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Abstract
Two sets of weather patterns describing variability in 850 hPa winds in Southeast
Asia are presented and compared. Patterns are calculated using EOF/k-means
clustering with and without imposing a separation between planetary-scale and
regional-scale circulation features. The former are labelled as tiered patterns
while the latter are referred to as flat. The ability of the patterns to distin-
guish between known modes of tropical circulation variability is examined. This
includes climate modes such as the seasonal monsoons, the El Niño Southern
Oscillation (ENSO) and the Indian Ocean Dipole (IOD) as well as sub-seasonal
modes including cold surges, phases of the MJO and Boreal summer intrasea-
sonal oscillation (BSISO), tropical cyclones, Borneo vortices and equatorial
waves. All these modes are well captured by the weather patterns except for
the equatorial waves and the IOD. The tiered patterns are shown to better
describe large-scale modes of variability, while the flat patterns better describe
the synoptic variability. Both sets of weather patterns are then used to study the
likelihood of heavy precipitation depending on synoptic circulation by consider-
ing the regime-conditioned probability of high-percentile precipitation using the
satellite-derived Global Precipitation Measurement (GPM) dataset. It is shown
that the pattern centroids explain up to 10% of the seasonally anomalous precip-
itation over land, and that a perfect weather pattern forecast would outperform
a perfect MJO forecast. These weather patterns show promising potential in
extending the useful forecast range for the risk of heavy precipitation, dependent
on their forecastability.

K E Y W O R D S

Weather patterns, Southeast Asia, synoptic variability, intraseasonal precipitation variability

1 INTRODUCTION

High-Impact Weather (HIW) is a key economic and social
risk in Southeast Asia. The Philippines, Vietnam and
Thailand all rank in the ten countries most affected by

extreme weather from 1999–2018 (Eckstein et al., 2019).
HIW events in this region largely take the form of floods
and landslides associated with heavy precipitation due to
both tropical storms and other convective events. Improv-
ing prediction of heavy precipitation events across the
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sub-seasonal to seasonal (S2S) forecast ranges would bring
major societal and economic benefits by allowing timely
decisions to be made to protect lives and livelihoods. How-
ever, accurately forecasting precipitation is notoriously dif-
ficult owing to the strong dependence of precipitation on
processes across a wide range of length-scales. In South-
east Asia, this problem is exacerbated by the complex
geography of islands, mountains and seas, which gener-
ate complex interactions between atmospheric circulation
and precipitation that are difficult for general circula-
tion models to capture (Love et al., 2011; Birch et al.,
2016; Ferrett et al., 2020). Large-scale circulation itself is
generally considered more predictable than precipitation
(e.g., Boer, 2003; Hohenegger and Schäar, 2007; Zhang
et al., 2007; Selz and Craig, 2015; Ying and Zhang, 2017),
however forecast models struggle to simulate the depen-
dence of precipitation on atmospheric circulation. The
increased predictability of circulation motivates the appli-
cation of regional-scale circulation types, or weather pat-
terns, together with their conditional relationships with
precipitation, for the generation of probabilistic heavy pre-
cipitation forecasts. This methodology allows the poorly
resolved dynamical relationship between precipitation
and circulation to be replaced by a more robust statistical
relationship derived from observations.

The use of weather patterns has become widespread
since the early work by Baur et al. (1944) and Lamb (1972)
(also James, 2007). Weather patterns have been defined
using different techniques (reviews by Huth et al., 2008;
Philipp et al., 2010; Ghil et al., 2018). Two such tech-
niques are Empirical Orthogonal Function (EOF) analysis
(North et al., 1982) and cluster analysis. EOF analysis is
used in atmospheric science to extract sets of patterns
(the EOFs) which explain most of the variance in a given
system (e.g., Philipp et al., 2010). The EOFs can then be
used as a basis to express the original time series as a
linear combination of EOFs multiplied by coefficients
called principal components (PCs). The EOF patterns are
orthogonal in space and their PCs are orthogonal in time
(a property known as bi-orthogonality). Cluster analysis
consists of seeking groups within multi-dimensional data
with the aim of minimising within-cluster variances, also
known as inertia. While EOF analysis produces patterns
that are in principle present throughout the time series,
only changing in intensity, cluster analysis, as applied in
this paper, assigns each point in the dataset to a given
group or cluster. These groups are characterised by pat-
terns which can be understood as centroids, or composite
means, of the data within the cluster. Cluster analysis
has been used to define weather patterns in a variety of
regions around the globe including (but not limited to)
the North Atlantic (e.g., Michelangeli et al., 1995; Cassou,
2008), the United Kingdom and Europe (e.g., Neal et al.,

2016; Grams et al., 2017), India (Neal et al., 2020), Central
America (Sáenz and Durán-Quesada, 2015) and Mexico
(Thomas et al., 2020). Another methodology which has
been applied to identify rainfall states in subtropical and
tropical regions is the use of Hidden Markov Models,
for example in Asia (Holsclaw et al., 2016), India (Pal
et al., 2015) and New Caledonia (Moron et al., 2016). This
approach derives states directly from precipitation data,
rather than considering atmospheric circulation.

In Southeast Asia and its surrounds, cluster analysis
has been applied to a range of variables to analyse vari-
ability on sub-seasonal to interannual time-scales. Hassim
and Timbal (2019) applied clustering to radiosonde sound-
ings over Singapore to generate eight clusters, which they
found partitioned the seasonal passage of the ITCZ across
the Equator. Moron et al. (2015) limited their focus to the
Austral monsoon season and clustered on 850 hPa winds,
for which they identified six clusters. In both these stud-
ies, interannual precipitation variability is reflected in
variations in the timings and frequencies of the separate
clusters. Despite using very different input datasets, these
studies achieved qualitatively similar results, suggesting
that a degree of robustness to the choice of input data is
present. This was explored by Moron et al. (2019) in a study
of Northern Australia which overlapped Southeast Asia,
who found that three of the five Darwin sounding-based
weather regimes of Pope et al. (2009) had a strong cor-
respondence with one of their six horizontal wind-based
weather types.

The distinction between weather regimes and weather
patterns in this paper is based on the approach of Neal
et al. (2016, 2020). Under their methodology, both weather
regimes and patterns describe circulation types within a
regional domain, however weather patterns typically vary
on a daily basis, whereas weather regimes are longer last-
ing. They describe weather regimes as persistent states of
the atmosphere, which are of larger length-scale and fewer
in number than weather patterns. Neal et al. (2016) first
identified the 30 European weather patterns and secondly
objectively grouped these patterns into eight regimes char-
acterising the larger-scale flow. These eight larger-scale
circulation regimes were identified with the positive and
negative phases of the North Atlantic Oscillation and other
key circulation types over Europe. Similarly, Neal et al.
(2020) classified 30 Indian weather patterns a posteriori
according to their seasonality and circulation and pre-
cipitation characteristics into seven large-scale weather
regimes, which can be identified with known circulation
features such as the different phases of the monsoon.

Generally across the all studies of low-latitude trop-
ical and subtropical domains described above, plane-
tary variability associated with the annual cycle and
the El Niño Southern Oscillation (ENSO) dominate the
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HOWARD et al. 749

large-scale regimes. This stands in contrast to the midlat-
itude domains, where sub-seasonal variability such as the
North Atlantic Oscillation dominates.

This paper addresses the question: is it possible to
achieve a classification of the modes of variability that
influence the regional circulation over Southeast Asia
directly from gridded meteorological data? To answer this
question, a two-tiered approach motivated by the weather
pattern/weather regime split was taken. The flow is first
classified into regimes within a planetary-scale domain
(tier-1) followed by a secondary classification into weather
patterns, conditioned on the tier-1 regimes, within a
smaller, regional-scale domain (tier-2). We then compare
the tiered set to another set of weather patterns com-
puted directly on the smaller Southeast Asia domain. This
methodology differs from Neal et al. (2016, 2020) as it iden-
tifies the weather regimes first and then uses the regimes
to generate the patterns, rather than aggregating weather
patterns to generate weather regimes.

Southeast Asia is influenced by a varied set of
weather phenomena including equatorial waves, the
Madden–Julian Oscillation (MJO) and Boreal Summer
Intraseasonal Oscillation (BSISO), tropical cyclones, Bor-
neo vortices and cold surges associated with the Asian
winter northeast monsoon. Therefore, the weather pat-
terns must encode a large amount of information and may
struggle to capture all the potential synoptic drivers. A key
result of this paper is the characterisation of how these
weather phenomena are manifest in the weather patterns.

This paper describes the methodology used to gener-
ate the two sets of weather patterns, the degree to which
the weather patterns capture the variability in atmospheric
circulation, and the conditionality of HIW on the assigned
patterns. We contrast the ability of the two pattern sets to:

• Describe planetary-scale modes of variability, including
ENSO, the MJO and the seasonal monsoons;

• Separate different synoptic weather phenomena (cold
surges, Borneo vortices, equatorial waves, BSISO and
tropical cyclones) into different patterns; and

• Explain variability in the temporal distribution of pre-
cipitation.

A companion paper, (Personal Communication, P.
Gonzalez 2021, hereafter G21), considers the predictabil-
ity of these weather patterns and the resulting skill of a
pattern-conditioned precipitation forecast based on the
Met Office Global Seasonal Forecasting System version 5
(GloSEA5) ensemble forecasts.

The rest of this paper proceeds as follows. Section 2
provides details on the data used and the methodology
applied in the definition and evaluation of the tiered
and flat weather patterns. Section 3 describes the general

characteristics of the resultant pattern sets, including their
seasonal cycles, persistence and the Euclidean distances
between the pattern centroids. Section 4 considers the
degree to which each set of patterns describes planetary-
and synoptic-scale atmospheric variability. The relation-
ship between the patterns, precipitation and HIW is then
studied in Section 5. Finally, Section 6 provides a summary
of the work and a discussion on the potential usefulness
of each approach towards the aim of enhancing the proba-
bilistic forecast of HIW over Southeast Asia at sub-seasonal
to seasonal forecast lead times.

2 DATA AND METHODS

2.1 Data

The EOF and cluster analysis was performed on 850 hPa
horizontal wind components, which have been shown to
well describe the monsoonal circulation in the Tropics
(e.g., Moron et al., 2010), and have been used as the basis
for the definition of weather patterns in previous stud-
ies (e.g., Moron et al., 2015; Neal et al., 2020). The data
were taken from the reanalysis ERA5 (Hersbach et al.,
2020) produced by the European Centre for Medium-range
Weather Forecasts. The ERA5 high-resolution realisation
(referred to as HRES) 850 hPa hourly horizontal wind
components were retrieved at the ERA5 native resolu-
tion (0.28◦), equivalent to 31 km longitudinal grid spacing
at the Equator. Daily means were then derived from the
hourly wind data. ERA5 HRES surface pressure was also
retrieved and used to mask out any grid point for which
the 850 hPa pressure level was beneath the ground at any
time during the ERA5 period (1979–2018).

The fields were retrieved in a domain defined by the lat-
itudinal band between 35◦S and 35◦N and a longitudinal
sector between 60◦ and 180◦E. This domain is referred to
as the planetary-scale domain. Analysis was performed on
both this planetary-scale domain and a spatial subset occu-
pying approximately one quarter of the planetary-scale
domain area. This subset is referred to as the regional-scale
domain and defined by the latitudinal band between 15◦S
and 25◦N and a longitudinal sector between 90◦ and 140◦E.
The data was retrieved for the period from 01 January 1979
to 31 December 2018 from the Copernicus Climate Change
Service Climate Data Store (CDS) through the CDS API.

Global Precipitation Measurement (GPM) daily data
(Huffman et al., 2015) was used to quantify the pre-
cipitation over both the planetary-scale domain and the
regional-scale domain. The GPM data were retrieved from
June 2000 until the end of 2018 and interpolated from its
native 0.1◦ × 0.1◦ resolution onto a 1.5◦ × 1.5◦ grid. This
interpolated resolution was selected for ease of comparison
with S2S forecast precipitation in G21.
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750 HOWARD et al.

2.2 Methodology

To derive the weather pattern sets, we applied EOF analy-
sis to compute the leading patterns of variability within the
data. Cluster analysis was then performed on the reduced
phase space defined by the leading principal components.
This methodology is conceptually similar to that followed
by other previous studies (e.g., Cassou, 2008; Sáenz and
Durán-Quesada, 2015; Neal et al., 2016; 2020; Thomas
et al., 2020). This methodology has been applied ten times
to construct three sets of patterns:

• First to the full 38-year dataset across the planetary-
scale domain to obtain the eight tier-1 weather patterns;

• Then separately to time subsets classified into each
of the eight tier-1 weather patterns restricted to the
regional-scale domain in order to obtain the 51 tier-2
weather patterns; and

• Finally to the full dataset across the regional-scale
domain to obtain a corresponding set of 51 flat weather
patterns.

The planetary-scale (or tier-1) weather patterns were
defined using daily 850 hPa horizontal wind compo-
nents with annual cycle components retained on the
planetary-scale domain (defined in Section 2.1). Forty
EOFs were retained to explain 95% of the total variance
(proportional to kinetic energy). k-means cluster analysis
was used on the PCs corresponding to the 40 retained
EOFs. The Gap method of Tibshirani et al. (2001), with
reference distribution defined using method b (section
4 of Tibshirani et al., 2001), was used to estimate the
optimal number of clusters. This was found to be nine.
Two of these nine patterns were found to be dominated
by the two in-quadrature phases of a propagating South-
ern Hemisphere subtropical wave: that is, they have the
same spatial waveform shifted by 𝜋∕2 in the zonal direc-
tion but were otherwise very similar. This waveform was
located outside of the inner domain described below.
These two clusters were therefore merged into a single
pattern. The resulting eight centroid patterns are con-
sistent with the eight clusters found on an analysis of
weather regimes over Singapore (Hassim and Timbal,
2019), although the latter were defined taking a very
different approach by clustering vertical soundings at a
point location and compositing the large-scale circula-
tion around the region. Centroid maps are provided in
Figure 3 below.

The second tier of weather patterns were condi-
tioned on membership of one of the eight planetary-scale
patterns, and calculated using the regional-scale domain
only. For each of the eight tier-1 regimes, EOF analysis
was applied separately to horizontal wind components on

each of the eight data subsets. As a consequence of this
design, the tier-1 means were removed from the resultant
EOFs, but all remaining seasonality not captured in tier-1
was retained. In each case, sufficient PCs were retained to
explain 95% of the total variance. k-means cluster analysis
was then applied to the retained PCs in order to identify
the second-tier regional weather patterns. The number of
patterns in each sub-set, determined using the Gap method
(Tibshirani et al., 2001), varied between five and eight, to
produce 51 regional weather patterns in total in the second
tier. Centroid maps are provided as a part of the Supporting
Information in Figure S1.

The flat weather patterns were calculated using the
38-year 850 hPa horizontal wind dataset with annual
cycle components retained, limited to the regional-scale
domain. EOF analysis was used to reduce the original data
dimensionality to 45 EOFs, explaining 95% of the variance
in the first 100 EOFs. As before, k-means cluster analy-
sis was applied to the retained PCs. However, in this case,
rather than using the Gap method to determine the opti-
mal number of clusters, the number of patterns was chosen
as 51 to construct a set of regional weather patterns com-
parable to the output of the tiered analysis. Centroid maps
are provided in Figure S2.

Elbow plots of inertia were also examined to test the
sensitivity of the explanatory power to the number of pat-
terns mandated. Figure 1 shows elbow plot for the flat
patterns (black), and an adaptation of elbow plots for the
tiered patterns (grey). The tiered adaption shows a pointed
oval indicating the inertia of all combinations of numbers
of tier-2 patterns between five and eight, for the fixed set of
tier-1 regimes. The vertical extent of this ellipse indicates
the sensitivity of the tier-2 pattern inertia to the proportion
of patterns allocated to each tier-1 cluster when the total
number of patterns is fixed. Wind and precipitation inertia
are respectively calculated as

Iw =

∑
t,x,y

[{
u − ũ(rt)

}2 +
{

v − ṽ(rt)
}2
]

∑
t,x,y

{
(u − u)2 + (v − v)2

} (1a)

and IP =

∑
t,x,y

{
P − P̃(rt)

}2

∑
t,x,y

(
P − P

)2 , (1a)

where u and v are the 850 hPa eastward and northward
winds respectively, P is precipitation, rt is the regime or
pattern which is current at time t, ṽ(r) is the centroid of
variable v during regime/pattern r and v is the time-mean
of variable v. It is clear that the flat methodology is able to
achieve a lower inertia with the same number of patterns
than the tiered methodology when both winds and
precipitation are considered (Figure 1). The same wind
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HOWARD et al. 751

inertia as the tiered patterns can be achieved by 32 flat
patterns, and the same precipitation inertia is achieved by
39 flat patterns. This is due to redundancy present in the
tiered patterns, originating from similar weather patterns
occurring across different tier-1 regimes. For the tiered
methodology, some weather types need to be represented
by a separate tier-2 pattern for multiple tier-1 regimes,
whereas in the flat methodology, one pattern will suffice.

All sets of patterns have been ordered according to their
climatological seasonal cycle by computing the mean day
of year (modulo 365 days) for each pattern and sorting by
this value in ascending order.

For the purposes of this paper, heavy precipitation
has been defined as occurring when GPM precipitation
interpolated to a 1.5 × 1.5◦ grid exceeds its seasonal 90th
percentile. This P90 percentile value is calculated sepa-
rately for each grid location and each day of the year
using a 60-day rolling window. By definition, there is
a 10% probability of heavy precipitation occurring on
any given day at each location. In order to determine
whether the pattern sets are useful for describing the risk
of heavy precipitation, we wish to demonstrate whether
the pattern-conditioned exceedance likelihood of the sea-
sonal P90 is statistically different from 10%. Using the
binomial distribution, we can construct a 5% one-sided
confidence bound such that there is a <5% probability
that the number of days with exceedance in an indepen-
dent selection of 130 days (the average number of days in
each pattern during the GPM period) exceeds this bound.
By computation we find this bound to be 20 days, equiva-
lent to a 15% exceedance rate. Therefore, when we present
the pattern-conditioned exceedance of the seasonal P90 in
Section 4, we set the contour interval levels to 10%, with
the 5–15% exceedance rates unshaded.

3 DESCRIPTION OF PATTERNS

This section describes the seasonal cycle, longevity and
transitional behaviour of the three sets of weather regimes
and patterns.

3.1 Seasonal cycle

The eight planetary-scale regimes of the first tier dis-
criminate primarily between phases of the seasonal cycle,
and between the different monsoon circulations present
in and around Southeast Asia. The timing of each tier-1
regime is shown in Figure 2a, while the associated ERA5
850 hPa wind and GPM precipitation regime centroids
are shown in Figure 3. Figure 2b shows the probability
of tier-1 regimes conditioned on the Niño 3.4 SST index.
Regimes 1 and 2 are dominated by the austral monsoon
with westerly winds and high precipitation in Indonesia,
concurrent with the northeast monsoon in the North-
ern Hemisphere. These two regimes show the strongest
relationship with ENSO in Figure 2, where Regime 2 dom-
inates during La Niña years and Regime 1 coincides with
El Niño years. These westerly winds are stronger over
the equatorial Indian Ocean and Sumatra in Regime 2
than in Regime 1 (Figure 3a, b). Regime 3 represents the
transition season as the Inter-Tropical Convergence Zone
(ITCZ) passes north over the Equator. Following this, the
boreal monsoon takes hold with the onset of Regime 4,
with westerly winds extending from India through to
Vietnam in the regime centroids (Figure 3d). Regime 4
is the longest-lasting tier-1 regime identified, typically
occurring between late May and early September. How-
ever, from July onward the regime frequently switches

F I G U R E 1 Inertia of
various pattern sets calculated
using (a) small-domain daily
850 hPa wind vectors and (b)
GPM precipitation and plotted
against total number of patterns.
Black line: Inertia of 15–70 flat
patterns, calculated using the
flat pattern methodology. Grey
dots: Inertia of all possible
combinations with 5–8
sub-patterns in each tier-1
pattern. The same tier-1 pattern
decomposition has been used in
each case. Red dot: Inertia of the
selected set of tiered regimes
[Colour figure can be viewed at
wileyonlinelibrary.com]
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752 HOWARD et al.

(a) (b)

F I G U R E 2 Climatological proportion of days in (a) each month and (b) Niño 3.4 SST bins assigned to each tier-1 regime [Colour figure
can be viewed at wileyonlinelibrary.com]

(a) (b) (c) (d)

(e) (f) (g) (d)

F I G U R E 3 Tier-1 regime centroids. Vector wind at 850 hPa and GPM precipitation (shading) [Colour figure can be viewed at
wileyonlinelibrary.com]

between itself and Regime 5, which represents an eastward
extension of the monsoon westerlies over the South China
Sea and the Philippines (Figure 3e). From mid-September
to mid-December, three regimes which describe the tran-
sitional season have been identified. These are Regime 6
being the retreat of the boreal monsoon, Regime 7 con-
taining the southward passage of the ITCZ across the
Equator, and Regime 8 representing the onset of the
austral monsoon.

During the transitional seasons, further dependence
on the seasonal cycle is present in the tier-2 patterns.
This is evident from Figure 4a, which shows the seasonal

frequency of tier-2 pattern occurrence by day of year. A
distinct diagonal distribution, which is indicative of strong
seasonality, is present in the weather patterns associated
with Regimes 3, 6, 7 and 8. However within the two mon-
soon seasons (tier-1 Regimes 1, 2, 4 and 5), the seasonal
influence is reduced and tier-2 pattern frequencies are
more evenly spaced within the timing envelopes of the
tier-1 regimes.

The seasonal cycle of flat pattern frequencies is given
in Figure 4b. Patterns 1–9 and 51 occur during the austral
summer, while the northward transition season is divided
into patterns 10–17 and Patterns 20 and 21. The boreal
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(a) (b)

(c) (d)

F I G U R E 4 (a, b) seasonal frequency of each pattern (vertical axis), by day of the year (horizontal axis). Units are occurrences per year.
(c, d) number of patterns that are likely to occur during rolling 7-day climatological window (using a 98% cumulative probability). (a, c) show
tiered patterns, and (b, d) flat patterns [Colour figure can be viewed at wileyonlinelibrary.com]

monsoon occurs during patterns 18–36, with Patterns 18,
19, 22 and 23 occurring at the time of monsoon onset.
The southward transition season then occurs with the pro-
gression from Pattern 37 through to Pattern 50. The diag-
onal structure of the figure indicates that, as in the tier-2
patterns, seasonal coherence is more present during the
transition seasons than during the monsoon seasons. The
density of flat patterns is greatest during the boreal mon-
soon, indicated by the location of the main band below the
diagonal line. This is not the case for the tiered patterns.

3.2 Pattern transitions and centroids

Statistics relating to the persistence of regime and pattern
events are presented in Table 1. An event is defined as a
spell of consecutive days in the same cluster. The distri-
bution of event persistence is heavily negatively skewed.
We find that the tier-1 regimes persist for 7 days on aver-
age, while the persistence of the tier-2 and flat patterns
is very similar, both having a mean of 2.5–2.6 days. The
median pattern persistence for the tier-2 and flat patterns
is 2 days. With this median in mind, the empirical 2-day
transition probabilities for the tiered and flat weather pat-
terns are described by Figure 5a, b respectively. Consistent
with the increased persistence of the tier-1 regimes, the
majority of tier-2 patterns transition within the same tier-1
regime. Due to the ordering of the regimes and patterns
by their seasonal cycles, a transition from a classification

T A B L E 1 Statistics describing the number of
consecutive days spent in each regime/pattern. P90 and P99
denote the 90th and 99th percentiles

Mean Median P90 P99

Tier 1 7.0 3 18 45

Tier 2 2.6 2 5 11

Flat 2.5 2 5 11

with an earlier seasonal timing to one with a later tim-
ing is denoted by a grid-cell below the diagonal. Patterns
that occur during the transition seasons, as described in
Section 3.1, generally have greater persistence (demon-
strated by more probable transitions into the same pattern,
along the diagonal), while the least persistence is present
in the weather patterns associated with Regime 5 and in
flat patterns 32–37.

Figure 6a, b indicates which of the tiered (a) and flat (b)
patterns are closest to each other in the high-dimensional
vector space containing the wind vectors at each grid-cell
in the regional-scale domain1. Euclidean distances are
normalised by the average Euclidean distance between
the wind field at each point in time and the climatological
mean wind field. Lines are drawn between markers
indicating pairs of patterns for which this normalised

1In this instance, the vector space spanned by the principal components
has not been used because the tier-2 patterns belonging to different
tier-1 regimes were defined using different principal components.
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754 HOWARD et al.

(a) (b)

F I G U R E 5 (a) Tiered and (b) flat pattern 2-day lagged transition matrix depicting the proportion of days that fall into each pattern (on
the vertical axis) two days after the occurrence of the pattern indicated on the horizontal axis [Colour figure can be viewed at
wileyonlinelibrary.com]

Euclidean distance between the centroids is less than
40%. In both sets of patterns, the boreal summer monsoon
(tiered Regimes 4, 5 and 6; flat Regimes 18–36) possess
centroids that are pair-wise close to each other. The tiered
patterns show similar overlap for the austral summer
monsoon (tiered Regimes 8, 1 and 2), however the flat pat-
terns do not. This overlap is indicative of the redundancy
of the tiered patterns described in Section 2.2, which was
a consequence of tier-2 patterns in different tier-1 regimes
representing the same weather type. The tiered regime set
also contains pairs of close regimes which occur during
different transition seasons (3b with 7f, 3c with 8d, 3f with
7b), whereas the flat regimes do not.

Figure 6c, d show the pairs of tiered patterns and flat
patterns for which at least 30% of the days classified into
the flat pattern were also classified into the tiered pattern.
In the discussion below, we refer these pairs of patterns as
‘linked’. Shading indicates the proportion of the flat pat-
tern classified into the tiered pattern. 37 of the flat patterns
are linked to a single tier-1 pattern, and the remaining 14
patterns are linked to two. Tier-1 Regime 4 is linked to the
largest number of flat patterns, with 11 flat patterns linked
only to this tier-1 regime and 4 linked to this tier-1 regime
as well as one other tier-1 regime. This may be related to
the construction of tier-1 Regime 4, which was the result
of merging two clusters which featured a subtropical wave
in quadrature in the planetary-scale domain. Across the
tier-2 and flat patterns, 26 pattern pairs show a direct 1–1
correspondence, whereby each pattern is linked only to its

partner. Many of these pairs will be found in Section 4.2 to
feature similar modes of synoptic variability.

4 REPRESENTATION OF MODES
OF TROPICAL VARIABILITY

This section quantifies the degree to which each set of
regimes and patterns distinguishes planetary-scale and
synoptic modes of atmospheric variability. First we con-
sider the representation of large-scale variability, including
planetary-scale variability outside the regional domain.
Secondly, synoptic variability, including weather events
such as cold surges, tropical cyclones and equatorial waves
is discussed.

4.1 Large-scale variability

The following analysis compares the degree to which
each set of regimes and patterns describes the variance of
known modes of variability: ENSO, the IOD, the MJO and
the seasonal cycle. We consider the variance of a set of cli-
mate index time-series explained by the respective sets of
patterns. In this instance, variance explained is defined as:

∑
t

{
X̃(rt) − X

}2

∑
t

(
X − X

)2 , (2a)
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HOWARD et al. 755

(a) (b)

(c) (d)

F I G U R E 6 (a, b) show loom plots of pattern pairs with short pairwise Euclidean distances (a tiered, b flat). Line shading indicate
Euclidean distances normalised by the mean Euclidean distance to the climatological mean. Patterns pairs with normalised distances greater
than 0.4 are not shown. (c, d) show loom plots of the cross-over of (c) tier-1 regimes and (d) tier-2 patterns with the flat patterns. Line shading
indicates the proportion of flat patterns that are also classified as the linked tiered pattern. Pattern pairs with overlap proportions below 0.3
are not shown [Colour figure can be viewed at wileyonlinelibrary.com]

or

∑
t

[{
X̃1(rt) − X1

}2
+
{

X̃2(rt) − X2

}2
]

∑
t

[(
X1 − X1

)2
+
(

X2 − X2

)2
] (2a)

where X is the climate index, X is the climate index
mean and X̃(rt) is the mean of the climate index calcu-
lated over all days classified into classification rt. If the
climate index is two-dimensional, such as the real-time

multivariate MJO (RMM), the expression (2b) is used, with
X = [X1,X2] representing the components of the index.
The variance explained of each climate index is presented
in Table 2 for the tier-1 regimes, for the tier-2 patterns and
for the flat patterns in each column. The indices represent-
ing large-scale variability, presented in the first section of
the table, are the seasonal cycle, the Niño 3.4 SST Index,
the Dipole Mode Index (DMI), and the RMM. As well as
the MJO, seasonal cycle is taken to be two-dimensional,
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756 HOWARD et al.

T A B L E 2 Summary statistics describing the relationship
between the tiered and flat patterns and modes of variability

Tier-1 Tier-2 Flat

1 Day of Year 0.721 0.748 0.668

2 Niño 34 SST 0.066 0.152 0.128

3 DMI 0.031 0.100 0.088

4 RMM MJO 0.077 0.247 0.237

5 BSISO-1 0.099 0.339 0.367

6 BSISO-2 0.032 0.167 0.187

7 Cross-equatorial Surge 0.064 0.283 0.251

8 Easterly Surge 0.256 0.403 0.430

9 Meridional Surge 0.187 0.303 0.33

10 Merid.+East. Surge 0.066 0.144 0.167

11 Borneo Vortex 0.345 0.408 0.396

12 Tropical Cyclone 0.137 0.220 0.237

13 SCS Vortex 0.440 0.494 0.479

14 Kelvin Wave 0.027 0.049 0.049

15 Rossby-1 Wave 0.063 0.101 0.110

16 Rossby-2 Wave 0.050 0.090 0.099

17 WMRG Wave 0.050 0.086 0.093

Note: Rows 1-4: large-scale variability, rows 5-17 synoptic variability.Each
entry indicates the fractional variance of a daily time-series that is
explained using the pattern-conditioned means of each index using the
tiered or flat pattern decomposition. The variance for the MJO, BSISO and
the day of year are calculated in two-dimensional space, with the MJO
and BSISO considered in EOF space and the day of year first projected
onto a circle. The tier-2 or flat pattern set explaining the most variance for
each index, where statistically significant for at least one component at a
p < 0.01 level using both Bartlett and Levene tests, is shown in bold.

defined as:

[X1, X2] = [cos(2𝜋D∕365.25), sin(2𝜋D∕365.25)],

where D is the day of the year. This ensures that the index
may be considered modulo the number of days in a year.

Though the first tier does distinguish El Niño and the
MJO, inclusion of the second tier markedly improves the
variance explained, likely due to the finer discretisation of
tier-2. Across these large-scale indices, the tier-2 patterns
have a significantly greater variance explained than the
flat patterns do. This improvement can be directly linked
to the conditioning on the tier-1 regimes: when days are
assigned directly to tier-2 centroids (not shown), no sig-
nificant improvement compared to the flat regimes was
found. Owing to the extra information provided by the
planetary-scale domain, tier-1 also has a higher explained
variance for the seasonal cycle than the flat regimes.
This implies that the tiered patterns are more skilful at

representing large-scale variability. Although this does not
translate into an improved discrimination of the precipi-
tation variability, it may lead to the tiered patterns being
more predictable than the flat patterns.

The relationship between the first tier regimes and
ENSO is demonstrated in Figure 7, which shows the tim-
ing of each regime in each year from 1979–2018 by a
coloured legend. Years have been reordered using annual
March–March Niño 3.4 SST index, so that La Niña years
are shown towards the bottom of the figure and El Niño
years are shown towards the top. This means that the
footprints in Figure 7 of regimes whose annual frequency
is dependent on ENSO will be tapered, while the foot-
print of those whose timing is dependent on ENSO will be
tilted.

The interannual frequency and timing of each regime
has also been related to annual Niño 3.4 SST indices using
regression analysis. For each regime, a Niño 3.4 SST was
generated by weighting the monthly Niño 3.4 SST index by
the climatological monthly regime frequency (according
to Figure 2). Statistics for Regimes 1, 2 and 8 were calcu-
lated by splitting years in June, rather than January. The
following text describes the direction and the correlation
coefficient for the significant tier-1 regime dependencies
on ENSO. All results were significant at the p < .01 level,
unless otherwise stated. It is evident from Figure 7 that
the strongest influence of ENSO on tier-1 regime assign-
ment is present during the austral summer, with Regime 1
occurring more frequently during El Niño (r = 0.76), and
Regime 2 occurring more frequently during La Niña (r =
−0.72). Transition Regime 3 occurs earlier (r = 0.35, p =
0.03) and more frequently (r = 0.48) during El Niño. Dur-
ing the boreal monsoon, Regimes 5 and 6 are more fre-
quent during El Niño (r = 0.48, r = 0.68), while Regime 4
is more frequent during La Niña (r = −0.57). During the
southward monsoon transition, Regime 7 occurs earlier in
the season and Regime 8 is more frequent during La Niña
(r = 0.50, r = 0.36, respectively).

The distribution of MJO phases observed during each
tier-1 regime is shown in Figure 8. In this figure, sta-
tistically significant increased (decreased) co-occurrences
compared to seasonal climatologies are indicated by
blue (red) dots. These were calculated by generating a
1,000-member bootstrapped sample of 1,000 days from
the set of days assigned to each pattern and determining
whether the climatological event occurrence lay within
the bootstrapped P99 confidence interval of synoptic event
frequencies. For each weather regime, the climatologi-
cal synoptic event occurrences were calculated separately
using a sample with replacement of 10,000 days whose
days and years were assigned randomly and whose months
were distributed identically to that of the weather pattern.
The strongest relationship with the MJO is apparent in
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HOWARD et al. 757

(a) (b)

F I G U R E 7 Tier-1 regime timing, reordered by ENSO. (a) shows the annual Niño 3.4 SST index (x−axis), averaged from March to
March in each year from 1979 to 2018. Years (y−axis) have been reordered such that this index is increasing. (b) shows the regime assigned
on each year between 1979 and 2018, ordered by the annual Niño 3.4 SST index. The x−axis shows the day of the year, starting in March and
ending in April the following year. The y−axis shows the year, reordered by the Niño 3.4 SST index as in (a) [Colour figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 8 Frequency of MJO Phase conditioned on tier-1
regime. The x−axis is the Tier-1 regime, and the y−axis the MJO
phase, calculated using RMM indices (Wheeler and Hendon, 2004).
Plusses (dots) indicate that the event is significantly more (less)
likely to co-occur with the assigned pattern than otherwise during
the season in which the pattern occurs, based on a bootstrapped
99% confidence interval. [Colour figure can be viewed at
wileyonlinelibrary.com]

Regimes 1, 2 and 5. Combined with our findings from
Figures 2 and 7, we may conclude that the core large-scale
variability of the austral summer monsoon has been

divided into two categories: Regime 2, where the mon-
soon is enhanced by La Niña and locally active phases
of the MJO (phases 3–5), and Regime 1, where the mon-
soon is subdued by El Niño and locally suppressed phases
of the MJO (Phases 7–1). Meanwhile, during the boreal
monsoon, the extension of the monsoon westerlies into the
South China Sea, represented by Regime 5, occurs more
frequently during MJO phases 5, 6 and 7, when the MJO is
active over the western Pacific.

4.2 Synoptic-scale variability

In order to quantify the degree to which the tier-2 and flat
patterns distinguish synoptic-scale variability, we study
the pattern-conditioned probability of the occurrence of
synoptic weather events known to impact weather in
Southeast Asia. We consider cold surges (Chang et al.,
2005; Hattori et al., 2011), tropical cyclones (Hodges et al.,
2017), the MJO (Wheeler and Hendon, 2004), the Borneo
vortex (Chang et al., 2005), the BSISO (Lee et al., 2013),
vortices in the South China Sea (Dang-Quang et al., 2016)
and equatorial waves (Yang et al., 2003), and use objec-
tive event definitions from previous studies. The following
list describes the event definitions used to calculate the
co-occurrence between synoptic events and the weather
patterns. A weather index is also defined for each event in
the list below and the lower sections of Table 2 indicate the
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758 HOWARD et al.

variance of these weather indices explained by the tier-1,
tier-2 and flat classification sets.

• Cold surges and the Borneo vortex (Chang et al., 2005;
Hattori et al., 2011). In Table 2, rows 7–11 indicate the
variance of the binary indices explained by the patterns.

– Meridional: ERA-Interim 925 hPa northerly wind
averaged between 110◦ and 117.5◦E along 15◦N
exceeds 8 m⋅s−1;

– Easterly: ERA-Interim 925 hPa easterly wind aver-
aged between 7.5◦ and 15◦N along 120◦E exceeds
8 m⋅s−1;

– Both Meridional and Easterly: both of the above con-
ditions are met;

– Cross-equatorial: ERA-Interim 925 hPa northerly
wind averaged over 105–115◦E at 5.0◦S exceeds
5 m⋅s−1; and

– Borneo vortex: ERA-Interim 925 hPa stream function
calculated using Dawson (2016) has a local minimum
within the area of 2.5◦S–7.5◦N, 107.5◦–117.5◦E, and
at least one grid-cell adjacent to the local minimum
has a wind speed exceeding 2.5 m⋅s−1.

• Tropical cyclones (Hodges et al., 2017): A cyclonic vor-
tex with filtered relative vorticity exceeding a range of
thresholds (5–24 × 10−5s−1) is present in the Southeast
Asia domain plus a 5◦ buffer. The cyclonic vortices
were identified by objectively tracking vertically aver-
aged (850–600 hPa) ERA-Interim relative vorticity at
T63 resolution at 6-hourly time resolution in the North-
ern Hemisphere only. The objective tracking method-
ology described by Hodges et al. (2017) was applied.
Here, the relative vorticity threshold was chosen so that
it corresponds to the 40-year P90 of the daily maximum
filtered vorticity across the domain. In Table 2, row 11
indicates the variance of the binary index of this vor-
ticity exceeding its P90 (1.3 × 10−4s−1) explained by the
patterns.

• The MJO (Wheeler and Hendon, 2004): The RMM-
based MJO is in each of its eight phases, with magnitude
greater than 1. Weak MJO, with magnitude less than 1,
is also considered as a separate event (denoted by W for
Weak). In Table 2, row 4 indicates the variance of the 2D
RMM indices explained by the patterns.

• South China Sea vortex: A cyclonic vortex with fil-
tered vorticity exceeding 2 × 10−5s−1 in the region
(100◦–120◦E, 0◦–12◦N). The cyclonic vortices were
identified by tracking low-level (850 hPa) ERA-Interim
vorticity at T63 resolution at 6-hourly time resolution.
In Figure 9d, these vortices are binned by their cen-
tral latitude. In Table 2, row 13 indicates the variance

of the binary index of the tracked vorticity exceeding
its P90 (4.1 × 10−4s−1) explained by the regimes. South
China Sea vortices towards the southern extent of this
range may also be classified as Borneo vortices. How-
ever, this tracking methodology differs from the Bor-
neo vortex stream-function approach above in that it
is designed to capture propagating systems, whereas
the stream-function approach also identifies stationary
systems.

• Equatorial Waves (Yang et al., 2003): the amplitude of
an equatorial wave mode at a chosen latitude, averaged
from 90◦ to 140 ◦E, exceeds a chosen threshold. Here,
the amplitude for each wave mode is calculated as the
Hilbert envelope of the 850 hPa winds projected onto
the parabolic cylindrical basis functions associated with
the horizontal structure of the equatorial wave. The
threshold, wind component and latitude are chosen sep-
arately for each wave mode, as follows. The formulation
of the projection methodology ensures that the results
are not dependent on choice of latitude. In Table 2,
rows 14–17 indicate the variance of the respective fil-
tered wave amplitudes explained by the patterns.

– (K) Kelvin wave: Filtered eastward wind amplitude
at the Equator exceeds its P90 (2.0 m⋅s−1).

– (R1) n = 1 Rossby wave: Filtered northward wind
amplitude at 10◦ S exceeds its P90 (1.8 m⋅s−1).

– (R2) n = 2 Rossby wave: Filtered northward wind
amplitude at the Equator exceeds its P90 ( 1.1 m⋅s−1).

– (WM) Westward mixed Rossby-gravity wave: Filtered
northward wind amplitude at the Equator exceeds its
P90 (2.0 m⋅s−1).

– BSISO-1 (Lee et al., 2013): the first mode of BSISO is
in each of its eight phases, with magnitude greater
than 1. Weak BSISO, with magnitude less than 1, is
also considered as a separate event (denoted by W for
Weak).

– BSISO-2 (Lee et al., 2013): the second mode of BSISO
is in each of its eight phases, with magnitude greater
than 1. Weak BSISO, with magnitude less than 1, is
also considered as a separate event (denoted by W for
Weak). In Table 2, rows 5 and 6 indicate the variance
of the two sets of 2D BSISO EOF indices explained by
the patterns.

For each event, the conditional probability of event
occurrence during each tiered and flat weather pattern is
displayed in Figures 9 and 11. Statistical significance was
calculated according to Figure 8, with bootstrapped sam-
ple sizes reduced to 200 days to reflect the approximate
number of days in each regime. Event seasonality is
apparent; tropical cyclones (Figure 9b) only occur with
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HOWARD et al. 759

(a)

(b)

(c)

(d)

(e)

(f)

(g)

F I G U R E 9 Frequency at which events defined in Section 4 occur in each tier-2 pattern. Panels indicate different event types, as
labelled. Thresholds are as defined in the text. Plusses (dots) indicate a that the event is significantly more (less) likely to co-occur with the
assigned pattern than otherwise during the season in which the pattern occurs, based on a bootstrapped 99% confidence interval [Colour
figure can be viewed at wileyonlinelibrary.com]
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(a) (b) (c) (d)

(e) (f) (g) (h)

F I G U R E 10 850 hPa wind
vectors (arrows) and probability
(colour shading) of exceeding the
20 year annual P90 precipitation on
a 1.5 × 1.5◦ grid, for selected patterns
from the tiered methodology.
Exceedances in regions where the
mean seasonal P90 during each
pattern is less than 10 mm⋅day−1 are
masked. Key phenomena identified
in each pattern are: easterly surges
(1b), cross-equatorial surges (2c),
BSISO-1 phase 8 (3g), BSISO-1
phase 5 (4e), tropical cyclones (5b,
6e), and South China Sea vortices
(7c, 8a) [Colour figure can be viewed
at wileyonlinelibrary.com]

increased frequencies during the boreal monsoon pat-
terns (tier-1 Regimes 4, 5, 6 and 7), while cold surges
(Figure 9a) and Borneo vortices (Figure 9d) occur pre-
dominantly during the austral summer patterns (tier-1
Regimes 1, 2 and 8). Despite this, however, there is a con-
siderable degree of variability displayed within each of
tier-1 regimes, demonstrated by the increase of variance
explained in Table 2 comparing tier-2 to tier-1. Since the
flat patterns are ordered by their average day of year, the
corresponding seasonality in the flat patterns show up
as clusters of increased co-occurrence frequencies across
adjacent columns of Figure 11.

To illustrate the links between the patterns and synop-
tic weather, we present several case-studies for a selected
subset of the weather patterns. The subset was chosen to
contain one tier-2 pattern from each tier-1 regime, and
to highlight synoptic weather features with enhanced pat-
tern co-occurrence rates, and a range of the seasonal cycle
of flat regimes. The composite-mean 850 hPa winds and
pattern-conditioned exceedance of the 20-year annual P90
GPM precipitation of the subset of tiered and flat patterns
are presented in Figures 10 and 12). The full set of pattern
centroids are given in Figures S1 and S2).

The classification of cold surges is clearly partitioned
between the different austral summer patterns (Figure 9a
and Figure 11a). A cross-equatorial cold surge in pattern 2c
can be seen in the centroid of Figure 10b, together with
elevated precipitation across Java and the southern islands
of Indonesia. Meanwhile, the cyclonic circulation associ-
ated with a South China Sea vortex near 8◦N is evident in
the centroid of pattern 8a visible in the wind field shown
in Figure 10h. Representation of cold surges in the flat
pattern is similar, with pattern 48 featuring the strongest
co-occurrence with meridional surges and patterns 2 and

5 showing the the strongest likelihood of cross-equatorial
surges.

A total of 44 (47) of the tier-2 (flat) patterns co-occur
and are associated with MJO phases (Figures 9c and 11c).
During the boreal monsoon and transition season patterns,
the frequencies of pattern-conditioned MJO phases typi-
cally match those of pattern-conditioned BSISO-1 phases.
This is not surprising, since the first mode of BSISO often
occurs in conjunction with the MJO during the boreal
monsoon (Lee et al., 2013). The EOF spatial patterns in
the BSISO phase composites (figures 2 and 3 of Lee et al.,
2013) match up with the patterns of enhanced extreme
precipitation likelihood in patterns with high increased
BSISO phases. This is most apparent in tiered pattern 4e
and flat pattern 23 (Figure 10d and Figure 12c) which fea-
ture BSISO-1 Phase 5 and show a band of high probability
of heavy precipitation stretching out from Vietnam over
the South China Sea with a northwest to southeast orien-
tation. These regimes were identified as ‘linked’ patterns
in Figure 5. Flat pattern 28 (Figure 12d) is associated with
BSISO-1 phase 8 and shows high rainfall risk in the north
of the domain and low rainfall risk in the centre near 10◦N.

The patterns derived from tier-1 Regimes 5 and 6 are
dominated by tropical cyclones (Figure 9b). Track fre-
quency maps (not shown) indicate that the various pat-
terns feature tropical cyclones in locations that match
up with cyclonic vortices and regions of high probabil-
ity of heavy precipitation in Figures 10e, 10f and S1.
In pattern 5b, this region is located immediately over
Luzon, while in pattern 6b it is located to the east of
the Philippines. Meanwhile, nine boreal summer flat
weather patterns feature the highest co-occurrence rates
with tropical cyclones (Figure 11b). Preferential tropical
cyclone locations for many of these patterns can once
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HOWARD et al. 761

(a)

(b)

(c)

(d)

(e)

(f)

(g)

F I G U R E 11 Frequency at which events defined in Section 4 occur in each flat pattern. Panels indicate different event types, as labelled.
Plusses (dots) dots indicate a that the event is significantly more (less) likely to co-occur with the assigned pattern than otherwise during the
season in which the pattern occurs, based on a bootstrapped 99% confidence interval. [Colour figure can be viewed at wileyonlinelibrary.com]
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762 HOWARD et al.

(a) (b) (c) (d)

(e) (f) (g) (h)

F I G U R E 12 850 hPa wind vectors (arrows) and probability (colour shading) of exceeding the 20 year annual P90 precipitation on a
1.5 × 1.5◦ grid, for selected patterns from the flat methodology. Exceedances in regions where the mean seasonal P90 during each pattern is
less than 10 mm⋅day−1 are masked. Key phenomena identified in each pattern are: cross-equatorial surges (5), BSISO-1 and MJO Phase 2
(15), BSISO-1 phase 5 (23), BSISO-2 phase 8 (29), equatorial Rossby waves (33), tropical cyclones (36), South China Sea vortices (44) and
meridional surges (48) [Colour figure can be viewed at wileyonlinelibrary.com]

again be derived from Figure 12. The strongest tropi-
cal cyclone pattern was pattern 36, which is shown in
Figure 12f. Some of these tropical cyclones appear to
project onto the westward-propagating equatorial wave
modes. Meanwhile, pattern 33 shows a low frequency of
tropical cyclones but a high frequency of Rossby-2 waves
(Figure 12e). During this pattern, a cyclonic vortex and ele-
vated extreme precipitation likelihood in Vietnam are both
evident from Figure 12e.

The variance in the equatorial wave-filtered wind
amplitudes explained by the patterns is lower than that of
the other phenomena considered. This is to be expected,
since the waves are fast-propagating disturbances, while
the patterns distinguish stationary features and last typi-
cally for 2–3 days. Some patterns that co-occur with trop-
ical cyclones also feature increased occurrence frequency
of a combination of Rossby-1, Rossby-2 and WM waves,
which may be due to a projection of the tropical cyclones
onto the equatorial wave modes.

5 REPRESENTATION OF HEAVY
PRECIPITATION

The two sets of patterns have been defined using 850 hPa
winds since it is expected that this will be more accurately
forecast by sub-seasonal forecast models, however the ulti-
mate aim is to obtain a set of circulation patterns which

are useful for forecasting extreme precipitation. In this
section, we investigate the degree to which the weather
patterns discriminate precipitation variability in Southeast
Asia.

Figure 13 shows the precipitation variance explained
over land GPM grid-cells. The total variance explained
ranges from 0.1–0.4 over most land-based regions in the
tier-2 and flat pattern sets. This value is consistent with
Neal et al. (2020), who obtained values of 0.25–0.35 at
grid-cells adjacent to Nilgiris and Darjeeling in their simi-
lar study of Indian weather patterns. A large degree of this
variance explained results from the seasonal cycle, which
is well represented by the weather patterns.

When the seasonal cycle is removed and the vari-
ance of seasonally anomalous precipitation is considered
(Figure 13d–f), the variance explained by the tier-1 is close
to zero and that explained by the tier-2 and flat patterns
is reduced to 0.04–0.12 over the key regions of interest.
The largest proportion of anomalous variance explained
is located over the north of the Philippines. This signal
has been attributed to the patterns associated with trop-
ical cyclones. In this region, the flat patterns explain up
to 5% more of the anomalous variance than the tiered
regions. The flat patterns also perform better over Viet-
nam. In other regions, however, the variance explained by
the tiered and the flat patterns is broadly comparable.

Analysis of Figure 13 is useful for understanding
how the patterns discriminate precipitation variability
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HOWARD et al. 763

generally, but does not provide explicit information regard-
ing heavy precipitation. For this, we instead consider the
Brier Skill Score (BSS) of a hypothetical perfect patterns
forecast. This answers the question: how much can be
deduced about the likelihood of extreme precipitation on
a given date from prior knowledge of the pattern this date
belongs to? The BSS of a perfect pattern forecast may be
considered to be an upper bound on the BSS of a pattern
forecast, as presented in G21. This analysis calculates BSS
using threshold exceedance of the seasonal P90. The BSS
is calculated from the Brier Skill (BS) as follows:

BSR =
∑
x,y,t

⎛⎜⎜⎜⎜⎜⎝
O(x, y, t)− 1

nr − 1
[nrE{x, y, r(t)}−O(x, y, t)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Pattern conditioned exceedance excluding t

⎞⎟⎟⎟⎟⎟⎠

2

,

(3a)

BSSR = 1 − BSR

BSclim
, (3a)

where R is the pattern set, O is the binary observed
threshold exceedance, E is the probability of threshold
exceedance conditioned on pattern r(t) ∈ R, and nr is the
number of days classified into pattern r that have precip-
itation data. The term denoted by an underbrace is the

empirical probability of threshold exceedance conditioned
on pattern r(t) ∈ R calculated using all days excluding day
t. Use of this term prevents spurious correlations between
O and E due to potential under-sampling. The fraction
in the right term of Equation (3a) acts to ensure that the
observation being considered is excluded from the condi-
tional exceedance calculation. The climatology is calcu-
lated using a 60-day rolling window and the 18 years of
GPM data.

To aid with the interpretation of the BSS, a fourth set
of weather patterns has been constructed using the MJO
index. Each day was assigned a MJO pattern based on the
season (separated into December–February, March–April,
May–July and August–November) and the phase of the
MJO, with weak MJO considered as a separate phase.
The MJO-conditioned exceedance of the seasonal P90 was
then calculated using 36 MJO patterns. The resultant
exceedance maps are consistent with the well-known sig-
nal of the MJO influence on precipitation (Wheeler and
Hendon, 2004). Since the MJO is frequently used as a fore-
casting tool in Southeast Asia, this provides a useful bench-
mark for the performance of the weather pattern-based
forecasts.

Spatial maps of the annual BSS were found to fea-
ture patterns that mirrored the explained variance of the
anomalous precipitation (Figure 13d–f), and so have not

F I G U R E 13 GPM
Precipitation variance over land
explained by the indicated patterns,
calculated using (a–c) the full
precipitation field and (d–f)
anomalies from the 60-day running
mean climatology [Colour figure can
be viewed at wileyonlinelibrary.com]

(a) (b) (c)

(d) (e) (f)

F I G U R E 14 GPM precipitation
Brier Skill Scores for exceedance of
seasonal p90 precipitation in each
month. Columns per block are (left to
right) tier-1, tier-2, flat, MJO. Error
bars show the bootstrapped 95%
confidence interval [Colour figure can
be viewed at wileyonlinelibrary.com]
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764 HOWARD et al.

T A B L E 3 Case-study precipitation and threshold exceedance likelihoods during selected extreme weather events

Date
Location
(◦E, ◦N)

Precipitation
(mm⋅day−1)

Clim.
prob.(%) Tier Tier prob. Flat Flat prob.

1 03 January 2019 Southern Thailand (100.5, 7.5) 276.5 6.7 (0.7) 1b ×0.2 (×0.0) 51 ×2.9 (×6.4)

2 28 December 2018 Central Philippines (123.0, 13.5) 263.5 12.0 (1.5) 2a ×2.4 (×2.2) 1 ×1.2 (×2.7)

3 22 January 2019 South Sulawesi, Indonesia (120.0, −4.5) 25.5 6.2 2a ×1.5 1 ×2.0

4 18 March 2019 Papua, Indonesia (139.5, −3.0) 66.4 8.5 1e ×1.0 6 ×1.1

5 15 March 2019 Java, Indonesia (108.0, −6.0) 38.0 7.7 8e ×1.1 2 ×2.4

6 26 April 2019 South Sumatra, Indonesia (103.5, −4.5) 42.4 6.5 3e ×1.7 13 ×1.8

7 03 May 2019 Sumatra, Indonesia (99.0, 1.5) 25.8 6.4 6a ×1.6 14 ×1.2

8 17 May 2019 Maluku and Timor Leste (129.0, −3.0) 33.7 9.5 6a ×0.5 20 ×0.9

9 28 May 2019 North Vietnam (105.0, 22.5) 52.0 9.1 4g ×0.7 21 ×1.4

10 02 June 2019 Sarawak, Malaysia (112.5, 0.0) 51.5 9.2 3g ×2.0 15 ×2.1

11 08 June 2019 Sulawesi, Indonesia (121.5, −3.0) 77.8 7.7 4g ×1.2 18 ×2.0

12 12 June 2019 East Kalimantan, Indonesia (114.0, 0.0) 34.0 8.0 4c ×0.7 20 ×1.1

13 08 June 2019 Mindanao, Philippines (124.5, 7.5) 28.6 3.7 4g ×0.7 18 ×2.0

14 24 June 2019 Northwest Vietnam (102.0, 21.0) 30.4 6.6 4h ×0.7 30 ×1.1

15 03 July 2019 North central Vietnam (106.5, 18.0) 211.4 4.5 (0.5) 4e ×1.6 (×4.3) 23 ×3.2 (×6.5)

16 16 July 2019 Luzon, Philippines (121.5, 18.0) 92.6 8.4 (1.0) 5e ×1.9 (×2.9) 32 ×6.3 (×19.7)

17 03 August 2019 Laos and Vietnam (103.5, 19.5) 152.8 10.9 (0.3) 5e ×1.3 (×0.0) 28 ×1.4 (×2.9)

18 23 August 2019 Luzon, Philippines (121.5, 18.0) 162.6 10.2 (1.7) 5b ×3.7 (×6.2) 32 ×5.1 (×11.2)

19 29 August 2019 Widespread Vietnam (108.0, 16.5) 206.5 9.0 (1.5) 4f ×0.7 (×0.8) 31 ×0.5 (×0.0)

20 15 October 2019 Central Vietnam (106.5, 18.0) 56.5 12.2 7f ×0.3 46 ×0.3

21 22 October 2019 Malaysia and Sumatra (103.5, 1.5) 40.6 4.7 6c ×0.9 15 ×1.3

22 30 October 2019 Southern central Vietnam (109.5, 13.5) 177.7 13.9 (1.2) 7b ×0.7 (×0.6) 41 ×0.3 (×0.0)

23 09 November 2019 Luzon, Philippines (121.5, 16.5) 48.5 10.4 6d ×1.0 38 ×0.7

24 10 November 2019 Daklak, Vietnam (108.0, 12.0) 176.8 4.5 (0.2) 6d ×1.5 (×3.9) 38 ×2.1 (×4.7)

25 20 November 2019 Southern Luzon, Philippines (121.5, 18.0) 48.0 9.5 8c ×0.5 46 ×1.0

26 01 December 2019 South Thailand/Malaysia (102.0, 6.0) 88.8 18.4 7e ×0.2 48 ×0.8

27 02 December 2019 Central Philippines (123.0, 13.5) 163.1 14.8 (1.9) 7e ×1.2 (×1.1) 48 ×1.5 (×2.1)

28 05 December 2019 Luzon, Philippines (121.5, 18.0) 65.8 7.0 7g ×1.3 42 ×6.6

29 09 December 2019 Sabah, Malaysia (118.5, 6.0) 67.1 10.2 7f ×0.2 46 ×0.3

30 13 December 2019 Johor, Malaysia (103.5, 1.5) 86.2 8.1 8c ×1.5 11 ×0.9

31 18 December 2019 Malaysia and Thailand (103.5, 4.5) 62.0 18.1 8c ×1.7 47 ×1.8

32 18 December 2019 Riau, Indonesia (103.5, 0.0) 31.0 8.0 8c ×1.8 47 ×1.7

33 30 December 2019 North Sumatra (97.5, 3.0) 26.5 8.8 1c ×1.0 2 ×1.3

34 31 December 2019 Jakarta, Indonesia (106.5, −6.0) 81.4 10.1 1c ×1.5 2 ×1.6

Note: Precipitation is based on GPM value at nearest grid-cell. Climatological probabilities denote the likelihood of exceeding 25 mm⋅day−1 at the event location
in a 60-day climatological window surrounding the date of the event. Pattern probabilities indicate the enhanced or suppressed probability of exceedance given
the occurrence of the assigned pattern, as a ratio over the climatological probability. When the observed precipitation exceeds 90 mm⋅day−1, numbers in brackets
denote the probability or enhanced/suppressed probability of exceeding 100 mm⋅day−1. Bold indicates a factor greater than 1.
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HOWARD et al. 765

been included for brevity. Figure 14 indicates the seasonal
cycle of the P90 BSS for each set of patterns and for the
MJO, averaged over each month of the year. The BSS is cal-
culated at a 1.5◦ resolution using GPM precipitation, and
then averaged across all land grid-cells. The first tier of
patterns shows very little skill beyond the seasonal clima-
tology, as may be expected. Error-bars represent the 95%
bootstrapped confidence interval, obtained by re-sampling
the spatially averaged BSS for each month 10,000 times.

The annual average values of the values shown in
Figure 14 are:

tier-1: 0.007 ± 0.0008, tier-2: 0.022 ± 0.0013,
flat: 0.027 ± 0.0014, and MJO: 0.017 ± 0.0009.

Thus, both the tiered and the flat pattern outperform
the MJO overall. The BSS values are much less than 1 in all
cases, indicating that a pattern-conditioned precipitation
forecast will always have low sharpness. The flat patterns
perform significantly better than the tier-2 patterns from
May through to November, with the difference peaking
in mid-July during the tropical cyclone season, consistent
with the conclusions drawn from Figure 13. During Febru-
ary and March, the tier-2 patterns show a slightly improved
representation of the P90 exceedance compared to the flat
patterns, though this difference is not statistically signifi-
cant. The flat patterns significantly out-perform the MJO
from May to November and during March, and are not
statistically distinguished from the MJO in the remaining
months. The tiered patterns significantly outperform the
MJO from June to October and during March.

In order to provide a heuristic sense of the infor-
mation that a pattern-based forecast may provide, pat-
tern membership of a limited set of heavy precipitation
case-studies has been considered. This analysis is pro-
vided for illustrative purposes only. Case-studies have been
selected by considering all HIW linked to heavy precipi-
tation reported by floodlist.com during 2019 that affected
Indonesia, Malaysia, Vietnam, Thailand, the Philippines,
and Timor Leste (Davies et al., 2021). For each event, the
coarse-grained GPM grid-cell with the highest daily pre-
cipitation in the vicinity of the reported event and on a day
occurring in the event duration was selected. If this precip-
itation was less than 25 mm⋅day−1 the event was excluded,
in order to remove localised convection that the pattern
methodology is not designed to detect.

Table 3 presents a list of the heavy precipitation event
dates, locations, grid-cell maximum precipitation and
assigned patterns. The climatological and pattern-based
probabilities of precipitation exceeding 25 mm⋅day−1 are
given. When the grid-cell mean precipitation exceeds
90 mm⋅day−1, the climatological- and pattern-based prob-
abilities of exceeding 100 mm⋅day−1 are also provided in
parentheses. Entries in columns 7 and 9 reflect the ratio

of the values of E used in the calculation of the pattern
BS to the values of E used to calculate the climatology
BS (Equation 3). Some events are well described by the
pattern-based forecasts with pattern-conditioned likeli-
hood of high precipitation far exceeding the climatological
likelihoods. Other events are completely missed by both
the tiered and the flat patterns. More of the events have
higher than climatology probabilities based on the flat pat-
terns than based on the tiered patterns, consistent with
the increased BSS of the flat patterns. The tropical cyclone
events in the Philippines (rows 16, 18 and 28) have par-
ticularly high flat-pattern-based exceedance likelihoods.
In the median, however, when the pattern-conditioned
probability of exceeding 25 mm is larger than the clima-
tology, the enhanced probability of exceedance is only 1.5
(1.75) times greater than climatology when using the tiered
(flat) patterns. This is reflective of the characteristic lack of
sharpness that was observed when studying the BSS.

6 DISCUSSION
AND CONCLUSIONS

This paper has defined two sets of weather patterns over
Southeast Asia suitable for the description of high-impact
weather in the form of heavy precipitation. The general
methodology for the definition of the weather patterns was
based on k-means cluster analysis on the leading principal
components of 850 hPa wind components.

The first set of weather patterns was defined fol-
lowing a two-tiered approach in which tier-1 weather
regimes in a planetary-scale domain conditioned a sec-
ond tier of patterns defined in a Southeast Asia regional
domain. The planetary domain covers approximately one
fifth of the Earth’s surface, while the regional domain is
approximately a quarter of the planetary domain. This
approach was motivated by two factors: firstly, previous
work strongly suggested that large sets of regional-scale
weather patterns at midlatitudes (Neal et al., 2016) and the
Tropics (Neal et al., 2020) can be further classified by their
relationship with the circulation at larger scales, and sec-
ondly, the influence that large-scale modes of variability
exert on the tropical circulation. The second set of weather
patterns was defined following a single-tier or flat cluster
analysis within the Southeast Asia regional domain.

The planetary-scale tier-1 weather regimes were
described in terms of their relationship with large-scale
modes of variability, while the tier-2 and flat patterns were
described in term of their relationship with synoptic-scale
phenomena. It was shown that tier-1 patterns are mainly
an expression of the seasonal cycle, discerning between
the monsoon circulation in and around Southeast Asia.
However, they are also strongly influenced by large-scale
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766 HOWARD et al.

variability modes such as ENSO and the MJO, exhibiting
distinct behaviour dependent on whether the year corre-
spond to a La Niña or an El Niño year. The influence of
the IOD was also investigated, but was found to be not
significant.

Characteristics of the tier-1 weather regimes were com-
parable to previous studies of weather regimes conducted
over the Maritime Continent. The seasonal timing and
relationships with ENSO and the MJO of Regimes 1 and
2 are very similar to weather types 5 and 3 respectively
identified by Moron et al. (2015). These regimes and
weather types all occur at the peak of the austral mon-
soon, and while Regime 1 and weather type 5 favour
El Niño and an inactive MJO over the Maritime Conti-
nent, Regime 2 and weather type 3 favour La Niña and
active MJO phases. Meanwhile, the sequential timing of
their weather types 1, 6 and 2 from September to Decem-
ber maps directly onto tier-1 Regimes 6, 7 and 8. This
suggests that the tier-1 Regimes are not very sensitive to
the differences in methodology between these two stud-
ies: namely restriction to a particular season and choice
in the number of clusters. We do not find an equivalent
of weather type 4 of Moron et al. (2015), which has simi-
lar timing to weather types 3 and 5, perhaps because our
larger domain allows the large-scale influences of ENSO
and the MJO to be more fully reflected. Hassim and Tim-
bal (2019) also identified the same number of regimes as
the first tier, despite applying a very different methodol-
ogy. In this case, particular correspondence is present in
the transition seasons: between tier-1 Regime 3 and their
Regime 1, which both dominate the northward passage
of the ITCZ before the onset of the boreal monsoon, and
between tier-1 Regime 8 and their Regime 6, which both
occur in October and November at the beginning of the
austral monsoon.

Both the tiered and the flat patterns were shown to
be able to highlight the occurrence of synoptic weather
events: cold surges, the MJO, tropical cyclones, Borneo
vortices and the BSISO. They were able to explain up to
10% of the variance in seasonally anomalous precipita-
tion anomalies over land regions. A hypothetical perfect
forecast of the assigned patterns was found to have pos-
itive skill at predicting the exceedance of heavy precipi-
tation thresholds compared to the seasonal climatology.
The tier-2 and flat pattern sets were also shown to have
enhanced skill potential compared to an MJO-based fore-
cast. The pattern sets are able to classify circulation pat-
terns over Southeast Asia in a way that may be used to
distinguish the likelihood of seasonally anomalous heavy
precipitation. This suggests that a patterns-based forecast
of the probability of heavy precipitation has the potential
to improve the S2S forecastability of heavy precipitation.
This hypothesis will be explored further in G21.

Both the proportion of precipitation explained by the
weather patterns and the BSS of heavy precipitation take
quite modest values. This is in part due to the weakness
of the relationship between rainfall and large-scale circu-
lation, particularly at relatively small spatial scales around
150 × 150 km2. Examination of the grid-point correlation
between ERA-5 wind convergence at 850 hPa and GPM
precipitation on the small domain 1.5◦ grid reveals corre-
lation values of R = 0.23. This corresponds to a R2 value
of 0.053, which is of a similar order of magnitude to the
variance explained by our regimes. Based on this, it is
unlikely that improvements in the choice of regimes could
result in an improvement in the rainfall variance explained
at this length-scale. On the other hand, aggregation of
precipitation to larger scales has been shown to extend
forecastability in the Southeast Asian region (e.g., Ferrett
et al., 2021). When considering the actual skill of these
regimes in predicting precipitation, G21 will demonstrate
that useful levels of skill are present when precipitation is
aggregated to coarser resolutions.

While a traditional approach of clustering studies is to
restrict focus to specific seasons, the tiered methodology
applied here allows for seasonal and monsoonal patterns
to be objectively identified in the first tier and considered
separately in each set of tier-2 patterns. This approach
has particular value in the equatorial Maritime Continent
region, where the annual cycle of both monsoonal winds
and rainfall is complex. This complexity derives from
the bi-annual passage of the ITCZ, which is associated
with three separate named monsoon winds patterns: the
southwest and northeast monsoons in the Northern Hemi-
sphere, and the austral monsoon in the Southern Hemi-
sphere. The onset of the latter progresses from east to west,
while some regions of the domain, including New Guinea,
exhibit very little seasonal variation. All these subtleties of
the local annual cycle are expressed though the large-scale
tier-1 weather regimes.

A consequence of this tiered approach is that the total
number of weather patterns identified, at 51, is consider-
able. Many other studies that consider weather patterns
across the annual cycle including Lamb (1972), Hess and
Brezowsky (1952) and Neal et al. (2016,2020) use a smaller
number of patterns, typically around 30. We found that our
tier-2 patterns had roughly the same wind inertia metric
as a flat set of 31 patterns. This implies that redundancy
within the tier-2 regimes accounts for the presence of
20 regimes. However, the strong conditioning of regime
assignment on the seasonal cycle means that on average
only 13 of the tiered regimes are likely to occur at any given
day within the seasonal cycle.

The synoptic climatology of Southeast Asia is
well-established, and it is well-known that synoptic-scale
features such as cold surges, the MJO, equatorial waves
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HOWARD et al. 767

and tropical cyclones are crucial for the local rainfall
climate (e.g., Yang et al., 2003; Wheeler and Hendon,
2004; Chang et al., 2005; Ferrett et al., 2020). Rather than
adding to this literature, this paper has sought to synthe-
sise these discrete understandings of synoptic events into
stand-alone classification systems. As such, the weather
patterns described in these paper should not be thought
of as synoptic phenomena in their own rights, but as a
means to easily describe and assign synoptic conditions to
more physically based synoptic weather systems and their
associated risk of heavy precipitation. This will enable
forecasters to easily and objectively classify large numbers
of forecast ensembles by weather regime.

This paper set out to determine whether the use of a
tiered methodology could improve the ability of the pat-
terns to describe (a) planetary-scale variability, (b) synoptic
circulation variability, and/or (c) precipitation variabil-
ity, compared to a flat methodology. We found that the
tiered methodology did indeed improve the representa-
tion of (a), while there was very little difference in the
representation of (b) between the tiered and flat regimes
(Table 2). Precipitation variability (c) was better described
by the flat patterns (Section 5). The improved characteri-
sation of the large-scale climate by the tiered regimes may
have the potential to improve the forecastability of these
patterns. One major unanswered question, which is the
focus of G21, is whether constraining the choice of pat-
tern membership based on the slowly varying large-scale
flow may improve the prediction of synoptic weather pat-
terns. A second question is whether probabilistic forecasts
of the risk of heavy precipitation based on the projection
of sub-seasonal to seasonal forecasts onto the tier-1 pat-
terns, and the conditional dependence of precipitation on
those patterns, has skill that pushes into the extended
range. In other words, can either the tiered or the flat pat-
tern identification approach yield skill in the prediction of
high-impact weather risk beyond the medium-range?
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