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Abstract.
Objective: Compton cameras are imaging devices that may improve observation
of sources of γ photons. The images are obtained by solving a difficult inverse
problem. We present CoReSi, a Compton Reconstruction and Simulation software
implemented in Python and powered by PyTorch to leverage multi-threading and
for easy interfacing with image processing and deep learning algorithms. The code
is mainly dedicated to medical imaging and for near-field experiments where the
images are reconstructed in 3D.
Approach: The code was developed over several years in C++, with the initial
version being proprietary. We have since redesigned and translated it into Python,
adding new features to improve its adaptability and performances. This paper
reviews the literature on Compton camera mathematical models, explains the
implementation strategies we have adopted and presents the features of CoReSi.
Main results: The code includes state-of-the-art mathematical models from the
literature, from the simplest, which allow limited knowledge of the sources, to
more sophisticated ones with a finer description of the physics involved. It offers
flexibility in defining the geometry of the Compton camera and the detector
materials. Several identical cameras can be considered at arbitrary positions in
space. The main functions of the code are dedicated to the computation of the
system matrix, leading to the forward and backward projector operators. These
are the cornerstones of any image reconstruction algorithm. A simplified Monte
Carlo data simulation function is provided to facilitate code development and fast
prototyping.
Significance: As far as we know, there is no open source code for Compton camera
reconstruction, except for MEGAlib, which is mainly dedicated to astronomy
applications. This code aims to facilitate research as more and more teams from
different communities such as applied mathematics, electrical engineering, physics,
medical physics get involved in Compton camera studies. Implementation with
PyTorch will also facilitate interfacing with deep learning algorithms.

1. Introduction

Interest in Compton camera (CC) has been driven in recent years by technological
advances in γ-ray detection and the emergence of new applications. The number of
teams involved in CC-related research and development activities is growing steadily.
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Initially used for astronomy, which was the catalyst for progress in the first decades
with the Comptel telescope as the first achievement, homeland security has recently
taken over as the driving force for CC research. It is widely recognized that the
compact size, portability, and ability of CCs to image a broad range of energies
make them an attractive option for nuclear and waste monitoring. However, medical
applications, particularly for monitoring proton and targeted radionuclide therapies,
present greater challenges. Among these, alpha therapies have gained increasing
interest in clinical trials due to their high lethality against cancer cells and minimal
damage to healthy tissues (Seo 2019). Several studies have focused on 225Ac, which
decays into alpha-emitting daughters such as 221Fr (11.6% emission probability) and
213Bi (26.1% emission probability), subsequently emitting 218 keV and 440 keV
photons detectable by γ cameras. Collimated cameras currently employed in Single
Photon Emission Computed Tomography (SPECT) generally suffer from low spatial
resolution and sensitivity and their collimators become increasingly transparent at
these energy levels.

CCs have three main advantages over regular SPECT with collimated cameras:
large gain in detection efficiency, portability, and the ability to detect higher energy
γ rays (>300 keV), which is particularly useful for the aforementioned medical
applications (Takeda et al. 2015, Fontana et al. 2017). CC could therefore reduce the
injected dose for imaging and increase the throughput of imaging systems. It could
also reduce examination time for patients and improve the workload of healthcare
professionals, thus potentially improving the quality of care. Detailed reviews of CC
systems and applications can be found elsewhere, for example in (Parajuli et al. 2022).

The forward model describing CC data is related to integrals on conical shapes
and to conical Radon transforms. Specific analytical reconstruction algorithms have
been developed for their inversion, but they remain limited to relatively ideal data,
with low noise, negligible measurement uncertainties and generally no attenuation of
the γ-ray on its way from the source to the detector (Cree & Bones 1994, Moon
& Haltmeier 2017). Although these algorithms can be fast (Maxim 2014), they
suffer from the blurring induced by binning the data into sinogram-like tables
and also from unfulfilled Tuy completeness conditions related to constraints in
the acquisition geometry (Tuy 1983, Smith 2005, Terzioglu et al. 2018). Iterative
algorithms can operate in list mode, avoiding data binning, and are also less
affected by data incompleteness. More importantly, they specifically account for
the statistical data distribution via the maximum likelihood formulation and for the
number of sampling uncertainties via the direct model (Wilderman, Clinthorne, Fessler
& Rogers 1998, Muñoz, Barrientos, Bernabéu, Borja-Lloret, Llosá, Ros, Roser &
Oliver 2020). CC data (y) are realizations of a Poisson distributed random variable,

y ∼P(Tλ), (1)

where λ is a vector containing the mean emissions in the voxels of the volume and T
is the matrix of the system. When the source produces γ-rays of different energies, as
in proton and alpha therapy, spectral reconstructions are more accurate. The spectral
model takes into account incomplete absorption probabilities and reconstructs the
images at all energies simultaneously (Muñoz et al. 2021). In this case the vector λ
contains as many volumes as discrete values or bins of energy. The quality of the
reconstructed images depends heavily on the quality of the data and the accuracy of
the models. Careful selection of events that are not strongly affected by measurement
errors is key. Selection strategies have been described for example in (Draeger
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et al. 2017, Watanabe et al. 2014, Muñoz et al. 2021). A large proportion of the
data is discarded in this step. Accurate models allow not only to retain events that
would otherwise be discarded, but also to compensate for misclassification.

Once the mathematical model has been established, the next step is to translate
it into an algorithm. Line-based projection and backprojection operators can be
found in a number of software packages and could be used to implement projections
through the generatrices of the cone. However, due to the sparse nature of CC data,
which is distributed across a space of at least five dimensions, ray tracing algorithms,
effective in other tomography modalities, are inadequate for Compton imaging.
The computing demands are significant, requiring carefully designed implementation
strategies that fully utilize the multi-threading capabilities of modern GPUs and
libraries. For all these reasons, producing a code that adapts to different geometries,
detector materials and levels of confidence in the measurements is a challenging
task. To our knowledge, there is no freely available source code for CC image
reconstruction, except for the Mimrec library from the MEGAlib package which was
developed for astrophysics (Zoglauer et al. 2011). Yet open source facilitates research,
reproducibility and comparisons in classical tomographic modalities. Codes as as
STIR (Thielemans et al. 2012), RTK (Rit et al. 2014), ASTRA (van Aarle et al. 2015)
and CASToR (Merlin et al. 2018), developed in C++ with CUDA accelerators,
implement data processing modules, projection and backprojection operators and
some regularized reconstruction methods. More recently, Python libraries have been
released for classical tomographic modalities. They allow model-based (iterative)
and data-based (deep learning) algorithms to be combined in end-to-end image
reconstruction pipelines. These include ODL (https://github.com/odlgroup/odl),
DeepInverse (Tachella et al. 2023) and PyTomography (Polson et al. 2024), the latter
specifically designed for emission tomography. However, these software packages are
not adapted to Compton camera and do not currently include modules for it.

The aim of this paper is to describe the implementation of a Compton
reconstruction tool using PyTorch (Paszke et al. 2019) for a fast, parallelized
reconstruction tailored for medical applications and running on either CPU or GPU,
using a model and data-centric approach and paving the way towards deep learning-
enhanced imaging. This tool is called CoReSi, for Compton Reconstruction and
Simulation, and its source code is available at https://github.com/CoReSi-SPECT/
coresi. The different configurations and features of the Python code were tested
on MC simulated data and validated against the previous CoReSi version, written
in C++ and used in (Maxim et al. 2016, Hilaire et al. 2016, Feng et al. 2019, Feng
et al. 2021, Muñoz et al. 2022). Quantitative studies with 2D and 3D reconstructions
in nuclear medicine and proton-therapy scenarii can be found therein.

This paper is organised as follows. Section 2 describes Compton imaging, the
mathematical models of acquisition, the system matrix and the sensitivity used in the
reconstruction algorithms. The list-mode MLEM algorithm is also recalled. Section 3
presents the structure of the CoReSi code and the algorithmic choices for implementing
image reconstruction and data simulation. Section 4 gives details of the MC simulation
carried out to produce data on which some of the capabilities of the code are illustrated.
Finally, Sections 6 and 7 are devoted to discussions and conclusions.

https://github.com/odlgroup/odl
https://github.com/CoReSi-SPECT/coresi
https://github.com/CoReSi-SPECT/coresi
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2. SPECT imaging with a Compton camera

A γ-ray is recorded as a Compton event if it interacts with the camera at least twice.
Under ideal imaging conditions, each event has a virtual Compton cone where the
source of the photon would be located. In real-world imaging, due to the measurement
uncertainties, the point of emission of the photon belongs to a thick conical envelope.
This section presents the mathematical model of the acquisition process, which is
also the direct model of the reconstruction problem. The list-mode MLEM image
reconstruction algorithm is recalled in its monoenergetic and spectral versions.

2.1. The imaging device

CCs typically consist of a scatterer and an absorber, though alternatives such as mono-
block detectors (e.g., the commercially available H3D camera), liquid detectors (Aprile
et al. 2020), and gaseous detectors (Azevedo et al. 2013) also exist. The choice
of detector materials is aimed at optimizing Compton scattering in the scatterer
block and achieving full photon absorption in the absorber block. Full absorption
is particularly crucial when the initial energy E0 of the photon is unknown. Each
detector block may be composed of multiple layers. A camera with three scatterer
layers (a,b, and c) and three absorber layers (1,3, and 4) is illustrated in Figure 1.

Figure 1: A CC consisting of a scatterer and an absorber. The layers are marked
with the letters a, b, c for the scatterer and with the numbers 1, 3 and 4 for the
absorber. The latter follow the numbering convention used in CoReSi. Absorber

layers 2 and 5 could be added in front of and behind the scatterer. An event
e = (V1, E1, V2, E2) is measured when at least two coincident hits are detected.

2.2. Events

Compton imaging is based on the detection of Compton interactions undergone by the
γ ray emitted by the source. A photon emitted with initial energy E0 should hit the
detector at least twice to be recorded. The first hit must be a Compton scattering,
resulting in an energy transfer from the γ ray to the electron ejected from the atom.
The second hit allows the trajectory of the scattered photon to be measured. Events
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with more than two hits are possible. Since determining the order of the hits in the
sequence is beyond the time resolution of the detector, the order is estimated using
the energies and geometric considerations. In the case of two-hit events, the first hit is
generally assumed to be the one in the scatterer or the one with the lowest deposited
energy. In the rest of this paper only two-hit events are considered, ordered in a
pre-processing step.

For each hit, the position V and the deposited energy E are measured (see
Figure 1). An event e = (V1, E1, V2, E2) is recorded, containing the measurements
(V1, E1) associated with the first hit, the position V2 of the second hit and E2, the total
deposited energy in the other hits. The scattering angle β is given by the Compton
scattering formula:

cosβ = 1− mec
2E1

E0(E0 − E1)
, (2)

where me is the mass of the electron, mec
2 = 511 keV and E0 is either known or

estimated as the sum Etot = E1 + E2 of energies deposited in the coincident hits.
The Compton cone is the circular cone with the axis

−−→
V2V1 and the half-opening angle

β. Events e = (V1, E1, V2, E2) are recorded in list mode because they lie in a high-
dimensional space that is difficult to sample efficiently in sinogram-like tables.

2.3. System matrix computation

In list mode, the system matrix (SM) T contains one row per detected event ei and
its elements are tij = P (ei|j), i.e., the probability that ei was produced by a photon
emitted in voxel j, j = 1, . . . , Nv. A line of the SM has the same size as the volume,
i.e., has Nv elements for a volume with Nv voxels. If Ne events were kept for image
reconstruction, the size of T is Ne ×Nv.

Depending on the fidelity of the MC simulation or the characteristics of the real
detector, different models and calculation strategies can be used. These choices have
a much greater impact on the result than for imaging modalities based on line-integral
transforms.

Each element tij of the system matrix is a product of factors divided into two
categories, which will be described in the following subsections. The first contains
geometrical factors that take into account the position of the voxel j with respect to
the cone defined by the event i. They include measurement uncertainties, modelled
with a probabilistic distribution that is maximum on the cone and decreases as we
move away from it. The second includes probabilities of interaction or escape, which
are a function of the material and shape of the layers and the energy of the photon.

The mono-energy system matrix is calculated with the equation (6) from (Hilaire
et al. 2016). For a given vector −→w , we denote θ−→w the angle between −→w and the normal
to the camera. Let Oj be the center of the voxel vj and K(δOj , E0) the Compton
scattering cross section with parameters calculated from the data. The function hi

models the uncertainties on the measurements from the i-th event from the list, βi is
the Compton angle and δOj is the angle between the vectors

−−−→
V1Oj and

−−→
V2V1. With

these notations, equation (6) from (Hilaire et al. 2016) is:

tij = K(δOj , E0)
| cos (θ−−−→V2V1

)|

||
−−→
V2V1||2

| cos (θ−−−→V1Oj
)|

||
−−−→
V1Oj ||22

hi(Oj), if |δOj − βi| ≤ 3σβi, (3)
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where hi models the uncertainties and is taken as a Gaussian function with zero mean
and standard deviation σβi. Above some threshold, taken in (3) as equal to 3σβi,
tij = 0.

For spectral reconstruction, each event is associated to several cones, one for each
possible known initial energy Em

0 , m = 1, . . . ,M . Each line of the SM has the size
of M side-by-side volumes, thus M × Nv elements reshaped in a 1D vector. For the
spectral version, equation (4) from (Muñoz et al. 2022) has been implemented. An
element timj = P (ei|Em

0 , j) of the SM is computed as:

timj =
| cos (θ−−−→V1Oj

)|

||
−−−→
V1Oj ||22

e−µ0λ0
K(δOj , E

m
0 )

(Em
0 − E1)2

e−µ1λ1σE2(E2|Em
0 − E1)hi,m(Oj), (4)

where µk and λk are the linear attenuation coefficient and distance inside the detectors
traversed by the incident(0) and scattered(1) photons, and σE2(E2|Em

0 − E1) is the
cross section of the interaction in the absorber. It has three possible values, according
to the possible physical interactions in the absorber, namely photoelectric, Compton
or pair creation. The function hi,m models the uncertainties for event i, supposing
the initial energy is Em

0 .

2.3.1. Geometrical modelling For ideal events, the non-zero elements of the system
matrix correspond to voxels intersecting the surface of the Compton cone. They
can be computed by considering conic sections in 2D (Wilderman, Rogers, Knoll &
Engdahl 1998), uniformly (Kim et al. 2007) or non-uniformly sampled generatrices
on the cone (Lojacono et al. 2011), or the distance from the centre of the voxel to
the surface of the Compton cone. The latter is the choice made for CoReSi. We
implemented this model by giving the Compton cone what we call a parallel thickness
(see figure 2 (a)), which consists in giving a strictly positive value to all voxels whose
orthogonal distance to the cone surface is less than a threshold. Setting the threshold
to a small value, e.g. the diagonal of a voxel, allows to mimic ideal events. The values
can be set to decrease with increasing distance to the apex of the cone and to the
surface of the Compton cone (Maxim et al. 2016).

For non-ideal events, the energy uncertainties translate into angular uncertain-
ties (Ordonez et al. 1997). In CoReSi they are included in the geometry-related
factors and are implemented under the angular thickness model introduced in (Hilaire
et al. 2016). The values in the SM row decrease with increasing angular distance
δj from the voxel j to the cone defined by the measurement (see Figure 2 (b)). A
probabilistic distribution is chosen to represent the angular resolution measure. This
distribution can be a Lorenzian, a von Mises (Sauve et al. 1999), a Gaussian (Maxim
et al. 2016) or a mixture of Gaussians (Feng et al. 2021). Hit position uncertainties
are not currently implemented in the code. They introduce an error in the axis direc-
tion which adds up to the much more critical angular uncertainties. We use parallel
GPU-accelerated PyTorch vectorized processing to implement the distance to the cone
simultaneously for all voxels of the volume.

2.3.2. Physical modelling Photons can interact through various processes, namely
photo-electric effect, Compton scattering and pair creation for photon energies larger
than 1.022 MeV. The probabilities of their occurrence can be considered in the system
matrix. They depend on the event and, to a lesser extent, on the voxels of the
volume. For example, they take into account the probability of the photon reaching
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Figure 2: An ideal event is modelled with a parallel thickness of the Compton cone
(a). Measurement uncertainties lead to uncertainties on the Compton angle and are

modelled with an angular thickness (b).

the scatterer and then the absorber, and the probability of the scattered photon to go
through some scatterer layers without any interaction. For non-spectral reconstruction
and negligible uncertainties, they represent a factor that multiplies the row of the
system matrix. These factors can therefore cancel out during image reconstruction and
their calculation becomes unnecessary in these cases. In the spectral mode, differential
cross sections and probabilities of all possible initial energies Em

0 , m = 1, . . . ,M are
taken into account.

2.4. Sensitivity computation

The role of the sensitivity vector s = (s1, . . . , sNv ) is to compensate for variations in the
probability of detection of γ particles emitted through the volume. Its element sj is the
probability of detection for a photon emitted in voxel j. For poly-energetic sources,
the sensitivity vector has size M × Nv and its elements are denoted smj hereafter,
although s is still a one-dimensional vector. The element smj is the probability of a
photon emitted with energy Em

0 at voxel j being detected.
For a system matrix containing a row for each measurable event, the sensitivity

corresponds to the backprojection of a vector of ones, s = TT 1, and is equal to the
sum of the rows of the system matrix. Since in list mode the rows of T are restricted
to observed events, the identity s = TT 1 no longer holds.

The best estimate of s can be obtained by performing a large MC simulation of
a uniform source covering the entire volume and recording for each voxel the number
of photons detected by the camera. This simulation is relatively easy to perform and
the size of the resulting vector is the size of the volume. However, for prototyping
purposes, it is useful to compute the sensitivity within the reconstruction algorithm.

As for the system matrix, the sensitivity values depend primarily on geometrical
factors such as the dimensions of the camera and the position of each voxel with
respect to it. Secondarily, they depend on physical properties such as the materials
making up the detectors and the energy of the γ rays. Following this classification and
the increasing complexity of the model, CoReSi supports three sensitivity calculation
modes: (i) central layer solid angle (CLSA), (ii) multi-layer solid angle (MLSA) and
(iii) like system matrix (SM-like). The first is based on the model from (Maxim
et al. 2016). It consists in computing at each voxel of the volume, the approximated
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solid angle of a virtual layer placed at half-height of the scatterer. This model is
fast to compute and adapted to small-sized cameras. The second considers all the
scatterer layers individually and has a more precise implementation of the solid angle,
better suited to large scatterers ((Feng et al. 2021), equation (15)). Both neglect
the importance of the second interaction, implying that the probability of producing
a Compton event is the same for all scattered photons. The first two calculation
methods are analytical, while the third is based on MC integration. Derived from the
model in (Muñoz et al. 2018), the last model was modified to account for measurement
uncertainties. Additional differences in implementation will be presented in section 3.2.

2.5. Maximum-likelihood expectation maximization for image reconstruction

Instantiating the expectation maximization (EM) algorithm (Dempster et al. 1977)
for the maximum likelihood (ML) of Poisson-distributed data in emission tomography
gives the MLEM algorithm (Shepp & Vardi 1982). Its list-mode (LM) version
corresponds to the limit case where there is at most one event in each virtual bin
of data (Wilderman, Clinthorne, Fessler & Rogers 1998). The estimation of the mean
emissions per voxel volume is computed iteratively by the formula:

λ̂k+1
j =

λ̂k
j

sj

∑
i

tij∑
ℓ tiℓλ̂

k
ℓ

, (5)

starting from a vector λ̂0 with strictly positive entries. In equation (5), j is the voxel
index, i the event index. The factor

∑
ℓ tiℓλ̂

k
ℓ is the projection of the current volume

following the cone of the ith event. The MLEM algorithm consists in multiplying the
current solution λ̂k

j with the backprojection of the ratio between the number of events
measured per bin (which is one in list mode) and their estimated values

∑
ℓ tiℓλ̂

k
ℓ and

weighting with the sensitivity.
Iterations in equation (5) are best suited for monoenergetic sources. For

polyenergetic sources, spectral reconstruction algorithms have been proposed (Xu
& He 2005, Muñoz, Barrientos, Bernabéu, Borja-Lloret, Llosá, Ros, Roser &
Oliver 2020). The iterations of the spectral LM-MLEM algorithm are:

λ̂k+1
mj =

λ̂k
mj

smj

∑
i

timj∑
m

∑
ℓ timℓλ̂k

mℓ

. (6)

Instead of a single volume, M volumes are reconstructed simultaneously, one for each
emission energy.

2.6. Missing data, noise and regularization

The prototypes currently used are small compared to the size of the observed objects,
so projections on a large proportion of the cones could not be measured. This lack of
data cannot be compensated for by the sensitivity factor. Data truncation leads to
typical elongation artefacts due to the ill-posed nature of the reconstruction problem,
which violates Tuy’s conditions. The artefacts are further exacerbated by the presence
of statistical noise and measurement uncertainties. One solution is to use multiple
cameras or a moving camera, which requires either more expensive hardware or longer
acquisition times. Software solutions consist in using a priori knowledge. This is
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incorporated into the algorithms through variational formulations as denoising steps.
The total variation regularization convergent algorithm from (Feng et al. 2021, Maxim
et al. 2023) has been implemented in the CoReSi code. It is likely that in the
near future, deep learning methods will provide data-based priors or post-processing
methods capable of making the difference to the current state of the art.

3. The CoReSi code

This section is a description of the structure of the CoReSi code and gives some
implementation details.

3.1. Classes composing CoReSi

Table 1 lists the classes that make up CoReSi with a short description. Each class has
attributes representing either data or functions to manipulate it.

Table 1: Classes composing CoReSi.

Name Description

Camera Position, orientation, a list of layers for the scatterer and a list of
layers for the absorber of a CC

Layer Dimensions, material, ... of a layer of a scatterer or an absorber
Material Hold physics constants for materials (e.g. Silicon)
Event Measured energies and positions for a Compton event
Model Algorithms for the computation of the system matrix and of the

sensitivity
MLEM Parameters and functions for the LM-MLEM reconstruction

algorithm
Image PyTorch array with its dimensions in centimeters and voxels along

with methods
Points Coordinates of a point in 3D, with overloaded mathematical

operators

Figure 3 is a simplified UML diagram of CoReSi that shows the main attributes
and methods of each class. The Model class serves as the cornerstone of the
CoReSi source code, encapsulating the implementation of functions for computing
the system matrix rows and the sensitivity. The list-mode MLEM algorithm is
currently implemented for image reconstruction via a run() function that loops over
the iterations.

3.1.1. The Camera and Layer classes The Camera class held information about the
cameras, such as their positions, number of layers and material composition. The
Layer class is used to describe the layers, such as their dimension, thickness and
centre.

A generic camera has an arbitrary number of parallel scatterer layers. Up to
5 absorber layers are also supported, forming an open box around the scatterer. A
camera with three scatterer layers and absorber layers 1, 3 and 4 is shown in Figure 1.
Absorbers 2 and 4 can be added to complete the box laterally. Layers in a detector
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Figure 3: Simplified UML diagram of the CoReSi software, with the Classes (C) and
Enums (E) composing it.

need not have identical relative positions and dimensions, but should be of the same
material. CoReSi assumes the relative position of the absorber layers according to
their order in the configuration file. This allows to simplify the description of the
geometry of the camera, which is further used in the Event class. Missing absorber
layers with respect to this convention can be disabled.

Once this generic camera is defined, an arbitrary number of copies can be placed
around the volume to be imaged. The position of each copy is defined by giving the
local coordinate system of the camera. The Oz axis should be the one orthogonal to
the scatterer and the Ox and Oy axes can be freely chosen in a plane parallel to it.

3.1.2. The Event class The Event class contains information about a Compton
event, namely its ID, the energy and position of the first and second hit, the initial
energy if known and the Compton angle. CoReSi processes each hit position of an
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event to associate it with a camera and layer where it occurred. Events with interaction
positions outside the camera’s layers are discarded. The material of the layer where
the interaction occurred is identified to further compute interaction probabilities.
Subsequently, a list of valid events is generated and stored in memory.

3.1.3. The Model class This class serves to compute a row of the system matrix.
Unlike other modalities of emission tomography, where the model is based on line
integrals and the system matrix is never explicitly computed, in this code the
projection and backprojection operators consist in applying matrix multiplications
between the system matrix and the image or its transpose and the data. The projection
and backprojection operators are implemented in this class.

Two methods have been implemented to account for the uncertainties in the
energy measurements: the parallel cone thickness and the angular cone thickness.
The former is intended for ideal events where a small value of the thickness parameter
is chosen. The latter can account for Doppler broadening or energy measurement
uncertainties. The greater the uncertainties, the greater the broadening should be.
The figures in this paper were produced with parameters corresponding to Doppler
broadening in silicon. To this purpose, a mixture of two Gaussians was fitted to
the angular resolution measure at different energies (Feng et al. 2021). The parallel
thickness model produces a conical shell centred on the Compton cone with a constant
thickness throughout the cone. For the angular thickness model, the conical shell
widens as the distance from the apex increases (see figure 2).

Once measurement uncertainties are modelled, the system matrix is no longer
sparse. Therefore, we have chosen not to store it in memory. Sensitivity is computed
using the functions implemented in this class and stored on disk for further use.

3.1.4. The MLEM class Algorithm 1 details the implementation of the list-mode
MLEM algorithm. The system matrix is computed on the fly at each iteration, one
row at a time. Each row, indexed by i, is used to compute the corresponding element
of the forward projection, i.e. pi =

∑
ℓ tiℓλ̂

k
ℓ , and a term from the sum that gives

the backprojection of the errors, i.e. the vector (tij/pi)j=1,...,Nv . It is also possible
to implement each iteration using explicit projection and backprojection operators,
requiring two computations of the system matrix per iteration. The code allows
iterations to be started from a volume stored on disk. Events that produce cones
that do not intersect the volume are discarded and removed from the list of events
for future iterations. An optional total variation regularization can be added as a
denoising step between iterations.
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Algorithm 1: List-mode MLEM algorithm
Data: e: the events

K: the number of MLEM iterations
s: the sensitivity

Result: λ the reconstructed image
λ← 1
for i in range(n):

next_value← 0
for event in e:

line← SM_line (e)
if i = 0:

next_value← next_value+ line
else:

forward_proj← line · λ // dot product
next_value← next_value+ line / forward_proj

if i = 0:
λ← next_value

else:
λ← λ / s× next_value

return λ

3.1.5. The Image and Point classes The Image class was used to store all multi-
dimensional vectors computed by CoReSi, such as the row of the system matrix, the
sensitivity or the reconstructed volume λ. In addition to the values, this class allows
to store volume metadata such as the number of voxels and the size of the volumes in
centimeters. To store the 3D Cartesian coordinates, a Point class was used. The class
is a child of the numpy array class, so its vectorised operations could be used. Custom
attributes x, y and z were added to make the code easier to read, as well as custom
methods such as calculating coordinates in a new reference frame or normalization.

3.2. Monte Carlo sensitivity computation in CoReSi

The sensitivity is computed separately for each camera in the system and the results
are summed. The analytical sensitivity models implemented in CoReSi were briefly
presented in section 2.4. For the SM-like implementation, the algorithm loops through
the cameras and the list of known energies of the source. For each voxel of the volume,
a given number of events is simulated. Each event consists of a random hit drawn
with uniform probability in a random scatterer layer and another random hit selected
in a random absorber layer from the current CC. The Compton angle is computed
geometrically and the deposited energies are then obtained from formula 2.

The sensitivity can be obtained from these simulated events in at least two
different ways. The first one is to evaluate numerically the integral from (Muñoz
et al. 2018). One drawback is that since these events are ideal, measurement
uncertainties seem more difficult to account for. The method currently implemented
in the software aims to approximate the identity s = TT 1, true when all possible
events are observed. Measurement uncertainties are treated in the same manner as
in the system matrix. In practice, a system matrix row is computed for each of the
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random events. The sensitivity image is then the summed backprojection of the list of
events generated by this MC simulation, creating a coherence between the sensitivity
calculation and a subsequent image reconstruction.

In spectral mode, the backprojection is done separately for each energy under
consideration. This ensures that one energy does not have an impact on the
others. This choice can be easily modified. Subtle differences exist between the
sensitivities calculated for the same energy in spectral and mono-energetic modes.
First, incomplete absorption is allowed in spectral mode. For instance, for a source
emitting at both 364 and 511 keV, the probability of an event detected at 364 kev being
produced by a photon emitted at the same energy (total absorption of the scattered
photon) is less than one. This probability depends on the energy after scattering and
is thus different from one event to another. Second, physical factors are not computed
in the non spectral version (section 2.3.2). These factors depend only on the event
but not on the voxel and cancel out in the reconstruction algorithm. Ignoring them
improve computational speed. In theory, these factors should be taken into account
in the computation of the sensitivity and is possible to do so by forcing the spectral
mode in the mono-energetic setup. The real influence on the final images is still to be
evaluated.

Several physical and even geometrical differences subsist between CoReSi and
a dedicated particle-matter interaction code. For instance, in a physically correct
simulation, a particle is emitted with an arbitrary direction in 4π, has a probability
of interaction or escape in the scattering layers, scatters at an angle sampled from the
Klein-Nishina differential cross-section, and then hits the absorber. Back-scattering
leading to absorber-scatterer interactions is also possible. The chances of a γ ray
scattering near the edge of the scatterer reaching the absorber are generally lower
than for a γ ray scattering near the centre. Consequently, the distribution of hits
between and within the layers is not uniform in reality, unlike in our implementation.

3.3. Event simulation tool

A simulation tool has been implemented to test the CoReSi code in different camera
geometries. This tool allows the generation of ideal events. The user provides the
source as a voxelised volume, the emission energy E0, the camera characteristics and
the desired number of events. The code produces two-hit events, with a first hit in
a scatterer layer and a second hit in an absorber layer. The events are written to an
ASCII text file.

For each event, a voxel is first randomly sampled from the source with a
probability proportional to the voxel’s intensity in the volume. A random point V0 is
drawn in the voxel following a uniform distribution. Second, a point V1 is sampled
from a random layer in a scatterer and an angle β is randomly chosen according to
the Klein-Nishina differential cross-section corresponding to the given initial energy.
Third, a given number of points V2,i, i = 1, . . . , n are randomly chosen in the absorber.
The geometric Compton scattering angle βi is computed for each of them. A hit in
the absorber is chosen as V2,ι, with:

ι = argmin{|βi − β| : |βi − β| ≤ ϵ, i = 1, . . . , n}, (7)

where ϵ is a threshold value given by the user. If the set of values above the threshold is
empty, the trial is invalidated and a new particle emission is simulated. This approach
avoids calculating the intersection between a cone and a box, while maintaining a



CoReSi: a GPU-based software for Compton camera imaging 14

Compton angle distribution consistent with the Klein-Nishina cross-section. Finally,
the energy of the scattered photon E1 is computed using the equation (2) and E2 is
computed by difference from the initial energy. Spatial and energy uncertainties can
easily be added to the data in a post-processing step.

3.4. CoReSi configuration parameters and features of the code

The CoReSi variables are set in a YAML configuration file. It contains the path to
the data file, to the pre-computed sensitivity if given, the path to the directory where
the results will be saved. It contains a cameras section, listing the properties of the
Compton cameras such as their number and positions, the position of scatterer and
absorber layers in the generic camera and the materials they are made of. The MLEM
section was used to set the number of iterations and gives the possibility to invoke the
total variation regularization. Iterations can be started from the beginning or from
a given iteration if the result for that iteration is stored in the right place. The user
can specify if the energies of the γ-rays emitted by the source are known and give the
list of E0 values. A number of events to be used for the reconstruction, less than the
total number of events acquired, can be specified.

A separate configuration file is used to define the constants associated with
the materials, such as cross sections for various photon-matter interactions and the
constants for the Gaussians that model the angular resolution induced by Doppler
broadening in the system matrix. This makes it easy to support new materials.

Figure 4: Features of CoReSi. CLSA: central layer solid angle, MLSA: multi-layer
solid angle and SM-like: like system matrix.

CoReSi supports three modes: image reconstruction mode, sensitivity calculation
and data simulation. The image reconstruction mode supports either a polyenergetic
(spectral) or a monoenergetic (non-spectral) source. There are two options for the
construction of the system matrix, namely angular or parallel thickness. Figure 4
shows a graph representation of the CoReSi features set. The three modes are mutually
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exclusive: CoReSi can be used either for image reconstruction, sensitivity calculation
or data simulation, which means that, for example, sensitivity has to be computed and
stored on disk before image reconstruction. The main code is responsible for parsing
the command line arguments, setting the loggers and either computing the sensitivity,
reconstructing an image or performing a simulation depending on the command line
arguments.

CoReSi includes a display option based on the matplotlib (Hunter 2007) library,
which can be used either as a stand-alone tool or directly at the end of the image
reconstruction.

For ease of deployment and use, a package has been created that allows users to
easily install CoReSi along with its Python dependencies and to use CoReSi as an
executable.

The CoReSi code currently implements near-field two-interaction CC image
reconstruction. The typical geometry has a scatterer, possibly composed of several
layers, and an absorber. Other geometries, e.g. multiple absorber layers (Nakano
et al. 2020), are allowed although the interaction/escape probabilities are modelled
with less precision. Stepwise rotating cameras (Omata et al. 2022) can be implemented
as multiple cameras. Single detector cameras (Turecek et al. 2020, Lee et al. 2022),
where the scatterer and absorber are confounded and the interactions are measured in
3D, can be considered with the same limits in accuracy of the physical model as for the
multiple absorber cameras. The code can be used to reconstruct images for nuclear
medicine and homeland security applications (including nuclear decommissioning),
in single energy or spectral mode. Doppler broadening has a large effect in this
low energy configuration and its modelling is supported in the code. The initial
energy (or energies) of the source can be set as unknown, although a known initial
energy results in better image quality. For hadron therapy prompt γ imaging, where
the energy spectrum can be seen as continuous and broad (up to ∼ 10 MeV), the
user can set either the unknown initial energy or a discrete spectral mode. Far-
field imaging in spherical coordinates (Zhang et al. 2023), three-γ events (Barrientos
et al. 2021) and electron tracking (Kurosawa et al. 2010) are not currently supported.
Table 2 shows a small selection of CC studies for medical applications (diagnosis in
nuclear medicine, targeted radionuclide therapy, hadron therapy), radioprotection and
homeland security (in near-field mode) with their compatibility to CoReSi.
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4. Data simulation and evaluation of CoReSi

Features of the code are illustrated on data simulated for the study (Muñoz et al. 2022).
The simulations were performed with the module CC-Mod (Etxebeste et al. 2020) of
GATE (Sarrut et al. 2021) version 9.0, using the standard electromagnetic physics
list. A source consisting of six cylinders of diameters 10, 13, 17, 22, 28 and 37mm
and thickness 4mm emitted simultaneously and with equal probability at 140 keV,
245 keV, 364 keV and 511 keV for the spectral test. For the mono-energy test the
source emitted at 364 keV. Figure 5 shows a 2D slice through the source (a) and the
acquisition geometry (b).

(a) (b)

Figure 5: Simulated acquisition geometry. Image of the source composed of six
cylinders in the xy plane (this image is represented in voxelized geometry, although

the geometry is analytically defined in GATE) (a) and three dimensional
representation of the camera and the GATE source (b).

The camera had a scatterer with 7 silicon layers of dimensions 9 cm×9 cm×0.2 cm
with a 1 cm gap between each. The closest was 10 cm away from the centre of the
source. There was an absorber layer of bismuth germanium oxide (BGO) 15 cm below
the scatterers with dimensions of 28 cm × 21 cm × 3 cm. Ideal events were recorded,
with a first hit in the scatterer and a second hit in the absorber. Only the Doppler
broadening was taken into account, no spatial or energy uncertainties were added to
the simulated values. Incomplete absorptions are allowed for photons that escape the
camera after a Compton interaction in the absorber.

The CoReSi reconstruction tool was validated against the previous CoReSi
implementation in C++, which was single-threaded and processed the source voxels
sequentially. Perfect match with results from (Muñoz et al. 2022) was observed.
To determine the speedup of the new implementation, reconstruction timings were
compared for different reconstructed volume sizes and for different numbers of events.
These tests were performed on an NVIDIA v100 GPU. The imaging experiments were
performed on a Quadro RTX 8000 GPU.

For the purpose of testing the simulation capability within CoReSi, a number
of 2 × 104 ideal events were simulated from a thin cylindrical source emitting at
364 keV placed at 10 cm from the same camera. The source had a diameter of 27.5
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mm and a thickness of 2.5 mm. Uniform emission probabilities were considered in this
experiment, but this is not a constraint from the code which can treat any voxelized
source distribution.

For all imaging experiments, three-dimensional volumes were reconstructed with
20 iterations of the LM-MLEM algorithm. Reconstructions (and sensitivities) were
computed for a volume of 20.25 cm× 20.25 cm× 10.25 cm and 81 voxels× 81 voxels×
41 voxels, centred at (0, 0, 0). The 4mm thick source (Gate simulation) is located in
the three slices from the centre of the volume, the 2.5 mm source (CoReSi simulation)
is located in the middle slice.

5. Results

This section showcases some of the features of the code and present a comparison in
terms of computing time with a single-threaded CPU implementation in C++.

5.1. Comparison of sensitivity models

Three sensitivity models are currently implemented in CoReSi: central layer solid
angle (CLSA), multi-layer solid angle ( MLSA) and like system matrix (SM-
like). Figure 6 shows central profiles through the sensitivity of the camera in the
monoenergetic configuration. As the parallel model was chosen for the SM-like
sensitivity computation, neither physical factors (probabilities of interaction) nor
Doppler broadening are accounted for, thus the values do not depend on the energy.
All the sensitivity distributions have been normalized to their mean values in 3D.

(a) x = z = 0 (b) x = y = 0

Figure 6: Profiles from the CLSA, MLSA and SM-like sensitivities, the last one with
a parallel thickness model for a mono-energetic source. Profiles through the center of
the volume: parallel (a), perpendicular to the camera (b). CLSA: central layer solid
angle, MLSA: multi-layer solid angle and SM-like: like system matrix. The vertical

axes represent normalized counts.
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Figure 7 shows central profiles of the spectral SM-like sensitivity for the energies
140 keV, 245 keV, 364 keV and 511 keV, with angular thickness (a) and parallel
thickness (b) models. The mono-energy sensitivity at 364 keV with the same model
is shown for comparison. In each figure, the five three-dimensional sensitivity
distributions have been normalised to their mean.

(b
)

(a
)

Figure 7: Spectral SM-like sensitivity, for angular (a) and parallel (b) thickness
models. In each panel, the profile from the mono-energy SM-like sensitivity at 364
keV is shown for comparison. Profiles parallel to the camera are shown in the first

column, perpendicular to it in the second. All profiles pass through the origin, which
is also the centre of the volume. The vertical axes represent normalized counts.

5.2. Reconstructed images

Slices from the three-dimensional volumes representing the monoenergetic source are
shown in Figure 8. They have been reconstructed with the angular (a) and parallel
(b) thickness models from 1.1 × 105 events, with the Compton angle computed with
E0 = 364 keV. The sensitivities are those computed in the previous test with the
SM-like model and 20 LM-MLEM iterations were performed. No normalisation or
denoising was applied to the volumes. A slice parallel to the camera and a slice
perpendicular to it are shown for each volume.

Figures 9 and 10 show slices from the four volumes reconstructed in spectral
mode, for the source emitting at 140 keV, 245 keV, 364 keV and 511 keV energies. The
images from figure 9 were reconstructed with the angular thickness and the images
from figure 10 were reconstructed with the parallel thickness model. In both cases, the
same 1.1 × 105 events were processed and 20 LM-MLEM iterations were performed.
The sensitivities computed with the SM-like model. The results are shown without
any post-processing.
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(a) (b)

Figure 8: Reconstruction of a source emitting at 364 keV with angular (a) and
parallel (b) thickness in non-spectral mode. Slices at z = 0 are shown in the top row

and at y = 0 in the bottom row.

Figure 9: Spectral reconstruction with the angular thickness model at 140 keV,
245 keV, 364 keV and 511 keV from left to right.

5.3. Illustration of the event simulation module

Figure 11 shows a simulation made with CoReSi for a thin cylindrical source emitting
photons with energy 364 keV. The voxelized source used for the simulation, the
emission points and the central slice parallel to the camera from the reconstructed
volume are shown on the first row from left to right. On the second row, the left panel
shows the distribution of the observed Compton scattering angles (red histogram) and
the target distribution computed from the Klein-Nishina differential cross section (blue
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Figure 10: Spectral reconstruction with the parallel thickness model at 140 keV,
245 keV, 364 keV and 511 keV from left to right.

line). The differences are caused by the geometry of the camera that favours small
angles and avoids large ones. The right image is a slice perpendicular to the camera at
the centre of the reconstructed volume. The images are reconstructed with the parallel
cone thickness model (as the events generated by the simulation are ideal), with 20
LM-MLEM iterations. The simulation generated 2 × 104 events and took about 30
minutes to run on a laptop with no GPU and an Intel® Core™ i5-7200U CPU.

x

x x

y

z

Compton angle 

co
un

ts

x

Figure 11: CoReSi simulation and reconstruction chain. From left to right and top
to bottom, the voxelized source, the histogram of emission points drawn from the
source, the central slice parallel to the camera from the reconstructed volume, the
histogram of the Compton scattering angles generated during the simulation along
with the Klein-Nishina differential cross section, and the central slice perpendicular

to the camera from the reconstructed volume.
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5.4. Computing time

Figure 12 shows a comparison between the C++ single-threaded implementation on
CPU and without parallel computing capabilities, and the Python version both on
the CPU and GPU. Three volume sizes were considered, namely 104, 105 and 106
voxels. Whereas the computing time of the C++ implementation scales linearly
with the number of voxels, the Python implementation exhibits nearly consistent
computing times across all dimensions, thanks to the multi-threading capabilities and
GPU support provided by PyTorch. The values are shown for 5× 103 events and four
LM-MLEM iterations on an NVIDIA V100 GPU.

Figure 12: Comparison of computing times for a C++ implementation and a Python
implementation using PyTorch, for three volume dimensions. Four LM-MLEM

iterations and 5× 103 events were used for the reconstruction, on an NVIDIA V100
GPU.

More specifically, for a volume of 104 voxels, the C++ version took 75 seconds,
while the Python version with GPU took 426 seconds. For a volume of 105 voxels,
the C++ version took 760 seconds, while the Python version with GPU took 435
seconds. For a volume of 106 voxels, the C++ version took 15,192 seconds, while
the Python version with GPU took 445 seconds. Tests analysing the influence of
the number of events showed a linear relationship between the reconstruction time
and the number of events for both the C++ and Python versions. Table 3 gives
some examples of computing times observed during the reconstruction of the images
presented in the article on a Quadro RTX 8000 graphics processing unit with 32 cores.
Sensitivity computation with the models CLSA (central layer solid angle) and MLSA
(multi-layer solid angle) took a few seconds. For the angular thickness model in the
mono-energetic case we activated the option "spectral mode", meaning that all the
physical factors were evaluated for a more accurate modelling. This has resulted in
longer calculation times compared to the parallel thickness model. In the polyenergetic
case, the parallel thickness reconstruction was longer to be computed. The difference
can be explained by the number of non-zero elements in the system matrix, larger for
the parallel thickness with our choice of parameters.
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Table 3: Computing time (single run) for sensitivity and image reconstruction. In
the SM-like configuration, the sensitivity is computed by backprojecting 5× 104
sampled events at each energy. For the reconstructions, 1.1× 105 events were

considered in both the mono and poly-energetic cases. For the sensitivity, SM-like
means that the model is the same as for the system matrix.

Method Duration

Sensitivity SM-like monoenergetic parallel thickness 1 minute
Sensitivity SM-like monoenergetic angular thickness 3 minutes
Sensitivity SM-like polyenergetic parallel thickness 28 minutes
Sensitivity SM-like polyenergetic angular thickness 26 minutes
Reconstruction monoenergetic parallel thickness 38 minutes
Reconstruction monoenergetic angular thickness 2 hours and 10 minutes
Reconstruction polyenergetic parallel thickness 5 hours and 5 minutes
Reconstruction polyenergetic angular thickness 4 hours and 40 minutes

6. Discussion

In this paper, a new Python library called CoReSi is presented, intended as a novel tool
for Compton camera SPECT imaging studies. The underlying methods and strategies
are detailed, as well as the key classes within the code, and its features. Several of
its capabilities are demonstrated using MC-simulated data as well as data generated
by the library itself. CoReSi is designed for applications in nuclear medicine, particle
therapy, and near-field homeland security.

In a separate experiment not shown here, the results produced by CoReSi have
been validated against the C++ code that generated the images published in (Muñoz
et al. 2022). Discrepancies between the images therein and the ones from this paper
can be explained by the two-dimensional versus three-dimensional reconstruction, by
the logarithmic versus linear color scale chosen for visualization, and marginally by a
slight modification of the sensitivity computation.

Computing times for image reconstruction were recorded and compared with the
previous C++ version. The GPU version of the CoReSi implementation was faster
than its CPU or C++ counterparts, with the speed remaining roughly constant as
the number of voxels increased, thanks to GPU-based parallel computing. The C++
version was faster than the Python version for small reconstructed volumes, suggesting
that parts of the Python code not dealing with volumes are slower than the C++.
Only the list-mode MLEM algorithm is currently implemented. The Ordered Subsets
Expectation Maximization method (OSEM) could accelerate reconstruction time and
should be straight-forward to implement (Hudson & Larkin 1994).

Fundamental to any reconstruction algorithm are system matrix and sensitivity
vector computations. These are also the most computationally intensive parts of
the algorithm. In tomographic modalities that work with data stored in sinograms,
projection and backprojection operators are implemented instead. Since list-mode
storage is the only option in Compton imaging, the specific and optimised ray tracing
algorithms cannot be used. CoReSi implements the computation of the system matrix
row by row and allows to use it directly in the LM-MLEM algorithm. The projection
and backprojection operators are built on top of the system matrix computation
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function. The system matrix model implemented in the code is relatively accurate,
but could be improved by taking into account other sources of uncertainty in CC
acquisitions. These models could be difficult to derive mathematically and slow
down the reconstruction, which is already much slower than for other tomographic
modalities. The improvement in accuracy is at the expense of higher computing costs.

Three sensitivity models are currently implemented. As can be seen from the
profiles, they tend to differ from each other. The differences between the CLSA
and MLSA sensitivities is due to the large number of scatterer layers. Only the
central layer is accounted for in the first, a sum with respect to all the layers is
computed for the second. The influence of a layer decreases with the distance to the
volume, which explains the more spread-out shape of MLSA. Both of them ignore the
shape of the absorber and assume that all scattered photons produce an event with
equal probability. This assumption has been removed from the SM-like model, which
considers a first hit in the scatterer and a second in the absorber. Forward scattering
with relatively small Compton angles are favoured, which may explain the narrowest
shape of the SM-like sensitivity. The true shape of the sensitivity, defined as the
probability of detection of a photon, strongly depends on the acquisition conditions,
for instance measurement uncertainties and rejection strategies. It is likely that the
proposed models should be adapted to every single experiment. However, for relatively
small extent sources as well as for the small prototype cameras that represent the
majority of the published studies, the impact on the reconstructed images should
be limited. As it approximates the identity s = TT 1, the SM-like model might be
mathematically more sound for solving the reconstruction inverse problem. However,
the computing times are significantly increased compared to CLSA and MLSA, and
the real impact on the reconstructed images is still to be evaluated. This impact might
be influenced by the experimental conditions. SM-like sensitivity profiles shown in this
paper present oscillations due to statistical factors. To prevent them from propagating
into the reconstructed images, the user could either increase the number of samples
or smooth the sensitivity volume.

The code can be applied to both ideal and non-ideal data. For ideal cases, the
parallel thickness mode is recommended, whereas for non-ideal cases, the angular
thickness mode offers better performance. In comparing the two modes, with the
images provided in this paper, the parallel thickness mode produces smoother results.
This can be attributed to the use of a Doppler-corrected system matrix in the
angular thickness mode, which more accurately represents the underlying data. While
increasing cone thickness enhances image smoothness, it also introduces blurring.
Another explanation for the difference observed between the two modes is that the
cone thickness in the parallel mode was set arbitrarily to the diagonal of a voxel, a
value larger than the ones observed for the angular thickness. To achieve smoother
images while still preserving sharp edges, total variation regularization can be used
within CoReSi.

The simulation tool integrated into CoReSi is primarily designed to assist
developers of image reconstruction algorithms and is not intended to compete with
software specializing in MC simulations of imaging systems. At present, it only
supports monoenergetic sources and ideal data. A potential enhancement would be
to enable the simulation of multiple source energies simultaneously, with assigned
probabilities for each energy. This upgrade would enhance data generation for spectral
reconstruction testing.

Despite significant efforts, certain physical processes, such as energy uncertainties
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in detectors or escaping electrons, cannot be accurately modeled. These factors
influence the system’s point spread function (PSF), resulting in a spatially varying,
source-dependent blur (Erlandsson et al. 2012). Estimating the PSF and performing
deconvolution are challenging tasks, commonly referred to as resolution recovery when
integrated into the reconstruction process (Sureau et al. 2008, Kim et al. 2013). The
inclusion of deconvolution and denoising techniques, using either variational or plug-
and-play methods, is simplified by the use of a Python-based open-source software
with a user-friendly structure.

7. Conclusion

We have developed CoReSi, a Python library dedicated to image reconstruction
and data simulation for Compton cameras. This library can be used for three-
dimensional iterative image reconstruction either with list-mode MLEM or with
other algorithms making use of projection and back-projection operators. The
code is open-source and can thus be modified. For fast prototyping purposes, a
simplified data simulation module was included. CoReSi is designed for near-field
applications, as nuclear medicine, particle therapy, and near-field homeland security.
As a 3D reconstruction software, it may not be well-suited for far-field observations
in astronomy or environmental measurements. Among various perspectives for future
development, one can mention, for instance, the implementation of procedures to
account for attenuation in the phantom or patient.
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