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Abstract—In recent years, foundation models have significantly ad-
vanced data-driven systems across various domains. Yet, their underlying
properties, especially when functioning as feature extractors, remain
under-explored. In this paper, we investigate the sensitivity to audio effects
of audio embeddings extracted from widely-used foundation models,
including OpenL3, PANNs, and CLAP. We focus on audio effects as
the source of sensitivity due to their prevalent presence in large audio
datasets. By applying parameterized audio effects (gain, low-pass filtering,
reverberation, and bitcrushing), we analyze the correlation between the
deformation trajectories and the effect strength in the embedding space.
We propose to quantify the dimensionality and linearizability of the defor-
mation trajectories induced by audio effects using canonical correlation
analysis. We find that there exists a direction along which the embeddings
move monotonically as the audio effect strength increases, but that the
subspace containing the displacements is generally high-dimensional. This
shows that pre-trained audio embeddings do not globally linearize the
effects. Our empirical results on instrument classification downstream
tasks confirm that projecting out the estimated deformation directions
cannot generally improve the robustness of pre-trained embeddings to
audio effects.

Index Terms—Foundation models, audio embeddings, transfer learn-
ing, audio effects.

I. INTRODUCTION

The development of foundation models has marked a shift towards
large-scale, general-purpose artificial intelligence. These models are
often trained on vast amounts of data, making them particularly
valuable as feature extractors in transfer learning settings. One
popular and effective approach is to leverage features extracted from
these models, also called pre-trained embeddings, for downstream
tasks with limited data. Despite their widespread use, there is a lack
of research advancing our understanding of these foundation models.
Many questions remain unanswered, such as what the embeddings
represent, what their invariance properties are, and which embedding
we should use for a given task. In this paper, we investigate the
sensitivity of pre-trained audio embeddings to common audio effects.

A few prior studies have pointed in this direction, but with a limited
scope. The most related work is [1], where the authors explored
the sensitivity of two pre-trained audio embeddings (OpenL3 and
YAMNet) to microphone channel effects. They introduced three
distance metrics to estimate the impact of the effects and found
that each metric measures only one aspect of the impact and that
conclusions based on one metric can be misleading. This necessitates
a more general approach to model the correlation between embedding
deformation and effect strength.

Instead of studying the sensitivity of embeddings, other existing
work focuses on their robustness. Sensitivity is broader than robust-
ness in the context of pre-trained embeddings. The former measures
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the impact of any known factors on the embeddings, while the latter
gauges the resilience of the embeddings to unwanted parameters for
a specific downstream task. Abeßer et al. [2] explored the robustness
of audio embeddings for polyphonic sound event tagging. It was
found in [3], [4] that the downstream classification performance of
pre-trained audio embeddings is not robust to dataset identity. By
extracting a dataset separation direction in the embedding space,
this sensitivity could be potentially mitigated [3]. However, this
quantification is based on the strong assumption that the bias subspace
is low-dimensional and that dataset identity is linearly separable.
Indeed, only when this assumption holds can a (post-processing)
projection reduce the unwanted sensitivity for a downstream task.

To our knowledge, there is no existing research that systematically
quantifies the sensitivity of pre-trained audio embeddings to known
parameters and analyzes the properties of the resulting correlation.
We propose to introduce measurable impact by applying parameter-
ized audio effects. Effects are typical sources of sensitivity of audio
embeddings as adding audio effects is a common data augmentation
technique for training machine learning models [5], [6]. Additionally,
large audio datasets often consist of samples recorded under diverse
conditions and may contain various audio effects. We investigate three
main questions in this paper and open source the code1.

• How does an embedding represent a continuous deformation of
an audio signal under common effects? (Section II)

• Is the response of an embedding to an effect consistent across
audio examples and how to quantify the correlation between the
response and the effect parameters? (Section III)

• Can sensitivity to effects be neutralized by subspace projection
methods if it is undesired for a downstream task? (Section IV)

II. IMPACT OF AUDIO EFFECTS

To understand how embeddings represent a continuous deforma-
tion, we apply common effects with a sweep of their parameters to
the audio signal and visualize the response of the embeddings. The
structure of the deformation trajectories carved out by the parameter
sweep is our core interest.

A. Audio embeddings and audio effects

We consider three embedding models in this paper: OpenL3
(music/512), PANNs [7], and CLAP [8], [9]. OpenL3 is a pre-trained
Look, Listen and Learn (L3) neural network trained on the task of
audio-visual correspondence in a self-supervised manner. CLAP [8],
[9] and PANNs [7] are two audio embedding models that achieve
state-of-the-art performance on various classification tasks and share
the same architecture (CNN14) except that CLAP adds an extra linear
projection layer. Contrary to OpenL3 which produces frame-wise

1https://github.com/vdng9338/audio-embedding-sensitivity
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Fig. 1: UMAP projected visualizations of the deformation trajectories of the embeddings after applying parameterized audio effects. Colormaps
represent the effect strength. “×” marks the embeddings of the original audio, while the colored points are those of the effected audio.

embeddings of dimension 512, CLAP and PANNs output a single
embedding per file, with 1024 and 2048 dimensions, respectively.

We include four simple and commonly-used audio effects: gain,
low-pass filtering, reverberation, and bitcrushing which introduces
distortion by reducing the resolution of the audio data. Each effect
has a single key parameter of interest and represents qualities that
many downstream tasks are generally invariant to. We implement the
effects using either the Pedalboard [10] or Scipy [11] Python library;
and employ the following parameter grid for each effect:

• Gain: [−40,+5] dB
• Low-pass filtering (Chebyshev type-II): cutoff frequencies

[1600, 18333] Hz
• Reverberation: room sizes [0.01, 1.00] (normalized)
• Bitcrushing: bit depths [4, 15]

We apply the effects to audio examples in the IRMAS dataset, which
gathers music excerpts from 11 instrument classes (see Section IV-B).

B. Sensitivity of audio embeddings to audio effects

We show how the effects impact the embeddings by visualizing
the embedding response. We make use of the UMAP library [12] to
obtain a 2-D representation of the audio embeddings. More precisely,
fixing an audio embedding, audio effect and instrument, we perform
the following: Denote by xi the embedding of the i-th original audio
frame (i = 1, 2, ..., N ), all belonging to the chosen instrument class,
and by xi

p the embedding of the i-th audio frame to which the chosen
effect at parameter p was applied. We randomly choose 10 samples
i1, i2, ..., i10, we fit a UMAP projector on all the (x

ik
p )1≤k≤10,p with

a neighborhood size of 3, and we plot the UMAP projections of the
xik and (x

ik
p )p for 1 ≤ k ≤ 10. We use a neighborhood of size

3 because there is a single underlying degree of freedom in each
parameter sweep; thus we should expect to observe 1-D manifolds
in the embedding space that are connected by 3-nearest neighbors.

Fig. 1 displays the embedding response visualizations of the three
embedding models under the four effects presented in Section II-A.
The audio examples are music excerpts of the cello instrument.
Although these are a subset of examples, they are representative of
the broader trends across embeddings, instruments and examples. We
summarize the following key observations per effect:

Low-pass filtering: The response trajectories are generally not
continuous, except for PANNs in some cases; the effected embed-
dings of each sample do not collapse to a small point cloud or
trajectory at lower cutoff frequencies, but they do at higher ones.

Gain: The embedding trajectories are partially continuous for
CLAP, and continuous in most cases for both PANNs and OpenL3.

Reverberation: Regardless of the foundation model, the trajec-
tories are mostly continuous, except that the uneffected sample is
sometimes separated from its effected versions.

Bitcrushing: The behavior differs from model to model. For
CLAP, the trajectories are rather discontinuous. For OpenL3, the
trajectories are mostly continuous. For PANNs, the trajectories are
short and the embeddings of the samples with a bit depth of 10 or
more approximately almost collapse to a single point.

These observations suggest that the audio embeddings are sensitive
to the audio effects, except for PANNs at high bit depths. More
importantly, when the trajectories are continuous, they are also ap-
proximately linear. This points towards the possibility that the audio
embeddings linearize the effects at a sample-wise level. However, the
directions of the trajectories differ from sample to sample, suggesting
that this linearization might not hold at a global level. In terms of
trajectory continuity, we notice that PANNs and OpenL3 yield more
continuous trajectories than CLAP. These interesting observations
motivate us to quantitatively measure the impact of audio effects
on pre-trained audio embeddings.
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III. QUANTIFYING EMBEDDING SENSITIVITY

In this section, we investigate whether there is a single direction
or a low-dimensional subspace in the embedding space that contains
the deformation introduced by audio effects. As in Section II-B, we
fix an instrument and audio effect and assume that all the samples
i = 1, ..., N belong to the fixed instrument class.

To find a potential deformation direction, we perform canonical
correlation analysis (CCA) [13] between the embedding variables
(that we will denote by ξ1, ..., ξd) and the rank-transformed effect
parameter (that we will denote by y), so as to find the direction in
the embedding space that is most correlated with the effect strength.
Mathematically, CCA between the random vector Ξ = (ξ1, ..., ξd)
and the random variable y consists in finding u ∈ Rd and a ∈
{−1, 1} that maximize the correlation ρ = corr(u⊤Ξ, ay). For this
computation, one can either consider all the data points (xi

p, yp) for
all i and p, where yp denotes the rank of parameter p – we will refer
to this as global CCA –, or fix a sample i and consider only (xi

p, yp)
for all p – we will refer to this as sample-wise CCA. To quantify
the correlation between this direction and the effect parameter, in
both the global and sample-wise cases, we plot the rank-transformed
parameter y against the scalar product of the effected embedding with
the deformation direction, i.e. ⟨u,Ξ⟩, and then compute the squared
Spearman correlation coefficient between these two variables that we
will call R2 coefficient.

Fig. 2 shows global CCA correlation plots and corresponding R2

coefficients for all combinations of embeddings and audio effects
for the cello instrument. Table I summarizes the different correlation
coefficients for each combination of audio effect, audio embedding
and instrument. For OpenL3 and CLAP, the correlation coefficients
are almost always above 0.95 (with one exception for OpenL3 and
reverberation, where the correlation coefficients are still above 0.9),
and for PANNs, the correlation coefficients are almost always near
or above 0.9, meaning that for all embeddings and most audio effects
studied, there is a direction in the embedding space that correlates
highly with the audio effect strength, though this does not strongly
hold for PANNs. Note that bitcrushing with PANNs is an exception
here; when plotting the distance matrices of the PANNs embeddings
of bit-crushed samples, we found a clustering of embeddings at bit
depths higher than 10 approximately.

Low-pass filt. Reverb. Bitcrushing Gain
OpenL3 99.42± 0.13 93.83± 1.11 98.30± 0.47 96.46± 0.95
PANNs 92.64± 1.18 89.06± 2.19 69.64± 7.87 97.90± 0.49
CLAP 99.27± 0.12 98.09± 0.36 98.68± 0.35 99.63± 0.12

TABLE I: Instrument-wise global CCA correlation coefficient statis-
tics (mean ± standard deviation) for each embedding and each audio
effect. All numbers are multiplied by 102.

However, having a high global R2 coefficient does not necessarily
mean that the deformation induced by the audio effect is one-
dimensional. CCA can indeed find a correlation coefficient of 1
with any trajectory or set of trajectories that are monotonous along
some direction, no matter the variations of the trajectories in other
directions. To check whether the deformation induced by the audio
effect is globally low-dimensional, we compute all the sample-wise
CCA directions and perform singular value decomposition (SVD)
on them, then compare the singular values of the sample-wise CCA
directions with those of the (centered) original embeddings. If this
comparison exhibits a high dimensionality of the sample-wise CCA
directions, it would confirm that the deformation induced by the audio
effect is high-dimensional though the converse may not be true.

Fig. 2: Correlation between the estimated deformation direction and
effect strength for collections of audio samples. Cello samples.
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Fig. 3: Comparison of singular values of SVD of sample-wise CCA
directions and PCA explained variances of original data for cello and
three combinations of embedding and audio effect.

Fig. 3 shows example comparisons of the singular values of the
sample-wise CCA directions and the centered original data for some
combinations of embedding models, audio effects and instruments;
these examples are representative of most such combinations. The
plotted singular values for each curve are divided by the largest singu-
lar value. In all cases, the comparisons exhibit a high dimensionality
of the sample-wise CCA directions even though this dimensionality
appears to be slightly lower in some cases with OpenL3, like with the
low-pass filtering effect. This shows that the deformations induced by
the four audio effects considered are not linear or low-dimensional.

To check whether the deformation induced by the audio effect
can be locally linear, we check whether the R2 coefficients of the
sample-wise CCAs are high. It turns out that for all combinations
of audio effect and embedding and all samples, the R2 coefficient is
equal to 1. This demonstrates that for all audio samples, there exists
a direction along which the embeddings move monotonically as the
audio effect strength increases (possibly but not necessarily linearly).
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IV. REDUCING EMBEDDING SENSITIVITY

A. Methods

With the deformation direction identified, we explore the possi-
bility of reducing the sensitivity of the embeddings to audio effects.
We propose to project out this direction or an estimated deformation
subspace in a broader sense in the embedding space. We study four
methods apart from global CCA to estimate the deformation direction
or subspace:

Sample-wise CCA SVD: For each sample i of the same instrument
class, performing CCA between (xi

p)p and (yp)p yields correlation
direction ci. Then, we perform SVD of the ci, yielding right singular
vectors u1, u2, ..., uK associated to singular values s1 ≥ s2 ≥ ... ≥
sK ≥ 0. We fix a threshold t ∈ [0, 1] and project out all the uk such
that sk ≥ ts1. t = 0.3, t = 0.4 and t = 0.5 are used.

Principal component analysis: We perform PCA of the dis-
placements (xi

p − xi)p not neutral for all i and keep the principal
component with the largest explained variance (absolute or relative
sense) as the deformation direction: letting u1, u2, ..., uK be the
principal components of the displacements, σ2

1 ≥ ... ≥ σ2
d ≥ 0

the corresponding explained variances, and τ2
1 ≥ ... ≥ τ2

K ≥ 0 the
explained variances of the PCA of the uneffected embeddings, we
either project out u1 (absolute sense), or we project out the principal
component ui that maximizes the ratio σ2

i /τ
2
i (relative sense).

Average displacement: We consider the normalization to unit
length of 1

N
1
P

∑
p not neutral(x

i
p − xi) as the deformation direction.

Linear discriminant analysis: We perform linear discriminant
analysis (LDA) between two classes of points: the first class of points
contains all the xi for all i, the second class of points contains all the
xi
p for all i and p such that p is non-neutral. LDA yields a discriminant

direction w and a constant c such that under some assumptions, a
point x is more likely to belong to the second class if and only if
w⊤x > c; we project out w/∥w∥.

B. Evaluation

Downstream task: music instrument classification. For each sensi-
tivity mitigation method and each instrument class, we train a logistic
regressor on the task of recognizing the instrument on the desensitized
embeddings of some training datasets (effected or uneffected) and test
it on those of some test datasets; we use ROC AUC for evaluation.
These ROC AUCs are compared to those of the classifier trained and
tested with the embeddings whose sensitivity has not been reduced.
Dataset We use the IRMAS dataset [14] for experiments. The dataset
contains 6705 music excerpts of 11 instrument classes. Each excerpt
is 3 seconds in length.

For each parameter of each audio effect, we perform an experiment
where we train the logistic classifier on the uneffected dataset and
test on the effected dataset at this particular parameter, and another
experiment where we swap the train and test sets.

C. Results

Fig. 4 shows classification ROC AUCs for three combinations
of audio embeddings, audio effects and instruments, which are
representative of most combinations. Without sensitivity reduction,
the classification performance is usually sensitive to the audio effect
strength, with a higher effect strength inducing a sharper drop in
classification performance. In most cases, with sensitivity reduction,
the classification performance remains sensitive to the audio effect
strength, which confirms that the deformation induced by the audio
effects is not one-dimensional (in the case of one-dimensional pro-
jections) or low-dimensional (in the case of the sample-wise CCA

0.6 0.8
Room size

0.94

0.96

Op
en

L3
, r

ev
er

b.
Ce

llo
RO

C 
AU

C

0.6 0.8
Room size

0.6 0.8
Room size

0.6 0.8
Room size

25 0
Gain (dB)

0.97

0.98

0.99

PA
NN

s, 
ga

in
Or

ga
n

RO
C 

AU
C

25 0
Gain (dB)

25 0
Gain (dB)

25 0
Gain (dB)

10000 20000
Cutoff frequency (Hz)

Train orig.
Test effected

0.980

0.985

0.990

CL
AP

, l
ow

-p
as

s
Ac

ou
st

ic 
gu

ita
r

RO
C 

AU
C

10000 20000
Cutoff frequency (Hz)

Train effected
Test orig.

10000 20000
Cutoff frequency (Hz)

Train orig.
Test effected

10000 20000
Cutoff frequency (Hz)

Train effected
Test orig.

No debiasing / LDA /
global CCA / norm. PCA
Avg. displacement
Samplewise CCA SVD (t=0.4)
Non-normalized PCA

No debiasing / LDA /
global CCA / norm. PCA
Samplewise CCA SVD (t=0.3)
Samplewise CCA SVD (t=0.4)
Samplewise CCA SVD (t=0.5)

Fig. 4: Classification performance comparison (debiasing is equiva-
lent to desensitizing here) in terms of ROC AUC.

SVD method). However, there are minor variations in classification
performance compared to that without sensitivity reduction, in both
directions (higher and lower performance).

We can make the following general observations: (1) Global CCA
projection and LDA projection have virtually no impact on the
classification performance in most cases (overlapped curves without
sensitivity reduction are not plotted for clarity). (2) In many cases,
average displacement projection improves classification performance
by around 0.003 to 0.01 AUC (Fig. 4 top), but it sometimes decreases
the performance by the same order of magnitude (Fig. 4 middle), and
in many other cases, the impact of average displacement projection
on the classification performance is neutral (Fig. 4 bottom, to some
extent). The same can be said for the non-normalized PCA projection
variant and sample-wise CCA SVD projection, except that cases
where the performance decreases are more common; a threshold
of t = 0.4 seems to more often perform better than t = 0.3 and
t = 0.5 in Fig. 4, but this depends on the cases, with t = 0.3
performing better in many other cases. (3) With PANNs and CLAP
(and all four audio effects), and with reverberation and OpenL3,
the normalized PCA projection variant has a neutral effect on the
classification performance. With OpenL3 and the three other audio
effects (not plotted here), we observe a behavior similar to (2).

V. CONCLUSION

We propose a framework to quantify the sensitivity of pre-trained
audio embeddings to common effects. By applying parameterized
audio effects, we analyze the correlation between the embedding
response and the effect strength, and derive an estimated deformation
direction. Our findings indicate that the deformation subspace is gen-
erally high-dimensional, suggesting that embeddings do not linearize
audio effects in the embedding space. Consequently, a linear post-
processing approach, i.e. projecting out the deformation direction or
subspace, may hardly improve the robustness of pre-trained audio
embeddings to effects for downstream tasks. The proposed pipeline
could be potentially generalized to analyze the sensitivity of any
foundation models to any known parameters, beyond audio effects.
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