
HAL Id: hal-04904525
https://hal.science/hal-04904525v1

Submitted on 22 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Maelis4Skrid: an Approximate Query Engine for an
Online Graph-Based Musical Score Library

Adel Aly, Olivier Pivert, Virginie Thion

To cite this version:
Adel Aly, Olivier Pivert, Virginie Thion. Maelis4Skrid: an Approximate Query Engine for an Online
Graph-Based Musical Score Library. Companion Proceedings of the ACM Web Conference 2025,
WWW 2025, Apr 2025, Sydney, Australia. �10.1145/3701716.3715185�. �hal-04904525�

https://hal.science/hal-04904525v1
https://hal.archives-ouvertes.fr

Maelis4Skrid: an ApproximateQuery Engine
for an Online Graph-Based Musical Score Library
Adel Aly

adel.aly@irisa.fr
Univ. Rennes

Lannion, France

Olivier Pivert
olivier.pivert@irisa.fr

Univ. Rennes
Lannion, France

Virginie Thion
virginie.thion@irisa.fr

Univ. Rennes
Lannion, France

Abstract

Digital Score Libraries are libraries dedicated to the storing, theman-
agement and the dissemination of musical scores. While document-
oriented sheet musical scores have been the traditional way to pre-
serve and share Western musical works, the emergence of modern
digital formats opens the way to services that leverage the musical
content itself, including that of retrieving music pieces based on
their musical content. In this demonstration, we present the Skrid
platform, an online Digital Score Library (DSL) that utilizes a

graph-based storage for the scores’ musical content. We also
present Maelis, a flexible querying module implemented in-

side Skrid, that enables melodic pattern approximate search,
ranks the results by relevance, and provides a detailed expla-

nation of the answers. The demonstration is composed of two
scenarios that showcase the key features of Maelis embedded in
Skrid. The scenarios are accompanied by an online interaction
inviting the audience to engage with the system.

CCS Concepts

• Information systems → Information retrieval; Database
design and models; Digital libraries and archives; • Applied
computing → Arts and humanities.

Keywords

Digital musical score library, Graph representation, Approximate
melodic pattern matching
ACM Reference Format:

Adel Aly, Olivier Pivert, and Virginie Thion. 2025.Maelis4Skrid: an Ap-
proximate Query Engine for an Online Graph-Based Musical Score Li-
brary. In Proceedings of the ACM Web Conference 2025 (WWW ’25), May
13–17, 2024, Sydney, Australia. ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/n

1 Introduction

Music is an indispensable component of the world’s cultural her-
itage. While sheet scores have traditionally been used for engraving
music scores, the advent of modern digital representation formats
(such as semi-stuctured ones [3, 6, 13], or graph-based ones [5, 12])
has transformed music notation into a valuable resource for music
information processing. Today, digital score libraries provide access
to large collections of digitally encoded musical scores, leveraging

WWW ’25, May 28– May 2, 2025, Sydney, Australia
© 2025 ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings
of the ACM Web Conference 2025 (WWW ’25), May 13–17, 2024, Sydney, Australia,
https://doi.org/10.1145/n.

the encoding of musical content to enable advanced retrieval fea-
tures, as demonstrated here. In the demonstration,we first present

the Skrid platform, an online digital score library (DSL) that

stores musical scores in a property graph database. The graph
model provides a topological-oriented intuitive representation of
the scores, leveraged by expressive graph-pattern queries (see [12]
for details). To our knowledge, Skrid is the only DSL of the litera-
ture that relies on such a data model.

Figure 1: Beginning of Belle nous irons dans tes verts prés [11]

The intended primary users of a DSL are music performers, schol-
ars, music students, and specialized users like musicologists, music
theorists, music engravers, composers, and librarians. These users
make use of the library in diverse ways, driven by distinct goals.
Some users focus on retrieving music pieces based on metadata. For
example, music performers may search for pieces by title or com-
poser. Other users are more interested in retrieving pieces based
on their musical content, such as searching for occurrences of a
specific melodic pattern (Fig. 6 p. 4 gives two examples of melodic
patterns), which is the problem we focus on. This is a complex
task [1], explaining why only a few DSLs offer this feature as of
now (see Section 5). Moreover, such DSLs typically consider an
exact matching process, which can easily lead to empty or plethoric
results. They lack the ability to retrieve musical fragments that
are different but close to the considered pattern, and to rank the
retrieved answers. In the demonstration,we also present a query-

ing tool, called Maelis, that is implemented inside Skrid.

Maelis (1) retrieves, from (graph-based) musical score collec-

tions, data that approximatelymatch a givenmelodic pattern,

(2) computes a similarity score (referred to as satisfaction de-
gree from now) between each answer and the given melodic

pattern, (3) ranks the answers based on their satisfaction

degrees, and (4) provides a detailed explanation for each an-

swer. To our knowledge, no other DSL implements an approximate
melodic pattern retrieval resulting in ranked and explained answers.

The proposed demonstration consists of two parts: a scripted
one, and an online interactive one. The scripted part is twofold: we
present both the Skrid platform and its associated flexible querying

https://orcid.org/0009-0007-4932-3088
https://orcid.org/0000-0003-4103-5819
https://orcid.org/0009-0006-6305-338X
https://doi.org/10.1145/n
https://doi.org/10.1145/n
https://doi.org/10.1145/n

WWW ’25, May 28– May 2, 2025, Sydney, Australia Adel Aly, Olivier Pivert, and Virginie Thion

Figure 2: System architecture and content-based querying

moduleMaelis, through two scripted scenarios. These scenarios
highlight Skrid’s and Maelis’s key features, and allow illustrating
their internal processing. Then comes the online interaction seg-
ment of the demonstration, during which the audience will engage
directly with the system and experiment its features (mainly the
approximate melodic searching).

2 Musical notation

Let us first introduce some basic notions of Western music notation,
kept to the bare minimum for understanding the demonstration.
Even though our model can also deal with polyphonic music, we
restrict the presentation to monophonic music for the sake of sim-
plicity. We consider the musical score from Fig. 1 as an example, to
illustrate the introduced concepts.1

In Western music notation, a finite set of frequencies is used
to refer to the sounds that may appear in a musical piece. Each
frequency is associated with a pitch class (a letter C, D, E, F, G, A,
and B) and an index known as the octave (in the set {1, . . . , 7}).
On a music sheet, musical events are graphically represented to
define the sounds that compose the music piece. The symbols are
written all along a group of horizontal lines called staves. A main
symbol that appears in a musical score is the note (e.g. a symbol
among ˇ “ , ˘ “ , ˇ “(, ˇ “) , ¯ , etc.), which denotes a sound to be played. A
note symbol encodes both the information of the frequency and
the duration of the denoted sound. The vertical position of the
note on the staff determines the frequency (e.g. if we consider the
first staff of Fig. 1, the first note is a 𝐺4, then follows an 𝐴4, and
a 𝐵4, etc.), while the shape of a note (including the head, stem,
and flags) determines the duration (for instance, a ˇ “(note is two
times shorter than a ˇ “ note). Time is divided into frames called
measures, synchronized over the staves, and visually delineated by
vertical bars. In Fig. 1, we can see five measures. Additional symbols
exist, including the rest symbols, like ? that appears near the end
of the second measure. The whole musical content of a score is
composed of several synchronized sequences of musical events
associated with instruments. The digitized content of a musical
score also contains additional information in the form of metadata
(the title, the composer, the collector, the composition date, etc.), as
well as rendering information (margins for the music sheet, spacing
between the elements, direction of the stems, fonts, etc.).

1In the corpus this musical score belongs to, time signature is voluntary not imposed
(See [11] for the explanation by musicologists who collected and encoded the corpus).

Figure 3: Graph-based representation of a part of Fig. 1

3 System Overview

Skrid is both a research project and a DSL platform dedicated to
the preservation and the dissemination of traditional musical scores
from Brittany (France).2 Fig. 2 illustrates the architecture of the
DSL. Skrid is composed of two parts: a back-end (in green in Fig. 2),
where data is stored, managed, and processed, and a front-end (in
blue in Fig. 2), which contains the modules the users interact with.

3.1 Back-end

The back-end of the Skrid platform (in green in Fig. 2) is composed
of a data management layer and functional modules, including the
Maelis querying module the demonstration focuses on.

Data Model. The back-end of the application embeds a storage
layer managed by a graph DBMS, namely Neo4j [8] (in grey in
Fig. 2). The graph database stores the musical scores modeled as
a graph. Roughly speaking, each musical voice is represented by
the flow of notes it is composed of (edges connect each note to
the following one). Additional edges also represent how notes are
organized into measures.3 The graph model provides a topology-
oriented intuitive representation of the scores (see Fig. 3, where
the graph corresponds to a part of the musical score from Fig. 1),
leveraged by expressive graph-pattern queries. Due to lack of space,
we cannot give more details about the model,4 and we rather focus
on the flexible querying functionality, presented hereafter.

Flexible Querying. Maelis (yellow box in Fig. 2) is the querying
module that implements exact and approximate melodic pattern
matching. In the approximate case, flexibility is highly parametriz-
able: it may concern (i) the pitch, (ii) the duration, and (iii) the
sequencing of the notes in the pattern. In short,Maelis relies on
fuzzy set theory for modeling the gradual criteria associated with
an approximate pattern-based search, leading to the calculation of
a satisfaction degree in (0, 1] for each answer. Maelis takes the
form of an extension of the Cypher graph-pattern query language,
denoted by Cypher+ hereafter. This extension allows (i) construct-
ing the membership functions associated with the fuzzy features
of the search pattern (for modeling the user-accepted tolerance
on the pitch, duration or sequencing of the notes present in the
pattern), and (ii) defining a global threshold 𝛼 ∈ (0, 1] to prune the
set of retrieved elements (and keep only those that are sufficiently

2The Skrid DSL platform is a collaborative effort with Dastum [2], an association
that strives to collect, preserve and disseminate such data. Skrid is available at
https://shaman.enssat.fr/skrid/
3A module allows to populate the graph database with MEI files as input.
4The interested reader may refer to [12] for more information about the data model
and the exact search facilities that come with this representation.

Maelis4Skrid: an ApproximateQuery Engine for an Online Graph-Based Musical Score Library WWW ’25, May 28– May 2, 2025, Sydney, Australia

Figure 4: Approximate matches (UseCase𝑀𝑎𝑡ℎ𝑖𝑒𝑢)

satisfactory, i.e., whose satisfaction degree is ≥ 𝛼). The membership
function associated with a musical aspect (e.g., the pitch) allows
computing a satisfaction degree that assesses the resemblance –wrt.
this aspect– between the user-given pattern and the approximate
occurrence of the pattern in the database. For each occurrence, the
satisfaction degrees related to pitch, duration and sequencing are
aggregated into a global satisfaction degree. A user may choose to
be tolerant on only some of the three dimensions.

Let us now turn toMaelis’s implementation. In Skrid,Maelis is
implemented as an open-source5 add-on layer, developed in Python,
which interacts with the graph database. Maelis is composed of
two components, detailed hereafter.

The Transcriptor component takes as an input a Cypher+ query
(stage 1 in Fig. 2) involving both a melodic pattern and flexibility pa-
rameters that set the maximal tolerance thresholds allowed for the
pitch, the duration, and the sequencing. A scoring function —in the
form of a triangular fuzzy membership function— can be inferred
from each threshold. Based on this information, the Transcriptor
converts the Cypher+ query into a (classical) Cypher query that
can retrieve the answers (the occurrences of the musical pattern
in the database), and the information needed to compute the satis-
faction degrees (stage 2 in Fig. 2). This query is sent to the Neo4j
DBMS that queries the musical score collections (stage 3 in Fig. 2).

The Ranking and explanations component calculates a satisfac-
tion degree for each retrieved answer (stage 4 in Fig. 2). This degree
is based on the aggregation of the partial satisfaction degrees as-
sociated with the different notes of the answer, which themselves
combine the satisfaction degrees related to the different dimensions
of the matching (pitch, duration, and sequencing). The overall sat-
isfaction degree makes it possible to rank-order the answers before
presenting them to the user. For their part, the partial satisfaction
degrees allow providing a detailed explanation for each answer
(stage 5 in Fig. 2), detailed in Section 3.2.

3.2 Front-end

Users do not need any knowledge regarding the graph data model,
formal query languages, or the process that retrieves the data. They
interact with the system through user-friendly modules of the front-
end layer (in blue in Fig. 2), which provide an online (web) access to
the DSL. The front-end layer of the Skrid platform is a JavaScript
thin client. It implements two main graphical user interface (GUI)
modules. One of them is the querying GUI module, which is a user-
friendly entry point for querying music score collections, based
5https://github.com/aa196883/compilation_requete_fuzzy

Figure 5: Explanation of an approx. matching (UseCase𝐴𝑦𝑎)

on the musical content of the score. In this module, the user can
(i) select a set of collections to search in, (ii) define the musical
pattern to be retrieved via a virtual piano keyboard interface, and
(iii) set the flexible parameters (in simple text areas). Default values
are proposed for the flexible parameters but may be changed by
the user. The flexible parameters are the tolerance thresholds for
pitch, duration, and sequencing (see Section 3.1). The user may also
authorize or not musical transposition. The GUI module converts
the entries of the user into a Cypher+ query, which is sent to the
back-end querying module of the application (stage 1 in Fig. 2).

Another GUI module displays the musical scores retrieved by
the Cypher+ query (stage 5 in Fig. 2), with the global satisfaction
degree associated with each score answer (Fig. 4 is an example
of such interface). For each matching occurrence of the pattern, a
detailed explanation of the satisfaction degrees can also be given for
each note, displayed when the user hovers over a note in an answer
(Fig. 5 is an example of such another interface). In terms of develop-
ment, the visualization uses Verovio, an open-source library [15] for
displaying the musical scores on a web page generated in JavaScript.

4 Demonstration Scenario

1. Scripted demonstration. We first showcase the capabilities of
Maelis through two use cases that illustrate its key features. The
use cases consider two user tasks that involve a melodic pattern
approximate search, in a (real) database of folk music from Brittany
that contains 862 musical scores, modeled as a graph database of
76,674 nodes and 177,681 edges (during the demonstration, the au-
dience will visualize the content of such a graph database through
the Neo4j Desktop application [9]).

The first use case, UseCase𝑀𝑎𝑡ℎ𝑖𝑒𝑢 , considers Mathieu, an accor-
dion teacher. He would like to retrieve musical scores that contain
a given melodic pattern for his students’ practicing exercises: five
descending notes — 𝐸5, 𝐷5, 𝐶5, 𝐵4, 𝐴4 — preferably with a rhythm
of five sixteenth notes (see Fig. 6.a). Mathieu enters the pattern
using the virtual piano GUI. The exact search retrieves only one
answer. Then, Mathieu decides to be more tolerant on the pattern
rhythm, with a factor of 2, meaning that he authorizes the dura-
tion of a note in a musical score to be at most the double and at
least the half of that specified in the pattern. For each note, the
more the duration diverges from that of the corresponding note
in the pattern, the lower the satisfaction degree (over the duration
dimension) for this note will be. Mathieu only makes the rhythm
criterion tolerant, while the pitch criterion remains exact (as the
pitches of the notes correspond to a gesture meant to be practiced

https://github.com/aa196883/compilation_requete_fuzzy

WWW ’25, May 28– May 2, 2025, Sydney, Australia Adel Aly, Olivier Pivert, and Virginie Thion

Melodic pattern Associated graph pattern query

(a) Mathieu’s pattern: e1 e2 e3 e4 e5 e6

𝐸5 𝐷5 𝐶5 𝐵4 𝐴4

1/16 1/16 1/16 1/16 1/16

(b) Aya’s pattern: e1 e2 e3 e4 e5 e6 e7 e8

𝐵4 𝐶5 𝐷5 𝐷5 𝐷5 𝐸5 𝐷5

1/8 1/8 1/8 1/8 1/8 1/8 1/4

Figure 6: Melodic patterns of the scenarios

on the musical instrument). Mathieu enters these preferences in the
GUI, in a dedicated frame under the piano. Then, 37 approximate
answers are retrieved, ranked in decreasing order of their satisfac-
tion degrees.6 Fig. 4 shows the top answers retrieved for Mathieu’s
query, which includes the exact answer that matches at 100% (its
satisfaction degree is equal to 1), followed by the approximate ones.

The second use case, UseCase𝐴𝑦𝑎 , considers Aya, who is a musi-
cologist. She looks for musical pieces that contain a given pattern,
to study the positioning of this pattern in the corresponding scores.
This pattern is given in Fig. 6.b. The exact search returns 5 answers
only. Then, Aya decides to authorize approximate matches, intro-
ducing some tolerance into the pitch condition (allowing a maximal
difference of 0.5 tone for each note), the duration one (up to the
double or down to half of the initial duration for each note), and
the sequencing condition (up to a ˇ “) can be inserted between each
pair of searched notes). Many answers are then returned to Aya,
but this is not a problem as these answers are ranked according to
their satisfaction degree (Aya could also have chosen to specify a
value for the 𝛼 parameter, for instance 0.5, to get the sole answers
where the satisfaction degree is ≥ 𝛼). For each musical score result,
Aya has access to a detailed explanation of the occurrences of the
pattern in the score. In Fig. 5, we can see the occurrences of the
searched pattern in a result score (which is the score of Fig 1). The
occurrences of the pattern are displayed in color. For each note of
an occurrence, the global adequacy of the note with the pattern
is visually rendered by means of a color scale, and a popup text
appears when the cursor hovers over a note, that explains the sat-
isfaction degree of the note wrt. each expected feature. Aya can
export the answers and their explanations to a tabular file in order
to use the results as she wishes.

During the demonstration, based on the scenarios described
above, the audience will see how the user interacts with the system
and how internal data circulates in the back-end of Skrid, especially
in terms of implementation of the flexible querying functionalities
and the underlying graph database querying. More specifically, the
audience will see the Cypher+ query that is generated by the GUI,
and the transcribed Cypher query that is sent to Neo4j (see Fig. 2).7
2. Online interaction. In the second part of the demonstration, the
audience will be invited to interact with the system, by specifying
a melodic pattern along with flexibility parameters.

6By default, the satisfaction degree of a pattern occurrence is the average of the degrees
of each note, where the degree of a note is itself calculated as the minimum of the
degrees over the musical dimensions. The global satisfaction degree of a musical score
is the maximum degree amongst the occurrences of the pattern in the score. The
aggregation operators (average, min., max.) can be parameterized in the framework.
7The use cases’ queries are provided at https://doi.org/10.5281/zenodo.14198722.

5 Related Systems

Other systems of the literature have tackled the task of melodic pat-
tern searching. However, most of them consider an exact matching
process, for instance the virtual piano querying interfaces of Musi-
pedia [7], IMSLP [4] or NEUMA [10], with some allowing search
via only some musical aspects (e.g. melody only, rhythm only, dia-
tonic search). As argued above, an exact search can easily lead to
empty or plethoric sets of answers. A few systems allow a form
of approximate searching, for instance Musipedia [7]’s contour or
thesession.org [14]. However, in these systems, flexibility is not
parameterizable, no matching degree is attached to the answers,
and no explanation functionality is provided.

Acknowledgments

We thank Lannion Trégor Communauté for their funding. We also
thank the Dastum association, in particular Anne-Marie Nicol and
Gwenaël Piel for their involvement. We extend our gratitude to
Vincent Barreaud and Tommaso Padovano for their work on the first
version of Skrid, and Louis Thomas-Girardey for his contributions
on the current version.

References

[1] Michael A. Casey, Remco Veltkamp, Masataka Goto, Marc Leman, Christophe
Rhodes, and Malcolm Slaney. 2008. Content-based music information retrieval:
current directions and future challenges. Proc. IEEE 96, 4 (2008), 668–696.

[2] Dastum 1993. Dastum Association. https://www.dastum.bzh/association/.
[3] Michael Good. 2001. The Virtual Score: Representation, Retrieval, Restoration. MIT

Press, Chapter MusicXML for Notation and Analysis, 113–124.
[4] IMSLP 2024. IMSLP Music Search. www.peachnote.com. (consult. date).
[5] Jim Jones, Diego de Siqueira Braga, Kleber Tertuliano, and Tomi Kauppinen. 2017.

MusicOWL: the music score ontology. In Proc. of the Intl Conf. on Web Intelligence
(WI). 1222–1229.

[6] MEI 2024. Music Encoding Initiative (MEI) web site. http://www.music-encoding.
org. (consult. date).

[7] Musipedia 2024. Musipedia. www.musipedia.org. (consult. date).
[8] Neo Technology. 2024 (consult. date). Neo4j web site. www.neo4j.org.
[9] Neo4j Desktop 2024. Neo4j Desktop. "https://neo4j.com/docs/desktop-manual/

current/". (consult. date).
[10] Neuma 2024. The NEUMA platform. http://neuma.huma-num.fr. (consult. date).
[11] Albert Poulain. 2011. Carnets de route – Chansons traditionnelles de Haute-Bretagne.

Presses Universitaires de Rennes, co-édition Dastum.
[12] Philippe Rigaux and Virginie Thion. 2024. Topological querying of music scores.

Data Knowl. Eng. 153 (2024).
[13] Perry Rolland. 2002. The Music Encoding Initiative (MEI). In Proc. of the Intl.

Conf. on Musical Applications Using XML. 55–59.
[14] The Session 2024. The Session Web Site. "www.thesession.org". (consult. date).
[15] Verovio 2024. Verovio web site. "https://www.verovio.org". (consult. date).

https://doi.org/10.5281/zenodo.14198722
https://www.dastum.bzh/association/
www.peachnote.com
http://www.music-encoding.org
http://www.music-encoding.org
www.musipedia.org
www.neo4j.org
"https://neo4j.com/docs/desktop-manual/current/ "
"https://neo4j.com/docs/desktop-manual/current/ "
http://neuma.huma-num.fr
"www.thesession.org"
"https://www.verovio.org"

	Abstract
	1 Introduction
	2 Musical notation
	3 System Overview
	3.1 Back-end
	3.2 Front-end

	4 Demonstration Scenario
	5 Related Systems
	Acknowledgments
	References

