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Abstract

We address data-driven learning of the infinitesimal generator of stochastic diffusion processes,
essential for understanding numerical simulations of natural and physical systems. The unbounded
nature of the generator poses significant challenges, rendering conventional analysis techniques
for Hilbert-Schmidt operators ineffective. To overcome this, we introduce a novel framework
based on the energy functional for these stochastic processes. Our approach integrates physical
priors through an energy-based risk metric in both full and partial knowledge settings. We
evaluate the statistical performance of a reduced-rank estimator in reproducing kernel Hilbert
spaces (RKHS) in the partial knowledge setting. Notably, our approach provides learning
bounds independent of the state space dimension and ensures non-spurious spectral estimation.
Additionally, we elucidate how the distortion between the intrinsic energy-induced metric of the
stochastic diffusion and the RKHS metric used for generator estimation impacts the spectral
learning bounds.
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1 Introduction
Continuous-time processes are often modeled using ordinary differential equations (ODEs), assuming
deterministic dynamics. However, real systems in science and engineering that are modeled by
ODEs are subject to unfeasible-to-model influences, necessitating the extension of deterministic
models through stochastic differential equations (SDEs), see [33, 35] and references therein. SDEs
are advantageous for modeling inherently random phenomena. For instance, in finance, they specify
the stochastic process governing asset behavior, a crucial step in constructing pricing models for
financial derivatives [34]. In atomistic simulations, where SDEs are used to model the evolution of
atomic systems subjected to thermal fluctuations via the Boltzmann distribution [30].

A diverse range of SDEs can be represented as dXt = a(Xt)dt + b(Xt)dWt, where X0 = x.
Here, W denotes a (possibly multi-dimensional) Brownian motion, and the functions a and b are
commonly known as the drift and diffusion coefficients, respectively. Determining these coefficients
from one or more trajectories, whether discretized or continuous, has been a key pursuit in "diffusion
statistics" since the 1980s, as seen in works like [18, 24, 25]. However, uncovering the drift and
diffusion coefficients alone does not reveal all the intrinsic properties of a complex system, such as the
metastable states of Langevin dynamics in atomistic simulations [see e.g. 42, and references therein].
Consequently, there has been a shift and growing interest in the Infinitesimal Generator (IG) of an
SDE, as its spectral decomposition offers a more in-depth understanding of system dynamics and
behavior, thus providing a comprehensive picture beyond the mere identification of coefficients.

Recovering the spectral decomposition of the IG can theoretically be achieved by exploiting the well-
studied Transfer Operators (TO) [see 21, and references therein]. TOs represent the average evolution
of state functions (observables) over time and, being linear and amenable to spectral decomposition
under certain conditions, they offer a valuable means to interpret and analyze nonlinear systems.
However, they require evenly sampled data at a high rate, which may be impractical. Additionally,
TO approaches are purely data-driven, complicating the incorporation of partial or full knowledge of
an SDE into the learning process. Thus, there is growing interest in learning the IG directly from data,
as it can handle uneven sampling and integrate SDE knowledge. The challenge lies in the IG being
an unbounded operator, unlike TO which are often well-approximated by Hilbert-Schmidt operators
with comprehensive statistical theory [22]. Unfortunately, the existing statistical theory collapses
when applied to unbounded operators, prompting the need to completely rethink the problem

Related work Extensive research has explored learning dynamical systems from data [see the
monographs 7, 26, and references therein]. Analytical models for dynamics are often unavailable,
motivating the need for data-driven methods. Two prominent approaches have emerged: deep
learning-based methods [5, 11, 29], effective for learning complex data representations but lacking
statistical analysis, and kernel methods [2, 6, 9, 16, 17, 20–22, 43], offering solid statistical guarantees
for the estimation of the TO but requiring careful selection of the kernel function. A related question,
tackling the challenging problem of learning invariant subspaces of the TO, has recently led to the
development of several methodologies [17, 27, 31, 39, 45, 44], some of which are based on deep
canonical correlation analysis [3, 23]. In comparison, there have been significantly fewer works on
learning the IG and only in very specific settings. In [48] a deep learning approach is developed
for Langevin diffusion, while [19] presents an extended dynamical mode decomposition method for
learning the generator and clarifies its connection to Galerkin’s approximation. However, neither
of these two works provides any learning guarantees. In this respect the only previous work we
are aware of are [1], revising the Galerkin method for Laplacian diffusion, [15], presenting a kernel
approach for general diffusion SDE with full knowledge of drift and diffusion coefficients, and [36]
addressing Langevin diffusion. As highlighted in Appendix E.6, the bounds and analysis in these
works are either restricted to specific SDEs or are incomplete. Notably, none of these works proposed
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an adequate framework to handle the unboundedness of the IG, resulting in an incomplete theoretical
analysis and suboptimal rates, sometimes explicitly depending on state space dimension. Moreover,
the estimators proposed in these works are prone to spurious eigenvalues and do not offer guarantees
on the accurate estimation of eigenvalues and eigenfunctions.

Contributions In summary, our main contributions are: 1) Underpinning a framework
for learning the generator of stochastic diffusion processes in reproducing kernel Hilbert space,
using a novel energy risk functional; 2) Proposing a reduced-rank estimator with dimension-free
learning bounds; 3) Establishing first-of-its-kind spectral learning bounds for generator learning; 4)
Demonstrating the practical advantages of our approach over previous methods.

2 Background and the problem
Our drive to estimate the eigenvalues of the infinitesimal generator for an SDE like (1) stems from
its crucial role in characterizing dynamics in physical systems. This operator’s closed form (3), relies
on the drift a and diffusion coefficient b, where we have partial knowledge: b is assumed to be known,
but a is not. To compensate for the lack of prior knowledge about a, we introduce the system’s
energy as an additional known quantity. Below, we detail the mathematical concepts framing the
problem (generator, spectrum, energy) exemplified through the Langevin and Cox-Ingersoll-Ross
processes. For detailed list of notation used throughout the paper we refer Table 7 in the appendix.

Transfer operator and infinitesimal generator A variety of physical, biological, and
financial systems evolve through stochastic processes X = (Xt)t∈R+ , where Xt ∈ X ⊂ Rd denotes the
system’s state at time t. A commonly employed model for such dynamics is captured by stochastic
differential equations (SDEs) of the form

dXt = a(Xt)dt+ b(Xt)dWt and X0 = x, (1)

where x ∈ X , W = (W 1
t , . . . ,W

p
t )t∈R+

is a Rp-dimensional (p ∈ N) standard Brownian motion,
the drift a : X → Rd, and the diffusion b : X → Rd×p are assumed to be globally Lipschitz and
sub-linear, so that the SDE (1) admits an unique solution X = (Xt)⩾0 with values in (X ,B(X )).
Processes akin to equations like (1) are diverse, spanning models like Langevin and Cox-Ingersoll-Ross
processes (see examples below), with broad applications in science and engineering. The process X is
a continuous-time Markov process with almost surely continuous sample paths whose dynamics is
described by a family of probability densities (pt)t∈R+

and transfer operators (At)t∈R+
such that for

all t ∈ R+, E ∈ B(X ), x ∈ X and measurable function f : X → R,

P(Xt ∈ E|X0 = x) =

∫
E

pt(x, y)dy and Atf =

∫
X
f(y)pt(·, y)dy = E

[
f(Xt) |X0 = ·

]
. (2)

Evaluating Atf at x yields the expectation of f starting from x and evolving until time t, making
the transfer operator crucial for understanding X dynamics. The family (At)t∈R+

satisfies the
fundamental semigroup equation At+s = At ◦ As, for s, t ∈ R+. Here, we focus on the transfer
operator’s effect on the set L2

π(X ), a choice driven by the existence of an invariant measure π for At

on (X ,B(X )) which satisfies A∗
tπ = π for all t ∈ R+. Then, the process X is characterized by the

infinitesimal generator L defined for every f ∈ L2
π(X ) such that the limit Lf = limt→0+(Atf − f)/t

exists in L2
π(X ). The operator L is closed on its domain dom(L) which is equal to the Sobolev space

W1,2
π (X ) = {f ∈ L2

π(X ) | ∥f∥2W = ∥f∥L2
π
+ ∥∇f∥L2

π
<∞}.
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For SDE dynamics of the form (1), we can prove (see A.2 for details) that L is the second-order
differential operator given, for any f ∈ L2

π(X ), x ∈ X , by

Lf(x) = ∇f(x)⊤a(x) + 1

2
Tr

[
b(x)⊤(∇2f(x))b(x)

]
, (3)

where ∇2f = (∂2ijf)i∈[d],j∈[p] denotes the Hessian matrix of f .
Spectral decomposition Knowing only the drift a and diffusion b is not enough to compute

(2) or to understand quantitative aspects of dynamical phase transitions, such as time scales and
metastable states. The eigenvalues and eigenvectors of the generator are crucial for capturing these
effects. To address the possible unbounded nature of L, one can turn to an auxiliary operator, the
resolvent, which, under certain conditions, shares the same eigenfunctions as L and becomes compact.
When it exists and is continuous for some µ ∈ C, the operator Lµ = (µI − L)−1 is the resolvent of L
and the corresponding resolvent set is defined by

ρ(L) =
{
µ ∈ C | (µI − L) is bijective andLµ is continuous

}
We assume L has a compact resolvent, meaning ρ(L) ̸= ∅ and there exists µ0 ∈ ρ(L) such that
(µ0I − L)−1 is compact. Under this assumption, and given that (L,dom(L)) is self-adjoint, we can
prove the spectral decomposition of the generator (see A.1 for details) as follows:

L =
∑
i∈N

λi fi ⊗ fi (4)

where (λi)i ∈ N are the eigenvalues of L, and the corresponding eigenfunctions fi ∈ L2
π(X ), forming

an orthonormal basis (fi)i∈N, are also eigenfunctions of the transfer operator At.
Dirichlet forms and energy To handle the initial lack of knowledge about the drift a, we assume

to have access to another quantity, called the energy, defined as E(f) = limt→0

∫
X (f(f −Atf))/tdπ

for all functions f ∈ L2
π(X ) for which this limit exists, defining in the way the domain dom(E). The

associated Dirichlet form is the bilinear form defined by polarization for any f, g ∈ dom(E) by

E(f, g) = −
∫
X
f(Lg)dπ =

∫
X
(−Lf)gdπ. (5)

For every f ∈ dom(E), we have E(f) = E(f, f). As for every i ∈ N, 0 ≤ E(fi, fi) = −
∫
X fi(λifi)dπ =

−λi, we check that the eigenvalues of L are negative. To relate L to Dirichlet form, we assume there
exists a Dirichlet operator B = s⊤∇ where s=[s1 | . . . | sp] : x∈X 7→ s(x)=[s1(x) | . . . | sp(x)]∈Rd×p

is a smooth function s.t. Lf = s(s⊤∇f) = s(Bf) and so that∫
X
(−Lf)gdπ =

∫
X
(s(x)s(x)⊤∇f(x))⊤∇g(x)π(dx) =

∫
X
(Bf(x))⊤(Bg(x))π(dx).

We get that for any f ∈ dom, (E)

E(f) =

∫
X
∥s⊤∇f∥2dπ = Ex∼π[∥Bf(x)∥2], (6)

which is reminiscent of the expected value of the kinetic energy in quantum mechanics [13]. To
illustrate this, we specify the generator and the associated Dirichlet gradient form for two processes:
Overdamped Langevin and Cox-Ingersoll-Ross.
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Example 1 (Langevin). Let kb, T ∈ R∗
+.The overdamped Langevin equation driven by a potential

V : Rd → R is given by dXt = −∇V (Xt)dt +
√
2(kbT )dWt and X0 = x, where kb and T

respectively represent the coefficient of friction and the temperature of the system. Its infinitesimal
generator L is defined by Lf = −∇V ⊤∇f + (kbT )∆f , for f ∈ W1,2

π (X ). Since
∫
(−Lf)g dπ =

−
∫ [

∇
(
(kbT )∇f(x) e

−(kbT )−1V (x)

Z

)]
g(x)dx = (kbT )

∫
∇f⊤∇g dπ =

∫
f(−Lg) dπ, generator L is self-

adjoint and associated to a gradient Dirichlet form with s(x) = (kbT )
1/2(δij)i∈[d],j∈[p].

Example 2 (Cox-Ingersoll-Ross process). Let d = 1, a, b ∈ R, σ ∈ R∗
+. The Cox-Ingersoll-Ross

process is solution of the SDE dXt = (a + bXt)dt + σ
√
XtdWt and X0 = x. Its infinitesimal

generator L is defined for f ∈ L2
π(X ) by Lf = (a+ bx)∇f + σ2x

2 ∆f . By integration by parts, we can
check that the generator L satisfies

∫
(−Lf)g dπ =

∫
σ2x
2 f ′(x)g′(x)π(dx) =

∫
f(−Lg) dπ, and it is

associated to a gradient Dirichlet form with s(x) = σ
√
x/

√
2.

Learning in reproducing kernel Hilbert spaces (RKHSs) Throughout the paper we let
H be an RKHS and let k : X × X → R be the associated kernel function. We let ϕ : X → H be a
feature map [38] such that k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩ for all x, x′ ∈ X . We consider RKHSs satisfying
H ⊂ L2

π(X ) [38, Chapter 4.3], so that one can approximate L : L2
π(X ) → L2

π(X ) with an operator
G : H → H. Notice that despite H ⊂ L2

π(X ), the two spaces have different metric structures, that is
for all f, g ∈ H, one in general has ⟨f, g⟩H ̸= ⟨f, g⟩L2

π
. In order to handle this ambiguity, we introduce

the injection operator Sπ : H → L2
π(X ) such that for all f ∈ H, the object Sπf is the element of

L2
π(X ) which is pointwise equal to f ∈ H, but endowed with the appropriate L2

π norm.
Then, the infinitesimal generator restricted to H is simply LSπ which can be estimated by SπG

for some G ∈ HS (H). This approach is based on the embedding ℓϕ : X → H of the generator in
the RKHS that can be defined for kernels k ∈ C2(X ×X ) whenever one knows drift and diffusion
coefficients, see B, so that the reproducing property ⟨ℓϕ(x), h⟩H = [LSπh](x) holds. Based on
this observation [15] developed empirical estimators of LSπ that essentially minimize the risk
∥LSπ − SπG∥2HS(H,L2

π)
= Ex∼π∥ℓϕ(x)−G∗ϕ(x)∥2H. In scenarios where drift and diffusion coefficients

are not known, then ℓϕ becomes non-computable. However if the process has the Dirichlet form (6),
one can still empirically estimate the Galerkin projection (S∗

πSπ)
†S∗

πLSπ onto H, as considered in
[1], which in fact minimizes the same risk. Yet this approach is problematic due to the unbounded
nature of the generator and the associated estimators typically suffer from a large number of spurious
eigenvalues around zero, making the estimation of physically most relevant eigenfunctions unreliable
even for self-adjoint generators. Conversely, classical numerical methods can compute the leading part
of a spectrum without spuriousness issues, suggesting that data-driven approaches should achieve
similar reliability. In this paper, we address this problem by designing a novel notion of risk, leading
to principled estimators designed to surmount these challenges.

3 Novel statistical learning framework
In this section, we tackle the challenges in developing suitable generator estimators highlighted
earlier. To this end, we introduce a risk metric for resolvent estimation that can be efficiently
minimized empirically, leading to good spectral estimation. Since L and (µI −L)−1 share the
same eigenfunctions, the main idea is to learn the (compact) resolvent, which can be effectively
approximated by finite-rank operators, instead of learning the generator directly. However, this
approach is challenging due to the lack of closed analytical forms for the action of the resolvent.

First, given µ > 0, in order to approximate the action of the resolvent on the RKHS by
some operator G : H → H, we introduce its embedding χµ : X → H via the reproducing property

5



⟨χµ(x), h⟩H = [(µI −L)−1Sπh](x), formally given by χµ(x) =
∫∞
0

E[ϕ(Xt)e
−µtdt |X0 = x], see B

for details. Using this notation, we aim to estimate [(µI −L)−1Sπh](x) ≈ [Gh](x), h ∈ H, i.e. the
objective is to estimate χµ(x) ≈ G∗ϕ(x) π-a.e.

An obvious metric for the risk would be the mean square error (MSE) w.r.t. distribution π of the
data. However, this becomes intractable since in general χµ is not computable in closed form when
either full or partial knowledge of the process is at hand.

To mitigate this issue, we introduce a different ambient space in which we study the resolvent

Wµ
π (X ) = {f ∈ dom(L) | ∥f∥2Wµ

π (X ) ≡ Eµ[f ] = ⟨f, (µI−L)f⟩L2
π
<∞},

where the norm now balances the energy of an observable f : X → R w.r.t. the invariant distribution
∥f∥2L2

π
and its energy w.r.t. the transient dynamics −⟨f, Lf⟩L2

π
. Indeed

Eµ[f ] = Ex∼π[µ|f(x)|2 − f(x)[Lf ](x)] = Ex∼π[µ |f(x)|2 + ∥s(x)⊤∇f(x)∥2], (7)

where the last equality holds for Dirichlet gradient form (6), in which case Wµ
π (X ) is simply a

weighted Sobolev space. Importantly, this energy functional can be empirically estimated from data
sampled from π, whenever full knowledge, that is drift and diffusion coefficients of the SDE (1), or
partial knowledge, i.e. the diffusion coefficient and Dirichlet operator B in (6), is at hand. With that
in mind, instead of the standard MSE, we introduce the energy-based risk functional as

min
G : H→H

R(G) = Eµ[∥χµ(·)−G∗ϕ(·)∥H]. (8)

Denoting by Zµ : H → Wµ
π (X ) the canonical injection, (8) can be equivalently written as

R(G) = ∥(µI −L)−1Zµ − ZµG∥2HS(H,W) = ∥(µI−L)−1/2Sπ − (µI−L)1/2SπG∥2HS(H,L2
π)
, (9)

where we abbreviated W = Wµ
π (X ) and used Z∗

µ = S∗
π(µI−L), recalling that Hilbert-Schmidt and spec-

tral norms for operatorsA : H → W , are ∥A∥HS(H,W)=
√

tr(A∗(µI−L)A) and ∥A∥H→W=
√
λ1(A∗(µI−L)A) ≥

µ−1/2∥A∥H→L2
π
.

Therefore, (9) implies that the regularized energy norm, while dominating the classical L2
π one,

exerts a balancing effect on the estimation of the resolvent. This leads us to the first general result
regarding the well-posedness of this framework.

Proposition 1. Given µ > 0, let H ⊆ Wµ
π (X ) be the RKHS associated to kernel k ∈ C2(X ×

X ) such that Zµ ∈ HS (H,Wµ
π (X )), and let PH be the orthogonal projector onto the closure of

Im(Zµ) ⊆ Wµ
π (X ). Then for every ε > 0 there exists a finite rank operator G : H→H such that

R(G)≤∥(I −PH)(µI −L)−1Zµ∥2HS(H,W) + ε. Consequently, when k is universal, R(G) ≤ ε.

The previous proposition reveals that whenever the hypothetical domain is dense in the true domain
and the injection operator is Hilbert-Schmidt, there is no irreducible risk and one can find arbitrarily
good finite rank approximations of the generator’s resolvent. Note that Zµ ∈ HS (H,Wµ

π (X )) is
equivalent to Z∗

µZµ=S
∗
π(µI−L)Sπ being a trace class operator, which is assured for our Examples 1

and 2, see the discussion in E.
Now, to address how minimization of the risk impacts the estimation of the spectral decomposition,

let us define the operator norm error and the metric distortion functional, respectively, as

E(G) = ∥(µI −L)−1Zµ − ZµG∥H→W , G ∈ HS (H) , and η(h) = ∥h∥H/∥h∥W , h ∈ H. (10)
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Proposition 2. Let Ĝ =
∑

i∈[r](µ−λ̂i)−1 ĥi ⊗ ĝi be the spectral decomposition of Ĝ : H → H, where
λ̂i ≥ λ̂i+1 and let f̂i = Sπĥi / ∥Sπĥi∥L2

π
, for i ∈ [r]. Then for every µ > 0 and i ∈ [r]

|λi − λ̂i|
|µ− λi||µ− λ̂i|

≤ E(Ĝ)η(ĥi) and ∥f̂i − fi∥2L2
π
≤ 2 E(Ĝ)η(ĥi)
µ [gapi − E(Ĝ)η(ĥi)]+

, (11)

where gapi is the difference between i-th and (i+ 1)-th eigenvalue of (µI −L)−1.

Note that the estimation of the eigenfunctions is first obtained in the norm with respect to the
energy space, and then transformed to the L2

π-norm, as ∥f∥W ≥√
µ∥f∥L2

π
, f ∈Wµ,γ . Therefore, by

controlling the operator norm error and metric distortion (refer to C), we can guarantee accurate
spectral estimation. Consequently, this allows us to approximately solve the SDE (1) starting from
an initial condition.

E[h(Xt) |X0=x]=[eLtSπh](x) ≈
∑

i∈[r] e
λ̂it ⟨ĝi, h⟩Hĥi(x). (12)

4 Empirical risk minimization
In this section we address empirical risk minimization (ERM), deriving two main estimators. The first
one minimizes empirical risk with Tikhonov regularization, while the second introduces additional
regularization in the form of rank constraints.

To present the estimator, we denote the covariance operator w.r.t. L2
π by C = S∗

πSπ = Ex∼π[ϕ(x)⊗
ϕ(x)], the cross-covariance operator T = S∗

πLSπ, capturing correlations between input and the outputs
of the generator, and the covariance operator Wµ = Z∗

µZµ = S∗
π(µI−L)Sπ w.r.t. energy space W.

All operators can be estimated from data, depending on the available prior knowledge. In this work
we focus on the case when

Dirichlet gradient form is known. Then we can define the embedding of the Dirichlet operator B =
s⊤∇ : L2

π(X ) → [L2
π(X )]p into RKHS dϕ : X → Hp via the reproducing property as ⟨dϕ(x), h⟩H =

[BSπh](x) = s(x)⊤Dh(x) ∈ Rp, h ∈ H. More precisely, we have that dϕ(x) is a p-dimensional vector
with components dkϕ(x), where dkϕ : X → H is given via reproducing property ⟨dkϕ(x), h⟩H =
sk(x)

⊤Dh(x), k ∈ [p]. Hence, in this case we have that

T = −Ex∼π[dϕ(x)⊗ dϕ(x)] = −
∑

k∈[p]Ex∼π[dkϕ(x)⊗ dkϕ(x)]. (13)

Moreover, defining wϕ : X → Hp+1 by wϕ(x) = [
√
µϕ(x), d1ϕ(x), . . . dpϕ(x)]

⊤ ∈ Rp+1, we get

Wµ = Ex∼π[µϕ(x)⊗ ϕ(x) + dϕ(x)⊗ dϕ(x)] = Ex∼π[wϕ(x)⊗ wϕ(x)]. (14)

Regularized risk Let us first introduce the regularized risk defined for some γ > 0 by

Rγ(G) = ∥(µI−L)−1/2Sπ − (µI−L)1/2SπG∥2HS(H,L2
π)

+ γµ∥G∥2HS(H), G ∈ HS (H) , (15)

which, after some algebra, can be written as

Rγ(G) = tr
[
G∗(µC−T+µγI)G−2CG+S∗

π(µI −L)−1Sπ

]
= ∥W−1/2

µ,γ C −W 1/2
µ,γ G∥2HS(H)︸ ︷︷ ︸

variance term

+Eµ[χµ(·)]− ∥W−1/2
µ,γ C∥2HS(H)︸ ︷︷ ︸

bias term

where Wµ,γ =Wµ + µγI is the regularized covariance w.r.t. W.

7



Hence, assuming the access to the dataset Dn = (xi)i∈[n] made of i.i.d. samples from the invariant
distribution π, replacing the regularized energy Eµ with its empirical estimate Êµ leads to the
regularized empirical risk functional expressed as

R̂γ(G) = ∥Ŵ−1/2
µ,γ Ĉ − Ŵ 1/2

µ,γ G∥2HS(H) + Êµ[χµ(·)]− ∥Ŵ−1/2
µ,γ Ĉ∥2HS(H), (16)

where Wµ,γ and C are estimated by their empirical counterparts Wµ,γ and C, respectively, via (13).
Therefore, our regularized empirical risk minimization approach reduces to

min
G

∥Ŵ−1/2
µ,γ Ĉ − Ŵ 1/2

µ,γ G∥2HS(H), (17)

and we analyze two different estimators, the first one Ĝµ,γ is obtained by minimizing regularized
empirical risk (17) over all G ∈ HS (H), and, hence, the name Kernel Ridge Regression (KRR) of the
generators resolvent. The second one Ĝr

µ,γ minimizes (17) subject to the (hard) constraint that G is
at most of (a priori fixed) rank r ∈ N and, hence, is named Reduced Rank Regression (RRR) of the
generator’s resolvent. Notice that when r = n, the two estimators coincide. After some algebra, one
sees that both minimization problems have closed form solutions

Ĝµ,γ = Ŵ−1
µ,γĈ and Ĝr

µ,γ = Ŵ−1/2
µ,γ [[Ŵ−1/2

µ,γ Ĉ]]r, (18)

where [[·]]r denotes the r-truncated SVD of a compact operator.
To conclude this section, we show how to compute the eigenvalue decomposition of (18). To this

end, we define the sampling operators Ŝ : H → Rn and Ẑµ : H → R(1+p)n by

(Ŝh)i =
1√
n
h(xi), i∈ [n], and (Ẑµh)kn+i =

{ √
µ√
n
h(xi), k = 0, i ∈ [n],

1√
n
sk(xi)

⊤Dh(xi), k∈ [p], i∈ [n].

Further, let K= n−1[k(xi, xj)]i,j∈[n]∈Rn×n be kernel Gram matrix, and introduce the Gram matrices
N∈Rn×pn and M∈Rpn×pn whose elements, for k ∈ [1+p], i, j ∈ [n] are

Ni,(k−1)n+j=n
−1⟨ϕ(xi), dkϕ(xj)⟩H and M(k−1)n+i,(ℓ−1)n+j=n

−1⟨dkϕ(xi), dℓϕ(xj)⟩H. (19)

We note that although we have introduced the above matrices via inner products in H, they can be
readily computed via the kernel and its gradients knowing the Dirichlet form, see D.

Theorem 1. Given µ > 0 and γ > 0, let Jµ,γ=K−N(M+γµI)−1N⊤+γI. Let (σ̂2
i , vi)i∈[r] be the

leading eigenpairs of the following generalized eigenvalue problem

µ−1(Jµ,γ − γI)Kvi = σ̂2
i Jµ,γvi, v⊤i Kvj=δij , i, j ∈ [r]. (20)

Denoting Vr = [v1 |. . .| vr]∈ Rn×r and Σr = diag(σ̂1, . . . , σ̂r), if (νi, wℓ
i , w

r
i )i∈[r] are eigentriplets of

matrix V⊤
r VrΣ

2
r ∈ Rr×r, then the eigenvalue decomposition the RRR estimator Ĝr

µ,γ = ẐµUrV⊤
t Ŝ is

given by Ĝr
µ,γ =

∑
i∈[r](µ−λ̂i)−1 ĥi ⊗ ĝi, where λ̂i = µ−1/νi, ĝi=ν

−1/2
i Ŝ∗Vrw

ℓ
i and ĥi= Ẑ∗

µUrw
r
i

for Ur=(µγ)−1[µ−1/2I | −N(M+γµI)−1]⊤(KVr−µVrΣ
2
r)∈R(1+p)n×r.

The main computational cost of our method, in view of (12), to solve SDE (1) lies in the implicit
inversion of Jµ,γ when solving (20). When computed with direct solvers this inversion is of the order
O(n3p3), however leveraging on the fact that µJµ,γ is Schur’s complement of the (1+p)n×(1+p)n
symmetric positive definite matrix and using classical iterative solvers, like Lanczos or the generalized
Davidson method, when r ≪ n this cost can significantly be reduced to O(r n2p2), c.f. [14].
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5 Spectral learning bounds
Recalling Prop. 2, in order to obtain the bounds on eigenvalues and eigenfunctions of the generator,
it suffices to analyze the learning rates for the operator norm error E and metric distortion η. For this
purpose, we analyze the operator norm error of empirical estimator Ĝr

µ,γ using the decomposition

E(Ĝ) ≤ ∥(µI −L)−1Zµ−ZµGµ,γ∥H→W︸ ︷︷ ︸
regularization bias

+∥Zµ(Gµ,γ−Gr
µ,γ)∥H→W︸ ︷︷ ︸

rank reduction bias

+∥Zµ(G
r
µ,γ−Ĝr

µ,γ)∥H→W︸ ︷︷ ︸
estimator’s variance

,

where Gµ,γ =W−1
µ,γC is the minimizer of the full (i.e. without rank constraint) Tikhonov regularized

risk and Gr
µ,γ =W

−1/2
µ,γ [[W

−1/2
µ,γ C]]r is the population version of the empirical estimator Ĝr

µ,γ .
Note that, while the last two terms in the above decomposition depend on the estimator, the first

term depends only on the choice of H and the regularity of L w.r.t. H. In this work we focus on
the classical kernel-based learning where one chooses a universal kernel [38, Chapter 4] and controls
the regularization bias with a regularity condition. For details see Rem. 2 of App. E.2. Let µ > 0
be a prescribed parameter, we make following assumptions to quantify the difficulty of the learning
problem:

(BK) Boundedness. There exists cW>0 such that ess sup
x∼π

∥wϕ(x)∥2≤cW , i.e. wϕ∈L∞
π (X ,H1+p);

(RC) Regularity. For some α ∈ (0, 2] there exists cα > 0 such that C2 ⪯ c2αW
1+α
µ ;

(SD) Spectral Decay. There exists β ∈ (0, 1] and cβ > 0 s.t. λj(Wµ)≤ cβ j
−1/β , for all j ∈ J .

The above assumptions, discussed in more details in App E.1, are in the spirit of state-of-the-art
analysis of statistical learning theory of classical regression in RKHS spaces [12], recently extended
to regression of transfer operators [28, 22]. In our setting, instead of relying on the injection into L2

π

as in the case of transfer operators, the relevant object is the injection Zµ into the energy space W.
The first assumption (BK) is the main limiting factor of our approach. Indeed, since ∥wϕ(x)∥2 =

µ∥ϕ(x)∥2+
∑

k∈[p]∥dkϕ(x)∥2, apart from needing the kernel to be bounded, we also need the Dirichlet
form embedding to be bounded. Essentially, this means that the Dirichlet coefficients are not growing
too fast w.r.t. the kernel’s gradients decay.Having this, we assure that Zµ ∈ HS (H,Wµ

π (X )) which
implies the operator norm error can be controlled.

Another key difference between generator and transfer operator regression is that the covariance
w.r.t. the domain of the operator becomes Wµ = Z∗

µZµ instead of C = S∗
πSπ. On the other hand, the

"cross-covariance" that captures now RKHS cross-correlations of the resolvent w.r.t domain is simply
Z∗
µ(µI −L)−1Zµ = S∗

π(µI−L)(µI −L)−1Sπ = C. With this in mind, (RC) corresponds to the the
regularity condition in [22] and it quantifies the relationship between the hypothesis class (bounded
operators in RKHS) and the object of interest (µI −L)−1. Indeed, if L has eigenfunctions that
belong to α-interpolation space between H and Wµ

π (X ), (RC) holds true. In particular, if fi ∈ H
for all i ≥ 2 (constant eigenfunction excluded), one has that α ≥ 1 (c.f. Proposition 7 in App. E.1.

Finally, (SD) quantifies the "size" of the hypothetical domain H within the true domain Wµ
π (X )

via the effective dimension tr(W−1
µ,γWµ) ≤ cβ(µγ)

−β , which, due to ((BK)), leads to another notion,
known as the embedding property, quantifying the relationship between H and essentially bounded
functions in the domain of the operator
(KE) Kernel Embedding. There exists τ ∈ [β, 1] and such that

cτ = ess sup
x∼π

∑
j∈Nσ

2τ
j [µ|zj(x)|2 − zj(x)[Lzj ](x)] < +∞, (21)

where Zµ =
∑

j∈J σjzj ⊗ hj is the SVD of the injection operator Zµ : H → Wµ
π (X ).
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Using the above assumptions, we prove a generalization bound for the RRR estimator of the
resolvent.

Theorem 2. Let (RC), (SD), and (KE) hold for some α ∈ (0, 2], β ∈ (0, 1] and τ ∈ [β, 1],
respectively, and let cl(Im(Sπ)) = L2

π(X ). Denoting λ⋆k = λk(S
∗
π(µI −L)−1Sπ), k ∈ N, and given

δ ∈ (0, 1) and r ∈ [n], if RRR estimator is build from the Dirichlet form and

if α≥ τ, γ ≍ n−
1

α+β and ε⋆n = n−
α

2(α+β) , or if α<τ, γ ≍ n−
1

β+τ and ε⋆n = n−
α

2(β+τ) (22)

then there exists a constant c> 0, depending only on H and gap λ⋆r−λ⋆r+1> 0, such that for large
enough n ≥ r with probability at least 1− δ in the i.i.d. draw of Dn from π it holds that

E(Ĝr
µ,γ) ≤ (σ̂r+1 ∧

√
λ⋆r+1) + c ε⋆n ln δ−1. (23)

Proof sketch. The regularization bias is bounded by cα γα/2 by Prop. 9 of App. E.2, the rank
reduction bias is upper bounded by λr+1(S

∗
π(µI −L)−1Sπ), while the bounds on the variance terms

critically rely on the well-known perturbation result for spectral projectors reported in Prop. 4,
App. A. The latter is then chained to Pinelis-Sakhanenko’s inequality and Minsker’s inequality for
self-adjoint HS-operators, Props. 12 and 13 in App. E.3.1, respectively. Combining the bias and
variance terms, we obtain the balancing equations for the regularization parameter and then the next
result follows. □

Note that the learning rate (23) implies the L2
π-norm learning rate. Moreover, for α ≥ τ , it

matches information theoretic lower bounds for transfer operator learning upon replacing parameters
α, β and τ related to the space W with their L2

π analogues [22], see App. E.6. This motivates the
development of the first mini-max optimality for the IG learning, for which our results an important
first step.

To conclude this section, we address the spectral learning bounds steaming from the Prop. 2.
The main task to do so is to control the metric distortions, which we show how in App. E.5. In
this context, an additional assumption α ≥ 1 is needed, since otherwise the metric distortions can
blow-up due to eigenfunctions being out of the RKHS space. Importantly, our analysis reveals that

|λi−λ̂i|
|µ−λi||µ−λ̂i|

≤ (ŝi ∧ 2
√
λ⋆r+1/λ

⋆
r) + c ε⋆n ln δ−1, i ∈ [r], (24)

where ŝi = σ̂i η̂i is the empirical spectral bias that informs how good is the estimation of the particular
eigenpair is (see Fig. 1 a)), σ̂i being given in (20) and η̂i=∥ĥi∥H/∥Ŵ 1/2

µ ĥi∥H.

6 Experiments
In this section, we showcase the key features of our method outlined in Table ??. We demonstrate
that our approach: (1) avoids the spurious effects noted in other IG methods [15, 1], (2) is more
effective than transfer operator methods [21], and (3) validates our bounds in a prediction task for a
model with a non-constant diffusion term. Further details are available in Appendix F.

One dimensional four well potential We first investigate the overdamped Langevin dynamics
in a potential that presents four different wells, two principal wells and then in each of them two smaller
wells, given by V (x)= 4(x8+0.8 exp(−80(x2))+0.2 exp(−80(x−0.5)2)+0.5 exp(−40(x+0.5)2)). This
leads to three relevant eigenpairs: the slowest mode corresponds to the transition between the two
principal wells, while the others two capture transitions between the smaller wells. In Figure 1, we
show that the empirical bias ŝ1 = σ̂1 η̂1 allows us to choose the hyperparameters of the model: higher
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Figure 1: a) Empirical biases ŝ1 = σ̂1 η̂1 and estimation of the first (nontrivial) eigenfunction of the
IG of a Langevin process under a four well potential. Ground truth is black, our method RRR is
red and blue for two different kernel lengthscales. b) Eigenvalue estimation for the same process
compared to the methods in [15, 1], for which eigenvalue histogram in blue shows spuriousness. c)
Estimation of the second eigenfunction of a Langevin process under Muller brown potential (white
level lines) by RRR, Transfer Operator (TO) in d) and ground truth in e). Observe that TO fails to
recover the metastable state. f) Prediction RMSE for the CIR model.

empirical bias leads to wrong operator. Compared to KRR [15, 1], there is no spuriousness in the
estimation of our eigenvalues, as shown in panel b).

Muller Brown potential We next study Langevin dynamics under more challenging conditions:
the Muller brown potential. Figure 1(c-e) depicts the second eigenfunction obtained by our method
compared to the ground truth one and that found by the transfer operator approach, with the same
number of samples. Notably, our physics informed approach outperforms transfer operator learning
for this task. Note that with different lag times, we were able to recover this second eigenfunction.

CIR model Finally, we show with the CIR model that our method is not limited to Langevin
process with constant diffusion. For this process, the conditional expectation of the state Xt is
analytically known. We can thus compare the prediction of our model with respect to this expectation
using root mean squared error (RMSE) and compute it for different number of samples to validate
our bounds. Conditional expectation were computed on 100 different simulations at t = ln(2)/a
which corresponds to the half life of the mean reversion. Results are shown in panel d) Figure 1.

7 Conclusion
We developed a novel energy-based framework for learning the Infinitesimal Generator of stochastic
diffusion SDEs using kernel methods. Our approach integrates physical priors, achieves fast error
rates, and provides the first spectral learning guarantees for generator learning. A limitation is its
computational complexity, scaling as n2d2. Future work will explore alternative methods to enhance
computational efficiency and investigate a broader suite of SDEs beyond stochastic diffusion.

11



References
[1] A Cabannes, V. and Bach, F. (2024). The Galerkin method beats graph-based approaches for

spectral algorithms. In Proceedings of The 27th International Conference on Artificial Intelligence
and Statistics, volume 238 of Proceedings of Machine Learning Research, pages 451–459. PMLR.

[2] Alexander, R. and Giannakis, D. (2020). Operator-theoretic framework for forecasting nonlinear
time series with kernel analog techniques. Physica D: Nonlinear Phenomena, 409:132520.

[3] Andrew, G., Arora, R., Bilmes, J., and Livescu, K. (2013). Deep canonical correlation analysis.
In International conference on machine learning, pages 1247–1255. PMLR.

[4] Bakry, D., Gentil, I., and Ledoux, M. (2014). Analysis and Geometry of Markov Diffusion
Operators. Springer.

[5] Bevanda, P., Beier, M., Kerz, S., Lederer, A., Sosnowski, S., and Hirche, S. (2021).
KoopmanizingFlows: Diffeomorphically Learning Stable Koopman Operators. arXiv preprint
arXiv.2112.04085.

[6] Bouvrie, J. and Hamzi, B. (2017). Kernel Methods for the Approximation of Nonlinear Systems.
SIAM Journal on Control and Optimization, 55(4):2460–2492.

[7] Brunton, S. L., Budišić, M., Kaiser, E., and Kutz, J. N. (2022). Modern Koopman Theory for
Dynamical Systems. SIAM Review, 64(2):229–340.

[8] Caponnetto, A. and De Vito, E. (2007). Optimal rates for the regularized least-squares algorithm.
Foundations of Computational Mathematics, 7(3):331–368.

[9] Das, S. and Giannakis, D. (2020). Koopman spectra in reproducing kernel Hilbert spaces. Applied
and Computational Harmonic Analysis, 49(2):573–607.

[10] Davis, C. and Kahan, W. M. (1970). The rotation of eigenvectors by a perturbation. iii. SIAM
Journal on Numerical Analysis, 7(1):1–46.

[11] Fan, F., Yi, B., Rye, D., Shi, G., and Manchester, I. R. (2021). Learning Stable Koopman
Embeddings. arXiv preprint arXiv.2110.06509.

[12] Fischer, S. and Steinwart, I. (2020). Sobolev norm learning rates for regularized least-squares
algorithms. Journal of Machine Learning Research, 21(205):1–38.

[13] Haag, R. (2012). Local quantum physics: Fields, particles, algebras. Springer Science & Business
Media.

[14] Hogben, L., editor (2006). Handbook of Linear Algebra. CRC Press, Boca Raton, FL, USA.

[15] Hou, B., Sanjari, S., Dahlin, N., Bose, S., and Vaidya, U. (2023). Sparse learning of dynamical
systems in RKHS: An operator-theoretic approach. In Krause, A., Brunskill, E., Cho, K., Engel-
hardt, B., Sabato, S., and Scarlett, J., editors, Proceedings of the 40th International Conference on
Machine Learning, volume 202 of Proceedings of Machine Learning Research, pages 13325–13352.
PMLR.

[16] Inzerilli, P., Kostic, V., Lounici, K., Novelli, P., and Pontil, M. (2023). Consistent long-term
forecasting of ergodic dynamical systems.

12



[17] Kawahara, Y. (2016). Dynamic Mode Decomposition with Reproducing Kernels for Koopman
Spectral Analysis. In Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., and Garnett, R., editors,
Advances in Neural Information Processing Systems, volume 29. Curran Associates, Inc.

[18] Kessler, M., Lindner, A., and Sørensen, M. (2012). Statistical methods for stochastic differential
equations. Monographs on Statistics and Applied Probability, 124:7–12.

[19] Klus, S., Nüske, F., Peitz, S., Niemann, J.-H., Clementi, C., and Schütte, C. (2020). Data-driven
approximation of the koopman generator: Model reduction, system identification, and control.
Physica D: Nonlinear Phenomena, 406:132416.

[20] Klus, S., Schuster, I., and Muandet, K. (2019). Eigendecompositions of transfer operators in
reproducing kernel Hilbert spaces. Journal of Nonlinear Science, 30(1):283–315.

[21] Kostic, V., Novelli, P., Maurer, A., Ciliberto, C., Rosasco, L., and Pontil, M. (2022). Learning
dynamical systems via Koopman operator regression in reproducing kernel hilbert spaces. In
Advances in Neural Information Processing Systems.

[22] Kostic, V. R., Lounici, K., Novelli, P., and massimiliano pontil (2023a). Sharp spectral rates
for koopman operator learning. In Thirty-seventh Conference on Neural Information Processing
Systems.

[23] Kostic, V. R., Novelli, P., Grazzi, R., Lounici, K., et al. (2023b). Learning invariant representa-
tions of time-homogeneous stochastic dynamical systems. In The Twelfth International Conference
on Learning Representations.

[24] Kutoyants, Y. A. (1984). Parameter estimation for stochastic processes. Berlin: Heldermann.

[25] Kutoyants, Y. A. (2013). Statistical inference for ergodic diffusion processes. Springer Science
& Business Media.

[26] Kutz, J. N., Brunton, S. L., Brunton, B. W., and Proctor, J. L. (2016). Dynamic Mode
Decomposition. Society for Industrial and Applied Mathematics.

[27] Li, Q., Dietrich, F., Bollt, E. M., and Kevrekidis, I. G. (2017). Extended dynamic mode
decomposition with dictionary learning: A data-driven adaptive spectral decomposition of the
koopman operator. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27(10).

[28] Li, Z., Meunier, D., Mollenhauer, M., and Gretton, A. (2022). Optimal rates for regularized
conditional mean embedding learning. In Advances in Neural Information Processing Systems.

[29] Lusch, B., Kutz, J. N., and Brunton, S. L. (2018). Deep learning for universal linear embeddings
of nonlinear dynamics. Nature Communications, 9(1).

[30] Mackey, M. C. (2011). Time’s Arrow: The origins of thermodynamic behavior. Courier Corpo-
ration.

[31] Mardt, A., Pasquali, L., Wu, H., and Noé, F. (2018). VAMPnets for deep learning of molecular
kinetics. Nature Communications, 9(1).

[32] Minsker, S. (2017). On some extensions of Bernstein’s inequality for self-adjoint operators.
Statistics & Probability Letters, 127:111–119.

13



[33] Oksendal, B. (2013). Stochastic differential equations: an introduction with applications.
Springer Science & Business Media.

[34] Pascucci, A. (2011). PDE and Martingale Methods in Option Pricing. Springer Milan.

[35] Pavliotis, G. A. (2014). Stochastic Processes and Applications. Springer New York.

[36] Pillaud-Vivien, L. and Bach, F. (2023). Kernelized diffusion maps. In The Thirty Sixth Annual
Conference on Learning Theory, pages 5236–5259. PMLR.

[37] Reed, M. and Simon, B. (1980). I: Functional Analysis. Academic Press.

[38] Steinwart, I. and Christmann, A. (2008). Support Vector Machines. Springer New York.

[39] Tian, W. and Wu, H. (2021). Kernel embedding based variational approach for low-dimensional
approximation of dynamical systems. Computational Methods in Applied Mathematics, 21(3):635–
659.

[40] Trefethen, L. N. and Embree, M. (2020). Spectra and Pseudospectra: The Behavior of
Nonnormal Matrices and Operators. Princeton University Press.

[41] Tropp, J. A. (2012). User-friendly tail bounds for sums of random matrices. Technical report.

[42] Tuckerman, M. E. (2023). Statistical mechanics: theory and molecular simulation. Oxford
university press.

[43] Williams, M. O., , Rowley, C. W., and Kevrekidis, I. G. (2015). A kernel-based method for
data-driven Koopman spectral analysis. Journal of Computational Dynamics, 2(2):247–265.

[44] Wu, H. and Noé, F. (2019). Variational Approach for Learning Markov Processes from Time
Series Data. Journal of Nonlinear Science, 30(1):23–66.

[45] Yeung, E., Kundu, S., and Hodas, N. (2019). Learning deep neural network representations
for koopman operators of nonlinear dynamical systems. In 2019 American Control Conference
(ACC), pages 4832–4839. IEEE.

[46] Yosida, K. (2012). Functional analysis, volume 123. Springer Science & Business Media.

[47] Zabczyk, J. (2020). Mathematical Control Theory: An Introduction. Systems & Control:
Foundations & Applications. Springer International Publishing.

[48] Zhang, W., Li, T., and Schütte, C. (2022). Solving eigenvalue pdes of metastable diffusion
processes using artificial neural networks. Journal of Computational Physics, 465:111377.

[49] Zhou, D.-X. (2008). Derivative reproducing properties for kernel methods in learning theory.
Journal of computational and Applied Mathematics, 220(1-2):456–463.

[50] Zwald, L. and Blanchard, G. (2005). On the Convergence of Eigenspaces in Kernel Principal
Component Analysis. In Advances in Neural Information Processing Systems.

14



Supplementary Material

This appendix includes additional background on SDE and RKHS, proofs of the results omitted
in the main body and information about the numerical experiments.

A Background

A.1 Basics on operator theory for Markov processes.
We provide here some basics on operator theory for Markov processes. Let X ⊂ Rd (d ∈ N) and
(Xt)t∈R+

be a X -valued time-homogeneous Markov process defined on a filtered probability space
(Ω,F , (Ft)t∈R+

,P) where Ft = σ(Xs, s ≤ t) is the natural filtration of (Xt)t∈R+
. The dynamics of

X can be described through of a family of probability densities (pt)t∈R+
such that for all t ∈ R+,

E ∈ B(X ),

P(Xt ∈ E|X0 = x) =

∫
E

pt(x, y)dy.

Let G be a set of real valued and measurable functions on X . For any t ∈ R+ the transfer operator
(TO) At : G → G maps any measurable function f ∈ G to

(Atf)(x) =

∫
X
f(y)pt(x, y)dy. (25)

In theory of Markov processes, the family (At)t∈R+
is referred to as the Markov semigroup associated

to the process X.

Remark 1. A possible choice is G = L∞(X ). Here, we are interested in another choice of G related
to the existence of an invariant measure for At i.e., a σ-finite measure π on (X ,B(X )) such that
P ∗
t π = π for any t ∈ R+. In that case, we can choose G = L2

π(X ) so that, for all f ∈ L2
π(X ), Ptf

converges to f in L2
π(X ) as t goes to 0. Note that P0f = f and P∞f =

∫
fdX for a suitable integrable

function f : X → R.

Within the existence of this invariant measure π, the process X is then characterized by the
infinitesimal generator (IG) L : L2

π(X ) → L2
π(X ) of the family (At)t∈R+

defined by

L = lim
t→0+

At − I

t
. (26)

In other words, L characterizes the linear differential equation ∂/∂tAtf = LAtf satisfied by the
transfer operator. The domain of L denoted dom(L) coincides with the the Sobolev space W1,2

π (X )

W1,2
π (X ) = {f ∈ L2

π(X ) | ∥f∥2W = ∥f∥L2
π
+ ∥∇f∥L2

π
<∞}.

The spectrum of the IG can be difficult to capture due to the potential unboundedness of L. To
circumvent this problem, one can focus on an auxiliary operator, the resolvent, which, under certain
conditions, shares the same eigenfunctions as L and becomes compact. The following result can be
found in Yosida’s book ([46], Chap. IX) : For every µ > 0, the operator (µI − L) admits an inverse
Lµ = (µI − L)−1 that is a continuous operator on X and

(µI − L)−1 =

∫ ∞

0

e−µtAtdt.
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The operator Lµ is the resolvent of L and the corresponding resolvent set of L is defined by

ρ(L) =
{
µ ∈ C | (µI − L) is bijective andLµ is continuous

}
.

In fact, ρ(L) contains all real positive numbers and (µI − L)−1 is bounded. Here, we assume that
L has compact resolvent, i.e. ρ(L) ̸= ∅ and there exists µ0 ∈ ρ(L) such that Lµ0 is compact. Note
that, through the resolvent identity, this implies the compactness of all resolvents Lµ for µ ∈ ρ(L).
Let then µ ∈ ρ(L). As (L,dom(L)) is assumed to be self-adjoint, so does Lµ, so that Lµ is both
compact and self-adjoint. Then, its spectrum Sp(Lµ) = C \ ρ(Lµ) is purely discrete and consists of
isolated eigenvalues (λµi )i∈N such that |λµi | → 0 associated with an orthonormal basis (fi)i∈N (see
[46], chapter XI). In other words, the spectral decomposition of the resolvent writes

Lµ =
∑
i∈N

λµi fi ⊗ fi

where the functions fi ∈ L2
π(X ) are also eigenfunctions of the operator L we get

L =
∑
i∈N

λi fi ⊗ fi.

Example 3 (Langevin). Let (kbT ) ∈ R.The overdamped Langevin equation driven by a potential
V : Rd → R is given by dXt = −∇V (Xt)dt +

√
2(kbT )dWt and X0 = x. Its invariant mea-

sure of the solution process X is the Boltzman distribution π(dx) = z−1e−(kbT )−1V (x)dx where z
denotes a normalizing constant. Its infinitesimal generator L is defined by Lf = −∇V ⊤∇f +
(kbT )∆f , for f ∈ W1,2

π (X ), and if ∇V ∈ L2
π(X ) is positive and coercive, it has compact resolvent.

Finally, since
∫
(−Lf)g dπ = −

∫ [
∇
(
(kbT )∇f(x) e

−(kbT )−1V (x)

Z

)]
g(x)dx = (kbT )

∫
∇f⊤∇g dπ =∫

f(−Lg) dπ, generator L is self-adjoint and associated to a gradient Dirichlet form with s(x) =
(kbT )

1/2(δij)i∈[d],j∈[p].

Example 4 (Cox-Ingersoll-Ross process). Let d = 1, a, b ∈ R, σ ∈ R∗
+. The Cox-Ingersoll-Ross

process is solution of the SDE dXt = (a+ bXt)dt+ σ
√
XtdWt and X0 = x. Its invariant measure

π is a Gamma distribution with shape parameter a/σ2 and rate parameter b/σ2. Its infinitesimal
generator L is defined for f ∈ L2

π(X ) by Lf = (a+ bx)∇f + σ2x
2 ∆f . Note that by integration by parts,

we can check that the generator L satisfies
∫
(−Lf)g dπ =

∫
σ2x
2 f ′(x)g′(x)π(dx) =

∫
f(−Lg) dπ, and

it is associated to a gradient Dirichlet form with s(x) = σ
√
x/

√
2.

A.2 Infinitesimal generator for diffusion processes
After defining the infinitesimal generator for Markov processes (see A.1), we provide its explicit form
for solution processes of equations like(1). Given a smooth function f ∈ C2(X ,R), Itô’s formula (see
for instance [4], B, p.495) provides for t ∈ R+,

f(Xt)− f(X0) =

∫ t

0

d∑
i=1

∂if(Xs)dX
i
s +

1
2

∫ t

0

d∑
i,j=1

∂2ijf(Xs)d⟨Xi, Xj⟩s

=

∫ t

0

∇f(Xs)
⊤dXt +

1
2

∫ t

0

Tr
[
X⊤

s (∇2f)(Xs)Xs

]
ds.
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Recalling (1), we get

f(Xt) = f(X0) +

∫ t

0

[
∇f(Xs)

⊤a(Xs) +
1
2Tr

[
b(Xs)

⊤(∇2f(Xs))b(Xs)
]]
ds

+

∫ t

0

∇f(Xs)
⊤b(Xs)dWs. (27)

Provided f and b are smooth enough, the expectation of the last stochastic integral vanishes so that
we get

E[f(Xt)|X0 = x] = f(x) +

∫ t

0

E
[
∇f(Xs)

⊤a(Xs) +
1
2Tr

[
b(Xs)

⊤(∇2f(Xs))b(Xs)
]∣∣∣X0 = x

]
ds

Recalling that L = lim
t→0+

(Atf − f)/t, we get for every x ∈ X ,

Lf(x) = lim
t→0

E[f(Xt)|X0 = x]− f(x)

t

= lim
t→0

1

t

[ ∫ t

0

E
[
∇f(Xs)

⊤a(Xs) +
1
2Tr

[
(Xs)

⊤(∇2f(Xs))b(Xs)
]]
ds
∣∣∣X0 = x

]
= ∇f(x)⊤a(x) + 1

2Tr
[
b(x)⊤(∇2f(x))b(x)

]
, (28)

which provides the closed formula for the IG associated with the solution process of (1).

A.3 Spectral perturbation theory
Recalling that for a bounded linear operator A on some Hilbert space H the resolvent set of the
operator A is defined as ρ(A) =

{
λ ∈ C |A− λI is bijective and (A− λI)−1 is continuous

}
, and its

spectrum Sp(A) = C\{ρ(A)}, let λ ⊆ Sp(A) be isolated part of spectra, i.e. both λ and µ = Sp(A)\λ
are closed in Sp(A). Than, the Riesz spectral projector Pλ : H → H is defined by

Pλ =
1

2π

∫
Γ

(zI −A)−1dz, (29)

where Γ is any contour in the resolvent set Res(A) with λ in its interior and separating λ from
µ. Indeed, we have that P 2

λ = Pλ and H = Im(Pλ) ⊕ Ker(Pλ) where Im(Pλ) and Ker(Pλ) are
both invariant under A and Sp(A|Im(Pλ)

) = λ, Sp(A|Ker(Pλ)
) = µ. Moreover, Pλ + Pµ = I and

PλPµ = PµPλ = 0.
Finally if A is compact operator, then the Riesz-Schauder theorem, see e.g. [37], assures that

Sp(T ) is a discrete set having no limit points except possibly λ = 0. Moreover, for any nonzero
λ ∈ Sp(T ), then λ is an eigenvalue (i.e. it belongs to the point spectrum) of finite multiplicity, and,
hence, we can deduce the spectral decomposition in the form

A =
∑

λ∈Sp(A)

λPλ, (30)

where geometric multiplicity of λ, rλ = rank(Pλ), is bounded by the algebraic multiplicity of λ. If
additionally A is normal operator, i.e. AA∗ = A∗A, then Pλ = P ∗

λ is orthogonal projector for each
λ ∈ Sp(A) and Pλ =

∑rλ
i=1 ψi ⊗ ψi, where ψi are normalized eigenfunctions of A corresponding to λ

and rλ is both algebraic and geometric multiplicity of λ.
We conclude this section with well-known perturbation bounds for eigenfunctions and spectral

projectors of self-adjoint compact operators.
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Proposition 3 ([10]). Let A be compact self-adjoint operator on a separable Hilbert space H. Given a
pair (λ̂, f̂) ∈ C×H such that ∥f̂∥ = 1, let λ be the eigenvalue of A that is closest to λ̂ and let f be its
normalized eigenfunction. If ĝ = min{|λ̂−λ| |λ ∈ Sp(A)\{λ}} > 0, then sin(∢(f̂ , f)) ≤ ∥Af̂−λ̂f̂∥/ĝ.

Proposition 4 ([50]). Let A and Â be two compact operators on a separable Hilbert space. For
nonempty index set J ⊂ N let

gapJ(A) = min {|λi(A)− λj(A)| | i ∈ N \ J, j ∈ J}

denote the spectral gap w.r.t J and let PJ and P̂J be the corresponding spectral projectors of A and
Â, respectively. If A is self-adjoint and for some ∥A− Â∥ < gapJ(A), then

∥PJ − P̂J∥ ≤ ∥A− Â∥
gapJ(A)

.

B Representations in the RKHS
In section 2, we have defined the infinitesimal generator of a diffusion process and specified its form
when associated with Dirichlet forms. These operators act on L2

π(X ) or specific subsets of it. To
develop our learning procedure, we need to understand these operators’ actions when embedding
into the RKHS, and define their versions for feature maps.
IG and Dirichlet operator in RKHS. As a reminder, we consider H be an RKHS and let
k : X × X → R be the associated kernel function. The canonical feature map is denoted by
ϕ(x) = k(x, ·) for x ∈ X k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩ for all x, x′ ∈ X . Assuming that k is square-
integrable with respect to the measure π, we define the injection operator Sπ : H ↪→ L2

π(X ) and its
adjoint S∗

π : L2
π(X ) → H by S∗

πf =
∫
X f(x)ϕ(x)π(dx). As a preliminary step, we need to define the

reproducing partial derivatives in RKHS, which we introduce via Mercer kernels.

Definition 1 (Mercer kernel). A kernel function k : X × X → R is called a Mercer kernel if it is
a continuous and symmetric function such that for any finite set of points {x1, . . . , xn} ⊂ X , the
matrix (k(xi, xj))

n
i,j=1 is positive semi-definite.

Several standard kernels satisfy the Mercer property with s ≥ 1, including the Gaussian kernel
which we will consider subsequently.

For s ∈ N and m ∈ N, we define the index set Ims = {α ∈ Nm : |α| ≤ s} where |α| =
∑s

j=1 αj ,
for α = (α1, . . . , αm) ∈ Nm. For a function f : Rm → R and x = (x1, . . . , xm) ∈ Rm, we denote its
partial derivative dαf at point x (if it exists) as

Dαf(x) =

m∏
j=1

D
αj

j f(x) =
∂|α|

∂α1x1 · · · ∂αmxm
f(x).

For a function k ∈ C2s(X × X ) with X ⊂ Rd and α ∈ Ids , we define

Dαk(x, y) = D(α,0)k(x, y) =
∂|α|

∂α1x1 · · · ∂αmxm
k(x, y). (31)

and

D(0,α)k(x, y) =
∂|α|

∂α1y1 · · · ∂αmym
k(x, y).
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Theorem 3 (Theorem 1 in [49]). Let s ∈ N, X ⊆ Rm and k be a Mercer kernel such that
k ∈ C2s(X × X ) with corresponding RKHS H. Then the following hold:

i. For any x ∈ X , α ∈ Ims ,
(Dαk)x(y) = Dαk(x, y) ∈ H. (32)

ii. A partial derivative reproducing property holds for α ∈ Ims

(Dαh)(x) = ⟨(Dαk)x, h⟩H, ∀h ∈ H. (33)

Theorem 3 allows us to introduce the first and second order operators D and D2 that act on any
feature map ϕ(x) as

Dϕ(x) = ((Deik)x)i∈[d] and D2ϕ(x) = ((Dei+ejk)x)i,j∈[d]

where the (Deik)x and (Dei+ejk)x can be defined via (32). Then, we define the operator d that
maps any feature map ϕ(x) to dϕ(x) = s(x)⊤Dϕ(x). Denote s⊤ = [s̄1| . . . |s̄d] : x ∈ X 7→ s⊤(x) =
[s̄1(x)| . . . |s̄d(x)] ∈ Rp×d. We have

s(x)⊤Dh(x) =

d∑
i=1

s̄i(x)∂ih(x) =

d∑
i=1

s̄i(x)⟨Deiϕ(x), h⟩H = ⟨dϕ(x), h⟩H,

so that we can define the embedding of the Dirichlet operator B = s⊤∇ : L2
π(X ) → [L2

π(X )]p into
RKHS dϕ : X → Hp via the reproducing property as ⟨dϕ(x), h⟩H = [BSπh](x) = s(x)⊤Dh(x) ∈ Rp,
h ∈ H. In fact, dϕ is a p-dimensional vector with components dkϕ : X → H given via ⟨dkϕ(x), h⟩H =
sk(x)

⊤Dh(x), k ∈ [p]. Then, we can define

T = −Ex∼π[dϕ(x)⊗ dϕ(x)] = −
∑

k∈[p]Ex∼π[dkϕ(x)⊗ dkϕ(x)].

which captures correlations between input and the outputs of the generator in the RKHS. Defining
wϕ : X → Hp+1 by wϕ(x) = [

√
µϕ(x), d1ϕ(x), . . . dpϕ(x)]

⊤ ∈ Rd+1, we can consider

Wµ = Z∗
µZµ = S∗

π(µI−L)Sπ

= Ex∼π[µϕ(x)⊗ ϕ(x) + dϕ(x)⊗ dϕ(x)] = Ex∼π[wϕ(x)⊗ wϕ(x)]

which corresponds to the RKHS covariance operator w.r.t. energy space W.
Examples. One way to ensure that the essential assumption ((KE)) holds is to show that wϕ
fulfils the boundedness condition ((BK)), i.e. wϕ∈L∞

π (X ,H1+p). Let’s show that the property holds
true for the Damped Langevin (see Example 1) and the CIR process (see Example 2) if we consider
the Radial Basis Function (RBF) kernel k(x, y) = kx(y) = exp(−κ∥x− y∥2) where κ > 0 is a free
parameter that sets the “spread” of the kernel. As a reminder, for every x ∈ X , we have

∥wϕ(x)∥2 = µ∥ϕ(x)∥2 +
p∑

k=1

∥dkϕ(x)∥2 with dk = sk(x)
⊤Dϕ(x).

Recalling that for the overdamped Langevin process s(x) = (kbT )
1/2(δij)i∈[d],j∈[p], ss⊤ is diagonal so

that ⟨s(x)⊤Dkx(·), s(x)⊤Dkx(·)⟩ = 0 for every x ∈ X . As ∥ϕ(x)∥2 = 1, we get that for every x ∈ X ,
∥wϕ(x)∥2 ≤ µ =: cH.
Consider now the CIR process. We have d = p = 1 and s(x) = σ

√
x/

√
2 for any x ∈ X . For the very

same reasons, ⟨s(x)⊤Dkx(·), s(x)⊤Dkx(·)⟩ = 0 for every x ∈ X , so that ∥wϕ(x)∥2 ≤ µ =: cH.
In both Langevin and CIR cases, we have wϕ∈L∞

π (X ,H1+p) when considering an RBF kernel.
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C Statistical learning framework

C.1 Spectral perturbation bounds
In this section, we prove key perturbation result and discuss the properties of the metric distortion.
We conclude this section with the approximation bound for arbitrary estimator G ∈ Br(H) that
is the basis of the statistical bounds that follow. This result is a direct consequence of [21] and
Davis-Khan spectral perturbation result for compact self-adjoint operators, [10].

In the framework of Koopman operator learning [22], spectral bounds are expressed in terms
of a distortion metric between the RKHS H and L2

π(X ), corresponding to the cost incurred from
observing the operator’s action on the H rather than on its domain L2

π(X ). Aligned with the risk
definition (9), here we measure in a certain way the distortion between the H and Wµ

π (X ) as given
in definitions in (10).

Proposition 2. Let Ĝ =
∑

i∈[r](µ−λ̂i)−1 ĥi ⊗ ĝi be the spectral decomposition of Ĝ : H → H, where
λ̂i ≥ λ̂i+1 and let f̂i = Sπĥi / ∥Sπĥi∥L2

π
, for i ∈ [r]. Then for every µ > 0 and i ∈ [r]

|λi − λ̂i|
|µ− λi||µ− λ̂i|

≤ E(Ĝ)η(ĥi) and ∥f̂i − fi∥2L2
π
≤ 2 E(Ĝ)η(ĥi)
µ [gapi − E(Ĝ)η(ĥi)]+

, (11)

where gapi is the difference between i-th and (i+ 1)-th eigenvalue of (µI −L)−1.

Proof. We first remark that

∥((µI −L)−1 − λ̂i IL2
π(X ))

−1∥−1
H→W ≤ ∥((µI −L)−1Zµ − ZµĜ)ĥi∥H→W/∥Zµĥi∥ ≤ E(Ĝ)η(ĥi).

Then, from the first inequality, using that (µI −L)−1 is self-adjoint as operator Wµ
π (X ) → Wµ

π (X ),
we obtain the first bound in (11).

So, observing that for every (µ−λ)−1∈Sp((µI −L)−1)\{(µ−λi)−1},

|(µ−λ̂i)−1−(µ−λ)−1|≥|(µ−λi)−1−(µ−λ)−1|−|(µ−λ̂i)−1−(µ−λi)−1|

we conclude that |(µ−λ̂i)−1−(µ−λ)−1|≥|(µ−λi)−1−(µ−λ)−1|−E(Ĝ) η(ĥi), and

min{|(µ−λ̂i)−1 − (µ−λ)−1| | (µ−λ)−1 ∈ Sp((µI −L)−1) \ {(µ−λi)−1}} ≥ gapi−E(Ĝ) η(ĥi).

So, applying Proposition 3, we obtain

sin(∢(f̂i, fi)) ≤
∥(µI −L)−1f̂i − (µ−λ̂i)−1 f̂i∥

[gapi − E(Ĝ) η(ĥi)]+
≤ ∥((µI −L)−1Zµ − ZµĜ)ĥi∥/∥Zµĥi∥

[gapi − E(Ĝ) η(ĥi)]+

≤ E(Ĝ) η(ĥi)
[gapi − E(Ĝ) η(ĥi)]+

.

Since, clearly ∥f̂i − fi∥2 ≤ 2(1 − cos(∢(f̂i, fi)) ≤ 2 sin(∢(f̂i, fi)), the proof of the second bound is
completed.

Next, we adapt the [22, Proposition 1] to our setting as follows.

Proposition 5. Let Ĝ∈Br(H). For all i ∈ [r] the metric distortion of ĥi w.r.t. energy space Wµ
π (X )

can be tightly bounded as

1 /
√
∥Wµ∥ ≤ η(ĥi) ≤ ∥Ĝ∥ / σ+

min(ZµĜ). (34)
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D Empirical estimation
The Reduced Rank Regression (RRR) estimator is the exact minimizer of (17) under fixed rank
constraint. Specifically, RRR is the minimizer Ĝr

µ,γ of R̂γ(G) within the set of bounded operators
HSr(H) on H that have rank at most r. The regularization term γ∥G∥2HS is added to ensure stability.
The closed form solution of the empirical RRR estimator is

Ĝr
µ,γ = Ĥ−1/2

γ [[Ĥ1/2
γ C]]r, (35)

while its population counterpart is given by Gr
µ,γ =W

−1/2
µ,γ [[W

1/2
µ,γ C]]]r.

In order to prove Theorem 1, recall kernel matrices in (19) and define

Fµ =

[
µK

√
µN√

µN⊤ M

]
and Fµ,γ =

[
µKγ

√
µN√

µN⊤ M + γµI

]
. (36)

Now we provide the explicit forms of the matrices N and M in the case of Langevin (see Example
1) and CIR (see Example 2) processes, considering an RBF kernel k(x, y) = kx(y) = exp(−κ∥x−y∥2).
As a reminder (see (36)), N ∈ Rn×pn and M ∈ Rpn×pn are Gram matrices whose elements, for
k ∈ [1 + p], i, j ∈ [n] are given by

Ni,(k−1)n+j=n
−1⟨ϕ(xi), dkϕ(xj)⟩H and M(k−1)n+i,(ℓ−1)n+j=n

−1⟨dkϕ(xi), dℓϕ(xj)⟩H,

where dkϕ(xj) = sk(xj)
⊤Dϕ(xj) and Dϕ(xj) = Dk(xj , ·) is defined by (31). For k ∈ [p], i, j ∈ [n],

we have

⟨ϕ(xi), dkϕ(xj)⟩H = ⟨kxi , sk(xj)
⊤Dkxj ⟩H

=
〈
kxi

, sk(xj)
⊤
(
lim
h→0

k(·, xj + hel)− k(·, xj)
h

)
l∈[d]

〉
= lim

h→0

〈
kxi

, sk(xj)
⊤
(k(·, xj + hel)− k(·, xj)

h

)
l∈[d]

〉
= sk(xj)

⊤
(
lim
h→0

k(xi, xj + hel)− k(xi, xj)

h

)
l∈[d]

= sk(xj)
⊤(D(0,el)k(xi, xj)

)
l∈[d]

= 2γsk(xj)
⊤((x(l)i − x

(l)
j )k(xi, xj)

)
l∈[d]

where we have used the continuity of the inner product to get the third line and the reproducing
property to obtain the following one. Similarly, for k, ℓ ∈ [p], j ∈ [n], we get

⟨dkϕ(xi), dℓϕ(xj)⟩H=
〈
sk(xi)

⊤(D(el′ ,0)k(xi, ·)
)
l′∈[d]

, sℓ(xj)
⊤
(
lim
h→0

k(·, xj + hel)− k(·, xj)
h

)
l∈[d]

〉
=lim

h→0

〈
sk(xi)

⊤(D(el′ ,0)k(xi, ·)
)
l′∈[d]

, sℓ(xj)
⊤
(k(·, xj + hel)− k(·, xj)

h

)
l∈[d]

〉
=lim

h→0

〈(
D(el′ ,0)k(xi, ·)

)
l′∈[d]

, sk(xj)sℓ(xj)
⊤
(k(·, xj + hel)− k(·, xj)

h

)
l∈[d]

〉
=sk(xi)sℓ(xj)

⊤
(
lim
h→0

D(el′ ,0)k(xi, xj + hel)−D(el′ ,0)k(xi, xj)

h

)
l′,l∈[d]

=sk(xi)sℓ(xj)
⊤(Dl′,lk(xi, xj))l′,l∈[d],

21



where we have used the partial derivative reproducing (32) property and where we define for l′ ̸= l,

Dl′,lk(xi, xj) = lim
h→0

D(el′ ,0)k(xi, xj + hel)−D(el′ ,0)k(xi, xj)

h

= −2γ lim
h→0

(x
(l′)
i − x

(l′)
j )k(xi, xj + hel)− (x

(l′)
i − x

(l′)
j )k(xi, xj)

h

= −4γ2(x
(l′)
i − x

(l′)
j )(x

(l)
i − x

(l)
j )k(xi, xj), (37)

and for l ∈ [d],

Dl,lk(xi, xj) = lim
h→0

D(el,0)k(xi, xj + hel)−D(el,0)k(xi, xj)

h

= −2γ lim
h→0

(x
(l)
i − x

(l)
j − h)k(xi, xj + hel)− (x

(l)
i − x

(l)
j )k(xi, xj)

h

=
[
2γ − 4γ2(x

(l)
i − x

(l)
j )2

]
k(xi, xj) = 2γ[1− 2γ(x

(l)
i − x

(l)
j )2]k(xi, xj). (38)

For the overdamped Langevin (see Example 1), for k ≤ d, sk(xi) = (kbT )
1/2ek and sk(xi)sℓ(xj)⊤ =

(kbT )I so that

Ni,(k−1)n+j = n−1⟨ϕ(xi), dkϕ(xj)⟩H = 2γ(kbT )
1/2n−1(x

(k)
i − x

(k)
j )k(xi, xj)

and
M(k−1)n+i,(ℓ−1)n+j=n

−1⟨dkϕ(xj), dℓϕ(xj)⟩H = (kbT )n
−1(Dl′,lk(xj , xj))l′,l∈[d],

where the elements of D are given by (37) and (38). For the CIR process (see Example 2) in dimension
d = 1, we have s(x) = σ

√
x/

√
2. Then,

Ni,(k−1)n+j = n−1⟨ϕ(xi), dkϕ(xj)⟩H =
√
2σγn−1√xj(xi − xj) exp(−γ|xi − xj |2)

and
M(k−1)n+i,(ℓ−1)n+j=n

−1⟨dkϕ(xi), dℓϕ(xj)⟩H = σ2γn−1√xi
√
xj exp(−γ|xi − xj |2).

Based on the previous formulas, using Theorem 1, which we prove next, one can estimate
generator’s eigenpairs in practice.

Theorem 1. Given µ > 0 and γ > 0, let Jµ,γ=K−N(M+γµI)−1N⊤+γI. Let (σ̂2
i , vi)i∈[r] be the

leading eigenpairs of the following generalized eigenvalue problem

µ−1(Jµ,γ − γI)Kvi = σ̂2
i Jµ,γvi, v⊤i Kvj=δij , i, j ∈ [r]. (20)

Denoting Vr = [v1 |. . .| vr]∈ Rn×r and Σr = diag(σ̂1, . . . , σ̂r), if (νi, wℓ
i , w

r
i )i∈[r] are eigentriplets of

matrix V⊤
r VrΣ

2
r ∈ Rr×r, then the eigenvalue decomposition the RRR estimator Ĝr

µ,γ = ẐµUrV⊤
t Ŝ is

given by Ĝr
µ,γ =

∑
i∈[r](µ−λ̂i)−1 ĥi ⊗ ĝi, where λ̂i = µ−1/νi, ĝi=ν

−1/2
i Ŝ∗Vrw

ℓ
i and ĥi= Ẑ∗

µUrw
r
i

for Ur=(µγ)−1[µ−1/2I | −N(M+γµI)−1]⊤(KVr−µVrΣ
2
r)∈R(1+p)n×r.

Proof. First, note that µJµ,γ ≻ 0 is exactly Schurs’s complement w.r.t. second diagonal block of
Fµ,γ ≻ 0, and that, due to block inversion lemma [14], we have that

F−1
µ,γ =

[
µ−1Jµ,γ µ−1/2J−1

µ,γN(M + γµI)−1

µ−1/(M + γµI)−1N⊤J−1
µ,γ A

]
. (39)
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where A is some np× np matrix. The first step in computing the RRR estimator lies in computing a
truncating SVD of Ŵ−1/2

µ,γ Ĉ, that is ĈŴ−1
µ,γĈqi = σ̂2

i qi, i ∈ [r]. Now, using the low-rank eigenvalue
problem formulation [14], we have that qi = Ŝ∗vi and ŜŴ−1

µ,γĈŜ
∗vi = σ̂2

i vi. Now, recalling that
Ŝ = [µ−1/2 | 0]Ẑµ we obtain and that Ẑµ(Ẑ

∗
µẐµ + µγI)−1=(ẐµẐ

∗
µ + µγI)−1Ẑµ, we obtain

[µ−1/2I | 0]F−1
µ,γFµ[µ

−1/2I | 0]⊤Kvi = σ̂2
i vi,

which after some algebra, using (39)

µ−1(I − γJ−1
µ,γ)Kvi = σ̂2

i vi,

i.e. µ−1(I − γJ−1
µ,γ)KVr = VrΣ

2
r.

By normalizing right singular value functions qi of Ŵ−1/2
µ,γ Ĉ, that is by asking that ⟨qi, qi⟩H =

v⊤i Kvi = 1, we obtain that [[Ŵ
−1/2
µ,γ Ĉ]]r = Ŵ

−1/2
µ,γ ĈQrQ

∗
r , for Qr = [q1 | . . . | qr]. In other words, we

have

Ĝµ,γ = Ŵ−1
µ,γẐ

∗
µ[µ

−1/2I | 0]⊤ŜŜ∗VrV⊤
r Ŝ = Ẑ∗

µF
−1
µ,γ [µ

−1/2I | 0]⊤KVrV⊤
r Ŝ = Ẑ∗

µUrV⊤
r Ŝ,

where we used that J−1
µ,γKVr = γ−1[KVr − µVrΣ

2
r]. Once with this form, we apply [21, Theorem 2]

to obtain the result.

Finally, next result provides the reasoning for using empirical metric distortion of Theorem 23.

Proposition 6. Under the assumptions of Theorem 1, for every i ∈ [r]

η̂i =
∥ĥi∥

∥Ẑµĥi∥
=

√
(wr

i )
∗U⊤

r FµUrwr
i

∥FµUrwr
i ∥2

, (40)

and ∣∣∣η̂i − η(ĥi)
∣∣∣ ≤ (

η(ĥi) ∧ η̂i
)
η(ĥi) η̂i ∥Ŵµ −Wµ∥. (41)

Proof. First, note that (40) follows directly from Theorem 1. Next, since for every i ∈ [r],

(η̂i)
−2 − (η(ĥi))

−2 =
⟨ĥi, (Ŵµ −Wµ)ĥi)⟩

∥ĥi∥2
≤ ∥Ŵµ −Wµ∥,

we obtain ∣∣∣η̂−1
i − (η(ĥi))

−1
∣∣∣ ≤

∣∣∣η̂−2
i − (η(ĥi))

−2
∣∣∣

(η(ĥi))−1 ∨ η̂−1
i

≤
(
η(ĥi) ∧ η̂i

)
∥Ŵµ −Wµ∥.

E Learning bounds

E.1 Main assumptions
We start by observing that due to (BK), we have that operator Zµ ∈ HS (H,Wµ

π (X )), which according
to the spectral theorem for positive self-adjoint operators, has an SVD, i.e. there exists at most
countable positive sequence (σj)j∈J , where J = {1, 2, . . . , } ⊆ N, and ortho-normal systems (zj)j∈J
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and (hj)j∈J of cl(Im(Zµ)) and Ker(Zµ)
⊥, respectively, such that Zµhj = σjzj and Z∗

µzj = σjhj ,
j ∈ J .

Now, given α ≥ 0, let us define scaled injection operator Zµ,α : H → Wµ
π (X ) as

Zµ,α =
∑
j∈J

σα
j zj ⊗ hj . (42)

Clearly, we have that Zµ = Zµ,1, while ImZµ,0 = cl(Im(Zµ)). Next, we equip Im(Zµ,α) with a norm
∥·∥H,α to build an interpolation space

[H]α =

f ∈ Im(Zµ,α) | ∥f∥2H,α =
∑
j∈J

σ−2α
j ⟨f, zj⟩2W <∞

 ,

noting that the inner product in Wµ
π (X ) is given by bilinear energy functional

⟨f, g⟩W = µ⟨f, g⟩L2
π
− ⟨f, Lg⟩L2

π
.

We remark that for α = 1 the space [H]α is just an RKHS H seen as a subspace of Wµ
π (X ).

Moreover, we have the following injections

[H]α1
↪→ [H]1 ↪→ [H]α2

↪→ [H]0 = Wµ
π (X ),

where α1 ≥ 1 ≥ α2 ≥ 0.
In addition, from (BK) we also have that RKHS H can be embedded into

Wµ,∞
π (X ) = {f ∈ Wµ

π (X ) | ∥f∥Wµ,∞
π

= ess sup
x∼π

[|f(x)|2 − f(x)[Lf ](x)] <∞}

that is, for some τ ∈ (0, 1]
[H]1 ↪→ [H]τ ↪→Wµ,∞

π (X ) ↪→ Wµ
π (X ).

Now, according to [12], if Zµ,τ,∞ : [H]τ ↪→ L∞
π (X ) denotes the injection operator, its boundedness

implies the polynomial decay of the singular values of Zµ, i.e. σ2
j (Zµ) ≲ j−1/τ , j ∈ J , and the

condition (KE) is assured.
Assumption (SD) allows one to quantify the effective dimension of H in ambient space Wµ

π (X ),
while the kernel embedding property (KE) allows one to estimate the norms of whitened feature
maps, in our generator setting vector-valued since they define rank(1+p) operators on H,

ξ(x) :=W−1/2
µ,γ wϕ(x) ∈ H1+p. (43)

This object plays a key role in deriving the learning rates for regression problems, [23] and the
following result is bounding it.

Lemma 1. Let (KE) hold for some τ ∈ [β, 1] and cτ ∈ (0,∞). Then,

Ex∼π∥ξ(x)∥2H1+p ≤

{
cββ
1−β (µγ)

−β , β < 1,

cτ (µγ)
−1 , β = 1.

and ∥ξ∥2∞ = ess sup
x∼π

∥ξ(x)∥2H1+p ≤ cτ (µγ)
−τ . (44)

Proof. W.l.o.g. set µ = 1, observing that the only change in the proof is in scaling γ > 0. We first
observe that for every j ∈ J from definition of wϕ and fact that hj(x) = [Zµhj ](x) π-a.e., it holds
that∑

i∈[1+p]

⟨wiϕ(x), hj⟩2=µ|hj(x)|2 − hj(x)[LZµhj ](x)=µ|[Zµhj ](x)|2−[Zµhj ](x)[LZµhj ](x), π-a.e.,
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implying that
∑

i∈[1+p] ⟨wiϕ(x), hj⟩2 ≤ σjµ|zj(x)|2 − zj(x)[Lzj ](x). So, for every τ > 0

∥ξ(x)∥2H1+p=
∑
j∈J

∑
i∈[1+p]

⟨W−1/2
µ,γ wiϕ(x), hj⟩

2
=

∑
j∈J

∑
i∈[1+p]

1

σ2
j + γ

⟨wiϕ(x), hj⟩2

=
∑
j∈J

∑
i∈[1+p]

σ
2(1−τ)
j

σ2
j + γ

⟨wiϕ(x), hj⟩2

σ2
j

σ2τ
j =γ−τ

∑
j∈J

∑
i∈[1+p]

(σ2
jγ

−1)1−τ

σ2
jγ

−1 + 1

⟨wiϕ(x), hj⟩2

σ2
j

σ2τ
j

≤γ−τ
∑
j∈J

µ|hj(x)|2 − hj(x)[LZµhj ](x)

σ2
j

σ2τ
j =γ−τ

∑
j∈J

(µ|zj(x)|2 − zj(x)[Lzj ](x))σ
2τ
j ,

and, due to (21), we obtain ∥ξ∥2∞ ≤ γ−τ cτ . On the other hand, we also have that

tr(Ex∼π[ξ(x)⊗ ξ(x)]) = tr(W−1/2
µ,γ WµW

−1/2
µ,γ ) = tr(W−1

µ,γWµ),

which is an effective dimension of the RKHS H in Wµ
π (X ). Therefore, following the proof of Fischer

and Steinwart [12, Lemma 11] for classical covariances in L2
π, we show that the bound on the effective

dimension is

tr(W−1
µ,γWµ) =

∑
j∈N

σ2
j

σ2
j + γ

≤

{
cββ
1−β γ

−β , β < 1,

cτ γ
−1 , β = 1.

(45)

For the case β = 1, it suffices to see that

∥zj∥W = Eµ[zj ] ≤ ∥zj∥Wµ,∞
π

= ess sup
x∼π

[|zj(x)|2 − zj(x)[LZµzj ](x)],

and, hence
tr(W−1

µ,γWµ)≤γ−1
∑
j∈N

σ2
j ∥zj∥2W=γ−1

∑
j∈N

σ2
jEµ[zj ]≤γ−1cτ .

For β < 1 we can apply the same classical reasoning as in the proof of Proposition 3 of [8].

Proposition 7. If the eigenfunctions of L belong to [H]α, then Condition (RC) is satisfied.

Proof. Note first that the resolvent (µI −L)−1 admits same eigenfunctions as the generator L,
meaning that Im((µI −L)−1Zµ) ⊆ cl(Im(Zµ,α)). But according to [47, Theorem 2.2], this last
condition is equivalent to Condition (RC).

Finally we prove here Proposition 8

Proposition 8. Given µ > 0, let H ⊆ Wµ
π (X ) be the RKHS associated to kernel k ∈ C2(X ×

X ) such that Zµ ∈ HS (H,Wµ
π (X )), and let PH be the orthogonal projector onto the closure of

Im(Zµ) ⊆ Wµ
π (X ). Then for every ε > 0 there exists a finite rank operator G : H→H such that

R(G)≤∥(I −PH)(µI −L)−1Zµ∥2HS(H,W) + ε. Consequently, when k is universal, R(G) ≤ ε.

Proof. Recall first that since Zµ ∈ HS (H,Wµ
π (X )), according to the spectral theorem for positive

self-adjoint operators, Zµ admits an SVD. Its form is provided in (42) taking α = 1.
Now, recalling that [[·]]r denotes the r-truncated SVD, i.e. [[Zµ]]r =

∑
j∈[r] σjzj ⊗ hj , since

∥Zµ − [[Zµ]]r∥2HS =
∑

j>r σ
2
j , for every δ > 0 there exists r ∈ N such that ∥Zµ − [[Zµ]]r∥HS < µδ/3.

Consequently since all the eigenvalues of L are non-positive, ∥(µI −L)−1(Zµ − [[Zµ]]r)∥HS ≤ ∥Zµ −
[[Zµ]]r∥HS/µ ≤ δ/3. Next since Im(PH(µI −L)−1Zµ) ⊆ cl(Im(Zµ)), for any j ∈ [r], there exists
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gj ∈ H s.t. ∥PH(µI −L)−1zj − Zµgj∥ ≤ δ
3r , and, denoting Br :=

∑
j∈[r] σjgj ⊗ hj we conclude

∥PH(µI −L)−1[[Zµ]]r − ZµBr∥HS ≤ δ/3. Finally we recall that the set of non-defective matrices is
dense in the space of matrices [40], implying that the set of non-defective rank-r linear operators is
dense in the space of rank-r linear operators on a Hilbert space. Therefore, there exists a non-defective
G ∈ Br(H) such that ∥G−Br∥HS < δ/(3σ1(Zµ)). So, we conclude

∥(µI −L)−1Zµ − ZµG∥HS

≤ ∥(I−PH)(µI −L)−1Zµ∥HS + ∥(µI −L)−1Zµ − [[(µI −L)−1Zµ]]r∥HS

+ ∥[[(µI −L)−1Zµ]]r − ZµBr∥HS + ∥Zµ(G−Br)∥HS

≤ ∥(I−PH)(µI −L)−1Zµ∥HS + δ.

Example 5. These three conditions depend on the process X (through its generator L) as well as the
chosen RKHS. They are satisfied, for example, by choosing for k as a Gaussian kernel. Indeed, the
sub-linearity conditions on A and B required to ensure the existence and uniqueness of the solution
process of (1) ensure that A and B are sufficiently ’nice’ to fulfil, notably, condition ((BK)).

E.2 Bounding the Bias
Recalling the error decomposition and passing to the H and L2

π-norms, we have that

E(Ĝ) ≤ ∥(µI −L)−1Zµ−ZµGµ,γ∥H→W︸ ︷︷ ︸
regularization bias

+∥W 1/2
µ (Gµ,γ−Gr

µ,γ)∥︸ ︷︷ ︸
rank reduction bias

+∥W 1/2
µ (Gr

µ,γ−Ĝr
µ,γ)∥︸ ︷︷ ︸

estimator’s variance

, (46)

and continue to prove the bound of the first term. Note that, while this proof technique is standard
for operator learning [23, 28], we present it here for the sake of completeness.

Proposition 9. Let Gµ,γ =W−1
µ,γC for γ > 0, and PH : Wµ

π (X ) → Wµ
π (X ) be the orthogonal projector

onto cl(Im(Zµ)). If the assumptions (BK), (SD) and (RC) hold, then ∥Gµ,γ∥ ≤ cαc
(α−1)/2
W for

α ∈ [1, 2], ∥Gµ,γ∥ ≤ cα (µγ)(α−1)/2 for α ∈ (0, 1], and

∥(µI −L)−1Zµ − ZµGµ,γ∥H→W ≤ cα (µγ)
α
2 + ∥(I − PH)(µI −L)−1Zµ∥H→W . (47)

Proof. Recalling that PH :=
∑

j∈J zj ⊗ zj , start by denoting the orthogonal projectors on the
subspace of k leading left singular functions of Zµ as Pk :=

∑
j∈[k] zj ⊗ zj , respectively. Next, observe

that C=Z∗
µ(µI−L)−1Zµ and Z∗

µW
−1
µ,γ=Z

∗
µ(Z

∗
µZµ + µγI)−1=(ZµZ

∗
µ + µγI)−1Zµ. Therefore,

(µI−L)−1Zµ−ZµGµ,γ=(I−ZµW
−1
µ,γZ

∗
µ)(µI−L)−1Zµ

=(I−(ZµZ
∗
µ+µγI)

−1ZµZ
∗
µ)(µI−L)−1Zµ

=µγ(ZµZ
∗
µ+µγI)

−1(µI−L)−1Zµ
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and, hence

(µI−L)−1Zµ−ZµGµ,γ=

∑
j∈J

µγ

σ2
j + µγ

zj ⊗ zj

 (µI−L)−1Zµ

=

∑
j∈J

µγ

(σ2
j + µγ)σj

zj ⊗ (Zµhj)

 (µI−L)−1Zµ

=

∑
j∈J

µγ

(σ2
j + µγ)σj

zj ⊗ hj

C.

Therefore, for every k ∈ J , ∥Pk((µI−L)−1Zµ − ZµGµ,γ)∥2H→W becomes∥∥∥∥∥∥
∑

j∈[k]

µγ

(σ2
j+µγ)σj

zj ⊗ hj

C2

∑
j∈[k]

γ

(σ2
j+µγ)σj

hj ⊗ zj

∥∥∥∥∥∥
H→W

,

which, due to (RC), implies that

∥Pk((µI−L)−1Zµ−ZµGµ,γ)∥H→W≤cα

∥∥∥∥∥∥
∑
j∈[k]

µγ σα
j

σ2
j + µγ

zj ⊗ zj

∥∥∥∥∥∥
W→W

.

On the other hand,∑
j∈[k]

µγ σα
j

σ2
j + µγ

zj ⊗ zj=γ
α
2

∑
j∈[k]

(σ2
j (µγ)

−1)
α
2

σ2
j (µγ)

−1 + 1
zj ⊗ zj ⪯ (µγ)

α
2

∑
j∈[k]

zj ⊗ zj ,

where the inequality holds due to xs ≤ x + 1 for all x ≥ 0 and s ∈ [0, 1]. Since the norm of the
projector equals one, we get ∥Pk((µI−L)−1Zµ − ZµGµ,γ)∥ ≤ cα(µγ)

α
2 .

Next, observe that

∥(PH−Pk)((µI−L)−1Zµ−ZµGµ,γ)∥2H→W=

∥∥∥∥∥∥
∑

j∈J\[k]

µ2γ2

(σ2
j+µγ)

2
(Z∗

µzj)⊗ (Z∗
µzj)

∥∥∥∥∥∥
H→H

which is bounded by ∑
j∈J\[k]

µ2γ2

(σ2
j+µγ)

2
∥Z∗

µzj∥2 ≤
∑

j∈J\[k]

µ2γ2 σ2α
j

(σ2
j+µγ)

2
≤

∑
j∈J\[k]

σ2α
j .

Using triangular inequality, for every k ∈ J we have that ∥PH((µI−L)−1Zµ−ZµGµ,γ)∥H→W is
bounded by

∥Pk((µI−L)−1Zµ−ZµGµ,γ)∥H→W+∥(PH−Pk)((µI−L)−1Zµ−ZµGµ,γ)∥H→W

and, therefore,

∥PH((µI−L)−1Zµ−ZµGµ,γ)∥H→W ≤ cα(µγ)
α
2 +

∑
j∈J\[k]

(σ2β
j )

α
β ,
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and, hence, letting k → ∞ we obtain ∥PH(µI−L)−1Zµ − ZµGµ,γ∥ ≤ cα(µγ)
α
2 . Hence, (47) follows

from triangular inequality.

To estimate the ∥Gµ,γ∥, note that (RC) implies ∥Gµ,γ∥ ≤ cα ∥W−1
µ,γW

1+α
2

µ ∥ and considering two
cases. First, if (RC) holds for some α ∈ [1, 2], then, clearly ∥Gµ,γ∥ ≤ cαc

(α−1)/2
W . On the other hand,

if α ∈ (0, 1], then

σ1+α
j

σ2
j + µγ

= (µγ)−1

(
σ2
j (µγ)

−1
) 1+α

2

σ2
j (µγ)

−1 + 1
≤ (µγ)

α−1
2 ,

and, thus, ∥Gµ,γ∥ ≤ cα γ
(α−1)/2.

Remark 2. Inequality (47) says that the regularization bias is comprised of a term depending on the
choice of γ, and on a term depending on the “alignment” between H and Im((µI −L)−1Zµ). The
term ∥(I − PH)(µI −L)−1Zµ∥ can be set to zero by two different approaches. One is choose a kernel
which in some way minimizes ∥(I − PH)(µI −L)−1Zµ∥. Another is to choose a universal kernel [38,
Chapter 4], for which Im((µI −L)−1Sπ) ⊆ cl(Im(Sπ)). While we here develop theory for universal
kernels, deep learning approaches that leverage on on our approach can be developed, which is the
direction to pursue in future.

In order to proceed with bounding the bias due to rank reduction for both considered estimators,
we first provide auxiliary result.

Proposition 10. Let B :=W
−1/2
µ,γ C, let (RC) hold for some α ∈ (0, 2], and for j ∈ N denote

λ⋆j = σ2
j ((µI−L)−1Zµ) = λj(S

∗
π(µI −L)−1Sπ) (48)

Then for every j ∈ N
λ⋆j − c2α c

α/2
W (µγ)α/2 ≤ σ2

j (B) ≤ λ⋆j . (49)

Proof. Start by observing that

B∗B = [(µI−L)−1Zµ]
∗ZµW

−1
µ,γZ

∗
µ(µI−L)−1Zµ

= [(µI−L)−1Zµ]
∗(µI−L)−1Zµ − µγ[(µI−L)−1Zµ]

∗(ZµZ
∗
µ + µγI)−1(µI−L)−1Zµ,

implies that, using [(µI−L)−1Zµ]
∗=Sπ and [(µI−L)−1Zµ]

∗(µI−L)−1Zµ=S
∗
π(µI −L)−1Sπ,

S∗
π(µI −L)−1Sπ −

∑
j∈J

µγ

σ2
j + µγ

(S∗
πzj)⊗ (S∗

πzj) = B∗B ⪯ Z∗
µZµ.

Next, similarly to the above, for every k ∈ J , we have∥∥∥∥∥∥
∑
j∈[k]

µγ

σ2
j + µγ

(S∗
πzj)⊗(S∗

πzj)

∥∥∥∥∥∥≤c2α
∥∥∥∥∥∥
∑
j∈[k]

σ2α
j

σ2
j (µγ)

−1 + 1
zj⊗zj

∥∥∥∥∥∥
=c2α

∥∥∥∥∥∥
∑
j∈[k]

(σ2
j (µγ)

−1)α/2σα
j (µγ)

α/2

σ2
j (µγ)

−1 + 1
zj⊗zj

∥∥∥∥∥∥≤c2αγα/2∥Wµ∥α/2,
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and ∥∥∥∥∥∥
∑

j∈J\[k]

γ

σ2
j + µγ

(S∗
πzj)⊗ (S∗

πzj)

∥∥∥∥∥∥ ≤ c2α
∑

j∈J\[k]

γ

σ2
j + µγ

σ2α
j ≤ c2α

∑
j∈J\[k]

(σ2β
j )α/β .

So, as before, letting k → ∞ we get the result.

As a consequence, we obtain the bound for the rank reduction bias of the RRR method.

Proposition 11 (RRR). Let (RC) hold for some α ∈ (0, 2]. Then the bias of Gr
µ,γ due to rank

reduction, recalling (48) is bounded as√
λ⋆r+1 − cα c

α/4
W (µγ)α/4 − 2 cα (µγ)(1∧α)/2 ≤ ∥Zµ(Gµ,γ −Gr

µ,γ)∥ ≤
√
λ⋆r+1. (50)

Proof. Observe that

∥Zµ(Gµ,γ −Gr
µ,γ)∥ ≤ ∥W 1/2

µ,γ (Gµ,γ −Gr
µ,γ)∥ = ∥B − [[B]]r∥ = σr+1(B) ≤ σr+1((µI−L)−1Zµ)

while

∥Zµ(Gµ,γ −Gr
µ,γ)∥ ≥ ∥W 1/2

µ,γ (Gµ,γ −Gr
µ,γ)∥ − (µγ)1/2∥Gµ,γ −Gr

µ,γ∥

≥ σr+1((µI−L)−1Zµ)− cα∥Wµ∥α/4(µγ)α/4 − 2cα(µγ)
(1∧α)/2.

E.3 Bounding the Variance
E.3.1 Concentration Inequalities

All the statistical bounds we present will relay on two versions of Bernstein inequality. The first
one is Pinelis and Sakhanenko inequality for random variables in a separable Hilbert space, see [8,
Proposition 2].

Proposition 12. Let Ai, i ∈ [n] be i.i.d copies of a random variable A in a separable Hilbert space with
norm ∥·∥. If there exist constants Λ > 0 and σ > 0 such that for every m ≥ 2 E∥A∥m ≤ 1

2m!Λm−2σ2,
then with probability at least 1− δ∥∥∥∥∥∥ 1n

∑
i∈[n]

Ai − EA

∥∥∥∥∥∥ ≤ 4
√
2√
n

log
2

δ

√
σ2 +

Λ2

n
. (51)

On the other hand, we recall that in [32], a dimension-free version of the non-commutative Bernstein
inequality for finite-dimensional symmetric matrices is proposed (see also Theorem 7.3.1 in [41] for an
easier to read and slightly improved version) as well as an extension to self-adjoint Hilbert-Schmidt
operators on a separable Hilbert spaces.

Proposition 13. Let Ai, i ∈ [n] be i.i.d copies of a Hilbert-Schmidt operator A on the separable
Hilbert space. Let ∥A∥ ≤ c almost surely, EA = 0 and let E[A2] ⪯ V for some trace class operator V .
Then with probability at least 1− δ∥∥∥∥∥∥ 1n

∑
i∈[n]

Ai

∥∥∥∥∥∥ ≤ 2c

3n
LA(δ) +

√
2∥V ∥
n

LA(δ), (52)
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where
LA(δ) = log

4

δ
+ log

tr(V )

∥V ∥
.

Proposition 14. Given δ > 0, with probability in the i.i.d. draw of (xi)ni=1 from π, it holds that

P{∥Ŵµ −Wµ∥ ≤ εn(δ)} ≥ 1− δ,

where

εn(δ) =
2cW
3n

L(δ) +
√

2∥Wµ∥
n

L(δ) and L(δ) = log
4 tr(Wµ)

δ ∥Wµ∥
. (53)

Proof. Proof follows directly from Proposition 13 applied to rank-(1+p) operators wϕ(xi)⊗ wϕ(xi)
using the fact that Wµ = E[wϕ(xi)⊗ wϕ(xi)].

Proposition 15. Let (KE) hold for τ ∈ [β, 1]. Given δ > 0, with probability in the i.i.d. draw of
(xi)

n
i=1 from π, it holds that

P
{
∥W−1/2

µ,γ (Ŵµ −Wµ)W
−1/2
µ,γ ∥ ≤ ε1n(γ, δ)

}
≥ 1− δ, (54)

where

ε1n(γ, δ) =
2cτµ

−τ

3nγτ
L1(γ, δ) +

√
2 cτµ−τ

nγτ
L1(γ, δ), (55)

and

L1(γ, δ) = ln
4

δ
+ ln

tr(W−1
µ,γWµ)

∥W−1
µ,γWµ∥

.

Moreover,

P

{
∥W 1/2

µ,γ Ŵ
−1
µ,γW

1/2
µ,γ ∥ ≤ 1

1− ε1n(γ, δ)

}
≥ 1− δ. (56)

Proof. The idea is to apply Proposition 13 for operator ξ(x)⊗ ξ(x), where ξ(x) is defined in (43).
Due to (1), we have that ∥A∥ ≤ ∥ξ∥2∞ ≤ (µγ)−τ cτ . On the other hand, we have that

Ex∼π[ξ(x)⊗ ξ(x)]2 ⪯ ∥ξ∥2∞Ex∼π[ξ(x)⊗ ξ(x)] = ∥ξ∥2∞W−1/2
µ,γ WµW

−1/2
µ,γ ,

and, hence (54) follows. To complete the proof, observe that

∥IH −W−1/2
µ,γ Ŵµ,γW

−1/2
µ,γ ∥ = ∥W−1/2

µ,γ (Wµ − Ŵµ)W
−1/2
µ,γ ∥ ≤ ε1n(γ, δ),

and, hence for ε1n(γ, δ) smaller than one we obtain

∥W 1/2
µ,γ Ŵ

−1
µ,γW

1/2
µ,γ ∥ = ∥(W−1/2

µ,γ Ŵµ,γW
−1/2
µ,γ )−1∥ ≤ 1

1− ∥IH −W
−1/2
µ,γ Ŵµ,γW

−1/2
µ,γ ∥

.

Proposition 16. Let (RC), (SD) and (KE) hold for some α ∈ (0, 2], β ∈ (0, 1] and τ ∈ [β, 1].
Given δ > 0, with probability in the i.i.d. draw of (xi)ni=1 from π, it holds

P
{
∥W−1/2

µ,γ (Ŵµ −Wµ)W
−1
µ,γC∥HS ≤ ε2n(γ, δ)

}
≥ 1− δ,

where

ε2n(γ, δ) = 4
√
2 cα cτ ln

2

δ

√
cβµ−β

nγβ
+
cτµ−τ

n2γτ

{
(µγ)−(τ−α)/2 , α ≤ τ,

c
(α−τ)/2
W , α ≥ τ.

(57)
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Proof. As before, w.l.o.g. set µ = 1. First, recall that HS (H) equipped with ∥·∥HS is separable Hilbert
space. Hence, we will apply Proposition 12 for A = ξ(x)⊗ ψ(x), where ψ(x) = CW−1

µ,γwϕ(x) ∈ H1+p.
To that end, observe that E∥A∥mHS=E [∥ξ(x)∥mH1+p ∥ψ(x)∥mH1+p ], and that

E[∥ξ(x)∥mH1+p ] ≤
1

2
m!

(
γ−τ/2 √cτ

)m−2
(√

tr(W−1
µ,γWµ)

)2

.

Recalling Lemma 1, the task is to bound ∥ψ(x)∥2H1+p=
∑

i∈[1+p] ∥CW−1
µ,γwiϕ(x)∥2H. Using (RC), we

have that

∥ψ(x)∥2H1+p≤cα
∑

i∈[1+p]

∥W (1+α)/2
µ W−1

µ,γwiϕ(x)∥2H=cα
∑
j∈J

∑
i∈[1+p]

⟨W (1+α)/2
µ W−1

µ,γwiϕ(x), hj⟩
2

H.

But, since

⟨W (1+α)/2
µ W−1

µ,γwiϕ(x), hj⟩H =
σ1+α
j

σ2
j + γ

⟨wiϕ(x), hj⟩H,

expanding as in proof of Lemma 1 and using (KE), we have that

∥ψ(x)∥2H1+p≤cα
∑
j∈J

∑
i∈[1+p]

[
σ
(2+α−τ)
j

σ2
j + γ

]2

⟨wiϕ(x), hj⟩2

σ2
j

σ2τ
j ≤

{
γ−(τ−α) , α ≤ τ,

c
(α−τ)
W , α ≥ τ.

Therefore, we can set

Λ2 = cαc
2
τ

{
γ−(2τ−α) , α ≤ τ,

c
(α−τ)
W γ−τ , α ≥ τ.

and σ2 = cαcτ cβ

{
γ−(β+τ−α) , α ≤ τ,

c
(α−τ)
W γ−β , α ≥ τ.

in Proposition 12 to obtain the bound

Proposition 17. Let (KE) hold for τ ∈ [β, 1]. Given δ > 0, with probability in the i.i.d. draw of
(xi)

n
i=1 from π, it holds

P
{
∥W−1/2

µ,γ (Ĉ − C)∥HS ≤ ε3n(γ, δ)
}
≥ 1− δ,

where

ε3n(γ, δ) =
4
√
2 cW
µ

ln
2

δ

√
cβµ−β

nγβ
+
cτµ−τ

n2γτ
. (58)

Proof. First, note that since ∥ϕ(x)∥2H ≤ µ−1∥wϕ(x)∥2H1+p and C ⪯ µ−1Wµ, (KE) and (SD) for
Wµ imply analogous assumptions for C. Hence, we can apply Proposition 13 from [23], which
using the observation that ∥W−1/2

µ,γ C
1/2
γ ∥2=∥C1/2

γ (µCγ−T )−1C
1/2
γ ∥≤µ−1∥CγC

−1
γ ∥=µ−1, completes

the proof.

Next, we develop concentration bounds of some key quantities used to build RRR empirical
estimator.
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E.3.2 Variance and Norm of KRR Estimator

Proposition 18. Let (RC), (SD) and (KE) hold for some α ∈ (0, 2], β ∈ (0, 1] and τ ∈ [β, 1].
Given δ > 0 if ε1n(γ, δ) < 1, then with probability at least 1− δ in the i.i.d. draw of (xi, yi)ni=1 from ρ

P

{
∥W 1/2

µ,γ (Ĝµ,γ −Gµ,γ)∥ ≤ ε2n(γ, δ/3) + ε3n(γ, δ/3)

1− ε1n(γ, δ/3)

}
≥ 1− δ.

Proof. Note that W 1/2
µ,γ (Ĝµ,γ −Gµ,γ) =W

1/2
µ,γ (Ŵ−1

µ,γĈ −W−1
µ,γC), and, hence,

W 1/2
µ,γ (Ĝµ,γ −Gµ,γ) =W 1/2

µ,γ Ŵ
−1
µ,γ(Ĉ − Ŵµ,γW

−1
µ,γC ± C)

=W 1/2
µ,γ Ŵ

−1
µ,γW

1/2
µ,γ

(
W−1/2

µ,γ (Ĉ − C)−W−1/2
µ,γ (Ŵµ −Wµ)W

−1
µ,γC

)
. (59)

Thus, taking the norm and using ∥C−1
γ T∥ ≤ cα σ

α−1
1 (Sπ) with the Propositions 16 and 15 we

prove the first bound.

E.3.3 Variance of Singular Values

In this section we prove concentration of singular values computed in Theorem 1, a necessary step to
derive learining rates for RRR estimator.

Proposition 19. Let (RC), (SD) and (KE) hold for some α ∈ (0, 2], β ∈ (0, 1] and τ ∈ [β, 1]. Let
B =W

−1/2
µ,γ C and B̂ = Ŵ

−1/2
µ,γ Ĉ. Given δ > 0 if ε1n(γ, δ/5) < 1, then with probability at least 1− δ

in the i.i.d. draw of (xi)ni=1 from π

|σ2
i (B̂)−σ2

i (B)|≤∥B̂∗B̂ −B∗B∥≤ε4n(γ, δ/3), (60)

where

ε4n(γ, δ/3) = (ε2n(γ, δ/3)+ε
3
n(γ, δ/3))

( 1

µ
+
ε2n(γ, δ/3)+ε

3
n(γ, δ/3)

1− ε1n(γ, δ/3)

)
. (61)

Proof. We start from the Weyl’s inequalities for the square of singular values

|σ2
i (B̂)− σ2

i (B)| ≤ ∥B̂∗B̂ −B∗B∥, i ∈ [n].

But, since,

B̂∗B̂ −B∗B = Ĉ∗Ŵ−1
µ,γĈ − C∗W−1

µ,γC = (Ĉ − C)∗Ŵ−1
µ,γĈ + C∗W−1

µ,γ(Ĉ − C) + C∗(Ŵ−1
µ,γ −W−1

µ,γ)Ĉ

denoting M =W
−1/2
µ,γ (Ĉ − C), N =W

−1/2
µ,γ (Ŵµ −Wµ) and R =W

1/2
µ,γ (Ĝµ,γ −Gµ,γ), we have

B̂∗B̂ −B∗B = B∗M +M∗C1/2
γ Ĝµ,γ −B∗NĜµ,γ = B∗M + (M∗C1/2

γ −B∗N)(Ĝµ,γ ±Gµ,γ)

= B∗M +M∗B −B∗NGµ,γ + (M∗ −B∗NW−1/2
µ,γ )R

= (Gµ,γ)
∗(Ĉ − C)+(Ĉ−C)Gµ,γ−(Gµ,γ)

∗(Ŵµ−Wµ)Gµ,γ+(M∗ + (Gµ,γ)
∗N∗)R.

Therefore, recalling that, due to (59), R =W
1/2
µ,γ Ŵ−1

µ,γW
1/2
µ,γ (M −NGµ,γ), we conclude

B̂∗B̂ −B∗B =(Gµ,γ)
∗(Ĉ−C)+(Ĉ−C)Gµ,γ−(Gµ,γ)

∗(Ŵµ −Wµ)Gµ,γ

+ (M −NGµ,γ)
∗W 1/2

µ,γ Ŵ
−1
µ,γW

1/2
µ,γ (M −NGµ,γ). (62)

Next, observe that
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• ∥(Ĉ−C)Gµ,γ∥≤∥(Ĉ−C)W 1/2
µ,γ ∥∥W 1/2

µ,γ C∥≤µ−1∥W 1/2
µ,γ (Ĉ−C)∥ is bounded by Proposition 17

• ∥M−NGµ,γ∥ ≤ ∥W−1/2
µ,γ (Ĉ−C)∥+ ∥W−1/2

µ,γ (Ŵµ−Wµ)W
−1
µ,γC∥ is bounded by Propositions 16

and 17,

• ∥G∗
µ,γ(Ŵµ−Wµ)Gµ,γ∥≤µ−1∥W−1/2

µ,γ (Ŵµ−Wµ)W
−1
µ,γC∥ is bounded by Proposition 16.

Therefore, using additionally Proposition 15 result follows.

Remark that to bound singular values we can rely on the fact

|σi(B̂)− σi(B)| = |σ2
i (B̂)− σ2

i (B)|
σi(B̂) + σi(B)

≤ |σ2
i (B̂)− σ2

i (B)|
σi(B̂) ∨ σi(B)

.

E.3.4 Variance of RRR Estimator

Recalling the notation B :=W
−1/2
µ,γ C and B̂ := Ŵ

−1/2
µ,γ Ĉ, let denote Pr and P̂r denote the orthogonal

projector onto the subspace of leading r right singular vectors of B and B̂, respectively. Then we
have [[B]]r = BPr and [[B̂]]r = B̂P̂r, and, hence Gr

µ,γ = Gµ,γPr and Ĝr
µ,γ = Ĝµ,γP̂r.

Proposition 20. Let (RC), (SD) and (KE) hold for some α ∈ (0, 2], β ∈ (0, 1] and τ ∈ [β, 1].
Given δ > 0 and γ > 0, if ε1n(γ, δ) < 1, then with probability at least 1− δ in the i.i.d. draw of (xi)ni=1

from π,

∥Zµ(G
r
µ,γ − Ĝr

µ,γ)∥ ≤ ε2n(γ, δ/3) + ε3n(γ, δ/3)

1− ε1n(γ, δ/3)
+

σ1(B)

σ2
r(B)− σ2

r+1(B)
ε4n(γ, δ/3). (63)

Proof. Start by observing that ∥Zµ(G
r
µ,γ − Ĝr

µ,γ)∥ ≤ ∥W 1/2
µ,γ (Gr

µ,γ − Ĝr
µ,γ)∥ and

W 1/2
µ,γ (G

r
µ,γ − Ĝr

µ,γ) =(W 1/2
µ,γ Ŵ

−1
µ,γW

1/2
µ,γ )·(

W−1/2
µ,γ (Ŵµ −Wµ)Gµ,γPr +W−1/2

µ,γ (Ĉ − C)P̂r +B(P̂r − Pr)
)
.

Using that the norm of orthogonal projector P̂ is bounded by one and applying Propositions 15 and
16 together with Propositions 4 and 19 completes the proof.

E.4 Proof of Theorem 2
E.4.1 Operator Norm Error Bounds

Summarising previous sections, in order to prove Theorem 2, we just need to analyse the bounds ε1n,
ε2n and ε3n. Not that we fix the hyperparameter µ > 0, which affects the constants, but need to chose
the decay rate of Tikhonov regularization parameter γ > 0 to obtain balancing of bias and variance
in the generalization bounds.

Let us first assume regime α ≥ τ , which covers "well-specified learning" when non-trivial
eigenfunctions of L are inside H. Since α ≥ τ and β ≤ τ , we have that for large enough n one has

ε1n(γ, δ) ≲
n−1/2

γτ/2
ln δ−1 and εin(γ, δ) ≲

(
n−1/2

γβ/2
∨ n−1

γτ/2

)
ln δ−1, i = 2, 3, 4. (64)
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But, since the bias term is ≲ γα/2 and the slow term from Proposition 20 is 1/
√
nγβ , we can set

γn = n−
1

α+β and obtain

γα/2n =
n−1/2

γ
β/2
n

= n−
α

2(α+β) , and
n−1/2

γ
τ/2
n

= n−
α+β−τ
2(α+β) ,

which, due to α ≥ τ , implies

lim
n→∞

ε1n(γn, δ/3) = lim
n→∞

ε2n(γn, δ/3) = lim
n→∞

ε3n(γ, δ/3) = lim
n→∞

ε4n(γ, δ/3) = 0.

Therefore, for this choice of regularization parameter Equation (46) with Propositions 9, 11 and
20 assure that

E(Ĝr
µ,γ)− σr+1(B) ≤ E(Ĝr

µ,γ)−
√
λ⋆r+1 ≲ n−

α
2(α+β) . (65)

Now, let us consider the more difficult to learn case α < τ when eignefunctions of the generator
have only weaker norms than the RKHS one. Then, for large enough n bounds in (64) hold for i = 3,
but

ε2n(γ, δ) ∨ ε4n(γ, δ) ≲
(

n−1/2

γ(β+τ−α)/2
∨ n−1

γ(2τ−α)/2

)
ln δ−1. (66)

Then, by balancing the slow terms with bias γα/2, we set γn = n−
1

τ+β and obtain

γα/2n =
n−1/2

γ
(τ+β−α)/2
n

= n−
α

2(τ+β) , and
n−1/2

γ
τ/2
n

= n−
β

2(τ+β) ,

which, since τ ≥ β, implies

lim
n→∞

ε1n(γn, δ/3) = lim
n→∞

ε2n(γn, δ/3) = lim
n→∞

ε3n(γ, δ/3) = lim
n→∞

ε4n(γ, δ/3) = 0,

and we obtain
E(Ĝr

µ,γ)− σr+1(B) ≤ E(Ĝr
µ,γ)− λ⋆r+1 ≲ n−

α
2(τ+β) . (67)

Therefore, denoting

γn ≍

{
n−

1
τ+β , α ≤ τ,

n−
1

α+β , α ≥ τ,
and ε⋆n =

{
n−

α
2(τ+β) , α ≤ τ,

n−
α

2(α+β) , α ≥ τ.
(68)

as a consequence the operator norm error bound in Theorem 2 holds, and we have the following
result on the estimation of singular values of (µI−L)−1Zµ, that is λ⋆i s by singular values of B̂, that
is σ̂is from Theorem 1.

Proposition 21. Let (RC), (SD) and (KE) hold for some α ∈ (0, 2] and β ∈ (0, 1] and τ ∈ [β, 1],
and define (68). Then, there exists a constant c > 0 such that for every given δ ∈ (0, 1), large enough
n > r and with probability at least 1− δ in the i.i.d. draw of (xi)ni=1 from π for all i ∈ [r]

|σ̂2
i − λ⋆i | ≲ ε⋆n ln δ

−1 (69)

Proof. The proof is direct consequence of Propositions 10 and 19 using (64)-(66).
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E.5 Spectral Learning Rates
Finally, we conclude the proof of Theorem 2 showing the concentration of eigenpairs. Recalling
Proposition 2, we need to combine the operator norm bound and metric distortion. Since, as
indicated in Proposition 9, the population KRR estimator can grow in the operator norm whenever
the regularity condition is violated α < 1, leading to possibly unbounded metric distortions w.r.t.
increasing sample size, we restrict to the case α ≥ 1.

First, combining (65)-(67) and Proposition 21, we have that

E(Ĝr
µ,γ) ≤ (σ̂r+1 ∧ λ⋆r+1) + c ε⋆n ln δ

−1.

On the other hand, from Propositions 40 and 14, we have that with failure probability δ

(η̂i)
2 − (η(ĥi))

−2 ≤ εn(δ),

which, if we can prove that η̂i and η(ĥi) are bounded, concludes the proof for empirical spectral
biases. To that end, recall that, c.f. Proposition 5, for RRR estimator we have

η(ĥi) ≤
∥Ĝr

µ,γ∥
σr(ZµĜr

µ,γ)
≤ ∥Ĝµ,γ∥
σr((µI −L)−1Zµ)− E(Ĝr

µ,γ)
≤ ∥Gµ,γ∥+ ∥Ĝµ,γ −Gµ,γ∥√

λ⋆r − E(Ĝr
µ,γ)

≤ ∥Gµ,γ∥+ (µγ)−1/2∥W 1/2
µ,γ (Ĝµ,γ −Gµ,γ)∥√

λ⋆r − E(Ĝr
µ,γ)

≲
1 + n−1/2γ−(β+1)/2√
λ⋆r − n−1/2γ−β/2

=
1 + n−

α−1
α+β√

λ⋆r − n−
α

α+β

where in the last inequality we have applied Propositions 9 and 18. Thus, using Proposition 40, the
proof of Theorem 2 is concluded.

E.6 Discussion of the learning rates
In this section, we discuss the learning rates reported in Table ??. Notice that although the papers
we compare to employ a different risk, our comparison remains meaningful because our energy-based
risk measure provides an upper bound on their risk measure. This ensures that any upper bound
derived with our risk also applies to theirs.

• The learning bound for IG obtained is [1] covers only pure diffusion processes (Laplacian
with constant weights). Their learning rate is non-parametric and depends on the state space
dimension d in a counter-intuitive way O(n−

d
2(d+1) ) in [1, Theorem 3], highlighting a potential

limitation of their approach. In comparison, when we specify our RRR method with an RBF
kernel (i.e. β = 0), we achieve a much faster parametric learning rate O(n−1/2).

• The recent work of [36] covers Langevin processes via a kernel approach, but they derive a
sub-optimal learning bound for IG of order O(n−1/4) in [36, Theorem 4.4]. For Langevin
diffusions, our RRR method with an RBF kernel achieves a faster parametric rate O(n−1/2).
Moreover, the computational complexity of their method is O(n3d3), which limits its application
in realistic molecular dynamics scenarios.

• As for [15, Theorem 7], although they considered general diffusions, they only derived a
suboptimal bound for the variance component of their risk, with an explicit dependence on the
dimension of the state space.

Finally, we note that the mentioned works lack learning guarantees for eigenfunctions and
eigenvalues. Notably, their methods are prone to the spurious eigenvalue phenomenon, requiring
expert manual review of each eigenpair to select plausible ones.
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Figure 2: Results of the RRR given by our method for two different length scales (blue and red)
compared with ground truth (black) for the Langevin dynamics driven by a four well one dimensional
potential.

F Experiments
Four well potential For this experiment, we used an in-house code to simulate the system. The
equations of motions were discretized using the Euler-Maruyama scheme with a timestep of 10−4.
RRR was fitted using 1000 points, µ = 5 and γ = 10−5. The length scales used were 0.05 and 0.5.
This experiment was reproduces 100 times leading to very small change in the estimation of the
eigenfunctions. Here we report the result of one of them.

Muller Brown For this experiment, we used an in-house code to simulate the system. The
equations of motions were discretized using the Euler-Maruyama scheme with a timestep of 10−3

and a temperature of 2 (arbitrary units). RRR was fitted using 2000 points, µ = 1 and γ = 10−5.
The length scale used was 0.6.

36



Figure 3: Results of the RRR given by our method for two different length scales (blue and red)
compared with ground truth for the Langevin dynamics driven by a four well one dimensional
potential.
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notation meaning notation meaning

∧ minimum ∨ maximum
[[ · ]]r r-truncated SVD of an operator I identity operator

HS (H,G) space of Hilbert-Schmidt operators H → G Br(H) set of rank-r Hilbert-Schmidt operators on H
∥A∥ operator norm of an operator A ∥A∥HS Hilbert-Schmidt norm of operator A
σi(·) i-th singular value of an operator λi(·) i-th eigenvalue of an operator
X state space of the Markov process (Xt)t≥0 time-homogeneous Markov process
p transition kernel of the Markov process π invariant measure of the Markov process
a drift of the Itô process b diffusion of the Itô process

L2
π(X ) L2 space of functions on X w.r.t. measure π A Transfer operator on L2

π(X )
W1,2

π (X ) Sobolev space w.r.t. measure π on X L Generator of the semigroup on W1,2
π (X )

s Dirichlet form diffusion B Dirichlet form operator on W1,2
π (X )

µ shift parameter Wµ
π (X ) regularized energy space

k(x, y) kernel ϕ canonical feature map
H reproducing kernel Hilbert space Sπ canonical injection H ↪→ L2

π(X )
ℓϕ generator embedding Zµ canonical injection H ↪→ Wµ

π (X )
Dv v-directional derivative D derivative
Dvϕ embedding of the v-directional derivative Dϕ derivative embedding
wkϕ k-th component of Dirichlet operator embedding wϕ Dirichlet operator embedding
σj j-th singular value of Zµ J countable index set of singular values of Zµ

zj j-th left singular function of Zµ hj j-th right singular function of Zµ

1 function in L2
π(X ) with the constant output 1 γ regularization parameter

R true risk E operator norm error
EHS excess risk, i.e. HS norm error R0 irreducible risk
Dn dataset (xi)i∈[n] R̂ empirical risk
Ŝ sampling operator w.r.t. L2

π(X ) Ẑµ sampling operator w.r.t. Wµ
π (X )

C covariance operator w.r.t. L2
π(X ) Ĉ empirical covariance operator w.r.t. L2

π(X )

Cγ regularized covariance operator w.r.t. L2
π(X ) Ĉγ regularized empirical covariance operator w.r.t. L2

π(X )

Wµ covariance operator w.r.t. Wµ
π (X ) Ŵµ empirical covariance operator w.r.t. Wµ

π (X )

Wµ,γ regularized covariance operator w.r.t. Wµ
π (X ) Ŵµ,γ regularized empirical covariance operator w.r.t. Wµ

π (X )

T derivative-covariance operator T̂ empirical derivative-covariance operator
K kernel Gram matrix w.r.t. L2

π(X ) Kγ regularized kernel Gram matrix w.r.t. L2
π(X )

Fµ kernel Gram matrix w.r.t. Wµ
π (X ) Fµ,γ regularized kernel Gram matrix w.r.t. Wµ

π (X )
M derivative-derivative kernel Gram matrix N feature-derivative kernel Gram matrix
G population estimator of (µI −L)−1 on H Ĝ empirical estimator of (µI −L)−1 on H
Gµ,γ population KRR estimator Ĝµ,γ empirical KRR estimator
Gr

µ,γ population RRR estimator Ĝr
µ,γ empirical RRR estimator

P spectral projector P̂ empirical spectral projector
η metric distortion η̂ empirical metric distortion
λ generator eigenvalue λ̂ eigenvalue of the empirical estimator
f generator eigenfunction in L2

π(X ) f̂ empirical eigenfunction in L2
π(X )

ĥ right empirical eigenfunction ĝ left empirical eigenfunction
cW boundness constant PH orthogonal projector in Wµ

π (X ) onto Im(Zµ)
α regularity parameter cα regularity constant
β spectral decay parameter cβ spectral decay constant
τ embedding parameter cτ embedding constant

Table 1: Summary of used notations.
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