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Abstract

Fetal MRI offers a broad spectrum of applications, including the investigation
of fetal brain development and facilitation of early diagnosis. However, image
quality is often compromised by motion artifacts arising from both maternal
and fetal movement. To mitigate these artifacts, fetal MRI typically employs
ultrafast acquisition sequences. This results in the acquisition of three (or
more) orthogonal stacks along different spatial axes. Nonetheless, inter-slice
motion can still occur. If left uncorrected, such motion can introduce arti-
facts in the reconstructed 3D volume. Existing motion-correction approaches
often rely on a two-step iterative process involving registration followed by
reconstruction. They tend to detect and remove a large number of misaligned
slices, resulting in poor reconstruction quality. This paper proposes a novel
reconstruction-independent method for motion correction. Our approach
benefits from the intersection of orthogonal slices and estimates motion for
each slice by minimizing the difference between the intensity profiles along
their intersections. To address potential misalignments, we present an inno-
vative machine learning-based classifier for identifying misaligned slices. The
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parameters of theses slices are then corrected using a multistart optimization
approach. Quantitative evaluation on simulated datasets demonstrates very
low registration errors. Qualitative analysis on real data further highlights
the effectiveness of our approach compared to state-of-the-art methods.

Keywords: Fetal Brain, Registration, Magnetic Resonance Imaging

1. Introduction

Magnetic Resonance Imaging (MRI) has been used to study fetal brain
development since the 1980s (Huisman et al. (2002)). However, motion from
both the mother and the fetus remains a significant challenge, limiting the
quality and interpretability of the acquired images. In the context of an-
tenatal imaging, the fetal brain is typically represented as three stacks of
2D slices, each acquired along one of the three orthogonal axes to provide
radiologists with a 3D “vision” of the brain. Fig. 1 illustrates these stacks,
acquired in the axial (first row), coronal (second row), and sagittal (third
row) directions. Notably, resolution is highest in the acquisition direction
and lower in the orthogonal directions.

The acquisition time of a slice is generally sufficiently short (less than
1 second) to “freeze” the motion. However, motion causes slice misalign-
ments within the stack, resulting in geometric distortions. These distortions
prevent the 2D slices from accurately representing the 3D geometry of the
brain. Thus, it is necessary to estimate the motion retrospectively in or-
der to reconstruct a 3D image of the fetal brain (Studholme and Rousseau
(2014)). Applications of fetal MRI include segmenting the fetal brain (Uus
et al. (2023)), building atlases (Gholipour et al. (2017)), biometric measure-
ment (Ciceri et al. (2023)) and understanding normal development (Saleem
(2013)).

Retrospective motion estimation is often associated with the reconstruc-
tion of a high-resolution 3D volume. In the Slice-to-Volume Reconstruction
(SVR) method developed in Rousseau et al. (2005, 2006) and Jiang et al.
(2007), the authors proposed to iteratively estimate the motion of individual
slices by registering them to a high-resolution reference volume. During the
first iteration, the reference volume corresponds to the reconstruction of one
of the acquired stacks. In subsequent iterations, it corresponds to the volume
reconstructed from the registered slices. The SVR reconstruction framework
has been enhanced by employing a Maximum A Posteriori (MAP) Super-
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Axial Coronal Sagittal

Figure 1: Triplanar visualization of three fetal brain stacks, each acquired along one of
the three orthogonal directions (Axial, Coronal, and Sagittal), with each stack presented
from top to bottom.

Resolution approach, and by replacing the L2 norm with the more robust
norms (Huber and Total-Variation for instance) Gholipour et al. (2010); ? .
Kuklisova-Murgasova et al. (2012) and Ebner et al. (2020) proposed a com-
plete framework for SVR in fetal MRI. Specifically, Kuklisova-Murgasova
et al. (2012) incorporated bias field estimation and outlier management dur-
ing the 3D reconstruction process, while Ebner et al. (2020) included brain
masking, bias field correction, and outlier detection. However, a major limi-
tation of the aforementioned methods, compared to more recent deep learning
approaches, is their inability to effectively correct large motion distortions
and their high computational cost. The implementation of an algorithm can,
however, have a significant impact on execution time. For instance, Kainz
et al. (2015) optimized the work of Kuklisova-Murgasova et al. (2012) by
proposing a faster implementation using a GPU, which significantly reduced
computation time.

Recently, the development of deep learning architectures has facilitated
the emergence of new methods to improve the robustness of fetal motion
estimation, specifically addressing the challenge of large motion. To tackle
this issue, a mapping from 2D image slices to a 3D canonical atlas space
can be learned using either Transformers Xu et al. (2022) or Convolutional

3



Neural Networks (CNNs) Hou et al. (2018). In Shi et al. (2022), the motion
estimation step relies on an attention-based feature affinity fusion method
that learns the correspondence between features extracted from 2D slices and
those extracted from a reference volume. As in SVR, the motion correction
and reconstruction steps are repeated iteratively in the deep learning-based
methods Hou et al. (2018); Shi et al. (2022); Xu et al. (2023); Lv et al. (2024)
(since all motion estimation algorithms require a 3D reference image).

In all the aforementioned methods, whether based on deep learning or
not, motion estimation is closely tied to the reconstruction process. As a
result, errors in the reconstructed volume can lead to inaccuracies in motion
estimation. To address this limitation, Kim et al. (2009) proposed a method
that corrects motion between slices without requiring a reference 3D volume.
This approach is based on the principle that the intensity profiles along the
intersection lines of slices from orthogonal stacks should be similar if they are
perfectly aligned. In Ma et al. (2024), the motion correction network is based
on a multi-scale feature fusion model, where features are extracted solely
from 2D slices. Consequently, this approach also overcomes the limitation of
requiring a reference 3D volume for motion correction.

In addition, fetal brain MRI reconstruction requires careful handling of
outliers, which can include misaligned slices or low-quality slices since they
can introduce artifacts into the reconstructed 3D volume. Current methods
address this challenge in two main ways: outlier removal through iterative
thresholding techniques (Ebner et al. (2020); Kim et al. (2009)) and mini-
mizing the influence of outliers within the reconstruction process (Kuklisova-
Murgasova et al. (2012); Gholipour et al. (2010); Xu et al. (2023)). In Ebner
et al. (2020), a similarity metric is computed between each slice and the recon-
structed volume. Slices with a similarity value below a predefined threshold
are identified as outliers and excluded. A similar strategy is used by Ma
et al. (2024). In Kim et al. (2009), registration is performed using a loss
function that compares the intensity profiles along the intersection lines of
slices. From this loss, a Mean Squared Error (MSE) is derived for each slice.
If the MSE of a slice exceeds a threshold, the slice is considered an outlier.
Xu et al. (2023) used Monte Carlo dropout during inference to provide a
confidence score for each slice, which is used in outlier rejection. Gholipour
et al. (2010) proposed replacing the L2 norm with the Huber norm in the cost
function during reconstruction, improving robustness to outliers by reducing
their weight in the final reconstruction. Robust statistics are also used in
Kuklisova-Murgasova et al. (2012) during reconstruction.
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Note that the proposed state-of-the-art approach may lose significant in-
formation by treating misaligned slices as corrupted and not considering their
potential for inclusion in the reconstruction after better alignment.

1.1. Contribution

This paper introduces ROSI (Registration based on Orthogonal Slices In-
tersection), a novel method for fetal MRI motion correction that operates
independently of the reconstruction process. Inspired by Kim et al. (2009),
ROSI estimates slice motion by minimizing intensity differences along the
intersection lines between slices from orthogonal stacks. This paper pro-
vides a detailed description of the intersection calculation and cost func-
tion, facilitating the reproducibility of the method. The code is available at:
https://github.com/rousseau/pyrecon. Moreover, this work proposes train-
ing a machine learning classifier to identify misaligned slices with greater
precision than traditional threshold-based methods. Our outlier detection
strategy addresses a key challenge in fetal MRI motion correction: balancing
outlier removal with information preservation. This work builds upon our
previous research (Mercier et al. (2023)) and introduces a multistart strat-
egy for realigning misaligned slices, enabling the correction and reintegration
of useful information while removing truly corrupted slices prior to recon-
struction.

To summarize, the contributions of this work are: 1) a motion correction
method for fetal brain MRI based on the intersection of orthogonal slices, 2)
a detailed description of the intersection calculation and cost function, 3) a
machine learning classifier for detecting misaligned slices, and 4) a multistart
strategy for the correction of misaligned slices.

The manuscript is structured as follows: Sec. 2 introduces the proposed
method, with a general overview provided in Sec.2.1. Sec. 2.2 describes the
modeling of the transformation matrix to be optimized for each slice, while
Sec. 2.3 presents the loss function, and Sec. 2.4 details its optimization. Sec.
2.5 outlines the supervised learning approach for detecting misaligned slices,
and Sec. 2.6 introduces the multistart approach for correcting misalignments.
Sec. 3 covers the data and evaluation procedures. Finally, Sec. 4 compares
the results obtained with state-of-the-art methods, using both simulated and
real data.
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2. Method

2.1. Description of the ROSI algorithm

The proposed method is based on the principle that slices originating
from orthogonal stacks (e.g., axial, coronal, and sagittal views) should have
consistent intensity values at their intersection points when perfectly aligned.
This principle is illustrated in Fig. 2: misaligned slices (a) produce differing
intensity profiles along their intersection (b), whereas perfectly aligned slices
(c) result in consistent profiles.

(a) (b)

(c) (d)

Figure 2: Visualization of the intersection between two orthogonal slices and their corre-
sponding profiles. Two misaligned slices (a) have distinct profiles along their intersection
(b) whereas two well-registered slices (c) display similar profiles (d).

A summary of the proposed algorithm is illustrated in Fig. 3. The first
step (Fig. 3-1) involves aligning slices from orthogonal stacks by minimizing
the loss described in Sec. 2.3 according to the parameters described in Sec.
2.2. However, the optimization may get trapped in local minima, leading
to suboptimal alignment. To address this problem, the second step (Fig.
3-2) involves using a classifier to detect potentially misaligned slices (Sec.
2.5), followed by a multi-start procedure (Sec. 2.6) to improve the estima-
tion of their positions. In the final step, an additional optimization stage is
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performed, focusing only on slices that the classifier has identified as well-
registered. This ensures that misaligned slices do not impact the alignment
of the correctly registered slices.

INPUTS :

END

Stacks of low-resolution 2D slices

OPTIMISATION OPTIMISATION

1
3

OUTLIER DETECTION AND CORRECTION OF
MISALIGNED SLICES

new
estimated
position

outlier

2

Figure 3: Overview of the proposed algorithm. The input consists of multiple orthogonal
stacks, each containing slices. The algorithm proceeds in three stages: (1) alignment of
slices by minimizing the loss function, (2) detection and correction of potentially misaligned
slices using a classifier and multi-start optimization, and (3) final optimization applied only
to well-registered slices to ensure precise alignment.

2.2. Motion Representation

To achieve optimal alignment, ROSI estimates a transformation matrix,
Mk, for each slice k using homogeneous coordinates, defined as:

Mk = T(ck)M(θk, tk)T(−ck)Rf(k)Rk,2d�3d. (1)

Mk is the composition of five transformations: Rk,2d�3d is a rigid trans-
formation that maps 2D coordinates of slice k to the corresponding 3D
voxel coordinates within image If(k) (f(k) denotes the index of the stack
to which slice k belongs, while If (k) refers to the stack itself (compris-
ing all its slices)). Rf(k) converts these voxel coordinates into the world
reference system (millimeters). The objective is to estimate the matrix
M(θk, tk), which encodes the rigid transformation for each slice k. This
matrix incorporates six parameters: three for rotation angles (θk) using the
Euler representation (Pio (1966)) and three for translation (tk) in millime-

ters: M(θk, tk) =

[
Rk tk
0[1×3] 1

]
. To achieve rotations around a specific point

with coordinates ck, a translation of −ck is applied (denoted as T(−ck)).
Next, the transformation M(θk, tk) is applied. Finally, the inverse transla-
tion T(ck) is performed. Note that ck is equal to Rf(k)Rk,2d�3dgk, where gk
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represents the 2-D coordinates of the centroid of the mask associated with
slice k (brain masks have been automatically segmented in the images Ebner
et al. (2018), associating each k with a corresponding mask denoted as mk).
This approach ensures that the rotation is estimated at the center of the
region of interest.

2.3. Cost Function

The registration criterion for aligning images relies on the principle that
well-registered slices should have similar intensity profiles along their inter-
section. To achieve this, the loss function computes the intensity profiles for
all pairs of slices k and k′ from orthogonal stacks along their intersections.

For a given k, k′, this computation involves four main steps, detailed in
Appendix A:

1. Deriving the plane equation of slice k in the world coordinate system
(Appendix A.1)

2. Deriving the equation of the intersection line of the planes of slices k
and k′ in the world coordinate system (Appendix A.2)

3. Deriving the equations of the intersection line of the planes of slices k
and k′ in the 2D coordinate system of slice k and k′ (Appendix A.3)

4. Generating corresponding points along the intersection line (Appendix
A.4)

As a result of these steps, for two orthogonal slices k and k′, we obtain a
set of points in slice k, denoted as V = {v1, v2, . . . , vLk,k′

}, along with their
corresponding points in slice k′: V ′ = {v′1, v′2, . . . , v′Lk,k′

}, such that:

Mk(vi) = Mk′(v
′
i).

Assuming that, in the case of accurate slice registration, the intensity of
slice k at point vi (denoted as sk(vi)) to match the intensity of slice k′ at
point v′i (denoted sk′(v

′
i)), we propose a cost function based on the following

quantities:

S2(k, k′) =

Lk,k′∑
i=1

(sk(vi)− sk′(v
′
i))

2
1mk(vi)=1 or mk′ (v

′
i)=1, (2)

N(k, k′) =

Lk,k′∑
i=1

1mk(vi)=1 or mk′ (v
′
i)=1, (3)
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where 1E is an indicator function that equals 1 if E is true and 0 otherwise,
and mk is the mask associated with slice k. It identifies the regions of interest
within the slice, where mk(vi) = 1 indicates that the point vi belongs to the
regions of interest in slice k, and mk(vi) = 0 otherwise.

Moreover, as explained in Appendix A, we ensure that the set of points
V (resp. V ′) sample all structures of interest that lie along the portion of
the intersection line within slice k (resp. k′). Consequently, if the slices are
misaligned, vi (or v

′
i) may not fall within the support of slice k (or slice k′).

To address this issue, we assume that the slices have a value of zero outside
their respective supports. Finally, the intensity values sk(vi) and sk′(v

′
i) are

obtained by linear interpolation whereas mk(vi) and mk′(v
′
i) are obtained by

nearest neighbour interpolation.
The same steps are repeated for each possible pair of slices k, k′. The loss

function to be minimized writes:∑
k,k′ ; k>k′ S

2(k, k′)∑
k,k′ ; k>k′ N(k, k′)

. (4)

2.4. Optimization

The criterion is optimized using an alternating block optimization method,
where parameters associated with slice k (Θk and tk) are updated while pa-
rameters associated with other slices remain unchanged. The computation
of the criterion in Eq. (4) benefits from the fact that, for each update, many
terms in the loss function do not need to be recalculated. Specifically, when
optimizing slice kopt, the values of S2(k, k′) and N(k, k′) do not need to be
recalculated if k ̸= kopt and k′ ̸= kopt, since the parameters for slices other
than kopt remain fixed: only the terms involving kopt and its intersections
with other slices need to be computed.

The parameter optimization for a slice is performed using the Nelder-
Mead method, which is a direct-search method using a polytope, called a
simplex, to find local solutions. The simplex is composed of n + 1 vertexes,
in n dimensions, and undergoes four different operations: reflection, expan-
sion, contraction and shrinking to reach the local minima (Singer and Nelder
(2009)). Two hyperparameters control the Nelder-Mead approach: the ini-
tial simplex size (denoted as ds) as well as the final simplex size (denoted as
fs) that serves as the stopping criterion for the Nelder-Mead method.

The algorithm (Alg. 1 in Appendix B) proceeds iteratively. In each
iteration, the algorithm updates the parameters of each slice sequentially.
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If, during an iteration, the changes in the parameters of a slice fall below
a defined threshold th, this indicates local convergence for that slice, and it
is no longer optimized in subsequent iterations. The algorithm repeats this
process until all slices have reached local convergence. If the slices achieve
local convergence at different iterations, the optimization process restarts for
all slices using the same hyperparameters. However, if all slices achieve local
convergence within the same iteration (global convergence), the optimization
also continues, but with reduced hyperparameters to allow for finer adjust-
ments. The simplex sizes ds and fs, as well as th, are reduced three times
throughout the optimization process. This gradual reduction allows for more
precise refinement in the later stages of the optimization, ensuring that the
algorithm progresses from broad exploration to fine-tuning. The algorithm
terminates when global convergence is reached with the final, reduced hy-
perparameters. Initially, we choose ds = 4, fs = 0.25 and th = 2 at the
first iteration. We conducted experiments using different values for ds, fs,
and th, and observed that their choice does not significantly impact the final
result across a wide range of values.

2.5. Supervised learning approach for misaligned slice detection

We propose a supervised learning strategy to detect misaligned slices.
A random forest classifier is selected for its demonstrated effectiveness in
outlier detection tasks, outperforming approaches like Support Vector Ma-
chines (SVMs) (Klapwijk et al. (2019)). To create the training and testing
datasets, we simulate 12 acquisitions with varying levels of motion (medium,
large, and very large motion), as described in Sec. 3.1. These simulated
datasets are registered using the alternating block optimization procedure
(Alg. 1). For each slice, it is necessary to determine whether the slice is
properly registered. To achieve this, we compute a metric called the mean
target registration error (TRE) for each slice k. This metric represents the
average distance (in millimeters, within the world coordinate system) be-
tween the points of slice k and the corresponding points from other slices
when perfectly aligned. Details of the TRE computation are provided in
Sec. 3.2. Since poorly registered slices can skew the mean TRE of other
slices, we implement an iterative approach to robustly identify misaligned
slices. First, the mean TRE is calculated for all slices. The slice with the
highest mean TRE is identified, and if its value exceeds 1.5 mm, it is classi-
fied as poorly registered and excluded from the next computation. The mean
TRE is then recalculated for the remaining slices. This process is repeated
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iteratively until all remaining slices have a mean TRE below 1.5 mm. These
slices are considered well-registered. The dataset is randomly divided into
two subsets, with 50% of the slices allocated for training and 50% for testing.

We propose to use three features to detect misaligned slices. The first
feature leverages intensity information from the images, while the other two
exploit the correspondence between structures of interest (e.g., brain mask
segmentation).

For the first feature, we expect the term

avgk′

(
S2(k, k′)

N(k, k′)

)
(5)

to be small when slice k is well-registered, and large otherwise (avg denotes
the averaging operator). However, this formulation has two major limita-
tions:

1. The presence of misaligned slices k′ can significantly increase the term
of Eq. 5, even when slice k itself is well-registered. Consequently,
poorly registered slices k′ may inflate the term, increasing the risk
that k is incorrectly identified as misaligned. To address this issue, we
replace the average operator with the median operator, which is less
sensitive to outliers.

2. Noise can act as a confounding factor; even if slice k is well-registered,
high noise levels may inflate the feature value. Consequently, we pro-
pose to normalize the term according to the noise that corrupts the
data.

We propose finally the following feature, denoted F1(k):

F1(k) = medk′

(
1

σ2
f(k) + σ2

f(k′)

S2(k, k′)

N(k, k′)

)
,

where σf(k) is the standard deviation of the noise corrupting the image If(k).
The noise standard deviation σf(k) is estimated using the method proposed
in Immerkaer (1996), applied within the region defined by the brain mask.

The second feature evaluates the alignment of the masks and is obtained
by calculating a median Dice index for each slice k. In segmentation tasks,
the Dice index between two sets X and Y is defined as 2|X ∩Y |/(|X|+ |Y |),
where |X| represents the cardinality of X. Therefore, F2(k) is defined as :
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F2(k) = medk′

(
2M(k, k′)

P (k, k′) +Q(k, k′)

)
(6)

where

M(k, k′) =

Lk,k′∑
i=1

1
mk(vi)=1 and mk′ (v

′
i)=1

, (7)

and where

P (k, k′) =

Lk,k′∑
i=1

1mk(vi)=1, Q(k, k′) =

Lk,k′∑
i=1

1mk′ (v
′
i)=1. (8)

The Dice index can be influenced by the volume of the structures of
interest, making it less reliable for slices near the edge of the brain, where
the masked volume is smaller. To address this limitation, a third feature
F3(k) is introduced and computed as follows:

F3(k) = medk′ (2M(k, k′)− P (k, k′)−Q(k, k′)) . (9)

2.6. Multistart approach for misaligned slices

The registration process relies on an optimization algorithm that may
only converge to local optima. We propose a multistart strategy to escape
these local minima. As before, the parameters associated with a slice k are
updated using the Nelder-Mead algorithm, while keeping the parameters of
other slices fixed. However, there are four major differences.

First, to save time, we update only the parameters of potentially mis-
aligned slices. The classifier is used to estimate the probability pk of each
slice k being misaligned. We then focus on updating the slices inM, the set of
indices corresponding to slices identified as misaligned (i.e., where pk > 0.2).

Next, during the update of slice k, the optimization algorithm is run mul-
tiple times with different initializations, and the best transformation obtained
is retained. The different initializations are obtained by taking advantage of
well-aligned slices that are nearby k (Appendix C). To achieve this, we
construct the set A, which contains the indices of slices identified as likely
well-aligned (i.e., where pk < 0.5).

Next, when updating the parameters of a slice, the misalignment of other
slices impacts the derived cost function, which in turn affects the quality
of the registration. Therefore, we aim to reduce the influence of misaligned
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slices on the loss. This is done as follows: when updating the parameters of
a slice k ofM, the loss to be optimized considers only the slices in A along
with k. This ensures that potentially misaligned slices do not influence the
estimation related to slice k.

Finally, we observed that adding a term to the loss function that encour-
ages mask overlap can sometimes help escape local minima more effectively.
Thus, we attempt to update the parameters of misaligned slices either by
using the original loss or by using the following modified loss (note that the
original loss corresponds to the case w = 0):∑

k,k′ ; k>k′ S
2(k, k′)∑

k,k′ ; k>k′ N(k, k′)
+ ω

∑
k,k′;k>k′ 2M(k, k′)

V
, (10)

where V is the sum of the mask volumes (
∑

k,k′;k>k′
∑

v 1mk
(v) = 1), and

M(k, k′) is defined in Eq. 7.
The multistart procedure is detailed in Algorithm 2 (Appendix D).

3. Data and Evaluation Procedure

3.1. Data

To address the lack of ground truth, we generated synthetic data from
3D high-resolution images available in the dHCP database (Edwards et al.
(2022)). We simulated realistic fetal MRI scenarios, including three orthog-
onal stacks (axial, sagittal, and coronal) with clinically relevant parameters:
a slice thickness of 3 mm and an in-plane resolution of 0.5 x 0.5 mm. To
thoroughly evaluate the robustness of our algorithm, we generated data with
four distinct levels of motion (Fig. 4). For each slice, motion parameters were
randomly assigned, with the rotation (in degrees) and translation (in mm)
drawn independently from a uniform distribution. The four levels of motion
were: low (θk ∈ [−1, 1], tk ∈ [−1, 1]), medium (θk ∈ [−3, 3], tk ∈ [−3, 3]),
large (θk ∈ [−5, 5], tk ∈ [−5, 5]), and extra-large (θk ∈ [−8, 8], tk ∈ [−8, 8]).

In addition to the simulated data, acquisition from 49 fetuses aged be-
tween 24th and 37th weeks were included in this study. The retrospective
use of MRI data acquired during clinical routine at the Timone Hospital
was approved by the Aix-Marseille University ethics committee (ref 2022-04-
14-003). All data were acquired in ultra-fast spin echo (HASTE) on three
different Siemens scanners (Skyra and Spectra (3T) n=20 and SymphonyTim
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(1.5T) n=29). The data were pre-processed to correct for the bias caused by
the inhomogeneity of the magnetic field.

low medium large extra-large

Figure 4: Example of simulated data for the axial orientation. The data is generated with
varying levels of motion and visualized in the sagittal view.

3.2. Metrics for assessing registration performance

A first approach to assess the quality of image registration is to use the
registered slices to reconstruct a 3D image. In order to reconstruct the
data registered with ROSI, two different approaches have been employed:
NiftyMIC (Ebner et al. (2020)) and NeSVoR (Xu et al. (2023)).

For real data, quantitative evaluation is not possible due to the absence
of ground truth. Instead, following the methodology proposed in Sanchez
et al. (2023), the visual quality of the reconstructed images was assessed by
two independent raters using the approach described in Sec. 3.4.

For synthetic data, the reconstructed image can be directly compared to
the ground truth reference image. The closer the two images, the better
the registration quality. To quantify the similarity between the two images,
we use the Peak Signal-to-Noise Ratio (PSNR) and the Structural Similarity
Index (SSIM). In addition, a more direct approach to assess the quality of the
image registration process involves using the mean Target Registration Error
(TRE). This metric represents the average distance, in millimeters, between
corresponding points in the world coordinate space. To compute the mean
TRE for a given slice k, we consider all intersecting slices of k, similar to the
procedure used for the loss function. Let slice k′ intersect with slice k. The
corresponding points in slices k and k′ are obtained using the same method
as in the cost function computation. This method generates a set of points in
slice k, denoted as V = {v1, v2, . . . , vLk,k′

}, and their corresponding points in
slice k′, denoted as V ′ = {v′1, v′2, . . . , v′Lk,k′

}, such thatMk(vi) = Mk′(v
′
i). The
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ground truth transformations, MGT
k and MGT

k′ , are used so that MGT
k (vi) =

MGT
k′ (v′i). The mean TRE for slice k can then be computed as follows:

TREk =
1

Nk

∑
k′

Lk,k′∑
i=1

||Mk(vi)−Mk′(v
′
i)||1mk(vi)=1 or mk′ (v

′
i)=1, with (11)

Nk =
∑
k′

Lk,k′∑
i=1

1mk(vi)=1 or mk′ (v
′
i)=1, (12)

Note that the summation
∑Lk,k′

i=1 corresponds to summing over the indices of
the elements in the sets V and V ′, which are obtained from slices k and k′.

The presence of a strongly misaligned slice can result in significant dis-
tances, which may subsequently lead to an increase in the mean TRE of
well-registered slices. To address this, it is possible to compute the median
TRE for each slice k, considering the mean TRE of all pairwise intersections
involving slice k.

3.3. Metrics for assessing the classifier performance

We assess slice classification performance by comparing the true labels
with those predicted by the classifier using standard metrics. The True Posi-
tive Rate (TPR), also known as recall or sensitivity, is defined as the number
of misaligned slices correctly labeled by the model, divided by the total num-
ber of misaligned slices. The False Positive Rate (FPR), or probability of
false alarms, is the number of well-registered slices incorrectly classified as
misaligned, divided by the total number of well-registered slices. Precision
is the number of misaligned slices correctly labeled by the model, divided by
the total number of slices labeled as misaligned by the classifier. Finally, the
F1-score is the harmonic mean of precision and TPR.

All these metrics require setting the ground truth for whether a slice is
well-registered or misaligned. For synthetic data, this is achieved by consid-
ering slices with a median TRE greater than 1.5 as misaligned. For real data,
slice registration quality is assessed by calculating a residual image, defined
as the absolute difference between the high-resolution reconstructed image
and each slice. Based on this residual image, slices are manually classified.

3.4. Qualitative Evaluation of 3D reconstructed images
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Due to the absence of ground truth data for real clinical data, a quan-
titative evaluation of the 3D reconstruction quality was not feasible. Con-
sequently, a qualitative assessment of the reconstructed volumes was con-
ducted, involving two raters. The methodology employed was inspired by
the work of Sanchez et al. (2024). The reconstruction are classified into four
categories:

1. Good: The reconstructed image is of high quality, with no visible arti-
facts and all brain structures clearly defined.

2. Acceptable: The reconstructed image is of high quality, with minimal
artifacts and most brain structures identifiable.

3. Poor: The reconstructed image has significant artefacts that prevent
detailed examination.

4. Failed: The reconstructed image is severely compromised or non-existent,
with no recognizable brain structures.

Good Acceptable Poor Failed

Figure 5: Examples of reconstructed volumes: good, acceptable, poor or failed.

Reconstructions categorized as good or acceptable were suitable for sub-
sequent processing steps, such as segmentation, while those classified as poor
or failed were of insufficient quality. Fig. 5 illustrates an example of three-
dimensional reconstruction for each of the aforementioned categories.

4. Results

The evaluation consists of three parts: optimization performance, classi-
fication algorithm effectiveness, and the impact of implementing a multistart
procedure.
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4.1. Results on simulated data

4.1.1. Evaluation of the optimization step

We focus here on the alternating block optimization procedure (Alg. 1),
omitting both the outlier detection and multistart strategies in ROSI. This
approach is referred to as ROSI-noODM (no outlier detection and multistart).
The performance of ROSI-noODM is benchmarked against the widely used
NiftyMIC algorithm (Ebner et al. (2020)) and the more recent NeSVoR al-
gorithm (Xu et al. (2023)). For a fair comparison, the outlier detection step
was also excluded from NiftyMIC.

Fig. 6 shows the median TRE (Sec. 3.2) before and after registration
for all three algorithms, evaluated on simulated datasets with varying mo-
tion levels (small, medium, large, and extra-large). The results demonstrate
that ROSI-noODM outperforms the other methods overall, maintaining con-
sistently low TRE values across all motion levels after registration, even
though a small subset of slices remains poorly registered for large and extra-
large motion. NeSVoR performs well for small to large initial motion but
struggles with extra-large motion, where a significant number of slices ex-
hibit high errors. In contrast, NiftyMIC is effective for small motion but fails
to handle medium to extra-large inter-slice motion adequately.
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Figure 6: Median TRE (in millimeters) before registration (x-axis) versus after registration
(y-axis) for simulated data. Each point represents a slice. Results are shown for (a) ROSI-
noODM, (b) NiftyMIC (without outlier detection), and (c) NeSVoR.

A second approach to assess registration performance involves comparing
the 3D reference image with the reconstruction obtained from the registered
slices (Sec. 3.2). Using ROSI-noODM as the motion correction method, we
reconstructed a 3D image with either the NeSVoR or NiftyMIC reconstruc-
tion algorithm. These methods are referred to as ROSI-noODM+NeSVoR
and ROSI-noODM+NiftyMIC, respectively.
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In Tab. 1 and Tab. 2 (first two columns with numerical values), we com-
pare the NiftyMIC method (motion correction and reconstruction) to ROSI-
noODM+NiftyMIC. Using ROSI-noODM for motion correction consistently
resulted in higher average PSNR and SSIM values across all simulated motion
levels compared to NiftyMIC.

In the last two columns of Tables 1 and 2, we compare NeSVoR (mo-
tion correction and reconstruction) to ROSI-noODM+NeSVoR. While the
differences in PSNR and SSIM were less pronounced compared to NiftyMIC,
higher values were still achieved using ROSI-noODM+NeSVoR in most cases
(with one exception).

Table 1: Mean PSNR (dB) ↑ obtained on 3-D reconstruction from simulated data. Stan-
dard deviation is given in parenthesis.

PSNR ↑
Reconstruction NiftyMIC NeSVoR
method
Registration NiftyMIC ROSI-noODM NeSVoR ROSI-noODM
method
Low 30.79 (0.52) 32.65 (0.55) 33.34 (0.94) 34.75 (1.01)
Medium 25.40 (0.49) 31.54 (0.63) 32.54 (0.39) 31.74 (0.33)
Large 23.90 (0.88) 30.30 (0.41) 27.97 (1.88) 30.14 (0.19)
Extra-large 22.32 (0.32) 29.95 (0.53) 27.99 (1.86) 29.25 (0.58)

Table 2: Mean SSIM ↑ obtained on 3-D reconstruction from simulated data. Standard
deviation is given in parenthesis.

SSIM ↑
Reconstruction NiftyMIC NeSVoR

method
Registration NiftyMIC ROSI-noODM NeSVoR ROSI-noODM

method
Low 0.94 (0.007) 0.95 (0.006) 0.98 (0.001) 0.98 (0.003)

Medium 0.82 (0.037) 0.94 (0.011) 0.94 (0039) 0.97 (0.001)
Large 0.79 (0.027) 0.92 (0.011) 0.94 (0.034) 0.97 (0.003)

Extra-large 0.75 (0.032) 0.92 (0.012) 0.94 (0.039) 0.97 (0.002)
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Fig. 7 presents examples of 3D reconstructions from simulated data with
varying motion levels (low, medium, large, and extra-large). NiftyMIC fails
to accurately reconstruct data with medium and large motion artifacts, while
ROSI-noODM (regardless of the reconstruction method used) maintains good
reconstruction quality across all motion levels. NeSVoR generally produces
high-quality 3D reconstructions but its performance may be limited when
processing data with extra-large motion, as shown in Fig. 7.

;

;

;

;

Figure 7: Examples of 3D reconstructions from simulated data with varying motion levels:
low (row 1), medium (row 2), large (row 3), and extra-large (row 4). Left column: a
slice from the high-resolution volume. Reconstructions are obtained with NiftyMIC for
motion correction and reconstruction (second column), ROSI-noODM+ NiftyMIC (third
column), NeSVoR for motion correction and reconstruction (fourth column), and ROSI-
noODM+NeSVoR (last column).

4.1.2. Evaluation of the classification algorithm

This section evaluates the performance of the proposed outlier detection
algorithm. As outlined in Sec. 2.6, the classifier is used to identify mis-



aligned and well-aligned slices after the alternating block optimization pro-
cedure (ROSI-noODM): the probability pk that slice k is misaligned is used
to determine the set A of slices that are confidently well-aligned (threshold
of 0.5) and the setM of slices that are confidently misaligned (threshold of
0.2). Specifically, a slice k belongs toM if pk > 0.2 and to A if pk < 0.5.

NeSVoR is excluded from this comparison as it does not directly detect
outlier slices. In contrast, NiftyMIC employs an iterative approach, calcu-
lating the normalized cross-correlation (NCC) between each registered slice
and the reconstructed volume after each iteration. Slices with NCC values
below a predefined threshold are classified as outliers and excluded. The
threshold is progressively increased across iterations: 0.5 for the first, 0.65
for the second, and 0.8 for the final iteration.

Table 3 compares the outlier detection performance of ROSI (with a
threshold of 0.5) and NiftyMIC using the evaluation metrics defined in Sec.
3.3. We also report the percentage of slices that should be considered as
misaligned (defined as a median TRE above 1.5mm).

Table 3: Comparison of the outlier detection performances of ROSI and NiftyMIC on
simulated data using the metrics defined in Sec. 3.3. We also give the percentage of slices
that should be considered as misaligned (median TRE above 1.5 mm)

ROSI
TRE > 1.5 TPR/Recall ↑ FPR ↓ Precision ↑ F1-score ↑

Small 0% × 0% × ×
Medium 2.7% 70% 0% 1 0.82
Large 0.5% 100% 5% 0.69 0.78

Extra-large 9.8% 92% 2.3% 0.77 0.91

NiftyMIC
TRE > 1.5 TPR/Recall ↑ FPR ↓ Precision ↑ F1-score ↑

Small 0% × 0.5% × ×
Medium 100% 92% × × ×
Large 100% 92% × × ×

Extra-large 100% 92% × × ×

Both classifiers perform well but operate on distinct data distributions.
NiftyMIC always encounters scenarios where either all slices are well-aligned
or all are misaligned. For ROSI, a threshold of pk = 0.5 strikes an effective
balance, retaining most well-aligned slices (according to the experiments, the
FPR ranges from 0% to 5%) while filtering out a significant proportion of
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misaligned ones (the TPR ranges from 70% to 100%). Note that lowering the
threshold to pk = 0.2 increases the false positive rate but enhances the de-
tection of misaligned slices, making it an appropriate choice for constructing
the setM of misaligned slices.

4.1.3. Evaluation of the multistart approach for misaligned slices

This section examines the impact of the multistart procedure imple-
mented in ROSI. We present the results obtained immediately after applying
this procedure, referred to as ROSI-M (it includes the optimization, the out-
lier detection and correction of misaligned slices). This method differs from
ROSI in two key ways: after the multi-start procedure, ROSI considers only
the slices in the set A, excluding all others, and performs a final optimization
of the loss function using only these slices (Fig. 3), whereas ROSI-M retains
all slices and does not perform a final optimization. Fig. 8 presents the
results obtained with ROSI-M. The median TRE is very low for nearly all
slices, indicating significant improvement compared to ROSI-noODM (Fig.
6). This clearly highlights the interest of the multistart approach.
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Figure 8: Median TRE (in millimeters) before registration (x-axis) versus after registration
(y-axis) for simulated data registered with ROSI-M. Each point represents a slice.

These positive results are confirmed by Tab. 4, which shows a very low
percentage of slices with a median TRE exceeding 1.5 mm. However, it
is worth noting that the classifier fails to detect misaligned slices (with a
threshold of 0.5), but the false positive rate remains very low.
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Table 4: Percentage of outliers (slices with median TRE above 1.5 mm) for simulated
data registered with ROSI-M and classifier performance on the registered slices.

TRE>1.5 TPR ↑ FPR ↓
Small 0% × 0%

Medium 0% × 0%
Large 0.5% 0% 0.2%

Extra-Large 0.8% 0% 0.2%

4.2. Results on real data

As for the simulated data, we first evaluate the optimization step. Sec-
ondly, we assess the interest of outlier detection and evaluate the benefit of
multistart. Finally, ROSI is compared with the methods Ebner et al. (2020),
Kuklisova-Murgasova et al. (2012) and Xu et al. (2023) from the state-of-
the-art.

4.2.1. Evaluation of the optimization step

As explained in Sec. 3.2, registration performance for real data is assessed
by visually inspecting the quality of the 3D-reconstructions obtained from
the registered slices. Results of ROSI-noODM+NiftyMIC (see Sec. 4.1.1)
are compared in Tab. 5 with those of NiftyMIC (for motion correction and
reconstruction). For a fair comparison, the outlier detection step was also
excluded from NiftyMIC. Motion correction with ROSI-noODM resulted in
reconstructions with better anatomical details and fewer artifacts compared
to NiftyMIC. Although there was a discrepancy in the evaluation between the
two raters, we observed that ROSI-noODM + NiftyMIC produced a higher
number of good reconstructions and fewer poor or failed reconstructions com-
pared to NiftyMIC in both cases.

Table 5: Visual assessment by two raters of 49 fetal data reconstructions obtained with
NiftyMIC (no outlier removal) and ROSI-noODM + NiftyMIC.

Quality Rater 1 Rater 2

NiftyMIC
ROSI-noODM
+ NiftyMIC

NiftyMIC
ROSI-noODM
+ NiftyMIC

Good 15 17 12 14
Acceptable 11 10 7 8

Poor or Failed 23 22 30 27
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4.2.2. Evaluation of the classification algorithm

This section evaluates the outlier detection algorithm applied to the
slices registered with ROSI-noODM. It is worth noting that the classifier
was trained on synthetic data generated from images of the dHCP database
(Edwards et al. (2022)). Here, we test it on real data acquired during clin-
ical routines at the Timone Hospital. Note that reconstructions classified
as failed were excluded from this analysis due to the difficulty of manually
rating slices when a large number are misaligned. In the end, the dataset
contained 9.6% of misaligned slices. Tab. 6 presents the different metrics for
various thresholds.

The classifier performed well in detecting misaligned slices in the clinical
dataset. With a threshold of 0.2, it successfully identifies over 80% of mis-
aligned slices while maintaining a low false alarm rate (below 10%). This
confirms that 0.2 is an effective threshold for selecting slices in the multi-
start procedure (i.e., for defining the set M). At a threshold of 0.5, fewer
misaligned slices are detected (more than 60%), but the false positive rate
drops to under 3%, ensuring that only a small number of well-aligned slices
are excluded from the set A.

Table 6: Classification performance on real data for different thresholds (0.1 to 0.5): a
slice k is labeled as misaligned if pk exceeds the threshold.

0.1 0.2 0.3 0.4 0.5
TPR/Recall ↑ 0.92 0.81 0.74 0.71 0.66
FPR ↓ 0.19 0.09 0.05 0.04 0.03
Precision ↑ 0.31 0.46 0.58 0.63 0.67
F1-score ↑ 0.46 0.58 0.65 0.66 0.66

We also assess the impact of incorporating the outlier detection algorithm
on the final 3D reconstruction. The key difference from Sec. 4.2.1 is that,
when registration is performed with ROSI-noODM, only the slices from set A
(pk < 0.5) are used for reconstruction with NiftyMIC. The method is refered
to ROSI-noM+NiftyMIC. Additionally, we compare our approach to the full
NiftyMIC method, which includes the outlier removal step (not applied in
Sec. 4.2.1). Table 7 summarizes the evaluation of the reconstructions ob-
tained with ROSI-noM+NiftyMIC and NiftyMIC, along with the percentage
of rejected slices. With ROSI-noM, the benefit of removing outliers is clear,
as the number of reconstructed volumes rated as ”Good” increased for both
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raters, while the number of reconstructions rated as ”Poor” or ”Failed” de-
creased. The advantage of outlier rejection is less apparent in the case of
NiftyMIC. Finally, it is worth noting that the percentage of rejected slices
was generally smaller with ROSI-noM than with NiftyMIC.

Table 7: Visual assessment by two raters of 49 fetal data reconstructions obtained with
NiftyMIC and ROSI-noM + NiftyMIC. It also gives the percentage of slices removed by
each algorithm during outlier detection.

Quality Rater 1 Rater 2
NiftyMIC NiftyMIC

reconstructed volumes % of rejected slices reconstructed volumes % of rejected slices
Good 17 8% 12 4 %

Acceptable 7 14% 8 17 %
Poor or Failed 25 39% 29 47%

ROSI-noM+NiftyMIC ROSI-noM+NiftyMIC
reconstructed volumes % of rejected slices reconstructed volumes % of rejected slices

Good 18 6% 17 7%
Acceptable 11 7% 6 7%

Poor or Failed 20 32% 26 26%

4.2.3. Evaluation of the multistart approach for misaligned slice

This section examines the contribution of the multistart procedure. Re-
constructions classified as poor or failed were excluded from the analysis, as
the multistart procedure is ineffective when too many slices are misaligned.
Table 8 gives the number of slices identified as misaligned in the real dataset,
using two thresholds (0.2 and 0.5), before and after the multistart procedure,
as well as the total number of slices (in parentheses). The multistart proce-
dure was applied to a total of 302 slices. Without the multistart step, 146
slices would have been excluded from the reconstruction. After its appli-
cation, only 106 slices were ultimately rejected for the final reconstruction.
This highlights the effectiveness of the multistart procedure in correcting the
parameters of misaligned slices: it recovered 40 (146 - 106) slices. Moreover,
an analysis of the remaining uncorrected slices reveals that they are often lo-
cated at the extremities of the brain or exhibit artifacts such as spin history
effects or blurring.

Table 9 presents a quantitative assessment of the impact of the proposed
multistart approach on reconstruction quality. This evaluation includes the
full registration process of ROSI, followed by reconstruction. Results can
be compared to those in Tab.7, which were obtained with the same config-
uration but without the multistart procedure. The results show that using
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the multistart procedure reduces the number of rejected slices, though it has
minimal effect on the quality of the reconstructed volumes.

Table 8: Number of slices identified as misaligned by the classifier in the real dataset,
using two thresholds (0.2 and 0.5), before and after the multistart procedure. The total
number of slices is shown in parentheses.

before correction (pk > 0.2) 302 (1784)
after correction (pk > 0.2) 242 (1784)
before correction (pk > 0.5) 146 (1784)
after correction (pk > 0.5) 106 (1784)

Table 9: Visual assessment by two raters of fetal data reconstructions obtained using ROSI
+ NiftyMIC (including the multistart procedure) (failed and poor cases were excluded).
It also gives the percentage of slices removed by the algorithm during outlier detection.

Quality Rater 1 Rater 2
reconstructed volumes % of rejected slices reconstructed volumes % of rejected slices

Good 18 5% 17 5 %
Acceptable 11 3% 6 4%

4.3. Comparison with the state of the art

This section compares reconstructions obtained from slices registered with
ROSI to those produced by three state-of-the-art methods: NiftyMIC (Ebner
et al. (2018)), NeSVoR (Xu et al. (2023)), and SVRTK (Kuklisova-Murgasova
et al. (2012)). To reconstruct a 3D volume from motion-corrected data us-
ing ROSI, we employ either the reconstruction algorithm from NiftyMIC or
NeSVoR. Additionally, NeSVoR is often paired with Svort, which provides
an initial motion correction estimate for the slices. In real data, sudden large
motions (e.g., a 90° rotation or more) can occur, which, although rare, cannot
be corrected by approaches like NeSVoR alone, NiftyMIC, SVRTK, or ROSI.
To address this, Svort was also used to initialize the motion correction before
applying ROSI when the reconstruction was carried out using the NeSVoR
method.

In Table 10, a higher number of reconstructed volumes were rated “Good”
when using the proposed method for motion correction, compared to NiftyMIC
and SVRTK. Additionally, both raters observed a lower number of poor and
failed reconstructions. With NeSVoR, the difference was less significant,
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Table 10: Visual assessment by two raters of 49 fetal data reconstructions obtained with
ROSI+NiftyMIC, NiftyMIC, SVRTK, ROSI+NeSVoR, NeSVoR.

Rater 1 Rater 2
Reconstruction method NiftyMIC SVRTK NeSVoR NiftyMIC SVRTK NeSVoR
Registration method ROSI NiftyMIC SVRTK ROSI NeSVoR ROSI NiftyMIC SVRTK ROSI NeSVoR

Good 18 17 15 23 24 17 12 9 17 18
Acceptable 11 7 15 15 14 6 8 9 13 13

Poor or Failed 20 25 19 11 11 26 29 31 19 18

with very similar reconstructions. Raters 1 and 2 found, however, that one
reconstructed volume was of slightly better quality with registration from
NeSVoR.

(a) (b) (c) (d) (e)

Figure 9: 3D reconstructions obtained with (a) ROSI+NiftyMIC (b) NiftyMIC (c) SVRTK
(d) ROSI+NeSVoR (e) NeSVoR.

Fig. 9 presents 3D reconstructions in axial orientation, generated us-
ing the methods outlined above. Artifacts are visible in the reconstructions
obtained with NiftyMIC and SVRTK (Fig. 9(b) and (c)). In contrast, recon-
structions using NeSVoR (Fig. 9(e)), as well as those combining ROSI with
NiftyMIC (Fig. 9(a)) or ROSI with NeSVoR (Fig. 9(d)), exhibit comparable
high quality.

5. Conclusion

In this paper, we introduce ROSI (Registration based on Orthogonal
Slices Intersection), a novel reconstruction-independent method for motion
correction in fetal MRI. Inspired by Kim et al. (2009), ROSI leverages inter-
sections between slices from orthogonal stacks for robust motion estimation.
Additionally, a machine learning classifier is employed to identify outlier
slices, incorporating both image intensity and brain masking information.
Finally, a multistart strategy is implemented to correct the positioning of
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outlier slices detected by the classifier. This approach shows very good per-
formance on simulated data. For real data, ROSI outperforms NiftyMIC and
SVRTK, achieving similar results to NeSVoR .

Concerning potential improvement of the method, the current classifier
algorithm is designed to detect misaligned slices, encompassing both those
exhibiting local minima in motion estimation and those corrupted by arti-
facts. A potential enhancement would involve differentiating between these
two types of slices. This would allow for a more targeted application of the
subsequent multi-start algorithm, optimizing computational efficiency. Fur-
thermore, integrating ROSI into a comprehensive framework, (Ebner et al.
(2020); Kuklisova-Murgasova et al. (2012)), would significantly enhance its
accessibility and potential impact within the field
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Appendix A. Calculation of slice Intersections for registration

The registration criterion is based on the principle that well-registered
slices should exhibit similar intensity profiles along their intersection points.
Calculating these intersections enables us to compare these profiles and quan-
tify the alignment between slices, adjusting the transformation parameters
accordingly. This appendix describes the process of deriving the necessary
equations to identify corresponding points along the intersection of each pair
of slices k and k′. This calculation involves four main steps:

1. Deriving the plane equation of slice k in the world coordinate system
(Appendix A.1)

2. Deriving the equation of the intersection line of the planes of slices k
and k′ in the world coordinate system (Appendix A.2)

3. Deriving the equations of the intersection line of the planes of slices k
and k′ in the 2D coordinate system of slice k and k′ (Appendix A.3)

4. Generating corresponding points along the intersection line (Appendix
A.4)

Appendix A.1. Deriving the plane equation of slice k in the world coordinate
system

The equation of the plane of slice k is expressed as:

nk(x− pk) = 0 (A.1)

where nk is a normal vector to the plane, and pk a point on the plane.
The position of the slice k in 3D space is defined by its transformation

matrix Mk (Eq.1). First, pk can be set to Mk.(0, 0, 0, 1)
T . Next, in the

general case where Rf(k) (Eq.1) represents an affine transformation, nk can
be computed by applying Mk to two non-collinear vectors of the k-th slice
(in the 2D coordinate system of slice k) and taking their cross product:

nk = [Mk.(1, 0, 0, 0)
T ] ∧ [Mk.(0, 1, 0, 0)

T ]. (A.2)

In the following, we assume that nk is normalized to have a unit magnitude.
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Appendix A.2. Deriving the equation of the intersection line of the planes
of slices k and k′ in the world coordinate system

Consider two orthogonal slices, k and k′. The equation of the intersection
line can be derived from the condition that a point lies on both the planes of
slices k and k′. Using Equation A.1, the equation of the line in the 3D space
writes:

(gnk + hnk′) + λnk ∧ nk′ . (A.3)

λ is a scalar parameter that defines points along the line by scaling the direc-
tion vector nk∧nk′ , starting from the point gnk+hnk′ . g and h are constants
determined by solving the system of equations obtained by substituting Eq.
A.3 into Eq. A.1. {

g + hnknk′ = nkpk

gnknk′ + h = nk′pk′ .
(A.4)

Solving the system of equations yields:

g = 1
1−α2 (β − γα), h = 1

1−α2 (γ − αβ), (A.5)

where α = nk.nk′ β = nk.pk, and γ = nk′ .pk′ .

Appendix A.3. Deriving the equations of the intersection line of the planes
of slices k and k′ in the 2D coordinate system of slice k and
k′

The equation of the intersection line in the 2D coordinate system of slice
k can be easily obtained by applying the inverse transformation M−1

k to the
3D intersection line equation (Eq. A.3):

M−1
k .(gnk + hnk′) + λM−1

k .(nk ∧ nk′). (A.6)

Similarly, in the 2D coordinate system of slice k′, the equation becomes:

M−1
k′ .(gnk + hnk′) + λM−1

k′ .(nk ∧ nk′). (A.7)
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Appendix A.4. Generating corresponding points on the intersection line

By construction, using the same scalar λ in both Eq. A.6 and A.7 gives
us two corresponding points, vi (in slice k) and v′i (in slice k′), such that
Mk(vi) = Mk′(v

′
i). This means that they correspond to the same physical

location, according to Mk and Mk′ .
However, the support of the slices is bounded (it forms a rectangle), so we

cannot choose just any value for λ. Let gk(.) be the function that associates a
scalar λ with a 2D point through equation A.6. Then, we can easily compute
an interval Jk = [λmin

k , λmax
k ] such that:

• The points g(λmin
k ) and g(λmax

k ) lie on the boundary of the support of
slice k.

• ∀λ ∈ [λmin
k , λmax

k ], g(λ) is inside support of slice k.

The same process can be applied to slice k′, yielding another interval, Jk′ .
It is worth noting that Jk (or Jk′) may, in theory, be empty or reduced to a

single point. However, this scenario should not occur in practice, as the slices
are derived from orthogonal stacks. Nevertheless, if the transformations are
poorly estimated, such cases may arise.

Finally, the intersection line is sampled at regular intervals (every mil-
limeter) as follows: a list of uniformly spaced λ values is computed to span
precisely the union of Jk and Jk′ (which may consist of a single interval or
two disjoint intervals). By doing so, we ensure that the points v (resp. v′)
sample all structures of interest that are on the segment of the slice k (resp.
k′). Once this list of λ values is obtained, Eqs. A.6 and A.7 are applied to
compute the corresponding coordinates in slice k and slice k′.

In summary, for two orthogonal slices k and k′, we obtain a set of points
in slice k, denoted as V = {v1, v2, . . . , vLk,k′

}, along with their corresponding
points in slice k′: V ′ = {v′1, v′2, . . . , v′Lk,k′

}, such that:

Mk(vi) = Mk′(v
′
i).

Appendix B. Alternating block optimization procedure

The algorithm in given in Alg. 1.
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Algorithm 1 Alternating block optimization procedure

Input : A = {1, ..., n}, n the number of slices.
Output: θk and tk for each slice k.

for v in 1,2,4,8 do :
ds = 4/v, fs = 0.25/v, th = 2/v
while global convergence has not been achieved do

Set B to A
while B is not empty do

for each slice k in B do
Update: (θold

k , toldk )→ (θnew
k , tnewk )

if ||(θold
k , toldk ) − (θnew

k , tnewk )||2 < th then
▷ local convergence is achieved for slice k
remove k from B

else
global convergence is not achieved

end if
end for

end while
end while

end for

Appendix C. Multistart Initialization

Appendix C.1. Initialization Strategy for Multi-Start Optimization

During the update of slice k in the multi-start procedure (Sec. 2.6), the
optimization algorithm is executed multiple times with different initializa-
tions. We detail here how these initializations are generated by leveraging
well-aligned slices nearby k. Appendix C.2 and Appendix C.3 explain how
initial positions for slice k can be generated using either two correctly aligned
surrounding the slice k (Appendix C.2) or a single nearby well-aligned slice
(Appendix C.3). In practice, we identify, if possible, three well-registered
slices before and after slice k. We can then run the approach of Sec. Ap-
pendix C.2 with 3× 3 = 9 different configurations and the approach of Sec.
Appendix C.3 with 3 + 3 = 6 configurations, which results in a maximum
of 15 initial positions. Note that some positions may be redundant, so to
ensure a diverse set of starting points, redundant positions are removed.

These initial positions are not optimal (since they are not computed from
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the images), so we use the following approach, inspired by Jenkinson and
Smith (2001), to determine 5 possible initializations for each of the 15 posi-
tions, leading to a maximum of 75 initializations.

For a given initial position (θk, tk), we create a grid of 125 rotation points
ranging from (θk − 6) to (θk + 6). At each grid point, the rotation matrix is
fixed, and we estimate the translation tk by minimizing the Dice score:∑

k,k′;k>k′ 2M(k, k′)∑
k,k′;k>k′ P (k, k′) +Q(k, k′)

, (C.1)

where M , P and Q are defined in Eqs. 7 and 8. We prefer optimizing the
Dice score instead of the loss function because convergence is much faster.
Finally, we estimate the loss at each point on the rotation parameter grid
and select the five smallest local minima from the grid search as potential
initializations for the optimization algorithm.

Appendix C.2. Initialization : first case

We consider the scenario where a slice k, potentially misaligned, is bounded
by two correctly aligned slices k1 and k2 (k1 < k < k2), which originate from
the same stack of slices (f(k1) = f(k2) = f(k)). The goal is to initialize
M(θk, tk) from M(θk1 , tk1) and M(θk2 , tk2).

In the absence of any relative motion between slices in the same stack,
T(ck)M(θk, tk)T(−ck) would remain the same for all slices k in the stack.
This can be understood from Eq. 1, where Rf(k)Rk,2d�3d converts the 2D
coordinates of slice k into the world reference system. This motivates the
following approach to initialize M(θk, tk):

1 Compute Mavg as the weighted average of T(ck1)M(θk1 , tk1)T(−ck1)
and T(ck2)M(θk2 , tk2)T(−ck2).

2 Compute the parameters ofM(θk, tk) such thatT(ck)M(θk, tk)T(−ck) =
Mavg, namely, M(θk, tk) = T(−ck)MavgT(ck).

The first step uses interpolation of rigid transformations. The geodesic
path between two rigid transformation T1 and T2 is: et·log(T2T

−1
1 )T1, with

t ∈ [0, 1]. To compute Mavg, we use the previous equation with Ti =
T(cki)M(θki , tki)T(−cki)(i = 1, 2), and t = k−k1

k2−k1
. The second step is

straightforward.
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Appendix C.3. Initialization : second case

We consider the case where a slice k, potentially misaligned, is close to
a correctly aligned slice k1 from the same stack (f(k1) = f(k)). The goal
is to initialize M(θk, tk) from M(θk1 , tk1). Using the same reasoning as in
Appendix C.2, we can compute M(θk, tk) such that:

T(ck)M(θk, tk)T(−ck) = T(ck1)M(θk1 , tk1)T(−ck1), (C.2)

or equivalently,

M(θk, tk) = T(−ck + ck1)M(θk1 , tk1)T(−ck1 + ck). (C.3)

Appendix D. Multistart procedure

The multistart procedure is detailed in Algorithm 2. It involves iterating
through the following two steps: updating all parameters associated with the
slices inM (the set of indices corresponding to slices identified as misaligned,
i.e., where pk > 0.2) and then recalculating M and A (the set of indices
corresponding to slices identified as well-aligned, i.e., where pk < 0.5). During
the first iteration, we use the loss from Eq. 10 with w = 0, and in subsequent
iterations, we use w = 1. The process stops when M does not change
during an iteration with w = 1. Although we do not have a formal proof
of convergence, we observed that the algorithm consistently converged in all
studied cases.
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Algorithm 2 Multistart procedure for slice alignment

Initialize w ← 0 (for the loss function in Eq. 10)
ComputeM (misaligned slices) and A (well-aligned slices)
while convergence is not achieved do

for each slice k ∈M do
Generate m initializations from A (Appendix C)
Optimize Eq. (10) for slice k, using slices in A and k for the loss

calculation, starting from the m initializations.
Set slice k’s parameters to those minimizing the cost

end for
ComputeM (misaligned slices) and A (well-aligned slices)
if M has not changed and w = 1 then

Convergence is achieved
end if
Update w ← 1 (switch to alternative loss function in Eq. 10)

end while
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