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AN ANALYSIS OF THE ENTIRE FUNCTIONS ASSOCIATED WITH THE

OPERATOR OF THE KDV EQUATION

ROBERTO DE ALMEIDA CAPISTRANO–FILHO, HUGO PARADA, AND JANDEILSON SANTOS DA SILVA∗

Abstract. It is well known that the controllability property of partial differential equations
(PDEs) is closely linked to the proof of an observability inequality for the adjoint system, which,
sometimes, involves analyzing a spectral problem associated with the PDE under consideration.
In this work, we study a series of spectral issues that ensure the controllability of the renowned
Korteweg-de Vries equation on star-graph. This investigation reduces to determining when certain
functions, associated with this spectral problem, are entire. The novelty here lies in presenting this
detailed analysis in the context of a star graph structure.
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1. Introduction

In mathematics and physics, a quantum graph is a network structure consisting of vertices
connected by edges, where each edge hosts a differential or pseudo-differential equation. When each
edge is equipped with a natural metric, the graph is called a metric graph. A typical example is a
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power network, where power lines (edges) connect transformer stations (vertices); in this case, the
differential equations could represent the voltage along each line, with boundary conditions at the
vertices ensuring that the sum of currents across all edges at each vertex is zero.

Linus Pauling initially studied quantum graphs in the 1930s as models of free electrons in
organic molecules. They also appear in various mathematical contexts, such as quantum chaos,
waveguide studies, photonic crystals, and Anderson localization—the phenomenon where wave
diffusion is absent in a disordered medium. Quantum graphs are also used as a limiting model for
shrinking thin wires. They have become significant in mesoscopic physics as theoretical tools for
understanding nanotechnology. Another simplified version of quantum graphs was introduced by
Freedman et al. in [28].

Beyond solving the differential equations for specific applications, typical questions in quantum
graph theory include well-posedness, controllability, and identifiability. For instance, controllability
might involve determining the necessary inputs to bring a system to a desired state, such as ensuring
sufficient power supply throughout a network. Identifiability could involve selecting measurement
points, like pressure gauges in a water pipe network, to detect issues such as leaks.

1.1. Dispersive systems on graph structure. In recent years, the study of nonlinear dispersive
models on metric graphs has gained significant attention from mathematicians, physicists, chemists,
and engineers (see [10, 11, 14, 33, 35] for details and further references). A primary framework
for modelling these phenomena is the star graph G, a metric graph with N half-lines of the form
(0,+∞) that connect at a common vertex ν = 0. On each edge, a nonlinear equation, such as
the nonlinear Schrödinger equation, is defined (see works by Adami et al. [1, 2] and Angulo and
Goloshchapova [5, 6]). Introducing nonlinearities in dispersive models of such networks creates a
rich field for exploring soliton propagation and nonlinear dynamics. A key challenge in this analysis
is the vertex, where the star graph may exhibit bifurcation or multi-bifurcation behavior, especially
in more complex graph structures.

Other nonlinear dispersive systems on graphs also yield interesting results. For instance,
regarding the well-posedness theory, Cavalvante [20] studied the local well-posedness for the Cauchy
problem of the Korteweg-de Vries equation on a metric star graph with a negative half-line and
two positive half-lines meeting at a common vertex ν = 0 (the so-called Y-junction). Another
example is the Benjamin–Bona–Mahony (BBM) equation. Bona and Cascavel [12] established
local well-posedness in the Sobolev space H1, while Mugnolo and Rault [36] demonstrated the
existence of travelling waves for the BBM equation on graphs. Using an alternative approach,
Ammari and Crépeau [3] derived results for well-posedness and stabilization of the BBM equation
in a star-shaped network with bounded edges. It is important to point out that Mugnolo et al.
[37] obtained a characterization of all boundary conditions under which the Airy-type evolution
equation ut = αuxxx + βux, for α ∈ R\{0} and β ∈ R on star graphs, generates contraction
semigroups.

Notably, notable contributions have been made in the areas of control theory and inverse
problems. Ignat et al. [31] investigated the inverse problem for the heat and Schrödinger equations
on a tree structure. Later, Baudouin and Yamamoto [9] introduced a unified and simplified approach
to the inverse problem of coefficient determination. Additionally, Ammari and Crépeau [4], Cerpa
et al. [24, 25] and Parada et al. [40, 41] proved results on stabilization and boundary controllability
for the KdV equation on star-shaped graphs.

1.2. Background of control theory. Research on the control and stabilization of the KdV equa-
tion originated with the work of Russell and Zhang [44, 45, 46, 49], who examined internal control of
the KdV equation under periodic boundary conditions. Since then, extensive studies have focused
on the control and stabilization of the KdV equation (see [22, 27, 29, 42, 43, 48] and references
therein).
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Considering bounded domain, the control problem was presented in a pioneering work of Rosier
[42] that studied the following system

(1.1)


∂tu+ ∂xu+ u∂xu+ ∂3xu = 0 in (0, L)× (0, T ),

u(0, t) = 0, u(L, t) = 0, ∂xu(L, t) = g(t) in (0, T ),

u(x, 0) = u0(x) in (0, L),

where the boundary value function g(t) is considered as a control input. The author answered the
following problem for the system (1.1).

Exact controllability problem: Given T > 0 and u0, uT ∈ L2(0, L), can one find an appropriate
control input g(t) ∈ L2(0, T ) such that the corresponding solution u(x, t) of (1.1) satisfies

(1.2) u(x, 0) = u0(x) and u(x, T ) = uT (x)?

Rosier [42] investigated boundary control of the KdV equation on the finite domain (0, L) with
Dirichlet boundary conditions (1.1). He first analyzed the associated linear system:

(1.3)


∂tu+ ∂xu+ ∂3xu = 0, in (0, L)× (0, T ),

u(0, t) = 0, u(L, t) = 0, ∂xu(L, t) = g(t), in (0, T ),

u(x, 0) = u0(x), in (0, L),

and discovered the critical length phenomenon, where the exact controllability of system (1.3)
depends on the domain length L. Specifically, exact controllability in L2(0, L) is achieved if and
only if L does not belong to the set

(1.4) N :=

{
2π√
3

√
k2 + kl + l2 : k, l ∈ N∗

}
.

Using a fixed-point argument, Rosier extended this controllability result from the linear to the
nonlinear system for cases where L /∈ N .

In the case where L ∈ N , Rosier demonstrated in [42] that the associated linear system (1.3)
is not controllable. Specifically, there exists a finite-dimensional subspace of L2(0, L), denoted as
M = M(L), that cannot be reached from 0 by the linear system. More precisely, for any nonzero
state ψ ∈ M, if g ∈ L2(0, T ) and u ∈ C([0, T ];L2(0, L))∩L2(0, T ;H1(0, L)) satisfies (1.3) with the
initial condition u(·, 0) = 0, then u(·, T ) ̸= ψ. A spatial domain (0, L) is termed critical for system
(1.3) if its length L belongs to N .

When the spatial domain (0, L) is critical, one usually would not expect the corresponding
nonlinear system (1.1) to be exactly controllable as the linear system (1.3) is not. It thus came as
a surprise when Coron and Crépeau showed in [27] that the nonlinear system (1.1) is still locally
exactly controllable even though its spatial domain is critical with its length L = 2kπ and k ∈ N∗

satisfying

̸ ∃(m,n) ∈ N∗ × N∗ with m2 +mn+ n2 = 3k2 and m ̸= n.

For those values of L, the unreachable space M of the associated linear system is a one-dimensional
linear space generated by the function 1 − cos(x). As for the other types of critical domains, the
nonlinear system (1.1) was shown later by Cerpa [21], and Cerpa and Crépeau in [23] to be local,
large time exactly controllable.

It is important to point out that if we change the control of position in the boundary condition
of (1.3), for example

u(0, t) = h(t), u(L, t) = 0, ∂xu(L, t) = 0 in (0, T )

or

(1.5) u(0, t) = 0, u(L, t) = f(t), ∂xu(L, t) = 0 in (0, T ),

then we can not explicitly characterize the critical sets for the KdV equation. However, for the
boundary conditions in (1.5), it was established in [29] the existence of a countable set of critical
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lengths N ∗ ⊂ (0,+∞) which can be described as follows

N ∗ =

{
L ∈ R+\ {0}; ∃(a, b) ∈ C2 such that aea = beb = −(a+ b)e−(a+b)

and L2 = −
(
a2 + ab+ b2

) }
(1.6)

For more details, we mention [22, 29].
After 97′, some authors tried to prove the critical set phenomenon for the KdV equation with

some boundary condition, and we can cite, for example, [29, 26], and the references therein. How-
ever, for this set considered in these works, the authors were not allowed to explicitly characterize
the set. Twenty years later, in [17], another boundary condition was considered. The authors
introduced the KdV equation with Neumann conditions. Capistrano-Filho et al. investigated the
following boundary control system

(1.7)


∂tu+ ∂xu+ u∂xu+ ∂3xu = 0 in (0, L)× (0, T ),

∂2xu(0, t) = 0, ∂2xu(L, t) = 0, ∂xu(L, t) = h(t) in (0, T ),

u(x, 0) = u0(x) in (0, L).

First, the authors studied the following linearized system associated with (1.7),

(1.8)


∂tu+ (1 + β)∂xu+ ∂3xu = 0 in (0, L)× (0, T ),

∂2xu(0, t) = 0, ∂2xu(L, t) = 0, ∂xu(L, t) = h(t) in (0, T ),

u(x, 0) = u0(x) in (0, L),

where β is a given real constant. For any β ̸= −1, considering the following set

Rβ :=

{
2π√

3(1 + β)

√
k2 + kl + l2 : k, l ∈ N∗

}
∪
{

kπ√
β + 1

: k ∈ N∗
}
.

The authors showed the following results:

(i) If β ̸= −1, the linear system (1.8) is exactly controllable in the space L2(0, L) if and only
if the length L of the spatial domain (0, L) does not belong to the set Rβ.

(ii) If β = −1, then the system (1.8) is not exactly controllable in the space L2(0, L) for any
L > 0.

As done in [42], the controllability of the nonlinear system (1.7) holds using a fixed point
argument. Moreover, the set Rβ is completely characterized. Note that, when β = 0, N (see (1.4))
is a proper subset of R0. The linear system (1.8) has more critical length domains than that of the
linear system (1.3). In the case of β = −1, every L > 0 is critical for the system (1.8). By contrast,
removing the term ∂xu from the equation in (1.3), every L > 0 is not critical for the system (1.3).

To conclude this section, we also define the following set

N † =

{
L ∈ R+\ {0}; ∃(a, b) ∈ C2 such that a2ea = b2eb = (a+ b)2e−(a+b)

and L2 = −
(
a2 + ab+ b2

) }
(1.9)

As we will prove in the Appendix C, the set N † is a countable, non-empty new critical set in the
literature of controllability of KdV equations.

1.3. Setting of problem and functional framework. This work focuses on investigating the
exact controllability of the linear KdV equation on a star-shaped network. The equation governing
the dynamics is given by

∂tuj(t, x) + ∂xuj(t, x) + ∂3xuj(t, x) = 0, t ∈ (0, T ), x ∈ (0, lj), j = 1, . . . , N,

uj(t, 0) = u1(t, 0), t ∈ (0, T ), ∀j = 2, . . . , N,
N∑
j=1

∂2xuj(t, 0) = −αu1(t, 0) + g0(t), t ∈ (0, T ),

uj(t, lj) = 0, ∂xuj(t, lj) = gj(t), t ∈ (0, T ), j = 1, . . . , N,

uj(0, x) = u0j (x), x ∈ (0, lj),
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where α > N
2 . The conditions at the central node are motivated by previous studies [4, 20, 40, 41].

Following [41], uj represents the dimensionless, scaled deflection from the rest position, and vj
denotes the velocity along a branch j of long water waves. Thus, we have:

(1.10)

{
∂tuj + ∂xuj + ∂3xuj + uj∂xuj = 0, x ∈ (0, lj), t ∈ (0, T ), j = 1, . . . , N,

vj = uj − 1
6u

2
j + 2∂2xuj , x ∈ (0, lj), t ∈ (0, T ), j = 1, . . . , N.

Assuming the water level at the central node is constant, and the net flux is zero, the following
natural conditions arise

uj(t, 0) = u1(t, 0), t ∈ (0, T ), j = 2, . . . , N,

and
N∑
j=1

uj(t, 0)vj(t, 0) = 0, t ∈ (0, T ).

Linearizing (1.10) around zero yields the following boundary conditions

uj(t, 0) = u1(t, 0), t ∈ (0, T ), j = 2, . . . , N,

and
N∑
j=1

∂2xuj(t, 0) = −N
2
u1(t, 0), t ∈ (0, T ).

With this context, given N ≥ 2, consider a star-shaped network T with N edges described
by intervals Ij = (0, lj), lj > 0 for j = 1, . . . , N . Denoting by e1, ..., eN the edges of T one have

T =
⋃N

j=1 ej . To be precise, in this work, we will study the control properties for N linear KdV
equations posed on T with the following boundary conditions

∂tuj + ∂xuj + ∂3xuj = 0, t ∈ (0, T ), x ∈ (0, lj), j = 1, . . . , N,

uj(t, 0) = u1(t, 0), t ∈ (0, T ), j = 2, . . . , N,
N∑
j=1

∂2xuj(t, 0) = −αu1(t, 0), t ∈ (0, T )

uj(t, lj) = pj(t), ∂xuj(t, lj) = gj(t), t ∈ (0, T ), j = 1, . . . , N,

uj(0, x) = u0j (x), x ∈ (0, lj), j = 1, . . . , N,

(1.11)

where u = (u1, ..., uN ) stands the state of the system, pj and gj are the controls inputs and α >
N
2 .

This system was studied in [39], where the null controllability was obtained using 2N − 2 controls.
Our goal in this article is to prove the controllability of (1.11) using a reduced number of

boundary controls. In most of our results, we assume lj = L > 0 for all j = 1, . . . , N and we are
interested in answering the following question:

New boundary conditions: Are there other boundary conditions such that the controllability for
the system (1.11) holds?

We will present here six new possibilities that ensure boundary controllability properties for
the system (1.11), and that exhibit a relation of the length lj with a critical set, that is, in some
appropriated set of boundary conditions the controllability holds if and only if the length lj avoids
certain values or for all lj > 0. Precisely, given 0 ≤ m ≤ N , we put Neumann controls on the
first m edges and Dirichlet controls on the remaining N − m edges. With this in mind, we will
analyze the problem under the assumption α = N and lj = L for j = 1, . . . , N in six situations
(with different results). The first one considers N = 2 and m = 1 as it is illustrated in Figure 1.
We prove that the corresponding system (1.11) is exactly controllable for any L > 0.
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0

e1

e2

Ne

Di

uncontrolled node

Ne node with Neumann control

Di node with Dirichlet control

Figure 1. Network with 2 edges and mixed controls.

The second situation considers N ≥ 3, m = 1, and it is illustrated in Figure 2. In this case,
we can prove the exact controllability to the corresponding system (1.11) when L /∈ N ∗, where N ∗

is defined by (1.6).

0

e1
e2

e3

eN−1

eN

Ne

Di

Di

Di

Di

uncontrolled node

Ne node with Neumann control

Di node with Dirichlet control

Figure 2. Network with N edges for m = 1.

In the third case, we consider N ≥ 3 and m = N − 1, as illustrated in Figure 3. For this
situation, the exact controllability to the corresponding system (1.11) holds if and only if L /∈ N ,
where, N is defined by (1.4).

0

e1
e2

e3

eN−1

eN

Ne
Ne

Ne

Ne

Di

uncontrolled node

Ne node with Neumann control

Di node with Dirichlet control

Figure 3. Network with N edges for m = N − 1.

In the fourth case, we study the problem under the configuration N > 3 and 1 < m < N − 1.
Figure 4 illustrates this situation for m = 2. In this case, we can prove the exact controllability to
the corresponding system (1.11) when L /∈ N ∪N ∗.
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0

e1
e2

e3

eN−1

eN

Ne
Ne

Di

Di

Di

uncontrolled node

Ne node with Neumann control

Di node with Dirichlet control

Figure 4. Network with N edges for m = 2.

In the full Neumann case, namely, N ≥ 2 and m = N , illustrated in Figure 5, we can prove
the controllability if L /∈ N ∪N ∗.

0

e1
e2

e3

eN−1

eN

Ne
Ne

Ne

Ne

Ne

uncontrolled node

Ne node with Neumann control

Figure 5. Network with N edges with control on Neumann condition.

Finally, in the full Dirichlet case, that is, N ≥ 2 and m = 0, illustrated in Figure 6, we can
prove the controllability if L /∈ N ∗ ∪N †, where N † is defined by (1.9).

0

e1
e2

e3

eN−1

eN

Di
Di

Di

Di

Di

uncontrolled node

Di node with Dirichlet control

Figure 6. Network with N edges with control on Neumann condition.

Before presenting our main results, we introduce some notations used throughout this article.
From now on, we will consider:

i. The vector u is given by

u = (u1, ..., uN ) ∈ L2(T ) =
N∏
j=1

L2(0, lj)

and final and initial data is

u0 = (u01, ..., u
0
N ) ∈ L2(T ) and uT = (uT1 , ..., u

T
N ) ∈ L2(T ).
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ii. The inner product in L2(T ) will be given by

(u, z)L2(T ) =

N∑
j=1

∫ lj

0
ujzjdx, u, z ∈ L2(T ).

Moreover,

Hs(T ) =

N∏
j=1

Hs(0, lj), s ∈ R.

iii. Define also the following spaces:

Hk
0(T ) =

N∏
j=1

Hk
0 (0, lj), k ∈ N

and

Hk
r (0, lj) =

{
v ∈ Hk(0, lj), v

(i−1)(lj) = 0, 1 ≤ i ≤ k
}
, k ∈ N,

where v(m) = dv
dxm and the index r is related to the null right boundary conditions. In

addition,

Hk
r (T ) =

N∏
j=1

Hk
r (0, lj) and ∥u∥2Hk

r (T ) =
n∑

j=1

∥uj∥Hk(0,lj) k ∈ N.

iv. Consider the following characterization:

H−1
r (0, lj) =

(
H1

r (0, lj)
)′

as the dual space of Hr(0, lj) with respect to the pivot space, L2(0, lj) and H−1
r denotes the

cartesian product of H−1
r (0, lj).

v. Let

Hk
e(T ) =

{
u = (u1, ..., uN ) ∈ Hk

r (T ); u1(0) = uj(0), j = 1, . . . , N
}
, k ∈ N,

and

B = C([0, T ],L2(T )) ∩ L2(0, T,H1
e(T )),

with the norm

∥u∥B := ∥u∥C([0,T ],L2(T )) + ∥u∥L2(0,T,H1
e(T )) = max

t∈[0,T ]
∥u∥L2(T ) +

(∫ T

0
∥u(t, ·)∥2H1

e
dt

) 1
2

.

vi. Finally, we need to introduce spaces that are paramount for our main results. For m =
0, . . . , N , consider

Xm =
m∏
j=1

L2(0, lj)×
N∏

i=m+1

H1
0 (0, li), X0 =

N∏
i=1

H1
0 (0, li), XN =

N∏
j=1

L2(0, lj),(1.12)

and

Ym =
m∏
j=1

H1(0, lj)×
N∏

i=m+1

H2(0, li), Y0 =
N∏
i=1

H2(0, li), YN =
N∏
i=1

H1(0, lj).(1.13)

endowed with the usual Hilbertian norms.
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1.4. Main result and heuristic. With these previous notations in hand, let us now present
our first main result. Given an integer number N ≥ 2 and m = 0, . . . , N , this work takes in
consideration the following control configuration:

pj = 0, j = 1, . . . ,m and gj = 0, j = m+ 1, . . . , N, if 1 < m < N,

gj = 0, j = 1, ..., N, if m = 0,

pj = 0, j = 1, ..., N, if m = N,

resulting in the following control system

∂tuj + ∂xuj + ∂3xuj = 0, t ∈ (0, T ), x ∈ (0, lj), j = 1, . . . , N,

uj(t, 0) = u1(t, 0), t ∈ (0, T ), j = 2, . . . , N,
N∑
j=1

∂2xuj(t, 0) = −αu1(t, 0), t ∈ (0, T ),

uj(t, lj) = 0, ∂xuj(t, lj) = gj(t), t ∈ (0, T ), j = 1, . . . ,m,

uj(t, lj) = pj(t), ∂xuj(t, lj) = 0, t ∈ (0, T ), j = m+ 1, . . . , N,

uj(0, x) = u0j (x), x ∈ (0, lj), j = 1, . . . , N.

(1.14)

For m = 0, we omit the fourth equation from the system above, whereas for m = N , we omit the
fifth equation. Note that the adjoint system associated with (1.14) is given by

−∂tφj − ∂xφj − ∂3xφj = 0, t ∈ (0, T ), x ∈ (0, lj), j = 1, . . . , N,

φj(t, 0) = φ1(t, 0), t ∈ (0, T ), j = 2, . . . , N,
N∑
j=1

∂2xφj(t, 0) = (α−N)φ1(t, 0), t ∈ (0, T )

φj(t, lj) = ∂xφj(t, 0) = 0, t ∈ (0, T ), j = 1, . . . , N,

φj(T, x) = φT
j (x), x ∈ (0, lj), j = 1, . . . , N.

(1.15)

Thus, as usual in the control theory (see, for instance, [34]), the controllability result for the system
(1.14) is equivalent to prove the following observability inequality

∥φT ∥2Xm
≤ C̃

 m∑
j=1

∥∂xφj(·, lj)∥2L2(0,T ) +

N∑
j=m+1

∥∂2xφj(·, lj)∥2L2(0,T )

 , ∀φT ∈ Xm,

for the solution of the adjoint system (1.15). The first main result of this work is given below and
mixes the Neumann and Dirichlet boundary conditions (see Figs. 1, 2, 3, 4, 5, and 6.).

Theorem 1.1. Let T > 0 and u0, uT ∈ L2(T ). Consider α = N , m = 0, . . . , N and lj = L for
j = 1, . . . , N .

(1) If N = 2, then for any L > 0, there exist controls (g1, 0) ∈ [L2(0, T )]2 and (0, p2) ∈
[L2(0, T )]2 such that the unique solution u of (1.14) satisfies (1.2).

(2) If N ≥ 3 and m = 1 then, there exist controls (g1, 0, ..., 0) ∈ [L2(0, T )]N and (0, p2, ..., pN ) ∈
[L2(0, T )]N such that the unique solution u of (1.14) satisfies (1.2), if and only if L /∈ N ∗.

(3) If N ≥ 3 and m = N − 1 then, there exist controls (g1, ..., gN−1, 0) ∈ [L2(0, T )]N and
(0, ..., 0, pN ) ∈ [L2(0, T )]N such that the unique solution u of (1.14) satisfies (1.2), if and
only if L /∈ N .

(4) If N > 3 and 1 < m < N − 1 then, there exist controls (g1, ..., gm, 0, ..., 0) ∈ [L2(0, T )]N

and (0, ..., 0, pm+1, ..., pN ) ∈ [L2(0, T )]N such that the unique solution u of (1.14) satisfies
(1.2), if and only if L /∈ N ∪N ∗.

(5) If, N ≥ 2, then there exist controls (g1, ..., gN ) ∈ [L2(0, T )]N such that the unique solution
u of (1.14) satisfies (1.2), if and only if L /∈ N ∪N ∗.

(6) If, N ≥ 2, then there exist controls (p1, ..., pN ) ∈ [L2(0, T )]N such that the unique solution
u of (1.14) satisfies (1.2), if and only if L /∈ N ∗ ∪N †.
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For a better description, we can summarize our results in the following table.

Neumann Dirichlet Critical lengths
N = 2 1 1 ∅
N ≥ 3 1 N − 1 N ∗

N ≥ 3 N − 1 1 N
N > 3 m N −m N ∗ ∪N
N ≥ 2 N 0 N ∗ ∪N
N ≥ 2 0 N N ∗ ∪N †

Table 1. Relation between the placement of the controls and the critical lengths.

We will provide a brief overview of our approach. To establish well-posedness, the classical
semigroup theory typically used for the KdV equation in networks, as seen in various studies [4, 24,
40, 41], proves to be less effective for handling Dirichlet controls. Instead, studies like [16, 19, 29, 30]
mainly rely on “solutions by transposition” combined with interpolation methods. However, these
techniques are still underdeveloped for the KdV equation on networks, where the network structure
introduces challenging trace terms in the computations. These terms are addressed in a recent work
by the second author [39] and in this article.

For the control problem, it is well known in the literature [34] that proving the exact controlla-
bility of the system (1.1) is equivalent to establishing an inequality of observability for the linearized
system associated with (1.1). To achieve this, we generally employ the multiplier method and com-
pactness arguments, which reduce the task to demonstrating a unique continuation property for
the state operator.

In our context, proving this unique continuation property involves analyzing the spectral prob-
lem associated with the relevant linear operator. Specifically, after applying the Fourier transform,
the question becomes one of determining when a certain quotient of entire functions remains entire.
We introduce a polynomial function q : C → C and a family of functions

Nα : C× (0,∞) → C,
where α ∈ C \ {0} and each restriction Nα(·, L) is entire for any L > 0. We then define a family of
functions fα(·, L) by

fα(µ,L) =
Nα(µ,L)

q(µ)
,

within its maximal domain. The problem then reduces to finding L > 0 such that there exists
α ∈ C \ {0} for which fα(·, L) is entire. In some works, such as [17, 18, 42] and references therein,
this approach provides an explicit characterization of the set of critical lengths when it exists.
However, in many cases, this set cannot be explicitly determined [7, 15, 16, 26].

In this context, this work makes two contributions. First, we examine the well-posedness of
system (1.14) under mixed boundary conditions, specifically focusing on Dirichlet and Neumann
conditions. Second, we provide, for the first time, a detailed analysis of a star graph structure where
the function fα, relevant to our scenarios, is entire. This analysis leads to the characterization of
critical sets N defined by (1.4), N ∗ defined by (1.6), and their union N ∪ N ∗, akin to those
introduced by Rosier [42] and Glass and Guerrero [29]. Additionally, we identify a new critical set,
denoted as N †. Due to the increased complexity of the functions Nα in our setting compared to
these earlier works, our approach involves a refined and meticulous adaptation of the analysis of
these functions.

1.5. Outline. Our work is organized as follows: In Section 2, we conduct a detailed analysis of
the well-posedness of problem (1.11), incorporating relevant results from the single KdV equation.
Building on this, the objective of Section 3 is to establish the observability inequality for system
(1.14) with boundary controls acting under mixed boundary conditions, specifically Dirichlet and
Neumann conditions, as well as under full Neumann boundary conditions and full Dirichlet bound-
ary conditions. Here, we carefully examine the function fα associated with our setting, leading to
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Theorem 1.1. Finally, Appendix A provides a review of trace estimates for the single KdV equa-
tion, while Appendix B demonstrates how the observability inequality ensures controllability and
Appendix C explores various properties of the set N †.

2. Well-posedness analysis

In this section, we examine the well-posedness of problem (1.11), as established in [39], along
with its corresponding adjoint problem. To achieve this, we verify the Kato smoothing property
for the solution traces, which is essential for deriving an observability inequality that characterizes
critical lengths. Additionally, we investigate the regularity of solutions to the adjoint system when
the data belong to regular spaces. Note that the positive constants C introduced here may vary
from line to line.

2.1. Weak solutions. The next proposition was proved in [39], and it gives the well-posedness to
the problem 

−∂tvj − ∂xvj − ∂3xvj = fj , t ∈ (0, T ), x ∈ (0, lj), j = 1, . . . , N,

vj(t, 0) = v1(t, 0), t ∈ (0, T ), j = 2, . . . , N,
N∑
j=1

∂2xvj(t, 0) = (α−N)v1(t, 0), t ∈ (0, T ),

vj(t, lj) = ∂xvj(t, 0) = 0, t ∈ (0, T ), j = 1, . . . , N,

vj(T, x) = 0, x ∈ (0, lj), j = 1, . . . , N,

(2.1)

for f = (f1, ..., fN ) ∈ L2(0, T,L2(T )). This result is useful to establish a notion of solution for
(1.11).

Proposition 2.1. If f ∈ L2(0, T,L2(T )) there exists a unique solution

v ∈ B1 := C([0, T ],H1
r(T )) ∩ L2(0, T,H2(T ))

of (2.1). Moreover, there exists C1 > 0 such that

∥v∥B1 +
N∑
j=1

∥∂2xvj(·, lj)∥L2(0,T ) +
N∑
j=1

∥∂xvj(·, lj)∥
H

1
3 (0,T )

≤ C1∥f∥L2(0,T,L2(T ).

Assume uj , pj , gj , vj , fj ∈ C∞([0, T ]× [0, lj ]) and u
0
j ∈ C∞[0, lj ]. Suppose that u = (u1, ..., uN )

is a solution of (1.11) subject to the data pj , gj , u
j
0 and v = (v1, ..., vN ) is a solution of (2.1) subject

to f = (f1, ..., fN ). Multiplying (2.1) by uj , integrating by parts and using the boundary conditions
in (1.11) and (2.1) we obtain

N∑
j=1

∫ lj

0
u0j (x)vj(0, x)−

N∑
j=1

∫ T

0
pj(t)∂

2
xvj(t, lj) +

N∑
j=1

∫ T

0
gj(t)∂xvj(t, lj) =

N∑
j=1

∫ T

0

∫ lj

0
fjuj .

Identifying u0j ∈ C∞([0, lj ]) ⊂ L2(0, lj) with the functional (u0j )
∗ ∈ H−1

r (0, lj) given by

(u0j )
∗(w) =

∫ lj

0
u0jw, ∀w ∈ H−1

r (0, lj),

we can write ∫ lj

0
u0j (x)vj(0, x) = ⟨u0j , vj(0, ·)⟩H−1

r (0,lj)×H1
r (0,lj)

.

Now identifying gj ∈ C∞([0, T ]) ⊂ L2(0, T ) with the functional g∗j ∈ H− 1
3 (0, T ) given by

g∗j (h) =

∫ T

0
gjh, ∀h ∈ H

1
3 (0, T ),
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we can write ∫ T

0
gj(t)∂xvj(t, lj) = ⟨gj , ∂xvj(·, lj)⟩

H− 1
3 (0,T )×H

1
3 (0,T )

.

Therefore we have
N∑
j=1

∫ T

0

∫ lj

0
fjuj =

N∑
j=1

⟨u0j , vj(0, ·)⟩H−1
r (0,lj)×H1

r (0,lj)
−

N∑
j=1

∫ T

0
pj(t)∂

2
xvj(t, lj)

+
N∑
j=1

⟨gj , ∂xvj(·, lj)⟩
H− 1

3 (0,T )×H
1
3 (0,T )

.

This motivates the next definition, giving us a weak solution for the system (1.11).

Definition 2.1. Given T > 0, u0 = (u01, u
0
2, · · · , u0N ) ∈ H−1

r (T ), p ∈
(
L2(0, T )

)N
and g ∈

(H− 1
3 (0, T ))N a solution by transposition of (1.11) is a function u ∈ L2(0, T,L2(T )) satisfying

N∑
j=1

∫ T

0

∫ lj

0
fjuj =

N∑
j=1

⟨u0j , vj(0, ·)⟩H−1
r (0,lj)×H1

r (0,lj)
−

N∑
j=1

∫ T

0
pj(t)∂

2
xvj(t, lj)

+
N∑
j=1

⟨gj , ∂xvj(·, lj)⟩
H− 1

3 (0,T )×H
1
3 (0,T )

,

for all f ∈ L2(0, T,L2(T )), where v is the solution of (2.1) corresponding to f .

The next result provides the well-posedness of (1.11), proved in [39].

Theorem 2.1. Let T > 0 be given. For all u0 ∈ H−1
r (T ), p ∈

(
L2(0, T )

)N
and g ∈ (H− 1

3 (0, T ))N ,
there exists a unique solution by transposition for (1.11).

2.2. The adjoint system. The adjoint system associated with (1.11) is given by (1.15). The next
result ensures that the system (1.15) admits a unique solution.

Proposition 2.2. For any φT ∈ L2(T ) the system (1.15) admits a unique solution φ ∈ B which
satisfies

(2.2) ∥φ∥B ≤ C∥φT ∥L2(T ),

for C > 0, and

(2.3)

N∑
j=1

∥∂xφj(·, lj)∥2L2(0,T ) ≤ ∥φT ∥2L2(T ),

for all φT ∈ L2(T ).

Proof. Define the operator Au = −∂xu− ∂3xu with domain

D(A) =

u ∈ H3(T ) ∩H1
e(T ),

N∑
j=1

∂2xuj(0) = −αu1(0)

 ,

where

∂kxu =
(
∂kxu1, ..., ∂

k
xuN

)
.

Observe, that A is the operator associated with (1.11) when pj = gj = 0. The adjoint operator of
A is given by A∗v = ∂xv + ∂3xv with domain

D(A∗) =

v ∈ H3(T ) ∩H1
e(T ); ∂xvj(0) = 0, j = 1, . . . , N,

N∑
j=1

∂2xvj(0) = (α−N)v1(0)

 .
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A∗ is the operator associated with (1.15). According to [4], A is closed, A and A∗ are dissipative,
so A∗ generates a strongly semigroup of contractions on L2(T ) which will be denoted by {S(t)}t≥0.
From the semigroup theory it follows that, for any φT ∈ L2(T ) the problem (1.15) has a unique
(mild) solution φ = S(T − ·)φT ∈ C([0, T ],L2(T )). Note that

∥φ∥C([0,T ],L2(T )) = ∥S(T − ·)φT ∥C([0,T ],L2(T )) ≤ ∥φT ∥L2(T ), ∀φT ∈ L2(T ).

To see that φ ∈ L2(0, T,H1
e(T )) and to obtain the estimates (2.2) and (2.3), first suppose

φT ∈ D(A∗). In this case, from semigroup theory, we have

φ ∈ C1([0, T ],L2(T )) ∩ C([0, T ],D(A∗)).

Assume qj ∈ C∞([0, T ]× [0, lj ]) with qj(t, 0) = q1(t, 0). Multiplying the first equation of (1.15) by
qφj , integrating by parts, and using the boundary conditions, we obtain

1

2

N∑
j=1

∫ lj

0
(qjφ

2
j )(T, x) +

3

2

N∑
j=1

∫ T

0

∫ lj

0
∂xqj∂xφ

2
j =

1

2

N∑
j=1

∫ T

0

∫ lj

0
φ2
j (∂tqj + ∂xqj + ∂3xqj)

+

(
α− N

2

)∫ T

0
q1(t, 0)φ

2
1(t, 0)

+
1

2

N∑
j=1

∫ T

0
qj(t, lj)∂xφ

2
j (t, lj)

+
1

2

N∑
j=1

∫ T

0
∂2xqj(t, 0)φ

2
1(t, 0)

+
1

2

N∑
j=1

∫ lj

0
(qjφ

2
j )(0, x).

Choosing qj = 1 we get

1

2

N∑
j=1

∫ lj

0
φ2
j (T, x) =

(
α− N

2

)∫ T

0
φ2
1(t, 0) +

1

2

N∑
j=1

∫ T

0
∂xφ

2
j (t, lj) +

1

2

N∑
j=1

∫ lj

0
φ2
j (0, x).

Thus,

N∑
j=1

∥∂xφj(·, lj)∥2L2(0,T ) ≤ ∥φT ∥2L2(T ),

that is, the map

δ : D(A∗) : → L2(0, T )
φT 7→ ∂xφ(·, lj)

is continuous. Now, choosing qj = x it follows that∫ T

0
∥φx(t, ·)∥2L2(T ) ≤

(
T + 2M

3

)
∥φT ∥2L2(T ),

where M = max
1≤j≤N

lj . Then, (2.2) holds for every φ
T ∈ D(A∗) and consequently the map

Γ∗ : (D(A∗), ∥ · ∥L2(T )) → (B, ∥ · ∥B)
φT 7→ Γ∗φT = φ = S(T − ·)φT

is continuous. By an argument of density we extend the maps Γ∗ and δ to (L2(T ), ∥ · ∥L2(T )). For

each φT ∈ L2(T ) we refer to δ(φT ) when write ∂xφ(t, lj) and, in this sense, (2.3) holds for every
φT ∈ L2(T ). Moreover, since

ΓφT = S(T − ·)φT ∀φT ∈ D(A∗)
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by density and continuity, it follows that

ΓφT = S(T − ·)φT , ∀φT ∈ L2(T )

and thus (2.2) was verified. □

2.3. Trace estimates. Now, we proceed to prove that the solutions of (1.15) possess the sharp
Kato smoothing property, namely

∂kxφj ∈ L∞
x

(
0, lj ;H

1−k
3 (0, T )

)
, k = 0, 1, 2, j = 1, . . . , N.

The first result ensures the hidden regularity.

Proposition 2.3. For T > 0 and every φT ∈ L2(T ), the solution φ of (1.15) posses the hidden
regularity

∂kxφj ∈ L∞
x

(
0, lj ;H

1−k
3 (0, T )

)
, k = 0, 1, 2, j = 1, . . . , N.

Moreover, there exists C > 0 such that

2∑
k=0

sup
x∈(0,L)

∥∂kxφj(·, x)∥
H

1−k
3 (0,T )

≤ C∥φT ∥L2(T ), j = 1, . . . , N.

Proof. Our proof will be split into two cases. We divide it into two cases.

Case 1: N ∈ N and lj = L, for every j = 1, . . . , N .

For each j = 1, . . . , N define ξj = φ1 − φj . Note that

ξj ∈ ZT = C([0, T ];L2(0, L)) ∩ L2(0, T ;H1(0, L))

and its solves 
∂tξj + ∂xξj + ∂3xξj = 0, t ∈ (0, T ), x ∈ (0, L),

ξj(t, 0) = ξj(t, L) = ∂xξj(t, 0) = 0, t ∈ (0, T ),

ξj(T, x) = φT
1 (x)− φT

j (x), x ∈ (0, L).

Thanks to Corollary A.1 we get ∂kxξj ∈ L∞
x

(
0, L;H

1−k
3 (0, T )

)
, for k = 0, 1, 2, and

∥ξj∥ZT
+

2∑
k=0

sup
x∈(0,L)

∥∂kxξj(·, x)∥
H

1−k
3 (0,T )

≤ C
(
∥φT

1 − φT
j ∥L2(0,L)

)
≤ C∥φT ∥L2(T )(2.4)

where C > 0 is a constant.
Now, since φ ∈ L2(0, T ;H1

e(T )) and H1(0, L) ↪→ C([0, L])∫ T

0
|φ1(t, 0)|2dt ≤ c∥φ∥2L2(0,T ;H1

e(T ))

for some c > 0. From Proposition 2.2 it follows that∫ T

0
|φ1(t, 0)|2dt ≤ C̃∥φT ∥2L2(T ),

for C̃ > 0. Then φ1(·, 0) ∈ L2(0, T ) ↪→ H− 1
3 (0, T ) (this embedding is an isometry) and by the last

inequality

∥φ1(·, 0)∥
H− 1

3 (0,T )
= ∥φ1(·, 0)∥L2(0,T ) ≤ C̃∥φT ∥L2(T ).(2.5)

Defining ψ =
N∑
j=1

φj we conclude that

ψ ∈ ZT = C([0, T ];L2(0, L)) ∩ L2(0, T ;H1(0, L))
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and it solves the system
∂tψ + ∂xψ + ∂3xψ = 0, t ∈ (0, T ), x ∈ (0, L),

ψ(t, L) = ∂xψ(t, 0) = 0, ∂2xψ(t, 0) = (α−N)φ1(t, 0), t ∈ (0, T ),

ψ(T, x) =

N∑
j=1

φT
j (x), x ∈ (0, L).

Then, the Proposition A.6 gives us ∂kxψ ∈ L∞
x

(
0, L;H

1−k
3 (0, T )

)
for k = 0, 1, 2 and

∥ψ∥ZT
+

2∑
k=0

sup
x∈(0,L)

∥∂kxψ(·, x)∥
H

1−k
3 (0,T )

≤ C

 N∑
j=1

∥φT
j ∥L2(0,L) + |α−N |∥φ1(·, 0)∥

H− 1
3 (0,T )

 ,

for some positive constant C. Using (2.5) we get another constant, still denoted by C > 0 such
that

∥ψ∥ZT
+

2∑
k=0

sup
x∈(0,L)

∥∂kxψ(·, x)∥
H

1−k
3 (0,T )

≤ C(|α−N |)∥φT ∥L2(T ).(2.6)

Observe that

N∑
j=1

ξj + ψ =

N∑
j=1

(φ1 − φj) +

N∑
j=1

φj = Nφ1,

that is,

φ1 =
1

N

 N∑
j=1

ξj + ψ

 .

But we know that ψ, ξj ∈ L∞
x

(
0, L;H

1−k
3 (0, T )

)
for j = 1, . . . , N , so we conclude that

∂kxφ1 ∈ L∞
x

(
0, L;H

1−k
3 (0, T )

)
,

for k = 0, 1, 2. Moreover,

2∑
k=0

sup
x∈(0,L)

∥∂kxφ1(·, x)∥
H

1−k
3 (0,T )

≤ 1

N

 N∑
j=1

2∑
k=0

sup
x∈(0,L)

∥∂kxξj(·, x)∥
H

1−k
3 (0,T )

+

2∑
k=0

sup
x∈(0,L)

∥∂kxψ(·, x)∥
H

1−k
3 (0,T )

)
.

Due to the inequalities (2.4) and (2.6) it follows that

2∑
k=0

sup
x∈(0,L)

∥∂kxφ1(·, x)∥
H

1−k
3 (0,T )

≤ C∥φT ∥L2(T )(2.7)

where C = C(α,N) > 0. Now, since φj is the solution of
∂tφj + ∂xφj + ∂3xφj = 0, t ∈ (0, T ), x ∈ (0, L),

φj(t, 0) = φ1(t, 0), φj(t, L) = ∂xφj(t, 0) = 0, t ∈ (0, T ),

φj(T, x) = φT
j (x), x ∈ (0, L),
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as φ1(t, 0) ∈ H
1
3 (0, T ), Corollary A.1 ensures that ∂kxφj ∈ L∞

x

(
0, L;H

1−k
3 (0, T )

)
for k = 0, 1, 2 and

using (2.7) we get

2∑
k=0

sup
x∈(0,L)

∥∂kxφj(·, x)∥
H

1−k
3 (0,T )

≤ C∥φT ∥L2(T ),

for C > 0 showing this case.

Case 2: N ∈ N and arbitrary lengths lj > 0, j = 1, . . . , N .

Define L = maxj=1,...,N lj and

φ̃T
j (x) :=

{
φT
j (x), x ∈ (0, lj),

0, x ∈ (0, L)\(0, lj).

Denote by φ̃ ∈ C([0, T ],L2(T̃ )) ∩ L2(0, T,H1
e(T̃ )) the solution of (1.14) associated to data φ̃T =

(φ̃T
1 , ..., φ̃

T
N ) ∈ L2(T̃ ) =

(
L2(0, L)

)N
. From the previous case, we have

2∑
k=0

sup
x∈(0,L)

∥∂kxφ̃j(·, x)∥
H

1−k
3 (0,T )

≤ C∥φ̃T ∥L2(T̃ )

It follows from the definition that ∥φ̃T ∥L2(T̃ )
= ∥φT ∥L2(T ). Also from the definition we have

φ̃T
j = φT

j in (0, lj) so φj and φ̃j solve the system
∂tφj + ∂xφj + ∂3xφj = 0, t ∈ (0, T ), x ∈ (0, lj),

φj(t, 0) = φ1(t, 0) = φj(t, lj) = ∂xφj(t, 0) = 0, t ∈ (0, T ),

φj(T, x) = φT
j (x), x ∈ (0, lj).

Then by uniqueness of solution we obtain φ̃j = φj in (0, T )×(0, lj). Consequently, for j = 1, . . . , N ,

2∑
k=0

sup
x∈(0,lj)

∥∂kxφj(·, x)∥
H

1−k
3 (0,T )

=
2∑

k=0

sup
x∈(0,lj)

∥∂kxφ̃j(·, x)∥
H

1−k
3 (0,T )

≤
2∑

k=0

sup
x∈(0,L)

∥∂kxφ̃j(·, x)∥
H

1−k
3 (0,T )

≤ C∥φ̃T ∥L2(T̃ )

= C∥φT ∥L2(T ).

which concludes case 2 and, consequently, the proof of Proposition 2.3. □

To finish this subsection, we establish that the traces ∂2xφj(·, 0), ∂2xφj(·, lj) belong to L2(0, T )
and depend continuously on the initial data.

Proposition 2.4. Given φT ∈ L2(T ), we have that ∂2xφj(·, x) ∈ L2(0, T ), for any x ∈ [0, lj ].
Moreover, the following inequality holds∫ T

0

(
∂2xφj(t, x)

)2
dt ≤ C∥φT ∥2L2(T ), ∀ φT ∈ L2(T ),

for some positive constant C.

Proof. Consider the operator

Pj : H
3(0, lj) → L2(0, lj)

defined by Pjw = ∂xw + ∂3xw. The graph norm in H3(0, lj) associated to Pj is

∥w∥Pj = ∥w∥L2(0,lj) + ∥Pjw∥L2(0,lj).
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From [38, Lemma A.2] there exists a constant d1 > 0 such that

∥w∥H3(0,lj) ≤ d1∥w∥Pj , ∀w ∈ H3(0, lj), j = 1, . . . , N.(2.8)

On the other hand, given v = (v1, ..., vN ) ∈ D(A∗) we have

∥v∥D(A∗) = ∥v∥L2(T ) + ∥∂xv + ∂3xv∥L2(T ) ≥ ∥v∥L2(T ) =

 N∑
j=1

∥vj∥2L2(0,lj)

 1
2

≥ ∥vj∥L2(0,lj)

as well as

∥v∥D(A∗) ≥ ∥∂xv + ∂3xv∥L2(T ) =

 N∑
j=1

∥∂xvj + ∂3xvj∥2L2(0,lj)

 1
2

≥ ∥∂xvj + ∂3xvj∥L2(0,lj).

Therefore, this yields

∥vj∥Pj ≤ 2∥v∥D(A∗), j = 1, . . . , N.(2.9)

Let us first assume that φT
j ∈ D(A∗).

Claim: We claim that ∂2xφj ∈ C([0, T ]× [0, lj ]).

Indeed, since φ ∈ C([0, T ],D(A∗)) we have ∂2xφj(t, ·) ∈ H1(0, lj) ↪→ C([0, lj ]). Hence, fixed
x ∈ [0, lj ], for some constant d2 > 0 we get

|∂2xφj(t, x)− ∂2xφj(t0, x)| ≤ ∥∂2xφj(t, ·)− ∂2xφj(t0, ·)∥C([0,lj ])

≤ d2∥∂2xφj(t, ·)− ∂2xφj(t0, ·)∥H1(0,lj)

≤ d2∥φj(t, ·)− φj(t0, ·)∥H3(0,lj)

for any t, t0 ∈ [0, T ]. Using (2.8) and (2.9) we obtain

|∂2xφj(t, x)− ∂2xφj(t0, x)| ≤ 2d1d2∥φj(t, ·)− φj(t0, ·)∥D(A∗),

from where we conclude that ∂2xφj(·, x) ∈ C([0, T ]) and, consequently, ∂2xφj(·, x) ∈ L2(0, T ), show-
ing the claim.

Using Proposition 2.3 and the fact that L2(0, T ) ↪→ H− 1
3 (0, T ) is an isometry we obtain, for

each x ∈ [0, lj ], that∫ T

0

(
∂2xφj(t, x)

)2
dt = ∥∂2xφj(·, x)∥2L2(0,T ) = ∥∂2xφj(·, x)∥2

H− 1
3 (0,T )

≤ C∥φT
j ∥2L2(T ).

Finally, with an argument of density and continuity, we extend the result for every φT
j ∈ L2(T ).

The result is thus achieved. □

2.4. Regularity. With the spaces (1.12) and (1.13) in hand, we have the following proposition.

Proposition 2.5. If the final data φT ∈ Xm, then the corresponding solution φ of the system
(1.15) has the additional regularity φ ∈ L2(0, T ;Ym) with

∥φ∥L2(0,T ;Ym) ≤ C∥φT ∥Xm .

for some positive constant C. Furthermore, the estimate

∥φT ∥2Xm
≤ 1

T

N∑
j=1

∫ T

0

∫ lj

0
φ2
j +

(
1

T
+

6

σ

) N∑
j=m+1

∫ T

0

∫ lj

0
∂xφ

2
j + 2

(
α− N

2

)∫ T

0
φ2
1(t, 0)

+ 2
N∑

j=m+1

∥φT
j ∥2L2(0,lj)

+
m∑
j=1

∫ T

0
∂xφ

2
j (t, lj) +

N∑
j=m+1

∫ T

0
∂2xφ

2
j (t, lj),

is verified for every φT ∈ Xm, where σ := min
1≤j≤N

lj.
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Proof. Once we have that

∥φ∥2L2(0,T ;Ym) =

∫ T

0
∥φ(t, ·)∥2Ym

dt =

∫ T

0

m∑
j=1

∥φj(t, ·)∥2H1(0,lj)
dt+

∫ T

0

N∑
j=m+1

∥φj(t, ·)∥2H2(0,lj)
dt

≤ ∥φ∥2L2(0,T ;H1
e(T )) +

N∑
j=m+1

∫ T

0
∥φj(t, ·)∥2H2(0,lj)

dt,

from the first part of Proposition 2.2, it is sufficient to show that φj ∈ L2(0, T ;H2(0, lj)) for
j = m+ 1, . . . , N with

N∑
j=m+1

∥φj∥2L2(0,T ;H2(0,lj))
≤ C̃∥φT ∥2Xm

(2.10)

for some constant C̃ > 0.
To do this, first assume φT ∈ D(A∗)∩Xm, the result for all φT ∈ Xm follows by an argument

of density. In this case, it is clear that φj(t, ·) ∈ H2(0, lj). Let qj ∈ C∞([0, T ] × [0, lj ]) be given.
Multiplying the adjoint system (1.15) by qj∂

2
xφj , integrating by parts, and using the boundary

conditions, we get

1

2

∫ T

0
(qj∂

2
xφ

2
j )(t, lj) +

1

2

∫ T

0
(qj∂xφ

2
j )(t, lj) = −1

2

∫ lj

0
(qj∂xφ

2
j )(0, x)−

∫ T

0
(∂xqj∂xφj∂

2
xφj)(t, lj)

− 1

2

∫ T

0

∫ lj

0
∂xφ

2
j (∂tqj + ∂xqj + ∂3xqj) +

3

2

∫ T

0

∫ lj

0
∂xqj∂

2
xφ

2
j

+
1

2

∫ T

0
qj(t, 0)∂

2
xφ

2
j (t, 0) +

1

2

∫ lj

0
qj(T, x)∂xφ

2
j (T, x)

+
1

2

∫ T

0
(∂2xqj∂xφ

2
j )(t, lj).

(2.11)

Choosing qj = lj − x it follows that

1

2

∫ lj

0
(lj − x)∂xφ

2
j (0, x) +

3

2

∫ T

0

∫ lj

0
∂2xφ

2
j =

∫ T

0
(∂xφj∂

2
xφj)(t, lj) +

1

2

∫ T

0

∫ lj

0
∂xφ

2
j

+
lj
2

∫ T

0
∂2xφ

2
j (t, 0) +

1

2

∫ lj

0
(lj − x)∂xφ

2
j (T, x).

By Young’s inequality and Propositions 2.2 and 2.4, we conclude that there exists C > 0 such that∫ T

0
(∂xφj∂

2
xφj)(t, lj) ≤

1

2

∫ T

0
∂xφ

2
j (t, lj) +

1

2

∫ T

0
∂2xφ

2
j (t, lj) ≤ C∥φT ∥2L2(T ).

Defining M = max
1≤j≤N

lj , for j = m+1, . . . , N , and, again, using Propositions 2.2 and 2.4, it follows

that exists another constant, still denote by C > 0, such that∫ T

0

∫ lj

0
∂2xφ

2
j ≤ C∥φT ∥2Xm

.

Combining this with the Proposition 2.2 we obtain, φj ∈ L2(0, T ;H2(0, lj) and

∥φj∥L2(0,T ;H2(0,lj)) ≤ C∗∥φT ∥Xm , ∀ φT ∈ D(A∗) ∩Xm,

where C∗ > 0 is a constant and j = m+ 1, . . . , N . Since D(A∗) ∩Xm is dense in Xm, the map

D(A∗) ∩Xm → L2(0, T ;H2(0, lj))
φT 7→ φj
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extends continuously to the entire Xm with

∥φj∥L2(0,T ;H2(0,lj)) ≤ C∗∥φT ∥Xm , ∀φT ∈ Xm

and therefore (2.10) holds with C̃ = (N −m)(C∗)2.

For the second part, in (2.11) choosing qj = t we get

1

2

∫ T

0
t∂2xφ

2
j (t, lj) +

1

2

∫ T

0
t∂xφ

2
j (t, lj) +

1

2

∫ T

0

∫ lj

0
∂xφ

2
j =

1

2

∫ T

0
t∂2xφ

2
j (t, 0) +

T

2

∫ lj

0
∂xφ

2
j (T, x),

where it follows that

∥∂xφT
j ∥2L2(0,lj)

≤ 1

T

∫ T

0

∫ lj

0
∂xφ

2
j +

∫ T

0
∂xφ

2
j (t, lj) +

∫ T

0
∂2xφ

2
j (t, lj), j = 1, . . . , N.(2.12)

On the other hand, by multiplying adjoint system (1.15) by qjφj , integrating by parts, and using
the boundary conditions, we get

1

2

∫ lj

0
qj(T, x)φ

2
j (T, x) +

3

2

∫ T

0

∫ lj

0
∂xqj∂xφ

2
j =

1

2

∫ T

0

(
qj(t, 0) + ∂2xqj(t, 0)

)
φ2
1(t, 0)

+

∫ T

0
qj(t, 0)φ1(t, 0)∂

2
xφj(t, 0)

+
1

2

∫ T

0
qj(t, lj)∂xφ

2
j (t, lj)

+
1

2

∫ T

0

∫ lj

0
φ2
j (∂tqj + ∂xqj + ∂3xqj)

+
1

2

∫ lj

0
qj(0, x)φ

2
j (0, x),

(2.13)

for j = 1, . . . , N . Choosing qj = x in (2.13), it follows that

lj
2

∫ T

0
∂xφ

2
j (t, lj) +

1

2

∫ T

0

∫ lj

0
φ2
j +

1

2

∫ lj

0
xφ2

j (0, x) =
1

2

∫ lj

0
xφ2

j (T, x) +
3

2

∫ T

0

∫ lj

0
∂xφ

2
j

which implies, in particular, that∫ T

0
∂xφ

2
j (t, lj) ≤

∫ lj

0
φ2
j (T, x) +

3

lj

∫ T

0

∫ lj

0
∂xφ

2
j , j = 1, . . . , N.(2.14)

Now, assuming qj(t, 0) = q1(t, 0) and summing on j in (2.13) we obtain

1

2

N∑
j=1

∫ lj

0
qj(T, x)φ

2
j (T, x) +

3

2

N∑
j=1

∫ T

0

∫ lj

0
∂xqj∂xφ

2
j =

1

2

N∑
j=1

∫ T

0

∫ lj

0
φ2
j (∂tqj + ∂xqj + ∂3xqj)

+

(
α− N

2

)∫ T

0
q1(t, 0)φ

2
1(t, 0)

+
1

2

N∑
j=1

∫ T

0
qj(t, lj)∂xφ

2
j (t, lj)

+
1

2

N∑
j=1

∫ T

0
∂2xqj(t, 0)φ

2
1(t, 0)

+
1

2

N∑
j=1

∫ lj

0
qj(0, x)φ

2
j (0, x).
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Now, choosing qj = t in (2.13), we also have that

N∑
j=1

∥φT
j ∥2L2(0,lj)

≤ 1

T

N∑
j=1

∫ T

0

∫ lj

0
φ2
j + 2

(
α− N

2

)∫ T

0
φ2
1(t, 0) +

N∑
j=1

∫ T

0
∂xφ

2
j (t, lj),(2.15)

for j = 1, . . . , N . Using (2.12) and (2.15) we get that

∥φT ∥2Xm
=

m∑
j=1

∥φT
j ∥2L2(0,lj)

+
N∑

j=m+1

∥φT
j ∥2H1

0 (0,lj)

=

m∑
j=1

∥φT
j ∥2L2(0,lj)

+

N∑
j=m+1

∥∂xφT
j ∥2L2(0,lj)

≤ 1

T

N∑
j=1

∫ T

0

∫ lj

0
φ2
j + 2

(
α− N

2

)∫ T

0
φ2
1(t, 0) +

N∑
j=1

∫ T

0
∂xφ

2
j (t, lj)

+
1

T

N∑
j=m+1

∫ T

0

∫ lj

0
∂xφ

2
j +

N∑
j=m+1

∫ T

0
∂xφ

2
j (t, lj) +

N∑
j=m+1

∫ T

0
∂2xφ

2
j (t, lj).

Observe that from (2.14), the following holds

2
N∑

j=m+1

∫ T

0
∂xφ

2
j (t, lj) ≤ 2

N∑
j=m+1

∫ lj

0
φ2
j (T, x) +

N∑
j=m+1

6

lj

∫ T

0

∫ lj

0
∂xφ

2
j ,

and consequently

∥φT ∥2Xm
≤ 1

T

N∑
j=1

∫ T

0

∫ lj

0
φ2
j +

(
1

T
+

6

σ

) N∑
j=m+1

∫ T

0

∫ lj

0
∂xφ

2
j + 2

(
α− N

2

)∫ T

0
φ2
1(t, 0)

+ 2
N∑

j=m+1

∥φT
j ∥2L2(0,lj)

+
m∑
j=1

∫ T

0
∂xφ

2
j (t, lj) +

N∑
j=m+1

∫ T

0
∂2xφ

2
j (t, lj),

giving the result. □

3. A study of entire functions

From this point, our analysis focuses on establishing the observability inequality. Let us first
discuss the observability inequality.

3.1. Observability inequality. We are here interested in proving the following observability in-
equality, that is, the existence of a constant C > 0 such that

∥φT ∥2L2(T ) ≤ C

 m∑
j=1

∥∂xφj(·, lj)∥2L2(0,T ) +

N∑
j=m+1

∥∂2xφj(·, lj)∥2L2(0,T )

 , ∀φT ∈ L2(T ).(3.1)

Observe that to check (3.1) it is sufficient to check

∥φT ∥2Xm
≤ C̃

 m∑
j=1

∥∂xφj(·, lj)∥2L2(0,T ) +

N∑
j=m+1

∥∂2xφj(·, lj)∥2L2(0,T )

 , ∀φT ∈ Xm,(3.2)

for some positive constant C̃.
Indeed, given φT ∈ L2(T ), since Xm is dense in L2(T ) there exists a sequence (φT,n)n∈N ⊂ Xm

such that φT,n → φT in L2(T ). From Propositions 2.2 and 2.4 it follows that ∂xφ
n
j (·, lj) →
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∂xφj(·, lj) and ∂2xφn
j (·, lj) → ∂2xφj(·, lj) in L2(0, T ). Furthermore, using the Poincaré inequality, we

get, for some c > 0,

∥φT,n∥L2(T ) ≤ c∥φT,n∥Xm .

If (3.2) holds, then

∥φT,n∥2L2(T ) ≤ c2C̃

 m∑
j=1

∥∂xφn
j (·, lj)∥2L2(0,T ) +

N∑
j=m+1

∥∂2xφn
j (·, lj)∥2L2(0,T )


and passing to the limit, it follows that

∥φT ∥2L2(T ) ≤ c2C̃

 m∑
j=1

∥∂xφj(·, lj)∥2L2(0,T ) +

N∑
j=m+1

∥∂2xφj(·, lj)∥2L2(0,T )


so (3.1) holds with C = c2C̃ > 0.

Remark 3.1. The advantage of working with data in Xm for the adjoint system is that, in addi-
tion to the additional regularity for the solution, the estimate given in the Proposition 2.5 carries
information related to the two types of controls used, while the corresponding estimate for data in
L2(T ) carries only information related to the Neumann controls types.

From now on, we will focus our efforts on describing the lengths lj = L > 0 for which the
observability (3.2) holds. We strictly follow the argument used in [42].

Lemma 3.1. Let T > 0 be given. If the observability inequality (3.2) does not occur, then there
exists φT ∈ Xm with ∥φT ∥Xm = 1 for which the corresponding solution φ of (1.15) satisfies

∂xφj(·, lj) = 0, j = 1, . . . ,m and ∂2xφj(·, lj) = 0, j = m+ 1, . . . , N.(3.3)

Proof. Suppose that (3.2) is false. Then given n ∈ N there exists φT,n ∈ Xm\{0} such that
m∑
j=1

∥∂xφn
j (·, lj)∥2L2(0,T ) +

n∑
j=m+1

∥∂2xφn
j (·, lj)∥2L2(0,T ) <

1

n
, ∀n ∈ N.(3.4)

First note that thanks to Proposition 2.5 we have for j = 1, . . . , N

∥φn
j ∥L2(0,T,H1(0,lj)) ≤ ∥φn∥L2(0,T ;H1

e(T )) ≤ ∥φn∥L2(0,T ;Ym) ≤ C9∥φT,n∥Xm = C9,

that is, (φn
j )n∈N is bounded in L2(0, T ;H1(0, lj)). On the other hand, using Lemma A.1

∥∂tφj(t, ·)∥H−2(0,lj) = ∥ − ∂xφ
n
j (t, ·)− ∂3xφ

n
j (t, ·)∥H−2(0,lj) ≤ ∥φn

j (t, ·)∥H1(0,lj)

from where do we obtain

∥∂tφn
j ∥L2(0,T ;H−2(0,lj)) ≤ ∥φn

j ∥L2(0,T ;H1(0,lj)) ≤ C9.

Thus (∂tφ
n
j )n∈N is bounded in L2(0, T ;H−2(0, lj)). Since the first embedding in

H1(0, lj) ↪→ L2(0, lj) ↪→ H−2(0, lj)

is compact, from Aubin-Lions Lemma (see [8, 47]) it follows that (φn
j )n∈N is relatively compact in

L2(0, T ;L2(0, lj)) and therefore it admits a convergent subsequence in L2(0, T ;L2(0, lj)).
Analogously, the Proposition 2.5 gives us for j = m+ 1, . . . , N

∥φn
j ∥L2(0,T ;H2(0,lj)) ≤ ∥φn∥L2(0,T ;Ym) ≤ C9∥φT,n∥Xm = C9,

that is, (φn
j )n∈N is bounded in L2(0, T ;H2(0, lj)). As (∂tφ

n
j )n∈N is bounded in L2(0, T ;H−2(0, lj))

and the first embedding in

H2(0, lj) ↪→ H1(0, lj) ↪→ H−2(0, lj)

is compact, from Aubin-Lions Lemma (see [8, 47]) we have (φn
j )n∈N relatively compact in L2(0, T ;H1(0, lj)),

that is, it has a convergent subsequence in L2(0, T ;H1(0, lj)).
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Now, due to Proposition 2.3, the sequence (φn
1 (·, 0))n∈N is bounded in H

1
3 (0, T ) and thanks

to compact embedding H
1
3 (0, T ) ↪→ L2(0, T ) we can extract from it a convergent subsequence in

L2(0, T ). In the same way, (φT,n
j )n∈N has a convergent subsequence in L2(0, lj) due to compact

embedding H1
0 (0, lj) ↪→ L2(0, lj). In summary, there exists a subsequence (φT,nk)k∈N of (φT,n)n∈N

satisfying the following items:
(φnk

j )k∈N converges in L2(0, T ;L2(0, lj)), j = 1, . . . , N,

(φnk
j )k∈N converges in L2(0, T ;H1(0, lj)), j = m+ 1, . . . , N,

(φnk
1 (·, 0))k∈N converges in L2(0, T ),

(φT,nk
j )k∈N converges in L2(0, lj), j = m+ 1, . . . , N.

(3.5)

Now, let (φT,nk)k∈N the subsequence of (φT,n)n∈N satisfying (3.5). From Proposition 2.5 we
have

∥φT,nk − φT,nr∥2Xm
≤ 1

T

N∑
j=1

∥φnk
j − φnr

j ∥2L2(0,T ;L2(0,lj)
+

(
1

T
+

6

σ

) N∑
j=m+1

∥φnk
j − φnr

j ∥2L2(0,T ;H1(0,lj)

+ 2

(
α− N

2

)
∥φnk

1 (·, 0)− φnr
1 (·, 0)∥2L2(0,T + 2

N∑
j=m+1

∥φT,nk
j − φT,nr

j ∥2L2(0,lj)

+
m∑
j=1

∥∂xφnk
j (·, lj)− ∂xφ

nr
j (·, lj)∥2L2(0,T ) +

N∑
j=m+1

∥∂2xφ
nk
j (·, lj)− ∂2xφ

nr
j (·, lj)∥2L2(0,T ),

which gives (φT,nk)k∈N is a Cauchy sequence in Xm so, there exists φT ∈ Xm such that φT,nk → φT

in Xm. Consider φ = S(T − ·)φT . Since Xm ↪→ L2(T ) continuously, from Propositions 2.2 and 2.4
ensures that {

∂xφ
nk
j (·, lj) → ∂xφj(·, lj) in L2(0, T ), j = 1, . . . ,m,

∂2xφ
nk
j (·, lj) → ∂2xφj(·, lj) in L2(0, T ), j = m+ 1, . . . , N.

From (3.4) we get

∂xφj(·, lj) = 0, j = 1, . . . ,m and ∂2xφj(·, l2) = 0, j = m+ 1, . . . , N.

Since ∥φT,n∥Xm = 1 for every n ∈ N, we also have, in the limit, that ∥φT ∥Xm = 1. So, Lemma 3.1
holds. □

From now on, we deal with the case α = N .

Lemma 3.2. Let T > 0 and denote by NT the space of data φT ∈ Xm whose respective solutions
φ = S(T − ·)φT of (1.15) satisfy (3.3). If NT ̸= {0} then there exists λ ∈ C and φ ∈ H3(T )\{0}
such that 

λφj + φ′
j + φ′′′

j = 0, x ∈ (0, lj), j = 1, . . . , N,

φj(0) = φ1(0), j = 1, . . . , N,
N∑
j=1

φ′′
j (0) = 0,

φj(lj) = φ′
j(0) = 0, j = 1, . . . , N,

φ′
j(lj) = 0, j = 1, . . . ,m,

φ′′
j (lj) = 0, j = m+ 1, . . . , N.

(3.6)

Proof. Using the arguments as those given in [42, Lemma 3.4], follows that if NT ̸= ∅, the map

φT ∈ NT 7→ Ã (NT ) ⊂ CNT (where CNT denote the complexification of NT ) has (at least) one
eigenvalue; hence, there exists λ ∈ C and φT ∈ NT \{0} ⊂ D(A∗) ⊂ H3(T ) such that (3.6) holds,
which give us the lemma. □
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3.2. Entire function related with each condition. Each observability is linked to a corre-
sponding entire function, which plays a crucial role in the analysis. From this point forward, we
will organize our analysis into the following six cases:

• N = 2 and m = 1;

• N ≥ 3 and m = 1;

• N ≥ 3 and m = N − 1;

• N > 3 and 1 < m < N − 1;

•N ≥ 2 and m = N (Full Neumann);

•N ≥ 2 and m = 0 (Full Dirichlet),

(3.7)

remembering that lj = L, for all j.

3.2.1. Case N = 2 and m = 1. In this case, we consider a slightly more general problem, namely

λφj + φ′
j + φ′′′

j = 0, x ∈ (0, lj), j = 1, 2,

φ2(0) = φ1(0),

ςNeφ
′′
1(0) + ςDiφ

′′
2(0) = 0,

φj(lj) = φ′
j(0) = 0, j = 1, 2,

φ′
1(l1) = φ′′

2(l2) = 0,

(3.8)

where ςNe, ςDi > 0. Problem (3.6) corresponds to the case ςNe = ςDi = 1. We can prove that the
observability inequality (3.2) holds for any L > 0. This is a consequence of the following lemma.

Lemma 3.3. Let L > 0 and suppose l1 = l2 = L. For any λ ∈ C, does not exist φ ∈ H3(T )\{0}
satisfying (3.8).

Proof. For ψ ∈ L2(T ), we introduce the notation

ψ̂j(ξ) =

∫ lj

0
ψj(x)e

−ixξdx.

Consider λ ∈ C and suppose that φ ∈ H3(T ) satisfies (3.8). We will show that the unique solution
for (3.8) is the trivial one, that is, φ = 0.

Multiplying the system (3.8) by e−ixξ, integrating by parts in (0, lj) and using the boundary
conditions we get, for every ξ ∈ C,[

(iξ)3 + iξ + λ
]
=

[
(1− ξ2)φj(0)− iξe−iljξφ′

j(lj)− e−iljξφ′′
j (lj) + φ′′

j (0)
]
, j = 1, 2.

Writing λ = ip with p ∈ C and multiplying this equation by i yields(
ξ3 − ξ − p

)
φ̂j(ξ) = i

[
(1− ξ2)φj(0)− iξe−iljξφ′

j(lj)− e−iljξφ′′
j (lj) + φ′′

j (0)
]
, j = 1, 2.

Setting

κ = φ1(0) = φj(0), δj = −φ′
j(lj), γj = −φ′′

j (lj), βj = φ′′
j (0)

one can write(
ξ3 − ξ − p

)
φ̂j(ξ) = i

[
(1− ξ2)κ+ iδjξe

−iljξ + γje
−iljξ + βj

]
, j = 1, 2.

Since δ1 = γ2 = 0 and l1 = l2 = L we have(
ξ3 − ξ − p

)
φ̂1(ξ) = i

[
(1− ξ2)κ+ γ1e

−iLξ + β1

]
, ∀ ξ ∈ C,(3.9) (

ξ3 − ξ − p
)
φ̂2(ξ) = i

[
(1− ξ2)κ+ iδ2ξe

−iLξ + β2

]
, ∀ ξ ∈ C.(3.10)

Now, defining f = φ1 − φ2 and β = β1 − β2, from the above identities, we obtain(
ξ3 − ξ − p

)
f̂(ξ) = i

[
(γ1 − iδ2ξ)e

−iLξ + β
]
, ∀ ξ ∈ C.(3.11)

Claim 3.1. If γ1 = 0 or β = 0 then φ = 0.
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Proof. If γ1 = 0 then φ1 solves the problem{
λφ1 + φ′

1 + φ′′′
1 = 0,

φ1(L) = φ′
1(L) = φ′′

1(L) = 0,

so φ1 = 0. Consequently,φ2 satisfies{
λφ2 + φ′

2 + φ′′′
2 = 0,

φ2(0) = φ′
2(0) = φ′′

2(0) = 0,

then φ2 = 0 and therefore φ = 0.
Now, if β = 0 then β1 = β2 so φ1 and φ2 are solutions to the problem{

λφi + φ′
i + φ′′′

i = 0, i = 1, 2

φi(0) = κ, φ′
i(0) = 0, φ′′

i (0) = β1.

By uniqueness of solution, it follows that φ1 = φ2, which implies f = 0. Hence f̂ = 0 and since
β = 0, (3.11) becomes

(γ1 − iδ2ξ)e
−iLξ = 0, ∀ξ ∈ C.

Evaluating this equality at ξ = 0, we obtain γ1 = 0, and, as seen before, this leads us to φ = 0,
showing Claim 3.1. □

Assuming

γ1 ̸= 0 and β ̸= 0,(3.12)

with the following claim in hand, the Lemma 3.3 holds for the case λ = 0.

Claim 3.2. If λ = 0 then does not exist φ = (φ1, φ2) ∈ H3(T )\{0} satisfying (3.8).

Proof. We will show that for λ = 0, then we necessarily have φ = 0. To do this, let us multiply
(3.9) and (3.10) by −i to get

− i
(
ξ3 − ξ

)
φ̂1(ξ) = (1− ξ2)κ+ γ1e

−iLξ + β1, ∀ ξ ∈ C,(3.13)

− i
(
ξ3 − ξ

)
φ̂2(ξ) = (1− ξ2)κ+ iδ2ξe

−iLξ + β2, ∀ ξ ∈ C.(3.14)

Evaluating (3.13) at ξ = 1 and ξ = −1 we obtain, respectively,

γ1e
−iL = −β1 and γ1e

iL = −β1

from where we have γ1e
−iL = γ1e

iL and, since γ1 ̸= 0, it follows that

e−iL = eiL.(3.15)

On the other hand, evaluating (3.14) at ξ = 1 and ξ = −1 we obtain, respectively,

iδ2e
−iL = −β2 and − iδ2e

iL = −β2
which gives us

iδ2e
−iL = −iδ2eiL.

If δ2 ̸= 0, then the above equality provides

e−iL = −eiL.(3.16)

Adding (3.15) and (3.16) we get 2e−iL = 0, which is not possible. Therefore, δ2 = 0 so φ2 solves
the problem {

λφ2 + φ′
2 + φ′′′

2 = 0,

φ2(L) = φ′
2(L) = φ′′

2(L) = 0,
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and consequently φ2 = 0. Thanks to this fact and using the boundary conditions of (3.8), φ1 is
the solution of the following system{

λφ1 + φ′
1 + φ′′′

1 = 0,

φ1(0) = φ′
1(0) = φ′′

1(0) = 0,

which tells us that φ1 = 0 and, consequently φ = 0, which give the Claim 3.2. □

Define Pλ(µ) = µ3+µ+λ. Before studying the case λ ̸= 0, we need to establish an important
relationship between the multiplicity of the roots of Pλ and the solutions of (3.8).

Claim 3.3. If Pλ admits multiples roots, then φ = 0.

Proof. Let µ0, µ1 and µ2 the roots of Pλ. By Girard’s relations, we have

µ0 + µ1 + µ2 = 0,(3.17)

µ0µ1 + µ1µ2 + µ0µ2 = 1,(3.18)

µ0µ1µ2 = −λ.(3.19)

If Pλ has a triple root thus, by (3.17), we have

µ0 = µ1 = µ2 = 0.

So, from (3.19) it follows that λ = 0. With this, the Claim 3.2 ensures that φ = 0.
Now, suppose that Pλ has a double root, let us say µ1 = µ2 = σ. Relation (3.17) gives

µ0 = −2σ and substituting it in (3.18) we have

−2σ · σ + σ · σ − 2σ · σ = 1

which leads us to

σ = ± i√
3
.(3.20)

By the theory of ordinary differential equations, the set{
e−2σx, eσx, xeσx

}
is a generator of the solutions of the following ordinary differential equation

λy + y′ + y′′′ = 0.

Note that φ2 solution of {
λφ2 + φ′

2 + φ′′′
2 = 0,

φ2(L) = φ′
2(0) = φ′′

2(L) = 0,

ensures the existence of d0, d1, d2 ∈ C such that

φ2(x) = d0e
−2σx + d1e

σx + d2xe
σx.

Consequently

(3.21) φ′
2(x) = d0(−2σ)e−2σx + d1σe

σx + d2(e
σx + xσeσx),

and

(3.22) φ′′
2(x) = d0(−2σ)2e−2σx + d1σ

2eσx + d2(σe
σx + σeσx + xσ2eσx).

Observe that the boundary condition φ2(L) = 0 gives us

d0e
−2σL + d1e

σL + d2Le
σL = 0

which implies

d1 + Ld2 = −d0e−3σL.

On the other hand, the condition φ′′
2(L) = 0 provides, due the relation given by (3.22), that

4d0σ
2e−2σL + d1σ

2eσL + 2d2σe
σL + d2Lσ

2eσL = 0,
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or equivalently,

d1σ + d2(2 + Lσ) = −4d0σe
−3σL.

Thus, we have the system {
d1 + Ld2 = −d0e−3σL

d1σ + d2(2 + Lσ) = −4d0σe
−3σL

Below, we solve this system for d1 and d2 using Gauss-Jordan elimination (we denote by rk the
k-th row of a matrix):[

1 L −d0e−3σL

σ 2 + Lσ −4d0σe
−3σL

]
r2↔r2−σr1

[
1 L −d0e−3σL

0 2 −3d0σe
−3σL

]
r2↔ 1

2
r2

[
1 L −d0e−3σL

0 1 −3d0σe−3σL

2

]
r1↔r1−Lr2

[
1 0 −d0e−3σL + 3d0σLe−3σL

2

0 1 −3d0σe−3σL

2

]
.

Therefore

d1 = −d0e−3σL +
3d0σLe

−3σL

2
and d2 = −3d0σe

−3σL

2
.(3.23)

Using this values in (3.21) yields,

φ2x(x) = d0(−2σ)e−2σx +

(
−d0e−3σL +

3d0σLe
−3σL

2

)
σeσx +

(
−3d0σe

−3σL

2

)
(eσx + xσeσx).

Since φ2x(0) = 0 we get that

−2d0σ − d0σe
−3σL +

3d0σ
2Le−3σL

2
− 3d0σe

−3σL

2
= 0.

Multiplying the previous equality by 2/σ, we have

d0
(
−4− 2e−3σL + 3σLe−3σL − 3e−3σL

)
= 0.

If d0 ̸= 0, then it follows that

−4− 2e−3σL + 3σLe−3σL − 3e−3σL = 0 ⇐⇒ (−5 + 3σL) e−3σL = 4.

Due to (3.20) this equality becomes (
−5± 3iL√

3

)
e
± 3iL√

3 = 4.

Taking the value absolute in the previous equality, we see that∣∣∣∣−5± 3iL√
3

∣∣∣∣ = 4 =⇒ 25 + 3L2 = 16 =⇒ 3L2 < 0,

a contradiction. Therefore d0 = 0 and from (3.23) it follows that d1 = d2 = 0, which results in
φ2 = 0. Hence, using the boundary conditions of (3.8), φ1 solves the problem{

λφ1 + φ′
1 + φ′′′

1 = 0,

φ1(0) = φ′
1(0) = φ′′

1(0) = 0,

that is, φ1 = 0 and therefore φ = 0, giving the Claim 3.3. □

According to claims 3.2 and 3.3, it remains to study the case where λ ∈ C\{0} and the roots
of Pλ are all simple. In this case, defining P (ξ) = ξ3 − ξ − p, due to identity

Pλ(iξ) = −iP (ξ), ∀ξ ∈ C,
we have that the roots of P are all simple, too. Moreover, as λ = ip we must have

p ∈ C\{0}.
With this in mind, the next claim completes the proof of Lemma 3.3.
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Claim 3.4. If λ ∈ C\{0} and the roots of Pλ are all simple then δ2 = 0.

Proof. Suppose, by contradiction, that δ2 ̸= 0. Let ξ0, ξ1, ξ2 the roots of P . As p ̸= 0 we have
ξs ̸= 0 for s = 0, 1, 2. The relation (3.9) ensures that

(1− ξ2s )κ+ γ1e
−iLξs + β1 = 0.

Multiplying this equation by 1/γ1 yields

(1− ξ2s )κ
1

γ1
+ e−iLξs +

β1
γ1

= 0, s = 0, 1, 2.(3.24)

Now, from (3.10), note that

(1− ξ2s )κ+ iδ2ξse
−iLξs + β2 = 0.

Multiplying this equation by 1/iδ2ξs, we obtain

(1− ξ2s )κ
1

iδ2ξs
+ e−iLξs +

β2
iδ2ξs

= 0, s = 0, 1, 2.(3.25)

Taking the difference between (3.25) and (3.24) yields that

(1− ξ2s )κ

(
1

γ1
− 1

iδ2ξs

)
+
β1
γ1

− β2
iδ2ξs

= 0.

Now, we multiply this equation by γ1iδ2ξs to get

(1− ξ2s )κ (iδ2ξs − γ1) + β1iδ2ξs − β2γ1 = 0,

that is,

κiδ2ξs − κiδ2ξ
3
s − κγ1 + κγ1ξ

2
s + β1iδ2ξs − β2γ1 = 0.

Reorganizing the terms, we can write

−κiδ2ξ3s + κγ1ξ
2
s + (κiδ2 + β1iδ2)ξs − (κγ1 + β2γ1) = 0, s = 0, 1, 2.

Since ξ0, ξ1, ξ2 are all distinct, we conclude that ξs is a simple root of the polynomial P̃ defined by

P̃ (ξ) = −κiδ2ξ3 + κγ1ξ
2 + (κiδ2 + β1iδ2)ξ − (κγ1 + β2γ1),

for s = 0, 1, 2. Thus, there exist c ∈ C\{0} such that

P (ξ) = cP̃ (ξ), ∀ξ ∈ C.

Hence, the corresponding coefficients of P and cP̃ must be equal. In particular,

−cκiδ2 = 1 and cκγ1 = 0.

The first equality tells us that κ ̸= 0, since in our hypothesis δ2 ̸= 0. Thus, using this fact in the
second equality, we obtain γ1 = 0, which is a contradiction with (3.12), consequently, Claim 3.4 is
complete. □

So, the previous claims ensure the Lemma 3.3. □

3.2.2. Case N ≥ 3 and m = 1. In this case the problem (3.6) becomes

λφj + φ′
j + φ′′′

j = 0, x ∈ (0, lj), j = 1, ..., N,

φj(0) = φ1(0), j = 1, ..., N,
N∑
j=1

φ′′
j (0) = 0,

φj(lj) = φ′
j(0) = 0, j = 1, ..., N,

φ′
1(l1) = 0,

φ′′
j (lj) = 0, j = 2, ..., N,

(3.26)

and we have the following result.
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Lemma 3.4. Let L > 0 and assume lj = L, for any j = 1, ..., N . There exist λ ∈ C and
φ ∈ H3(T )\{0} satisfying (3.26) if and only if L ∈ N ∗.

Proof. If L ∈ N ∗ then, from [29, Propositions 1 and 2], there exist λ ∈ C and z ∈ H3(0, L)\{0}
such that {

λz + z′ + z′′′ = 0,

z(0) = z(L) = z′(0) = z′′(L) = 0.

Defining φ1 = 0, φ2 = z, φ3 = −z, φj = 0 for j = 4, ..., N and φ = (φ1, φ2, ..., φN ) then
φ ∈ H3(T )\{0} and (λ, φ) satisfies (3.26).

Now, assuming that there exist λ ∈ C and φ ∈ H3(T )\{0} satisfying (3.26), we will show by
contradiction that this leads to L ∈ N ∗. Suppose that this does not occur, that is, L /∈ N ∗. Define
the following functions

ψ =

N∑
j=2

φj and ψj = ψ − (N − 1)φj , j = 2, ..., N.

Note that, for each j ∈ {2, ..., N}, ψj solves the problem{
λψj + ψ′

j + ψ′′
j = 0,

ψj(0) = ψj(L) = ψ′
j(0) = ψ′′

j (L) = 0.
(3.27)

Since L /∈ N ∗, from [29, Propositions 1 and 2] it follows that

ψj = 0, for j = 2, ..., N,

so that

φj =
1

N − 1
ψ, for j = 2, ..., N.

Consequently,

φj = φ2, for j = 2, ..., N.

This implies that, φ1 and φN satisfy the spectral problem

λφj + φ′
j + φ′′′

j = 0, x ∈ (0, lj), j = 1, N,

φN (0) = φ1(0),

φ′′
1(0) + (N − 1)φ′′

N (0) = 0,

φj(L) = φ′
j(0) = 0, j = 1, N,

φ′
1(L) = φ′′

N (L) = 0,

which corresponds to (3.8) in the case ςNe = 1 and ςDi = N − 1. Therefore, the unique solution is
φ1 = φN = 0. Finally, as 0 = φN = φj for j = 2, . . . , N , we obtain φ = 0.

□

3.2.3. Case N ≥ 3 and m = N − 1. In this case, the problem (3.6) becomes

λφj + φ′
j + φ′′′

j = 0, x ∈ (0, lj), j = 1, ..., N,

φj(0) = φ1(0), j = 1, ..., N,
N∑
j=1

φ′′
j (0) = 0,

φj(lj) = φ′
j(0) = 0, j = 1, ..., N,

φ′
j(lj) = 0, j = 1, ..., N − 1

φ′′
N (lN ) = 0,

(3.28)

and we have the following result.
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Lemma 3.5. Let L > 0 and assume lj = L, for j = 1, ..., N . There exist λ ∈ C and φ ∈ H3(T )\{0}
satisfying (3.28) if and only if L ∈ N .

Proof. If L ∈ N the result follows direct by [42, Lemma 3.5] there exist λ ∈ C and z ∈ H3(0, L)\{0}
such that {

λz + z′ + z′′′ = 0,

z(0) = z(L) = z′(0) = z′(L) = 0.

Defining φ1 = z, φ2 = −z, φj = 0 for j = 3, ..., N and φ = (φ1, φ2, ..., φN ) then φ ∈ H3(T )\{0}
with (λ, φ) satisfying (3.28).

Conversely, assume that there exist λ ∈ C and φ ∈ H3(T )\{0} satisfying (3.28). We will show
that L ∈ N . Suppose, by contradiction, that L /∈ N and define

ψ =
N−1∑
j=1

φj and ψj = ψ − (N − 1)φj , j = 1, ..., N − 1.

For each j ∈ {1, ..., N − 1}, ψj solves the problem{
λψj + ψ′

j + ψ′′′
j = 0,

ψj(0) = ψj(L) = ψ′
j(0) = ψ′

j(L) = 0.

Since L /∈ N , from [42, Lemma 3.5] it follows that

ψj = 0, j = 1, ..., N − 1

so that

φj =
1

N − 1
ψ, j = 1, ..., N − 1.

Consequently,
φj = φ1, j = 1, ..., N − 1.

This implies that, φ1 and φN satisfy the spectral problem

λφj + φ′
j + φ′′′

j = 0, x ∈ (0, lj), j = 1, N,

φN (0) = φ1(0),

(N − 1)φ′′
1(0) + 1φ′′

N (0) = 0,

φj(L) = φ′
j(0) = 0, j = 1, N,

φ′
1(L) = φ′′

N (L) = 0,

which corresponds to (3.8) in the case ςNe = N − 1 and ςDi = 1. Therefore, the unique solution is
φ1 = φN = 0. Finally, as 0 = φ1 = φj for j = 1, . . . , N − 1, we obtain φ = 0.

□

3.2.4. Case N > 3 and 1 < m < N − 1. We recall the problem (3.6) given by

λφj + φ′
j + φ′′

j = 0, x ∈ (0, lj), j = 1, ..., N,

φj(0) = φ1(0), j = 1, ..., N,
N∑
j=1

φ′′
j (0) = 0,

φj(lj) = φ′′
j (0) = 0, j = 1, ..., N,

φ′
j(lj) = 0, j = 1, ...,m,

φ′′
j (lj) = 0, j = m+ 1, ..., N.

(3.29)

For this case, we have the following result.

Lemma 3.6. Let L > 0 and assume lj = L for j = 1, ..., N . There exist λ ∈ C and φ ∈ H3(T )\{0}
satisfying (3.29) if and only if L ∈ N ∪N ∗.
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Proof. If L ∈ N ∪ N ∗ the result is a direct consequence of [42, Lemma 3.5] and [29, Propositions
1 and 2] (see Lemmas 3.5 and 3.3). Conversely, suppose there exist λ ∈ C and φ ∈ H3(T ) \ {0}
satisfying (3.29). We will demonstrate, by contradiction, that this implies L ∈ N ∪ N ∗. Assume,
for the sake of contradiction, that L /∈ N ∪N ∗, and define

ψ =

m∑
j=1

φj and ψj = ψ −mφj , j = 1, ...,m.

For each j ∈ {1, ...,m}, ψj solves the problem{
λψj + ψ′

j + ψ′′′
j = 0,

ψj(0) = ψj(L) = ψ′
j(0) = ψ′

j(L) = 0.

Since L /∈ N , from [42, Lemma 3.5] it follows that

ψj = 0, j = 1, ...,m

so

φj =
1

m
ψ, j = 1, ...,m.

Consequently,

φj = φ1, j = 1, ...,m.

Now define

θ =
N∑

j=m+1

φj and θj = θ − (N −m)φj , j = m+ 1, ..., N.

Note that, for each j ∈ {m+ 1, ..., N}, θj solves the problem{
λθj + θ′j + θ′′′j = 0,

θj(0) = θj(L) = θ′j(0) = θ′′j (L) = 0.

Additionally, L /∈ N ∗, from [29, Propositions 1 and 2] it follows that

θj = 0, j = m+ 1, ..., N

so that

φj =
1

N −m
θ, j = m+ 1, ..., N.

Consequently,

φj = φN , j = m+ 1, ..., N.(3.30)

This implies that, φ1 and φN satisfy the spectral problem

λφj + φ′
j + φ′′′

j = 0, x ∈ (0, lj), j = 1, N,

φN (0) = φ1(0),

mφ′′
1(0) + (N −m)φ′′

N (0) = 0,

φj(L) = φ′
j(0) = 0, j = 1, N,

φ′
1(L) = φ′′

N (L) = 0,

which corresponds to (3.8) in the case ςNe = m and ςDi = N −m. Therefore, the unique solution
is φ1 = φN = 0. Finally, as 0 = φ1 = φj for j = 1, . . . ,m and 0 = φN = φj for j = m+ 1, . . . , N ,
we obtain φ = 0.

□

To conclude this part, we analyze the case of full Neumann or Dirichlet acted boundary, i.e.,
we consider system (1.14) with either N Neumann or N Dirichlet controls.
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3.2.5. Full Neumann. We start by analyzing the associate spectral problem arising for N Neu-
mann controls 

λφj + φ′
j + φ′′′

j = 0, x ∈ (0, lj), j = 1, ..., N,

φj(0) = φ1(0), j = 1, ..., N,
N∑
j=1

φ′′
j (0) = 0,

φj(lj) = φ′
j(0) = 0, j = 1, ..., N,

φ′
j(lj) = 0, j = 1, ..., N.

(3.31)

For this case, we have the following result.

Lemma 3.7. Let L > 0 and assume lj = L for j = 1, ..., N . There exist λ ∈ C and φ ∈ H3(T )\{0}
satisfying (3.31) if and only if L ∈ N ∪N ∗.

Proof. Consider the function ψ =
N∑
j=1

φj . We will see that if the length is not critical, it is enough

to analyze the spectral problem satisfied by the sum function.

Claim 3.5. If L /∈ N , then ψ ≡ 0 if and only if φj ≡ 0 for all j = 1, . . . , N .

Proof. One direction is direct. In the other hand, if ψ ≡ 0, we have 0 = ψ(0) = Nφj(0), thus φj

solves {
λφj + φ′

j + φ′
j = 0,

φj(0) = φj(L) = φ′
j(0) = φ′

j(L) = 0.

Since L /∈ N , from [42, Lemma 3.5] it follows that φj ≡ 0. □

The condition L /∈ N is necessary. In fact, if not, we can not control ψj = φj −
1

N
ψ. By the

previous claim, it is enough to study when we have a non-trivial function ψ. We can immediately
see that ψ solves {

λψ + ψ′ + ψ′′′ = 0,

ψ(L) = ψ′(0) = ψ′(L) = ψ′′(0) = 0.

Considering θ(x) = ψ(L− x) and λ̃ = −λ, we get{
λ̃θ + θ′ + θ′′′ = 0,

θ(0) = θ′(L) = θ′(0) = θ′′(L) = 0.
(3.32)

Define Pλ̃(µ) = µ3 + µ+ λ̃.

Claim 3.6. If Pλ̃ admits multiples roots, then θ = 0.

Proof. We follow the proof of Claim 3.3. Multiplying the system (3.32) by e−ixξ, integrating by
parts in (0, L) and using the boundary conditions we get, for every ξ ∈ C

(ξ3 − ξ − p)θ̂(ξ) = iκ(1− ξ2)e−iLξ + β,

where p = iλ̃, κ = −θ(L) and β = θ′′(0). If Pλ̃ has a triple root, then by Girard’s relations λ̃ = 0,

thus p = 0 and θ̂ satisfies

(ξ3 − ξ)θ̂(ξ) = iκ(1− ξ2)e−iLξ + β, ∀ξ ∈ C.
Evaluating in ξ = 1, we get θ′′(0) = β = 0. Therefore, θ satisfies θ(0) = θ′(0) = θ′′(0) = 0, which
implies θ = 0.
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If Pλ̃ has a double root µ1 = µ2 = σ, by Girard’s relations σ = ± i√
3
and the solution θ of (3.32)

can be written as
θ(x) = d0e

−2σx + d1e
σx + d2xe

σx.

The boundary condition θ(0) = 0 gives us d0 + d1 = 0. While, θ′(0) = θ′(L) give us respectively

−2σd0 + d1σ + d2 = 0

and
−2σd0e

−2σL + d1σe
σL + d2(e

σL + LσeσL) = 0.

Using d0 = −d1, we get {
3σd1 + d2 = 0

σd1(2e
−3σL + 1) + d2(1 + σL) = 0.

The previous system has a non-trivial solution if and only if σL = 2σe−3σL. In that case d2 = −3σd1
On the other hand, the condition θ′′(L) = 0 provides that

4d0σ
2e−2σL + d1σ

2eσL + 2d2σe
σL + d2Lσ

2eσL = 0,

or equivalently,

d1σ + d2(2 + Lσ) = −4d0σe
−3σL.

Using d0 = −d1, σL = 2σe−3σL and d2 = −3σd1 we obtain −4 = 5σL, which is not possible since
L > 0 and σ ∈ iR, and Claim 3.6 follows. □

By the previous claim, θ(x) = d0e
µ0x + d1e

µ1x + d2e
µ2x, where µ0, µ1 and µ2 are the simple

roots of the characteristic polynomial µ3 + µ + λ̃ = 0. By imposing the boundary conditions, we
deduce the following overdetermined system

d0 + d1 + d2 = 0

µ0d0 + µ1d1 + µ2d2 = 0

µ0d0e
µ0L + µ1d1e

µ1L + µ2d2e
µ2L = 0

µ20d0e
µ0L + µ21d1e

µ1L + µ22d2e
µ2L = 0.

By calling a = µ0L, b = µ1L and c = µ2L, we obtain the following matrix system
1 1 1
aea beb cec

a b c
a2ea b2eb c2ec


C1

C2

C3

 =


0
0
0
0

 .
By Gauss-Jordan elimination

1 1 1
aea beb cec

a b c
a2ea b2eb c2ec

 r4↔r4−ar2


1 1 1
aea beb cec

a b c
0 b(b− a)eb c(c− a)ec

 r3↔r3−ar1


1 1 1
aea beb cec

0 b− a c− a
0 b(b− a)eb c(c− a)ec



r3↔r4−bebr3


1 1 1
aea beb cec

0 b− a c− a
0 0 (c− a)(cec − beb)

 =

[
Aa,b,c

0 0 Ba,b,c

]
.

We have a non-trivial function θ if and only if

• The rank of Aa,b,c is one.
• The rank of Aa,b,c is two and Ba,b,c = 0.

Easy computations give us

• rank(Aa,b,c) = 1, if and only if a = b = c. This case is not possible, because the roots are
simple.
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• rank(Aa,b,c) = 2

(1) a = b ̸= c, beb = cec. Not possible.
(2) a = b, beb ̸= cea. Not possible.
(3) aea ̸= beb, cec(a− b) + beb(c− a) + aea(b− c) = 0.
(4) a ̸= b, aea = beb = cec.

On the other hand, again the roots are simple Ba,b,c = 0 if and only if beb = cec. Using this in the
third case, we get

0 = cec(a− b) + beb(c− a) + aea(b− c) = (b− c)(aea − cec),

which implies aea = cec = beb, that contradicts the third case. Finally, in the fourth case, we
have a non-trivial solution if aea = beb = cec. Recall that Girard’s relations a + b + c = 0 and
L2 = −(a2 + ab+ b2), which correspond to the expression (1.6) of the critical lengths N ∗. □

Remark 3.2. In the previous analysis, we have shown that different spectral problems could have
the same set of critical lengths. N ∗ is the set of critical lengths of the spectral problem (3.32) which
is a different one than (3.27) studied in [29].

3.2.6. Full Dirichlet. We pass now to the full Dirichlet. By Lemma 3.2 it is enough to focus on
the spectral problem (3.6).

λφj + φ′
j + φ′′′

j = 0, x ∈ (0, lj), j = 1, ..., N,

φj(0) = φ1(0), j = 1, ..., N,
N∑
j=1

φ′′
j (0) = 0,

φj(lj) = φ′
j(0) = 0, j = 1, ..., N,

φ′′
j (lj) = 0, j = 1, ..., N.

(3.33)

For this case, we have the following result.

Lemma 3.8. Let L > 0 and assume lj = L for j = 1, ..., N . There exist λ ∈ C and φ ∈ H3(T )\{0}
satisfying (3.33) if and only if L ∈ N ∗ ∪N †.

As in the full Neumann case, it is enough to analyze the spectral problem associated with the

sum function ψ =

N∑
j=1

φj .

Claim 3.7. If L /∈ N ∗, then ψ ≡ 0 if and only if φj ≡ 0 for all j = 1, . . . , N .

Proof. One direction is direct. In the other hand, if ψ ≡ 0, we have 0 = ψ(0) = Nφj(0), thus φj

solves {
λφj + φ′

j + φ′′
j = 0,

φj(0) = φj(L) = φ′
j(0) = φ′

j(L) = 0.

Since L /∈ N ∗, from [29, Proposition 1 and 2] it follows that φj ≡ 0. □

We can immediately see that ψ solves{
λψ + ψ′ + ψ′′′ = 0,

ψ(L) = ψ′(0) = ψ′′(L) = ψ′′(0) = 0.

Considering θ(x) = ψ(L− x) and λ̃ = −λ, we get{
λ̃θ + θ′ + θ′′ = 0,

θ(0) = θ′(L) = θ′′(0) = θ′′(L) = 0.
(3.34)

Define Pλ̃(µ) = µ3 + µ+ λ̃.
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Claim 3.8. If Pλ̃ admits multiples roots, then θ = 0.

Proof. We follow the proof of Claim 3.3. Multiplying the system (3.34) by e−ixξ, integrating by
parts in (0, L) and using the boundary conditions we get, for every ξ ∈ C

(ξ3 − ξ − p)θ̂(ξ) = iκ(1− ξ2)e−iLξ + ιξ,

where p = iλ̃, κ = −θ(L) and ι = iθ′(0). If Pλ̃ has a triple root, then by Girard’s relations λ̃ = 0,

thus p = 0 and θ̂ satisfies

(ξ3 − ξ)θ̂(ξ) = iκ(1− ξ2)e−iLξ + ιξ, ∀ξ ∈ C.

Evaluating in ξ = 1, we get θ′(0) = ι = 0. Therefore, θ satisfies θ(0) = θ′(0) = θ′′(0) = 0, which
implies θ = 0.

If Pλ̃ has a double root µ1 = µ2 = σ, by Girard’s relations σ = ± i√
3
and the solution θ of (3.34)

can be written as

θ(x) = d0e
−2σx + d1e

σx + d2xe
σx.

The boundary conditions θ(0) = θ′(L) = 0 gives us respectively

d0 + d1 = 0,

and

−2σd0 + d1σ + d2 = 0,

from where we get d0 = −d1 and d2 = −3σd1. On the other hand, the boundary condition θ′′(0)
provides

4d0σ
2 + d1σ

2 + 2d2σ = 0.

Replacing d0 = −d1 and d2 = −3σd1 in the above expression we get d1 = 0, and finally θ = 0,
showing the Claim 3.8. □

By the previous claim, θ(x) = d0e
µ0x + d1e

µ1x + d2e
µ2x, where µ0, µ1 and µ2 are the simple

roots of the characteristic polynomial µ3 + µ + λ̃ = 0. By imposing the boundary conditions and
calling a = µ0L, b = µ1L and c = µ2L, we obtain the following matrix system

1 1 1
aea beb cec

a2 b2 c2

a2ea b2eb c2ec


C1

C2

C3

 =


0
0
0
0

 .
By Gauss-Jordan elimination c ̸= 0

1 1 1
aea beb cec

a b c
a2ea b2eb c2ec

 ∼


1 1 1
aea beb cec

0 b2 − a2 c2 − a2

0 0
(c− a)

c
(c2ec − b2eb)

 =

[
Ãa,b,c

0 0 B̃a,b,c

]
.

Easy computations give us

• rank(Ãa,b,c) = 1, if and only if

cec − aea = 0, a2 − c2 = 0, cec − beb = 0, b2 − c2 = 0.

Not possible.
• rank(Ãa,b,c) = 2

(1) cec − aea = 0, a2 − b2 = 0, cec − beb = 0, b2 − c2 ̸= 0. Not possible.
(2) beb − aea = 0, a2 − b2 = 0, cec − beb ̸= 0.
(3) cec − aea = 0, a2 − b2 ̸= 0, cec − beb = 0. Not possible, because L /∈ N ∗.
(4) a2ea(b− c) + b2eb(c− a) + c2ec(a− b) = 0.
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On the other hand, by symmetry

B̃a,b,c =
(c− a)(c2ec − b2eb)

c
= 0, =⇒ c2ec = b2eb = a2ea.

Then we have a non-trivial solution if c2ec = b2eb = a2ea. Recall that Girard’s relations a+b+c = 0
and L2 = −(a2 + ab+ b2), which corresponds to the expression (1.9) of the critical lengths N †.

3.3. Proof of Theorem 1.1. The main result in this work, Theorem 1.1, is a consequence of
Lemmas 3.1 and 3.2, combined with the results obtained in the study of each case in (3.7), through
Lemmas 3.3, 3.4, 3.5, 3.6, 3.7 and 3.8.

Appendix A. A review of trace estimates

Let us review some results for the single KdV equation to see it. Precisely, the first result is
given by [13, Propositions 2.7-2.9] and [17, Proposition 2.2].

Proposition A.1. Let L, T > 0 be given. For any (h1, h2, h3) ∈ H
1
3 (0, T ) ×H

1
3 (0, T ) × L2(0, T )

there exists a unique solution v ∈ ZT := C([0, T ];L2(0, L)) ∩ L2(0, L;H1(0, L)) to the problem
∂tv + ∂xv + ∂3xv = 0, t ∈ (0, T ), x ∈ (0, L),

v(t, 0) = h1(t), v(t, L) = h2(t), ∂xv(t, L) = h3(t), t ∈ (0, T ),

v(0, x) = 0, x ∈ (0, L)

(A.1)

which possesses the sharp Kato smoothing property

∂kxv ∈ L∞
x

(
0, L;H

1−k
3 (0, T )

)
, k = 0, 1, 2.

Furthermore, there exists C > 0 such that

∥v∥ZT
+

2∑
k=0

sup
x∈(0,L)

∥∂kxv(·, x)∥
H

1−k
3 (0,T )

≤ C
(
∥h1∥

H
1
3 (0,T )

+ ∥h2∥
H

1
3 (0,T )

+ ∥h3∥L2(0,T )

)
.

Henceforth we denote by Wb(t)⃗h the solution of (A.1) corresponding to h⃗ = (h1, h2, h3).
Considering this, [13, Proposition 2.1] gives us the following proposition.

Proposition A.2. Let L, T > 0 be given. For any v0 ∈ L2(0, L) there exists a unique solution
v ∈ ZT for the problem

∂tv + ∂xv + ∂3xv = 0, t ∈ (0, T ), x ∈ (0, L),

v(t, 0) = 0, v(t, L) = 0, ∂xv(t, L) = 0, t ∈ (0, T ),

v(0, x) = v0(x), x ∈ (0, L),

(A.2)

which is given by v = W (·)v0 where {W (t)}t≥0 is the C0-semigroup of contractions generated in
L2(0, L) by the operator ALv = −∂xv − ∂3xv with domain

D(AL) = {w ∈ H3(0, L); v(0) = v(L) = ∂xv(L) = 0}.
Moreover, there exists a constant C > 0 such that

∥v∥ZT
≤ C∥v0∥L2(0,L) and ∥∂xv(·, 0)∥L2(0,T ) ≤ C∥v0∥L2(0,L).

We will show that the solution v = W (·)v0 of (A.2) possesses the Kato smoothing property.
According to [32], the linear KdV equation{

∂tz + ∂xz + ∂3xz = 0, t ∈ R+, x ∈ R
z(0, x) = z0(x)

has a unique solution, given by

z(t, x) = (WRz0)(x) := c

∫
R
ei(ξ

3−ξ)teixξ ẑ0(ξ)dξ

where c ∈ R and ẑ0 denotes the Fourier transform of z0. The result can be read below.
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Proposition A.3. [32, Lemma 2.9] There exists a constant C > 0 such that, for every z0 ∈ L2(R),
2∑

k=0

sup
x∈R

∥∂kxWR(·)v0(x)∥
H

1−k
3

t (R)
≤ C∥v0∥L2(R).

Additionally, [13] showed the following:

Proposition A.4. [13, Proposition 2.13] Let L, T > 0 be given. There exists a constant C > 0
such that, for every v0 ∈ L2(0, L), the solution v =W (·)v0 of (A.2) satisfies

2∑
k=0

sup
x∈(0,L)

∥∂kxv(·, x)∥
H

1−k
3 (0,T )

≤ C∥v0∥L2(0,L).

Combining the previous propositions, precisely, Propositions A.1 and A.4, and [17, Proposition
2.6], the next results are verified.

Proposition A.5. Consider L, T > 0. For every v0 ∈ L2(0, L) and (h1, h2, h3) ∈ HT := H
1
3 (0, T )×

H
1
3 (0, T )×L2(0, T ) there exists a unique solution v ∈ ZT := C([0, T ];L2(0, L))∩L2(0, L;H1(0, L))

to the problem
∂tv + ∂xv + ∂3xv = 0, t ∈ (0, T ), x ∈ (0, L),

v(t, 0) = h1(t), v(t, L) = h2(t), ∂xv(t, L) = h3(t), t ∈ (0, T ),

v(0, x) = v0(x), x ∈ (0, L),

which possesses the sharp Kato smoothing property

∂kxv ∈ L∞
x

(
0, L;H

1−k
3 (0, T )

)
, k = 0, 1, 2.

Furthermore, there exists C > 0 such that

∥v∥ZT
+

2∑
k=0

sup
x∈(0,L)

∥∂kxv(·, x)∥
H

1−k
3 (0,T )

≤ C
(
∥v0∥L2(0,L) + ∥h∥HT

)
.

Corollary A.1. Let T, L > 0 be given. Given vT ∈ L2(0, L) and h ∈ H
1
3 (0, T ) there exists a

unique solution v ∈ ZT for the problem
∂tv + ∂xv + ∂3xv = 0, t ∈ (0, T ), x ∈ (0, L),

v(t, 0) = h(t), v(t, L) = ∂xv(t, 0) = 0, t ∈ (0, T ),

v(T, x) = vT (x), x ∈ (0, L)

which satisfies

∂kxv ∈ L∞
x

(
0, L;H

1−k
3 (0, T )

)
, k = 0, 1, 2.

and

∥v∥ZT
+

2∑
k=0

sup
x∈(0,L)

∥∂kxv(·, x)∥
H

1−k
3 (0,T )

≤ C
(
∥vT ∥L2(0,L) + ∥h∥

H
1
3 (0,T )

)
,

for some constant C > 0.

Proposition A.6. Given T, L > 0, vT ∈ L2(0, L) and h ∈ H− 1
3 (0, T ) there exists a unique solution

v ∈ ZT of the problem
∂tv + ∂xv + ∂3xv = 0, t ∈ (0, T ), x ∈ (0, L),

v(t, L) = ∂xv(t, 0) = 0, ∂2xv(t, 0) = h(t), t ∈ (0, T ),

v(T, x) = vT (x), x ∈ (0, L)
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which satisfies

∂kxv ∈ L∞
x

(
0, L;H

1−k
3 (0, T )

)
, k = 0, 1, 2.

and

∥v∥ZT
+

2∑
k=0

sup
x∈(0,L)

∥∂kxv(·, x)∥
H

1−k
3 (0,T )

≤ C
(
∥vT ∥L2(0,L) + ∥h∥

H− 1
3 (0,T )

)
.

for some positive constant C.

We finish this appendix with an auxiliary result about the KdV operator.

Lemma A.1. For any L > 0, if y ∈ H1(0, L) then −∂xy − ∂3xy ∈ H−2(0, L) with

∥ − ∂xy − ∂3xy∥H−2(0,L) ≤ ∥y∥H1(0,L).

Proof. We know that H−2(0, L) has the following characterization:

H−2(0, L) =
{
T ∈ D′(0, L); T = g0 + ∂xg1 + ∂2xg2, g0, g1, g2 ∈ L2(0, L)

}
where the derivatives are taken in the distributional sense. Moreover,

∥T∥H−2(0,L) = inf


 2∑

j=1

∥gi∥2L2(0,L)

 1
2

; g0, g1, g2 ∈ L2(0, L) and T = g0 + ∂xg1 + ∂2xg2

 .

Suppose that y ∈ H1(0, L). Defining g0 = 0, g1 = −y and g2 = −∂xy we have g0, g1, g2 ∈
L2(0, L) and

−∂xy − ∂3xy = g0 + ∂xg1 + ∂2xg2

so −∂xy − ∂3xy ∈ H−2(0, L). Furthermore,

∥ − ∂xy − ∂3xy∥H−2(0,L) ≤

 2∑
j=1

∥gi∥2L2(0,L)

 1
2

=
(
∥y∥2L2(0,L) + ∥∂xy∥2L2(0,L)

) 1
2
= ∥y∥H1(0,L),

giving the result. □

Appendix B. Controllability of Neumann and Dirichlet conditions

From now on α = N . Fixed m = 0, . . . , N , we will consider Neumann boundary controls on
the first m edges and Dirichlet boundary controls on the remaining ones. We only analyze the
reachable states from the origin, that is, we will consider u0j = 0 (the case where u0 ∈ L2(T ) is

arbitrary and u0 = 0 is done similarly and leads to the same observability inequality). In these
terms, we have the following characterization of the controllability.

Lemma B.1. For T > 0, the controls gj ∈ L2(0, T ), j = 1, . . . ,m and pj ∈ L2(0, T ), j =
m+ 1, . . . , N , drive u0j = 0 to uT ∈ L2(T ) if and only if

N∑
j=1

∫ lj

0
uTj φ

T
j =

m∑
j=1

∫ T

0
∂xφj(t, lj)gj(t)−

N∑
j=m+1

∫ T

0
∂2xφj(t, lj)pj(t),(B.1)

for any φT = (φT
1 , ..., φ

T
N ) ∈ L2(T ) and φ solution of the system (1.15) associated to φT .

Proof. Let u be the solution of (1.14) corresponding to u0j . Given φT ∈ L2(T ), multiplying the

first equation in (1.14) by the solution φ of (1.15), integrating by parts and using the boundary
conditions, we obtain

N∑
j=1

∫ lj

0
uj(T, x)φ

T
j −

N∑
j=1

∫ lj

0
u0j (x)φj(0, x) =

m∑
j=1

∫ T

0
∂xφj(t, lj)gj(t)−

N∑
j=m+1

∫ T

0
∂2xφj(t, lj)pj(t)
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so, for u0j = 0 we have that

N∑
j=1

∫ lj

0
uj(T, x)φ

T
j (x) =

m∑
j=1

∫ T

0
∂xφj(t, lj)gj(t)−

N∑
j=m+1

∫ T

0
∂2xφj(t, lj)pj(t), ∀φT ∈ L2(T ).(B.2)

If u(T, ·) = uT then (B.1) immediately follows from (B.2). Conversely, if (B.1) holds, thanks to
(B.2) holds that

(u(T, ·), φT )L2(T ) = (uT , φT )L2(T ), ∀φT ∈ L2(T ),

and consequently u(T, ·) = uT , showing the lemma. □

Consider the bilinear map B : L2(T )× L2(T ) → R given by

B(φT , ψT ) =
N∑
j=1

∫ T

0
uj(T, x)ψ

T
j (x),

with u = (u1, ..., uN ) being the solution of the system (1.14) with boundary controls pj = −∂2xφj(·, lj)
and gj = ∂xφj(·, lj), where φ(t, ·) = S(T − t)φT . Let us prove some properties of the bilinear map
B.

(i) B is continuous.

Using the multiplier method, we obtain

B(φT , ψT ) =
N∑
j=1

∫ T

0
uj(T, x)ψ

T
j (x) =

m∑
j=1

∫ T

0
gj(t)ψjx(t, lj)−

N∑
j=m+1

∫ T

0
pj(t)ψjxx(t, lj)

=

m∑
j=1

∫ T

0
∂xφj(t, lj)ψjx(t, lj) +

N∑
j=m+1

∫ T

0
∂2xφj(t, lj)ψjxx(t, lj).

From the Propositions 2.2 and 2.4, we have that B is continuous, giving (i).

(ii) If B is coercive so, the exact controllability holds, that is, u(T, ·) = uT .

Indeed, assume for a moment that B is coercive, i.e., the observability inequality (3.2) holds1.
Then given uT ∈ L2(T ), from the Lax-Milgram theorem, there exists φT ∈ L2(T ) such that

N∑
j=1

∫ lj

0
uTj ψ

T
j = B(φT , ψT ), ∀ψT ∈ L2(T ).

Thus, for φ(t, ·) = S(T − t)φT , pj = −∂2xφj(·, lj) and gj = ∂xφj(·, lj) the solution u of (1.14)
satisfies

N∑
j=1

∫ lj

0
uTj ψ

T
j = B(φT , ψT ) =

m∑
j=1

∫ T

0
gj(t)ψjx(t, lj)−

N∑
j=m+1

∫ T

0
pj(t)ψjxx(t, lj),

for every ψT ∈ L2(T ), which implies, by Lemma B.1, that u(T, ·) = uT , which ensures (ii).

Appendix C. The set N † is non empty and countable

In this part, we prove that the new set of critical length, defined in (1.9) is non-empty and
countable. Recall that L ∈ N † if it can be written as L2 = −

(
w2
1 + w1w2 + w2

2

)
where

(w1, w2) ∈ C2, such that w2
1e

w1 = w2
2e

w2 = (w1 + w2)
2e−(w1+w2).(C.1)

1For a detailed discussion on the equivalence between coercivity and the observability inequality we recommend
consulting [34].
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In particular, we show a direct relation between this set and N ∗, defined in (1.6). Let (w1, w2)

satisfying (C.1), take c = w2
i e

wi = (w1+w2)
2e−(w1+w2), i = 1, 2 then we have that zi =

wi
2 is solution

of zie
zi = ±( c4)

1/2. Similarly, (z1 + z2)
2e−2(z1+z2) = c

4 , which implies (z1 + z2)e
−(z1+z2) = ±( c4)

1/2.
Then, by symmetry, we have either one of the following cases

• z1e
z1 = z2e

z2 = −(z1 + z2)e
−(z1+z2).

• z1e
z1 = −z2ez2 = (z1 + z2)e

−(z1+z2).

• z1e
z1 = z2e

z2 = (z1 + z2)e
−(z1+z2).

The first case is the equation related to the critical set N ∗, therefore it has a countable number of
solutions. For the second and third cases, we can follow [29, Propostion 3 and 4] to ensure that it
has a countable number of solutions.

Finally, observe that if L ∈ N ∗, then 2L ∈ N †. If L ∈ N ∗, then L2 = −
(
z21 + z1z2 + z22

)
, for

some(w1, w2) ∈ C2 such that

z1e
z1 = z2e

z2 = −(z1 + z2)e
−(z1+z2).

It is easy to see that wi = 2zi, for i = 1, 2 satisfy (C.1). Moreover

−
(
w2
1 + w1w2 + w2

2

)
= −4

(
z21 + z1z2 + z22

)
= (2L)2.
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[3] K. Ammari and E. Crépeau, Well-posedness and stabilization of the Benjamin-Bona-Mahony equation on star-
shaped networks, Systems & Control Letters, 127, 39–43 (2019).
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