surface, but also minimises the influence of remaining outliers by increasing the density of

data points.

0

o
Samples [=}| Slope filtering

“  Hydrography t},c' B

 Flooded area )
Internal mesh d ' B
®  Extended boundary } 7 J ¢/ o
General information
[ Area of interest
Sensor metadata
|__" Image footprint
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Hydrography
[ surface water

Crisis information
[ Flooded area

Figure 6. Spatial distribution of sample points, following the application of outlier filtering and
densification techniques, represents the dataset before the second-pass interpolation. Elevations
derived from internal meshing and boundary extension are obtained directly from their nearest hy-
drography and flooded area neighbour samples. This example is based on an on-demand CEMS RM
delineation product delivered for EMSR722 AOI02 Saar (Germany). DTM (10 m) courtesy of GeoBasis-
DE/BKG (2018). All related products can be accessed through the official viewer for EMSR722:
https:/ /rapidmapping.emergency.copernicus.eu/EMSR722/ (accessed on 12 January 2025).

2.4. Second-Pass Interpolation and Flood Depth Computation

The final flood surface is obtained by applying the same interpolation algorithm as the
first pass a second time—natural neighbour in this case—to the curated sample set as an
input. The interpolated elevation values from the DTM are then subtracted from the flood
surface, resulting in the depth values associated with the flooding. These depth values are
only calculated for flooded areas, excluding the hydrographic data, as previously stated in
assumption (D). Minor discrepancies between the crisis image and the elevation data could
result in negative or zero depth values. To address this, a minimum threshold of 0.15 m is
applied, ensuring that areas identified as flooded have a non-zero depth.

Next, a series of formatting procedures are undertaken to produce a layer that adheres
to the standards and guidelines of CEMS RM. The flood depth values are distributed as
a continuous raster file. To obtain vector layers, the data are then discretised into the
following classes: below 0.50 m, 0.50 m to 1.00 m, 1.00 to 2.00 m, 2.00 m to 4.00 m, 4.00 m
to 6.00 m, and above 6.00 m. This discrete representation is then converted and shared in
vector format.
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2.5. Validation and Quality Assessment

A significant challenge in the validation process for INFLOS is the absence of robust
in situ data, which are crucial for validating flood depth values. This gap arises from
the scarcity of validated, precise in situ measurements that can accurately represent flood
extents and depths at specific moments, corresponding to the acquisition date and time of
crisis satellite imagery.

Regarding the validation of results through the use of traditional flood modelling
techniques, although hydraulic simulations offer a potential avenue for assessing INFLOS
interpolation results, this approach requires considerable effort and reduces the number of
flood products that can be verified. This may compromise the validity of the results, con-
sidering the variety and number of CEMS RM activations. Furthermore, hydraulic models
have inherent limitations and depend on input data quality, which may not consistently
capture the nuances of observed flood events or align with the CEMS RM data model.

Alternative data sources, such as traditional and social media, alongside water gauge
readings, offer supplementary validation avenues. However, when available to the op-
erator during production, these sources often lack precise timestamps and geolocations,
reducing their reliability in matching the exact conditions and timing of satellite image
acquisitions during a crisis. Nevertheless, they can indicate whether an area was flooded
and to what extent.

Given these limitations, it is unrealistic to expect highly precise flood depths from
INFLOS, as the system is primarily designed for rapid mapping to provide a situational
overview for emergency management. Therefore, the primary metric for quality assessment
during the validation process is the flatness of the interpolated flood surface, as well as the
coherence of the inferred values when compared to elevation data. This criterion aligns with
assumption (C), suggesting that a flatter surface indicates higher confidence in the result.
Consequently, the quality assessment of INFLOS involves analysing cross-sections where
both the DTM and the interpolated flood surface are compared. Figure 4 demonstrates
this approach, illustrating how the flood surface fs and elevation e would be overlaid in a
Geographical Information System (GIS) suite for analysis.

Additionally, a sensitivity analysis is also performed on key parameters, namely the
interpolation technique and the standard score threshold used for filtering samples.

The interpolation technique and its potential hyperparameters are tested across all
experiments, using the same sample set obtained at the end of the process described in
Section 2.3. The objective is to determine the contribution of the proposed interpolation
technique specifically. This analysis focuses on natural neighbour, IDW, and kriging, as
outlined in Section 2.2.

The sensitivity of the standard score threshold used for filtering outliers in Section 2.3
is tested across values ranging from 0.1 to 3.0, with an increment of 0.1. This results in
30 experiments per product referenced in Table 2. It employs an independent set of samples
for testing, drawn randomly along the edge of the observed flood event. The sensitivity
analysis is performed by sampling the reference elevation of the DTM and comparing
it against interpolated values at the same location for the proposed range of standard
scores. The size of the sample set during test time is calculated for each product using
Formula (4), where

* nis the sample size.

®  Zis the critical value of the standard normal distribution for a given confidence level.
In this case, it ensures that the sample size is sufficient to verify that reference and
interpolated elevations are not significantly different from one another. With the
desired confidence interval of 95%, the critical value is equal to 1.96.
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¢ o is the standard deviation of differences between reference and interpolated eleva-
tions, estimated from a pilot dataset.
*  ¢isthe acceptable margin of error, set to be within 0.1 m of the mean reference elevation.

"= (Z:")2 4)

The number of samples for each product is then adjusted using the finite population

correction, described in Formula (5), where

®  Mudjusted 1 the adjusted sample size.

*  nisthe sample size, calculated using Formula (4).

*  Nis the total population size, corresponding to the total number of vertices for a given
flood product.

n

— T ®)
—1
1+

Madjusted =
Finally, INFLOS is benchmarked against FwDET [27], a comparable solution for
flood mapping, to evaluate processing speed, a critical factor for rapid mapping. Products
described in Table 2 are leveraged to assess the performance trade-offs between INFLOS and
FwDET. The tests are conducted on a desktop computer equipped with an 8-core 3.60 GHz
CPU and 32 GB of RAM. To ensure a fair comparison, INFLOS is evaluated against two
configurations of FWDET: one without any post-processing and another incorporating
FwDET’s optional iterative low-pass smoothing filter applied over 150 iterations.

3. Implementing the Algorithm and Results
3.1. Development Stage Overview

The development of INFLOS has been structured through multiple stages, categorised
by the Technological Readiness Level (TRL) framework [52]. In a period of six months,
INFLOS progressed from a proof of concept at TRL 3 to a mature solution for flood
depth estimation at TRL 9. This progression involved rigorous testing across diverse
landscapes, using a large range of flooded case studies derived from satellite images and
elevation datasets.

Initial testing focused on single-date flood depth estimations within a constrained set
of use cases. As development progressed, the scope expanded to include monitoring phases
that accounted for fluctuating water extents and levels across the same AOlIs at first. This
process gradually incorporated a broader spectrum of use cases into the evaluation process.

These development stages led to the operational deployment of INFLOS into the
CEMS RM toolkit. All partners within the CEMS RM consortium successfully used INFLOS
to generate numerous flood depth products in real-world operational settings. This phased
approach not only validated the performance of INFLOS across different scenarios, but
also ensured its adaptability and robustness, reinforcing its value as a critical tool in flood
response and management strategies.

3.2. Proof of Concept

Initially, INFLOS was tested on single-date flood products to validate the accuracy of
the interpolated flood surfaces, ensuring they maintained near-flat profiles across various
configurations. This testing was essential to confirm that the computed flood depths
aligned with the elevations indicated by DTMs, regardless of the geographical features
present within the event area. Consequently, the testing encompassed a diverse range of
geographical settings, from narrow, deep valleys to large open plains, as detailed in Table 4.
This comprehensive approach aimed to reflect the diversity of flood activations and related
events within the CEMS RM framework.
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Table 4. List of CEMS RM activations used for conceptualising, developing, and testing INFLOS
in an experimental setting. All related products are accessible through the CEMS RM portal: https:
/ /emergency.copernicus.eu/mapping/list-of-activations-rapid (accessed on 12 January 2025).

Activation Locality AOI Event Size (ha) Description
Succession of flat and entrenched areas, major eleva-

EMSR692 (= Greece 01 72,200 tion amplitude, artefacts in DTM, multi-stage flooding,
long monitoring.

EMSR698 St United Kingdom 01 2190 Long- and entrenched valley, major elevation amplitude,
multi-stage flooding.

EMSR705 B lltaly 03 1635 Flat landscape, artefacts in DTM.

EMSR706 NN France 04 700 Flat landscape.

EMSR708 Bl Belgium 01 5300 Flat landscape, coastal area.

During this stage, a sensitivity analysis was carried out, leveraging testing sites
described in Table 4. First, interpolation techniques were compared to validate insights
from the available literature, regarding robustness to outliers, hyperparameter tuning, and
compute time. A subset of these tests is showcased in Figure 7.

While INFLOS yields compute times close to 3 min for EMSR698 AOIO1 River Spey
(Scotland, UK) with the natural neighbour and IDW algorithms, kriging ranges from
30.2 min to 35.3 min. Overall, this represents an increase of 1067% in compute time.
Consequently, kriging already exceeds the target of a 30 min time frame for an AOI and
event size that are below average compared to other events. Tuning the semivariogram
model does not result in significant changes in flood depth, as exhibited in the last row of
Figure 7, which is an important factor to minimise operator input by providing a sensible
default value. Despite this perk, the compute time makes it unsuitable for the requirements
of CEMS RM. In comparison, while IDW generates results promptly, the spatial patterns of
flood depths vary greatly depending on p, the power value. Indeed, the higher the value
of p, the more important the nearby samples. Conversely, the lower the p, the greater the
importance of distant samples. This explains the increase in flood depth smoothness when
decreasing the p value. As a result, IDW is also unsuitable for CEMS RM, due to reasons
opposite to that of kriging, with the operator being required to fine-tune p. This analysis
highlights the reasons why natural neighbour was selected, namely for the fast compute
time and non-existent operator input.

In addition to interpolation techniques, the impact of the standard score threshold used
for filtering samples was also subject to a sensitivity analysis (Figure 8). Median elevation
differences between interpolated and reference values were computed from an independent
test set, based on values drawn at the location of 296,295 samples across all 183 evaluated
products. Elevation differences reach an optimal minimum value of 0.23. This corresponds
to a standard score threshold of 1.1, rounded down to 1.0 as the default threshold value
for INFLOS, due to simplicity and interpretability purposes. Overall, median elevation
differences are systematically positive, without ever reaching a difference of 0, which
would indicate no differences between interpolated and reference elevations. This shows
a tendency to the overestimation of interpolated values, likely explained by delineation
errors pulling the interpolation plane upwards along high slopes delimiting floodplains.
Moreover, the median absolute deviation initially highlights a high dispersion of values,
which taper down past a threshold of ~1.0. This could indicate that the more intense the
filtering, the less the interpolation adapts to local variations, which is especially problematic
in large catchments where elevations vary greatly between upstream and downstream.


https://emergency.copernicus.eu/mapping/list-of-activations-rapid
https://emergency.copernicus.eu/mapping/list-of-activations-rapid

Remote Sens. 2025, 17, 329

15 of 28

T
S
o
=
=
=
)
=
©
T
S
=
]
=

Baseline

Param. — Power p

Param. — Semivariogram model

Compute time
2' 58"

Model — Spherical ‘ Model — Gaussian

Figure 7. Comparison of interpolation techniques—natural neighbour, IDW, and kriging—with
flood depth estimates for EMSR698 AOIO1 River Spey (Scotland, UK)—DEL MONITO01 (10 October
2023). The natural neighbour algorithm corresponds to the baseline used in this analysis. Both of the
other techniques require hyperparameter tuning, with comparisons performed when conceptualising
INFLOS. Examples of hyperparameter values are showcased, including the power value for IDW and
the semivariogram model for kriging. Considering CEMS RM’s tight production schedule, compute
time is also indicated. DTM (5 m) courtesy of Scottish Government, SEPA, and Scottish Water (2012).

Once INFLOS demonstrated sufficient stability for broader applications, the testing
phase expanded to include monitoring cycles for all products in Table 4. This phase was
critical to validate that INFLOS could accurately account for dynamic flood events. Specifi-
cally, the algorithm was required to demonstrate that the interpolated flood depths logically
increased with the expansion of flood extents and decreased as the flooding receded.
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Figure 8. Impact of the standard score threshold on elevation differences between interpolated and
reference values across the test sample set. Elevation differences correspond to Az; = z; — z;. To
represent the central tendency, the median of differences medy,, was computed for each threshold i,
as a robust metric to account for outliers. The median absolute deviation (MAD) measures dispersion
around median elevation differences, and is also a metric robust to outliers. The lower boundary
is computed as MADoyey, = medp, — med(|Az; — medy,|). The upper boundary is computed as
MADypper, = medp, + med(|Az; — medp;|) [53].

To illustrate these capabilities, Figure 9 displays upstream and downstream cross-
sections that were generated for the River Spey in Scotland, as part of the EMSR698
activation. Upriver, the reduction in the flooded area results in a lower flood surface in
the DEL MONITO01 generated on 10 October 2023, compared to the initial DEL PRODUCT
from 8 October 2023. As per assumption (C), these interpolated flood surfaces are expected
to be nearly flat, exhibiting slopes close or equal to 0°. Despite vertical exaggerations in the
profile visualisations in Figure 9, the slopes for flood surfaces in DEL PRODUCT and DEL
MONITO01 are measured at 0.018° and 0.047°, respectively. This minimal variation across
each profile supports the assumption of flat flood surfaces. Downriver, as the inundation
extends, flooded areas in DEL MONITO1 display a broader extent, resulting in increased
flood depth estimates compared to the earlier DEL PRODUCT. The profiles remain nearly
uniform and consistent with the flatness criterion, showing flood surface slopes of —0.056°
for DEL PRODUCT and —0.017° for DEL MONITO1.

The validation process was applied across all use cases listed in Table 4, yielding
consistent results regardless of the geographical or hydrological context. This preliminary
assessment, conducted under conditions similar to those in the CEMS RM framework,
facilitated INFLOS’ progress towards a TRL of 5. At this stage, the proposed methodology
demonstrated its effectiveness in a relevant environment, providing a solid basis for further
enhancements and optimisations necessary for full operational deployment.
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Figure 9. Upstream and downstream cross-sections with rising and receding floodwater along the
River Spey in Scotland. The DEL PRODUCT (8 October 2023) and DEL MONITO01 (10 October 2023)
flooded areas were delineated from Sentinel-1 (20 m) imagery. They illustrate how the inundation
progressed downstream between satellite acquisitions. The flood surface is a sum of elevation data
and interpolated flood depth. Most artefacts in the flood depth layer are due to DTM quality. This
example draws from on-demand CEMS RM products delivered for EMSR698 AOI01 River Spey
(Scotland, UK). Pre-event imagery is a Sentinel-2 (10 m) product acquired on 7 September 2024. DTM
(5 m) courtesy of Scottish Government, SEPA, and Scottish Water (2012). All related products can be
accessed through the official viewer for EMSR698: https:/ /rapidmapping.emergency.copernicus.eu/
EMSR698/ (accessed on 12 January 2025).

3.3. Pre-Operational Environment

The transition of INFLOS to a pre-operational stage involved an update in employed
technologies. Initially, the proof of concept was conducted using ArcGIS Pro model builders,
enabling rapid iteration across various use cases. After validating the methodology, the
workflow was transferred to Jupyter Notebooks [54] and subsequently refined into stan-
dalone Python scripts, accommodating both ESRI and open-source platforms, notably
incorporating WhiteboxTools [55] for its implementation of the natural neighbour algo-
rithm, as well as geopandas [56], xarray [57] and sertit-utils [58]. This adaptability
facilitated the integration of INFLOS into diverse technical environments, making it ac-
cessible via command line for advanced users, or through an ArcGIS Pro tool for a more
user-friendly use.

Following this adaptation, INFLOS was shared among CEMS RM partners, initiating
an extensive testing phase that involved processing over 180 flood products (Table 2). This
was crucial not only for operational benchmarking, but also for ensuring compatibility
across the varied IT infrastructures within the CEMS RM consortium. Feedback from
partners played a vital role in this phase, identifying areas for improvement, which were
addressed in subsequent updates.
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This approach not only strengthened the tool’s robustness but also enabled an as-
sessment of INFLOS” performance in terms of execution time, a critical metric for its
suitability in rapid mapping scenarios. Initial benchmarking was conducted internally
at SERTIT, using a standard desktop computer setup equipped with an 8-core 3.60 GHz
CPU and 32 GB of RAM. This configuration aimed to simulate a typical user environ-
ment, providing realistic performance insights. The median processing time using INFLOS
was recorded at 5.2 min, highlighting its efficiency in managing datasets under typical
CEMS RM operational conditions. Processing times varied significantly depending on
the AQI, data complexity, and output size. The longest was 30.4 min for EMSR723 AOI01
Grand Est (France), which involved a large area of 527,668 ha, resulting in a raster size
of 30,469 x 17,676 pixels. This scenario tested the tool’s capacity to handle extensive data
volumes under demanding conditions. The quickest processing time was notably brief, at
approximately 0.4 min for EMSR720 AOIO3 Roca Sales (Brazil), with a small raster size of
217 x 146 pixels for an area of 4633 ha.

The collaborative testing and refinement of INFLOS underscored its potential to meet
end-user requirements in emergency mapping operations, with a TRL of 7, paving the way
for full-scale production deployment.

3.4. Benchmarking

The analysis of INFLOS computation times indicates that it complies with the rapid
processing requirements of CEMS RM, achieving a median computation time of 5.2 min
(Figure 10). In comparison, FWDET demonstrates faster median computation times of
2.8 min when its optional smoothing post-process is omitted, with zero iterations. However,
this comes at the cost of reduced output quality. Indeed, FWDET’s low-pass filter, typically
requiring from 100 to 200 iterations for optimal results [27], significantly enhances the
smoothness and flatness of the flood surface, but also increases computational requirements.
This trade-off is illustrated in Figure 10.

Computation time (logso) Outputs for EMSR722 A0I02
10,000 s 3
166 min
1000 :
16 min
¥
“
3
100s
1.6 min o
°s
10
0.1 min = O itm 400 m :
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INFLOS ﬁ\ggﬁ]’ . Surface water |:] Flooded area 0.15 ! Flood depth (m)

Figure 10. Benchmarking of INFLOS compared to FWDET with 0 and 150 iterations. For enhanced
visual clarity, computation times are presented on a logarithmic scale. Snapshots from EMSR722
AOQI01 Blies (Germany)—DEL PRODUCT (19 May 2024) illustrate typical flood depth estimates
when using these techniques. Other displayed layers include hydrography downloaded from
OpenStreetMap and flooded areas delineated from RADARSAT-2 imagery (18 May 2024). DTM
(10 m) courtesy of GeoBasis-DE/BKG (2018). All related products can be accessed through the official
viewer for EMSR722: https:/ /rapidmapping.emergency.copernicus.eu/EMSR722/ (accessed on 12
January 2025).

Simultaneously, INFLOS exhibits a broader range of computation times, spanning
from 0.4 to 30.4 min, reflecting variability due to AOI size and terrain complexity. By
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contrast, FwWDET without post-processing maintains a narrower range of 0.1 to 9.5 min,
indicating better scalability than INFLOS. However, applying FwDET’s low-pass filter
substantially impacts performance, with a median computation time of 68.1 min after
150 iterations, exceeding INFLOS” maximum processing time, even for the largest AOIs
and flood event sizes.

3.5. Operational Production

The integration of INFLOS into the CEMS RM portfolio required adhering to data
models, symbology, and processing protocol requirements. This ensures that the outputs
from INFLOS are not only thematically accurate, but also seamlessly fit into the existing
operational framework. Flood depth is distributed in the Crisis Information Package (CIP)
as a continuous raster layer and a classified vector file. This dual-format delivery ensures
versatility in usage, catering to different user needs and technical environments. The raster
format enables detailed quantitative analyses, while the vector format facilitates integration
and visualisation within various GIS platforms. Moreover, a standardised symbology has
been developed, enhancing the readability and usability of flood maps. This includes
defining colour scales that accurately represent water depth, making it intuitive for end-

users to interpret the severity and extent of flooding directly from the map. Figure 11
demonstrates the finalised integration of INFLOS into the CEMS RM portfolio, showcasing
a flood delineation monitoring product for EMSR720 in Brazil.

Figure 11. Example of an on-demand CEMS RM delineation monitoring product. This ready-
to-print map was generated for EMSR720 AOIO5 Santa Tereza (Brazil, State of Rio Grande do
Sul) on 6 May 2024, as part of an activation triggered by inundations. It shows the current and
maximum extent of the flood, as well as an estimate of flood depth. World DEM Neo (5 m) courtesy
of Airbus (2024). All related products can be accessed through the official viewer for EMSR720:
https:/ /rapidmapping.emergency.copernicus.eu/EMSR720/ (accessed on 12 January 2025).
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As a result of the comprehensive development phase, INFLOS has evolved into a fully
operational system (TRL 9), being utilised for all delineation products within CEMS RM,
and effectively tracking fluctuations in flood events over time.

4. Discussion

INFLOS has demonstrated its efficiency in deriving flood depths from flood extents
delineated using remote sensing imagery and elevation data within the context of CEMS
RM. Following extensive testing across over 180 products, INFLOS has proven its adaptabil-
ity to a diverse range of input data and terrain configurations, showcasing its operational
viability. The tool effectively processes imagery with varying resolutions, sourced from
both optical and Synthetic Aperture Radar (SAR) sensors. While INFLOS is compatible
with medium-resolution Digital Terrain Models (DTMs), such as FABDEM (30 m resolu-
tion), finer grid cell sizes and authoritative sources are generally preferred. In particular,
high-resolution (HR) or Very High-Resolution (VHR) DTMs can significantly enhance the
accuracy of flood depth estimates by capturing intricate topographical variations often
found in flood-prone areas [59]. However, the quality of the DTM also plays a crucial role,
as poor-quality data can lead to inaccurate interpolations. In such cases, operators must
weigh the trade-offs. When authoritative or high-resolution data are compromised due to
defects such as those listed in Table 5, it is often preferable to use FABDEM as a fallback
solution. This strategy minimises potential errors in flood depth values resulting from
input elevation data.

While this study and the rapid mapping process do not assess the suitability of specific
Digital Terrain Models (DTMs) for flood mapping, such an evaluation is crucial for end-
users to gauge the reliability and limitations of the delivered products. In addition to
scrutinising potential flaws in the input data, it is essential to consider parameters such
as spatial resolution and vertical accuracy, which can significantly impact flood depth
estimations. Notably, FABDEM achieves a median absolute difference of 1.04 m compared
to reference data in flood-prone areas [60], but this level of vertical accuracy may still be
insufficient for certain use cases, such as EMSR708 AOIO1 (Westhoek, Belgium), where
floodplain elevations range between 4.0 and 5.0 m. Although some existing studies have
explored the importance of vertical accuracy in the context of flooding [61], none have
addressed the specific challenges and requirements of rapid mapping, highlighting a
notable gap in the academic literature.

Even though INFLOS meets the original operational requirement of processing within
a 30-minute time frame, the increasing scale and frequency of major disasters [62] suggests
a potential rise in the size of AOIs and flooded areas needing analysis. In this regard, the
lower processing times of FWDET without post-processing suggest areas for improvement.
One potential avenue could be exploring alternative interpolation techniques that maintain
the quality of flood surface representation while reducing computational overhead. Cur-
rently, both interpolation passes account for over 80 % of INFLOS’ runtime, making such a
change crucial for improving its operational capabilities.
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Table 5. During CEMS RM activations, issues pertaining to elevation data were encountered when
generating flood depth products. The example of outdated data illustrates discrepancies with current
imagery, with the expansion of a quarry indicating land cover and land use changes that cannot
be accounted for during production. The example of product quality shows that there are stark
differences between the authoritative DTM and FABDEM data, the latter being more representative
of actual topography. The authoritative DTM was generated using TIN interpolation, likely from
a sparse point cloud, thereby explaining the low-detail and low-quality product. The example of
confidential areas showcases one of the several techniques used to mask areas such as military bases
or airports. In these situations, placeholder data are used in place of the actual elevation. These
placeholder data can be fully masked out, inferred from nearby pixels, or set to a specific value.
The combination of variables that results in a terrain model that is not representative of the current
topography is demonstrated by the example of compounding errors. In this instance, improper
processing of the available DTM led to artefacts up to 120 m above the floodplain. Additionally, there
are differences in the current imagery that show how a stream was channelled between 2009 and
2023, along with changes in land use and cover.

Issue

DTM Used Reference

Outdated product

EMSR712 ™= Germany

Left—10 m © GeoBasis-DE/BKG, 2018
Right—Sentinel-2, 10 m © Copernicus/ESA, 2023

Product quality

EMSR705 I I Italy

Left—10 m © Regione Toscana, 2023
Right—FABDEM, 30 m © Airbus, 2020

Confidential areas

EMSR692 = Greece

Left—5 m © Hellenic Cadastre, 2007-2009
Right—Not applicable © OpenStreetMap, 2025

Compounding errors

EMSR692 = Greece

Left—5 m © Hellenic Cadastre, 2007-2009 Artifact

Right—Sentinel-2, 10 m © Copernicus/ESA, 2023

Obsolete

As illustrated in Figure 10, INFLOS generates smooth flood surfaces, verifying as-
sumption (C) proposed in Section 2. This result is achieved by leveraging the natural
neighbour interpolation algorithm, which considers the surrounding samples for each
interpolated point, effectively integrating a built-in smoothing pass [48]. In comparison,
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FwDET relies on the Nearest Neighbour algorithm [27], producing tessellated surfaces that
do not convincingly depict water surfaces, especially in complex terrain, such as meander-
ing entrenched valleys. As a result, this approach does not meet our initial assumptions
and requirements as well as INFLOS. This is reflected in Figure 10 by significant changes in
flood depths. Although the low-pass filter mitigates this issue to some extent, its impact on
computation time reduces FWDET’s usability in rapid mapping contexts. In addition, the
comparison between interpolation techniques in Figure 7 highlights the benefits of using
the natural neighbour algorithm, with a fast processing time and no parameter fine-tuning
from operators.

Nonetheless, alternative interpolation techniques could be investigated to potentially
yield improvements in computational efficiency, interpolated elevations, and, ultimately,
operational flood depth products. However, the interpolation technique employed by
INFLOS should preserve an exact nature to ensure that elevations at sample locations are
the same between interpolated and references values. One promising example is the Radial
Basis Function (RBF) method [63], which can effectively balance accuracy and computa-
tional efficiency. Furthermore, the robust handling of outliers and incorporation of spatial
autocorrelation analysis would likely provide additional enhancements to the results.

operators with advanced knowledge of INFLOS may still want to fine-tune this
threshold in specific circumstances to account for pronounced elevation amplitudes and
possibly improve depth estimates. Although the proposed methodology incorporates
outlier removal procedures, it remains vulnerable to the precision and quality of input
data, not just the Digital Terrain Models (DTMs). In particular, over- and under-estimations
of flooded areas can significantly impact results. Thorough data cleaning is crucial to
maintaining output accuracy. While the methodology is quick and reliable at the statistical
distribution level, it lacks sensitivity to local context, particularly when dealing with large
flood polygons spanning several kilometres. In complex and heterogeneous terrains, the
standard score threshold may inadvertently eliminate locally meaningful and valid points.
Moreover, despite the fact that the sensitivity analysis produced the default standard score
threshold used for outlier filtering,

Since spatial autocorrelation highlights patterns and relationships in the planimetric
domain by measuring a variable’s degree of correlation with itself across space, it could be
used to address problems with standard score filtering [64]. Indeed, nearby points tend
to be more similar to each other than to distant points in the context of elevation data.
While robust kriging [65] or empirical Bayesian kriging [66] directly account for spatial
autocorrelation in the interpolation technique, these algorithms have been shown to be too
time-consuming for rapid mapping requirements in an operational setting. An alternative
would be to quantify the spatial autocorrelation for each sample, using metrics like the
Local Moran’s I or Getis-Ord G} [67]. Indeed, they show negative autocorrelation when
high and low elevations are scattered, and positive autocorrelation when similar values
cluster spatially.

Regardless of the filtering technique employed, satellite- and aerial-based water ex-
tractions remain a significant challenge in natural landscapes, particularly in riparian and
forested areas (Figure 12). Dense vegetation can obscure water bodies, leading to substan-
tial under-detection. Standard outlier filtering techniques often struggle to capture these
submerged areas, as they can be invisible in optical imagery and difficult to distinguish in
SAR imagery due to canopy backscatter. Furthermore, SAR imagery poses an additional
challenge, as shadows cast by topography and trees can exhibit similar amplitude character-
istics to water surfaces, which typically display low values due to specular reflection. This
can result in inaccurate flood depth estimations, particularly when false positives occur
upslope of flood-prone areas, causing the interpolation plane to be artificially elevated.
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Figure 12. Limits to flood mapping using remote sensing in semi-natural and forested areas. Floods
can be hidden by a canopy, with the sensors available as part of crisis activities. In addition, tall
vegetation can block incident signal, causing shadows whose backscatter or lack thereof is similar
to that of water. The example here is based on EMSR722 AQI01 Blies (Germany), following an
activation triggered on 17 May 2024. The pre-event optical image (GeoEye01 © Maxar), acquired
on 29 May 2023, shows an open-field agricultural system with riparian vegetation situated in a
broad, level floodplain. The crisis radar image (COSMO-SkyMed Second Generation © e-GEOS),
acquired on 21 May 2024, displays flooded areas in dark colour, resulting from low backscattering
signals from water surfaces. It is also evident how tall vegetation affects backscatter. The radar
sensors used for rapid mapping carry C- or X-band sensors, which are unable to penetrate tree
crowns and capture floodwater beneath the canopy. Areas that are susceptible to flooding, such
as riparian corridors, exhibit high backscatter. Furthermore, owing to the angle of radar sensors,
tall vegetation emits shadows without any backscatter, resulting in dark areas akin to those of
flooded fields. All related products can be accessed through the official viewer for EMSR722: https:
/ /rapidmapping.emergency.copernicus.eu/EMSR722/ (accessed on 12 January 2025).

Urban environments present challenges for flood mapping as well, due to their com-
plex geometry and dense structures. Optimal flood mapping in these areas requires the
use of VHR imagery, captured at a nadir angle, to improve visibility in street corridors.
However, SAR sensors are inherently side-looking and often face difficulties in this setting.
Street geometry can lead to multiple backscatter rebounds off angular surfaces like build-
ings, causing strong return signals that may mask the presence of floodwater (Figure 13).
Additionally, less dense settlements experience radar shadowing from buildings and other
tall features.

Recent techniques proposed by Chini et al. (2019) [68] leverage Sentinel-1 interferome-
try to mitigate these issues, demonstrating the potential of interferometry in urban flood
mapping. Radar interferometry can discern subtle elevation changes by analysing the phase
differences between SAR images acquired at different times [69], potentially indicating
the presence of water in settlements. However, incorporating interferometry into rapid
mapping workflows would require additional effort to assess repeatability, performance,
and timeliness. To address some of the limitations of remote sensing and INFLOS, SERTIT
has initiated the development of an extrapolation tool called EXFLOS (EXtrapolated FLood
Surfaces) within the framework of CEMS RM. The purpose of EXFLOS is to support the
parametric flooding of various landscapes, including urban settlements or vegetated areas,
while still leveraging the original layers mentioned in Table 1. The EXFLOS tool is still in
the development and validation phase, and will be presented in a separate publication.
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Figure 13. Limits to flood mapping using remote sensing in an urban context. This example pertains
to EMSR692 (Greece, Thessaly Region), an activation triggered on the 5 September 2023 following
heavy rainfall. The Sentinel—1 radar image (7 September 2023) shows a high backscatter in the
municipality of Palamas Karditsa (AOI02), even though it was entirely flooded as per various sources,
including water gauges and media data. Floodwater should result in low backscatter, as water
surfaces reflect the radar signal incidentally, a phenomenon visible in the fields around Palamas
Karditsa. High backscatter in the flooded city is the result of multibounce scattering, caused by
buildings and narrow streets. Media data were collected and made available by Hensoldt AG. All
related products can be accessed through the official viewer for EMSR692: https:/ /rapidmapping.
emergency.copernicus.eu/EMSR692/ (accessed on 12 January 2025).

Although shadows and obstructions caused by above-ground features, such as build-
ings and trees, can lead to both under- and over-estimations of actual flooded areas, their
impact on rapid mapping and flood depth estimation has yet to be explored. While over-
estimations can be partially addressed through operator training in computer-aided image
interpretation, under-estimations remain a significant challenge with no readily available
solution in the context of rapid mapping. EXFLOS offers potential as a faster alternative to
time-intensive hydraulic modelling, but a better understanding of how flood delineation
quality impacts flood depth estimation is critical for both consortium members and end-
users. Nonetheless, addressing this matter would require an important collaborative effort
at the consortium level, rather than by an individual entity, to accommodate variations in
image interpretation and processing across operators and production sites.

5. Conclusions

INFLOS is a novel methodology developed for estimating flood depth within the
context of the Copernicus Emergency Management Service’s Rapid Mapping (CEMS RM)
framework. Conceptualised independently of similar solutions, INFLOS has undergone a
rigorous development process, evolving from a proof of concept to a mature and operational
tool. This progression involved thorough testing across diverse landscapes, crisis imagery
from optical and Synthetic Aperture Radar (SAR) sensors, and various Digital Terrain Model
(DTM) datasets. The phased approach validated INFLOS’ performance across different
scenarios, ensuring its adaptability and robustness. This reinforced its value as a critical
tool in flood response and management strategies. Initially, the proof of concept focused on
single-date flood product testing, verifying the consistency of the interpolated flood surfaces
with DTM elevations. Subsequent testing expanded to include monitoring cycles, which
demonstrated INFLOS’ ability to account for dynamic flood events. The transition to a pre-
operational stage involved adapting the system to diverse technical environments, making
it accessible through both command-line and graphical user interfaces. Extensive testing


https://rapidmapping.emergency.copernicus.eu/EMSR692/
https://rapidmapping.emergency.copernicus.eu/EMSR692/

Remote Sens. 2025, 17, 329 25 of 28

and refinement in this phase enhanced the tool’s robustness and allowed for performance
evaluation against comparable solutions, such as FWDET. Execution time, a critical metric
for rapid mapping scenarios, was also extensively tested and optimised. The results
highlight INFLOS’ key strengths, as it balances scalability and computational efficiency
while delivering flood surface outputs suitable for operational rapid mapping. The system’s
final integration into CEMS RM demonstrates its maturity, making it an operational tool
used for all delineation products, including monitoring phases. In summary, INFLOS
has undergone a comprehensive development process, resulting in a robust and effective
tool for flood depth estimation. Its validated performance and adaptability make it a
valuable asset in flood response and management strategies. Moreover, INFLOS flood
depth outputs will enhance the accuracy and information content of emergency mapping
products, providing valuable insights for the flood risk management community. The
information has potential for assessing potential damage resulting from flood events and
estimating economic impact [70].
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