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Abstract
The urgency for remote, reliable, and scalable biodiversity monitoring amidst mounting 
human pressures on climate and ecosystems has sparked worldwide interest in Passive 
Acoustic Monitoring (PAM), but there has been no comprehensive overview of its coverage 
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across realms. We present metadata from 358 datasets recorded since 1991 in and above 
land and water constituting the first global synthesis of sampling coverage across spatial, 
temporal, and ecological scales. We compiled summary statistics (sampling locations, 
deployment schedules, focal taxa, and recording parameters) and used eleven case studies 
to assess trends in biological, anthropogenic, and geophysical sounds. Terrestrial sampling 
is spatially denser (42 sites/M·km2) than aquatic sampling (0.2 and 1.3 sites/M·km2 in 
oceans and freshwater) with only one subterranean dataset. Although diel and lunar cycles 
are well-covered in all realms, only marine datasets (65%) comprehensively sample all 
seasons. Across realms, biological sounds show contrasting diel activity, while declining with 
distance from the equator and anthropogenic activity. PAM can thus inform phenology, 
macroecology, and conservation studies, but representation can be improved by widening 
terrestrial taxonomic breadth, expanding coverage in the high seas, and increasing spatio-
temporal replication in freshwater habitats. Overall, PAM shows considerable promise to 
support global biodiversity monitoring efforts.
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Main text
Introduction

Sounds permeate all realms on Earth — terrestrial, freshwater, marine, and subterranean1. 
Passive Acoustic Monitoring (PAM) captures soundscapes that document soniferous life 
("biophony"), human activities ("anthropophony"), and some geophysical events 
("geophony")2–6. In ecoacoustics and soundscape ecology7,8, PAM can measure levels and 
impacts of global change (e.g., climate change, urbanization, deep-sea mining)9–11, monitor 
ecosystem health, recovery, and restoration12–14, assess human-environment interactions 
(public health, cultural ecosystem services)15,16 and guide conservation (protected area 
management, landscape planning)17,18.

Despite the wide-ranging and increasing soundscape sampling effort, the data distribution 
remains undescribed. Currently soundscape-recording communities are only networked 
within realms and their methodologies differ. Previous reviews focused on single realms and 
were either systematic19–22 or qualitative3,23. Marine scientist networks using PAM exist24, but 
the freshwater community is nascent, and the terrestrial community grows faster than it can 
unite. Acoustic calibration and sound propagation modeling are advanced in aquatic 
studies25 but seldom considered in terrestrial ones (except 26,27). Artificial intelligence can 
identify increasing numbers of species on land28 whereas aquatic sounds still challenge 
identification29,30. Overall, there is much to gain from sharing data, experience, and methods 
among PAM users.

Cross-realm PAM studies can yield new theoretical answers31 and applied solutions: 
soundscapes track terrestrial and marine resilience to natural disasters32; sound and silence 
durations in multiple realms follow universal distributions33. Transnational sampling could 
form the basis for comprehensive soniferous biodiversity monitoring, just like community-
initiated telemetry databases34, collaborative camera trap surveys35, individual animal 
observation networks36, and invasive species control syntheses37 advanced entire research 
fields. A global PAM network could establish historical biodiversity baselines, support 
systematic long-term and large-scale monitoring, and connect with the public through citizen 
science. Such information is critical to inform global biodiversity policies such as the 
Kunming-Montreal Global Biodiversity Framework.

We present the “Worldwide Soundscapes” project, the first global PAM meta-database and 
network. We use it to quantify the known state of PAM efforts, highlight apparent sampling 
gaps and biases, illustrate the potential of cross-realm PAM syntheses for research, and 
federate PAM users. The project currently holds 307 contributors who collated metadata 
about 358 passively-recorded, replicated soundscape datasets. Metadata describe the exact 
spatio-temporal coverage, sampled ecosystems (IUCN Global Ecosystem Typology: GET), 
transmission medium (air, water, or soil), focal taxa (IUCN Red list), recording settings, and 
data and publication availability. We inferred coverage within administrative (Global 
Administrative Database: GADM; International Hydrographic Organisation: IHO) and 
protected areas (World Database on Protected Areas: WDPA) from geographic locations. 
We selected recordings referenced in the meta-database to quantify soundscape 
components (biophony, anthropophony, geophony) across eleven ecosystems from all 
realms. We showcase their relevance to macroecology, conservation biology, and phenology 
research and identify opportunities to advance the global PAM network. The publicly-
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accessible meta-database38,39 continues to grow to enhance accessibility of data and 
remains open for metadata contributions, facilitating future syntheses.

Results

Summary dataset statistics
To date, 358 validated soundscape meta-datasets (hereafter "datasets") have been 
registered in our database from across the globe, dating back to 1991 (Fig. 1D). A dataset 
gathers a team's metadata on a study or project. Metadata were validated by checking that 
all fields were filled in and formatted correctly, and then cross-checked by their respective 
contributors using site maps and recording timelines39 on ecoSound-web40. Based on the 
GET definition of four 'core' realms, our database includes 259, 80, 18, and 1 validated 
datasets from the terrestrial, marine, freshwater, and subterranean realms, respectively. The 
transmission medium was air for terrestrial and subterranean datasets and mostly water for 
aquatic datasets, as three datasets with aerial above-water recordings were included in the 
freshwater and marine realms. The majority of datasets (84%) include both spatial and 
temporal replicates (Fig. 1C). Few datasets have openly-accessible recordings (10-15%, Fig. 
S1). Presently, few terrestrial and freshwater datasets (27% and 22% respectively) are 
associated with DOI-referenced publications in contrast to marine datasets (44%) (Fig. S1).

Spatial sampling coverage and density
The database contains 11 093 sampling sites, including 147 polar, 8 455 temperate, and 2 
491 tropical sites (Fig 1C). On land, 10 387 sites are located within 79 (out of 263) GADM 
level 0 areas (Fig. 2B), primarily in the Northern Hemisphere (Table S1). Most terrestrial 
sites occur in Canada (28%), followed by the United States (18%), but a significant 
proportion is widely distributed (23% do not belong to the top 10 GADM areas). Few 
terrestrial sites (8%) are located in WDPA category Ia, Ib, or II areas. Our database currently 
lacks data from vast areas in Russia, Greenland, the Antarctic, interior Australia, North 
Africa, and Central Asia. Site elevations range from sea level up to 3 420 m (Fig. 2A), but 
mountains above 4 000 m in the Northern Hemisphere, above 2 000 m in the Southern 
Hemisphere, as well as the Transantarctic Mountains are currently not represented in the 
data. At sea, 469 sites are located within 32 (out of 101) IHO sea areas. Most marine sites 
occur in the North Pacific Ocean (22%), followed by Southeast Alaskan and British 
Columbian coastal waters (17%), but a significant proportion is widespread (17% do not 
belong to the top 10 IHO areas). Many sites are situated in WDPA high-protection category 
Ia and II areas (14%). Our database currently lacks datasets from Arctic waters off Eurasia, 
the Southeast Pacific, and Southeast Asian coastal areas. Sampling sites span ocean 
depths from sea water surface to depths of 10 090 m, but tropical bathypelagic and Southern 
benthic areas are poorly represented (Table S2). Few GADM areas (11) are represented in 
the freshwater datasets. Spain holds most freshwater sites (56%). Few freshwater sites (2%) 
are in WDPA category II or Ib areas. Freshwater bodies are sampled at elevations from sea 
level up to 950 m. Mountain freshwater bodies and those in Africa, Asia, and Oceania are 
currently not represented in our database. The database contains seven subterranean sites 
situated in Brazil between 277 and 810 m.

Temporal sampling extent, coverage, and density
We compare sampling coverage (in sampled years summed over sites) across time windows 
of the diel cycle (dawn, dusk, day, night), lunar phases (bright and dark), and the seasons 
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(spring, summer, autumn, winter - only for temperate sites) (Fig. 3A). Dawn and dusk diel 
windows are shorter than day and night diel windows for most locations and less intensively 
sampled. The lunar phase cycle is evenly covered across realms and comprehensively 
covered within datasets (Fig. S2). In the terrestrial realm, daytime coverage surpasses 
nighttime coverage (611 vs. 398 years), while 75% of datasets sampled all diel time 
windows. Terrestrial datasets mostly sampled spring (415 years, 32%) and summer (564 
years, 44%) while 24% sampled all seasons. Temporal coverage per site is highest in Japan 
(272 days) and Taiwan (250 days). In the marine realm, temporal coverage among diel time 
windows is even and 88% of marine datasets sampled all diel time windows. Marine 
datasets have high and similar coverage for winter and spring (117 and 122 years, combined 
59% of seasonal coverage) and 65% cover the full seasonal cycle. In the freshwater realm, 
temporal coverage among diel time windows is even and 76% of freshwater datasets 
sampled all diel time windows. Similarly, 24% sampled all seasons. The subterranean 
tropical sites primarily covered the nighttime, across all seasons.

Sampling in ecosystems
Our database includes 76 of the 110 GET functional groups and all biomes except 
anthropogenic shorelines and most subterranean biomes (Table S2). Sampling intensity 
differed across ecosystem levels - realms, biomes, and functional groups, with transitional 
realms representing the interface between core realms (Fig. 4A). The terrestrial realm has 
the third-largest extent and the highest spatial sampling density among realms (42 sites per 
Mkm2), but temporal coverage is comparatively low (17% sampled out of mean extent per 
site: 155 days). The most commonly sampled biome is temperate-boreal forests and 
woodlands (59% of sites). The marine realm is the most extensive and spatial sampling 
density is the lowest (0.2 sites per Mkm2), but temporal sampling extent and coverage are 
the highest among all realms (69% out of 497 days sampled). The most commonly sampled 
biomes are the marine shelf and pelagic ocean waters (43% and 42% of sites respectively). 
The freshwater realm has low spatial sampling densities (1.3 sites per Mkm2) and high 
temporal sampling densities (30% out of 115 days sampled). Rivers and streams are most 
commonly sampled (47% of sites). The terrestrial-freshwater realm, representing 81% of the 
area of non-subterranean realms, has the third-highest spatial sampling density (7.9 sites 
per Mkm2) and similar temporal sampling density to the terrestrial realm (16% days sampled 
out of 230). The subterranean realm, though second-largest, includes seven tropical sites in 
aerobic caves from one dataset.

Target taxa and frequency ranges
Most marine datasets do not target specific taxa (70%) and use wide frequency ranges from 
0.01 to 30 kHz (mean bounds of frequency ranges across datasets, Fig. 4B). Marine 
datasets that focus on single taxa comprise cetaceans (8%, 0.006 - 7 kHz) and fish (8%, 
0.003 - 29 kHz). Similarly, most freshwater datasets are taxonomically unspecific (66%) and 
cover frequencies from 1 to 22 kHz. Some datasets (20%) focus on ray-finned fish, covering 
frequencies from 0.001 to 23 kHz. In contrast, terrestrial datasets mostly target single taxa 
and have narrow frequency ranges. Bird-focused datasets are most common (44%), 
spanning frequencies from 0.06 to 21 kHz, while bat-focused datasets are next (12%) and 
range from 5 to 139 kHz. Taxonomically unspecific datasets account for 24% of datasets, 
covering a broad range from 0.1 to 24 kHz. Generally, datasets targeting multiple taxa use 
wider frequency ranges than those targeting single taxa.
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Soundscape case studies
We analysed 150 recordings from eleven different ecosystems representing the diversity of 
soundscapes on Earth, spanning latitudes from 69 degrees South to 67 degrees North 
(Table S3, Fig. 5A). Biophony dominated with an average soundscape occupation of 30% 
across all ecosystems, notably: photic coral reefs (Okinawa, Japan) with snapping shrimps 
and grunting fish choruses (75% soundscape occupancy)41; tropical lowland rainforests 
(Jambi, Indonesia) with buzzing insects and echoing bird and primate songs (61%). Only 
marine island slopes (off Sanriku, Japan) and polar outcrops (Antarctic) contained no or very 
little (2%) biophony, respectively. Geophony was absent in most soundscape samples, with 
the exception of high wind noise in polar outcrops (14%) and some wind in montane tropical 
forests (5%). Anthropophony occupied on average 9% of the soundscapes. Cities (Jambi, 
Indonesia; Montreal, Canada) exhibited the highest anthropophony (45%) with prevalent 
engine noise and human voices, while deep-sea mining and vessel communication caused 
high anthropophony in marine island slopes (32%)42. Silence occupancy was highest in polar 
outcrops (82%) and large lowland rivers (78%).

The selected soundscapes reveal greater biological activity closer to the equator, a negative 
relationship between biophony and anthropophony, and variable phenology of soniferous 
organisms over the diel cycle (Fig. 5). All Bayesian beta regression models for biophony 
occupancy converged. We detected a negative correlation of biophony occupancy with 
increasing distance from the equator (Pnegative=1) and with anthropophony occupancy 
(Pnegative=1). The phenology model predicted biophony occupancy values for each diel time 
window and realm (Fig. 5B), revealing similar phenology for the terrestrial and marine realm, 
and opposed freshwater and freshwater-marine realm phenology.

Discussion

The "Worldwide Soundscapes" project has — to our knowledge — assembled the first global 
meta-database of PAM datasets across realms. We analysed its current content to quantify 
sampling extent, coverage, and density across spatiotemporal and ecological scales. We 
annotated soundscapes from eleven ecosystems to investigate macroecological, 
conservation biology, and phenological trends. The database remains open for 
contributions39 and can be openly accessed to source datasets and initiate collaborative 
studies38. Next, we discuss the state and potential of PAM globally (Table 1).

Our results likely represent global PAM trends, even though spatial gaps reflect the 
background of the project contributors. Our database still misses some national programs 
(e.g., Australian Acoustic Observatory43), but otherwise our terrestrial coverage is similar to a 
recent systematic review21. The gaps in North Africa and Northeastern Europe correspond 
with the paucity of bioacoustic datasets for these regions44. Our database comprises 469 
marine sampling locations while 991 were found in a recent systematic review20, but most 
overlap (Fig S2). Marine tropical waters that are under-represented in our database reflect 
gaps found in the International Quiet Ocean Experiment network coverage45. Our marine and 
terrestrial database coverage is thus broadly comparable with published data. However, as 
the database originates from an active network of researchers, it represents the current 
availability of mostly as-yet unpublished data (Fig. S1). To our knowledge, no other spatially-
explicit review of freshwater sampling exists for comparison, and no other work quantified 
temporal coverage.
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Geographic coverage strikingly differs between realms: marine coverage is sparse but 
widespread; terrestrial coverage is comparatively intensive in the Americas and Western 
Europe; freshwater coverage is scattered. This partly reflects funding priorities for where 
conservation and active management priorities lie, for instance in biodiversity hotspots and 
densely-populated areas. Technical limits in extreme environments also drive geographic 
patterns: high latitudes and elevations entail extremely cold temperatures that present 
challenges for operation and maintenance, some of which can be solved with robust power 
setups (solar panels, freeze-resistant batteries). Marine deployments are generally even 
more constrained due to costly and demanding underwater work, but some deployments 
reach the poles as water temperatures are buffered below the freezing point. Affordable 
underwater recorders46 may help to intensify sampling of marine coastal areas and close 
gaps in freshwater coverage. By contrast, terrestrial monitoring is generally straightforward. 
Northern temperate areas outside of Northeastern Europe are comparatively better covered, 
and the tropics outside of Africa better represented. It appears that gaps in North Africa, 
Central Asia, and Northeastern Europe arise from differential research means and priorities 
between countries. Taken together, these gaps help to correct spatial biases47 and to identify 
high-priority, unique research areas that should be included in global assessments.

Currently, only marine studies achieve relatively even coverage of temporal cycles. Indeed, 
offshore deployments — especially in the deep sea — are expensive and limited duration 
deployments are not cost-effective48. Marine soundscapes fluctuate stochastically49, but the 
ocean buffers water temperatures so that animals retain a basal activity level year-round. 
Alhough lunar phases affect marine life50–52, we did not consider lunar tides, which affect 
some ecosystems. In the terrestrial and freshwater realms, most deployments cover the 
entire diel cycle but monitoring on land focuses either on diurnal birds or on nocturnal bats, 
as found in the literature21. In contrast, although seasons drive activity cycles on land too53,54, 
spring- and summertime monitoring is disproportionately common and we lack a thorough 
understanding of seasonal dynamics. Terrestrial deployments in particular may be short for 
logistic reasons: in the cold, batteries struggle and access is harder; recorders are at risk of 
theft; and limited numbers may cycle between sites55. Lunar phases — probably evenly 
sampled by chance — also influence land animals56 but should be explicitly considered. 
Overall, we encourage longer-duration setups with regularly-spread sampling inside 
temporal cycles to alleviate the higher expenses, energy consumption, storage, and traded-
off spatial coverage57. Global changes impact soundscapes in largely unpredictable ways 
through changing species distributions and phenology, necessitating higher and unbiased 
coverage across multiple time scales — including inter-annual ones — to successfully 
monitor ongoing changes58.

Re-use of soundscape datasets is restricted by their taxonomic focus. Admittedly, 
taxonomically untargeted, long, and regular deployments in oceans, coupled to large 
detection ranges, concurrently sample many taxa59. However, many soundscape recordings 
sample particular frequencies, often in the human-audible range60, although biophony ranges 
from infrasound61 to ultrasound62. For instance, studies of toothed whales or bats often use 
triggers and high-pass filters to record purely ultrasonic recordings only when signals are 
detected, resulting in spectrally-restricted and temporally-biased soundscape recordings. 
Less-studied taxa such as anurans and insects could effectively be co-sampled by adjusting 
ongoing deployments, so we encourage terrestrial researchers to maximise frequency 
ranges to enhance interdisciplinary collaboration. These collaborations can help to mutualise 
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resources for mitigating potentially prohibitive power, storage, transportation, and post-
processing costs63. Emerging embedded-AI audio detectors may offer an alternative64, but 
soundscape recordings will remain essential for broader application.

In every realm, ecosystems await acoustic discovery. Except for one dataset from aerobic 
caves, we lack data from all subterranean realms (anthropogenic voids, ground streams, sea 
caves), while endolithic systems may be the only irrelevant ecosystem for biophony. Access 
is usually challenging or restricted for non-specialists, but subterranean biodiversity shows 
high spatial turnover65. Freshwater datasets were less rare, but several ones with 
unreplicated sampling could not be included. Temporary, dynamic water bodies (seasonal, 
episodic, and ephemeral ecosystems) are not yet well-studied66 although they are accessible 
from land. Notably, sounds can pass the boundary between recording media and be 
captured in so-called holo-soundscapes in freshwater and shallow coastal areas5,67,68. 
Advances are imminent as the freshwater acoustic research community is growing 
rapidly69,70. In the oceans, sound propagates far and multiple biomes can be sampled at once 
(e.g., recorders on the seafloor sample pelagic waters) so that most ecosystems are 
covered. Still, coverage gaps may exist in rhodolith/Maërl beds, upwelling zones, and 
deepwater coastal inlets. On land, sampling is biased towards biodiverse forests, and our 
database coverage suggests that the most challenging terrestrial ecosystems, such as arid 
zones (sclerophyll hot deserts and semi-deserts, semi-desert steppes), rocky habitats 
(young rocky pavements, lava flows and screes) but also some vegetated temperate 
ecosystems (cool temperate heathlands, temperate pyric humid forests, temperate 
subhumid grasslands) are poorly sampled. Within the IUCN GET framework, soil 
soundscapes also belong to the terrestrial realm and to date no eligible datasets are in our 
database, despite recent studies71,72.

Our database highlights well-known global sampling biases73 which could be resolved with 
collaboration to remove cultural and socioeconomic barriers74. Technological progress for 
more affordable equipment renders PAM more accessible in lower-income countries. 
However, high- and deep-sea work remains considerably more expensive, and tropical 
developing countries in particular often lack funding for marine programmes requiring large 
vessels, underwater vehicles, or cabled stations on the seafloor48. Our network currently 
consists of active, English-speaking members from 50 countries. Collaborative projects, 
shared sea missions, and equipment loans should promote the establishment of soundscape 
research communities75. Increased international collaboration with scientists and local 
stakeholders supporting citizen-science76 in heavily underrepresented regions would improve 
not only data coverage, but also representation and dialogue within the field.

Collaborative soundscape research relies on interoperable data. We harmonised metadata 
with a bottom-up approach leading to our global inventory, but comprehensive standards for 
PAM do not currently exist, even though initiatives for the marine realm are ongoing77,78. Few 
affordable solutions exist for sharing large audio data volumes40, underlining the need for 
distributed soundscape recording repositories79. Marine oil and gas industry projects 
routinely upload data as part of their efforts to mitigate noise impacts on marine animals80, 
but these recordings often focus on frequencies relevant to seismic prospecting and access 
may be restricted81,82. Furthermore, recording equipment requires calibration, sound 
detection spaces need to be measured26, and data privacy must be ensured on land83. In 
parallel, species sound libraries44,84–86 grow and continue to provide invaluable acoustic and 
taxonomic references. International organisations such as GBIF will be key to roll-out 
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standards (e.g., Darwin Core) in a top-down manner. For the moment, we encourage early 
planning of data archival. In the future, the Worldwide Soundscapes will interoperate with 
other databases to close remaining coverage gaps.

A unified approach of ecology with PAM is now possible. More comprehensive coverage is 
needed to decisively answer research, conservation, and management questions that PAM 
can address, so we encourage prospective contributors to archive their metadata and join 
our inclusive project. We show that a large portion of the PAM community is willing to 
collaborate across realms and form a global network. We advocate for a bolder PAM effort to 
inform the agenda of soundscape ecology87, reaching out to places where no sound has 
been recorded before as well as to urban settings88. The research community may open new 
avenues to study environmental effects on acoustic activity58, social species interactions89, 
human-wildlife relationships41, function and phylogeny90, soundscape effects on human 
health91, acoustic adaptation and niche hypotheses92,93, macroecological patterns across 
ecosystems1, and initiate an integrated approach to noise impacts on wildlife.

PAM is now an established method that can be applied over large spatial and temporal 
scales. Consistent, large-scale monitoring of the Earth’s soundscapes is essential to 
establish baselines for historical trends94 and quantify rapid changes in biodiversity and 
natural systems. International funding schemes should integrate PAM into biodiversity 
monitoring platforms such as GBIF95 and GEO BON96,97. Soundscapes are just starting to be 
used in legislation as an ecosystem feature to be preserved98. Occupancy maps for 
soniferous wildlife obtained from PAM would underpin the evaluation of progress towards 
threat reduction and ecosystem service provision of the Kunming-Montreal Global 
Biodiversity Framework99. By building collaborations around the knowledge frontiers 
identified here, we can aim to comprehensively describe and understand the acoustic make-
up of the planet.
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Methods
Ethics & Inclusion statement

The present study has involved people who carried out PAM-based studies as primary 
contributors. They could be corresponding authors for published studies, referred contacts 
for unpublished studies, or principal investigators, and were asked to identify further primary 
and secondary contributors of their study. Primary contributors could become co-authors, 
and secondary contributors are acknowledged here. Some primary contributors were invited 
as co-leads to be responsible for particular realms or biomes and are listed in the first-tier 
authors list. Primary contributors who additionally provided soundscape recordings are also 
listed in the first-tier authors list. All primary contributors were asked to identify further 
contacts to reach a comprehensive coverage for the database. Given the nature of the study 
(using passive acoustic monitoring methods), the research did not suffer from restrictions or 
prohibitions in the setting of the researchers. Necessary permits from landowners or 
environmental protection agencies, precautions to limit biological contaminations (e.g., 
biofilm on marine recorders) or for animal welfare, and local ethics committee reviews were 
the responsibility of the respective primary contributors. None of the PAM activities resulted 
in personal risk to participants; neither did they involve health, safety, security or other risk to 
researchers. Local and regional research relevant to our study were taken into account in 
citations throughout the main text.

Database construction

The database construction started in August 2021 within the frame of the Worldwide 
Soundscapes project38 using collaborative, peer-driven metadata collation. It represents the 
current state of knowledge about publicly accessible meta-datasets for PAM within our 
network. We started contacting contributors that we personally know, and co-lead authors 
helped to contact potential contributors in the respective ecosystem types of their expertise 
(i.e. terrestrial, urban, freshwater, and marine). We conducted focal publication searches to 
actively plug coverage gaps by inviting the respective corresponding authors. We posted the 
call for contributors on specialised ecoacoustics platforms and social media, and will keep 
the project open for any contributor owning suitable soundscape recordings beyond the 
present publication. We communicated mostly in English but also in Spanish, French, 
Portuguese, German, Russian, and Chinese to gather metadata. We ended up including 
metadata from larger groups such as the Silent Cities project, Ocean Networks Canada, the 
Australian Acoustic Observatory, and Parks Canada.

Primary contributors provided the metadata that formed the basis for the database. Their 
willingness to be informed through a mailing list, responsibility for their metadata, approval 
for sharing the meta-data publicly, and willingness to participate in this study as co-authors 
were explicitly stated in an online form-based collaboration agreement. Primary contributors 
who became co-authors all fulfilled either data curation (e.g., as providers of structured 
metadata) or project administration (e.g., as principal investigators designing the 
corrresponding study) roles and additionally a manuscript revision role. Primary contributors 
cross-validated their metadata using maps and graphical timelines visualising their input. As 
a result, apart from basic coherence checks conducted by the co-leads and research 
assistants, the responsibility of the database content is borne by their contributors. The 
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database information page is integrated in our online collaborative ecoacoustics platform 
ecoSound-web100 that also hosts the soundscape recordings of the case study 
(https://ecosound-web.de/ecosound_web/collection/show/49).

Our network consists of people reachable through email contact. Out of 588 contacted 
contributors potentially involved in PAM, 298 (49%) provided some metadata. More datasets 
exist but 24% of those contacted have not yet responded. This may be due to limitations in 
sharing research data or, newcomers to PAM, or out-dated contact details. Older 
soundscape datasets may be stored on analog media that are inaccessible over the internet, 
but these are more often attended recordings53 — thus not fulfilling our inclusion criteria (see 
below). The missing share of datasets could be estimated with a systematic literature 
search, but we posit that our dataset search was exhaustive, and we were able to fill gaps 
more effectively due to focused calls for missing datasets in our large group of contributors.

Potential soundscape recording datasets were required to meet four criteria: 1) stationary — 
mobile recorders would have complex, constantly changing spatial assignments, thus we 
excluded recordings from cars, transect walks, or towed deployments; 2) passive — 
obtained from automated, unattended recorders, without human presence near the acoustic 
sensor; 3) ambient — with no particular recording direction or temporal selection, as 
obtained from omnidirectional microphones and with non-triggered recordings; 4) from 
spatially or temporally replicated study designs (Fig. 1). Datasets with spatial and temporal 
replication are necessary to disentangle spatial and temporal effects from other soundscape 
determinants. We considered datasets to have spatial replicates when several sites were 
sampled simultaneously, and temporally replicated when one site was sampled over multiple 
days at the same time of day. We chose sampling sites and days as the most elemental 
units for defining replication in our unified analysis. However, we acknowledge that replicates 
are defined differently in each study: for instance, sampling sites may only be spatial 
replicates if they belong to the same category (i.e. habitat, management type). Temporal 
replicates could also be defined at the scale of other solar and lunar cycles (e.g., multiple full 
moons). Taken together, our requirements homogenise the dataset to enable statistical 
analyses across datasets and future collaborative syntheses.

Time and space

Soundscapes are fundamentally determined by their time and location. Wildlife and human 
activities are broadly determined by solar and lunar cycles32,54,56,101, and geographical 
positions on the planet relative to the poles or equator, or the land and water surface. For all 
datasets, we determined their spatial coverage in terms of number of sites, and sampling 
density as the number of sites within the realms' areal extent (as determined by IUCN GET 
maps). Although spatial extent could be defined as the area bounded by the sites of a 
dataset, challenges with calculating extents on the world sphere (especially for datasets with 
very large extents spanning the globe), and unknown sampling areas covered in each site 
led us to ignore spatial extents. Until sound detection spaces can be accurately measured, 
our measure of spatial sampling density using points per area is thus provisional. Indeed, 
acoustic sampling areas or volumes are extremely rarely measured in terrestrial sites and 
seldom measured but sometimes simulated in marine environments102. They vary with sound 
source intensity, frequency, directivity; recording medium temperature, currents, pressure, 
humidity (for air); habitat structure such as topography and vegetation structure; ambient 
sound level. Generally, detection ranges are greater in underwater environments due to the 
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higher density of the recording medium. For all datasets, we also determined their temporal 
extent (i.e., the time range from the start of the first to the end of the last recording), 
coverage (i.e., time sampled per site), and density (i.e., proportion of recorded time inside 
the temporal extent).

We quantified the latitudinal and topographical coverage across realms by collecting latitude, 
longitude and topography (above and below the sea level) data for each site. Contributors 
could provide self-measured topography values for sites on land and gaps were filled in 
using General Bathymetric Chart of the Oceans surface elevation data. For underwater sites, 
depth values (below sea level for marine sites, below the surface for freshwater) were 
provided by the contributors. We assigned sampling sites to administrative areas (GADM 
divisions for freshwater and land, IHO for sea areas) and extracted their WDPA category. 
Sites' climates were geographically classified into tropical (between -23.5° and 23.5° 
latitude), polar (below -66.5° or above 6`.5° latitude), and temperate (between polar and 
tropical regions).

Contributors were asked to specify the timing of their deployments using start and end dates 
and times, operation modes (continuous, scheduled, periodical). For scheduled operation 
schedules (daily start and end times or durations) were required, and duty cycles were 
required for periodical operation. Duty cycles could additionally be indicated for scheduled 
deployments. Deployments were assigned to single sampling sites. Subsequently added 
sites and sampling repetitions were considered as additional deployments within datasets. A 
temporal framework was used to quantify sampling coverage in three solar and lunar cycles. 
Temporal information was inferred from the timing of sound recordings relative to time 
events that structure life and meteorological events on Earth (Fig. 3). Seasonal cycles were 
inferred only for temperate sites, by splitting the year cycle into four meteorological seasons 
(winter: December-February, spring: March-May, summer: June-August, fall: September-
November). The daily cycle was split into four windows delimiting dawn (from astronomical 
dawn start at -18° solar altitude until 18° solar altitude), day, dusk (from 18° solar altitude to 
astronomical dusk end at -18° solar altitude), and night. The lunar illumination cycle was split 
into two time windows centred on the full and new moon phases. It follows that the extrema 
and ecotones in the temporal cycles define the relevant sampling time windows, noting that 
in temperate zones, the equinoxes roughly correspond to thermal ecotones. Seasonal cycles 
in tropical and polar regions arising from precipitation patterns were not considered in this 
analysis.

Ecological characterisation

We assigned individual sampling locations to ecosystem types following the IUCN GET 
(https://global-ecosystems.org). Correspondiongly, sites were assigned hierarchically to 
realms (core or transitional ones), biomes, and functional groups. We calculated the major 
and minor occurrence areas of all functional groups based on ecosystem maps1,103,104. We 
used these data to quantify spatio-temporal extent, coverage, and sampling density within 
realms and biomes, and to identify sampling gaps. To identify which taxa acoustic 
deployments were designed for, deployments were linked to IUCN taxa (class, order, family, 
or genus) when applicable — some datasets were collected without taxonomic focus. We 
use these data to depict the acoustic frequency ranges depending on the target taxon.
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Acoustic frequency ranges

Sound recordings store a representation of the original soundscape, so we needed to 
determine the spectral scope of the recording datasets. Microphones have variable 
frequency responses, and for digital recorders the spectral scope of the recording is limited 
by the sampling frequency. Contributors were asked to provide the audio parameters of their 
deployments (sampling rate, high-pass filter) as well as auxiliary metadata about the 
microphone and recorder model and brands. The frequency range is additionally determined 
by microphone roll-off frequencies at the low end and in general, by their frequency 
response, but we could not gather these detailed, often unpublished data for the high 
number of equipment types used here.

Soundscape case studies

To illustrate how the database can be used for macroecology, conservation biology, and 
phenology analyses, we selected 121 recordings across a variety of topographical, 
latitudinal, and anthropisation conditions — all fundamental gradients of assembly filters in 
both terrestrial and marine realms1 — belonging to 10 functional groups. We aimed to select 
datasets containing four spatial replicates within the same functional group, with 10-minute 
recordings spanning all four diel time windows from the same date during the biologically 
active season, but the available data did not always allow this (Table S2). We extracted 
recordings starting at sunrise, solar noon, sunset, and solar midnight. Recordings covered 
the audible frequency range with sampling frequencies of at least 44.1 kHz in single or dual 
channel configuration. We acknowledge that this targeted, non-systematic selection is not 
statistically representative of global patterns but rather illustrative of the database potential.

Each recording’s spectrogram (i.e., visualisation of sound intensity along time and frequency 
axes) was annotated with the three fundamental soundscape components: biophony, 
anthropophony, and geophony. Soundscape recordings were uploaded to ecoSound-web 
(https://ecosound-web.de/ecosound_web/collection/show/49)40 for annotation: KD listened to 
them and visually inspected the spectrograms (Fast Fourier Transform window size of 1 024) 
at a visual density of 1 116 pixels per 10 minutes to create annotations. Annotations were 
rectangular tags on the spectrogram, encompassing only the annotated sound, with defined 
coordinates in the time and frequency dimensions. Annotations of different soundscape 
components could overlap if they were simultaneously visible or audible. Annotations of the 
same soundscape component were adjacent and non-overlapping to avoid double-counting. 
Soundscape components occurring above 22.05 kHz were excluded from the analysis as we 
focused on audible frequencies only, which were the frequencies targeted by most 
recordings. Sounds caused by microphone or recorder self-noise were excluded. All 
annotations were reviewed by the recording creators using the peer-review mode on 
ecoSound-web, and only accepted ones were used in the analysis. The annotations were 
exported and acoustic space occupancy for each soundscape component in each recording 
was calculated as the proportion of the spectro-temporal space60 (i.e., duration multiplied by 
frequency range, divided by total area of spectrogram; range: 0-1).

All Bayesian beta regression models (4 chains of 1000 sampling iterations with 1000 
warmup iterations) for biophony occupancy converged as determined by trace plots and R 
hat values equaling 1. The models using latitude and anthropophony as predictors included 
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the functional group as a random intercept. The phenology model used diel time windows 
and realms, as well as their interactions, as predictors. 
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Display items
Table 1: An agenda towards comprehensive coverage and a global PAM network

Aims Opportunities

Increasing spatial and 
ecosystemic coverage

- Affordable underwater recorders
- Autonomous setups for extreme environments on land
- Deploy in subterranean realm
- Deploy in dynamic freshwater bodies
- Deploy at high latitude and elevation on land

Increasing temporal and 
taxonomic coverage

- Longer deployments with duty cycles
- Cover all seasons in freshwater and on land
- Scale up to inter-annual cycles
- Higher sampling frequencies
- Disabling high-pass filters and triggers

Increasing collaboration - Work interdisciplinarily with speleologists, urban 
ecologists, soil and deep-sea benthic scientists
- Foster international missions to work at large scales
- Collaborate, invest, and fund work with under-represented 
countries
- Disseminate results in more languages

Interoperability - Calibrate equipment and consider detection ranges
- Build accessible and sustainable data repositories
- Design and adopt standards
- Integrate PAM into biodiversity and remote sensing 
databases

Figure 1: Overview of Worldwide Soundscapes meta-database: A) Framework used to 
define spatial and temporal replicates. B) Number of datasets in each core realm for the 
different replication levels. C) Spatial extent and coverage, based on sampling sites, split by 
core realm. Due to their higher representation and to avoid overlapping site clusters, 
terrestrial site densities were plotted on a 3 degree resolution raster (Interactive map: 
https://ecosound-web.de/ecosound_web/collection/index/106). D) Temporal extent and 
coverage, based on recorded days, split by core realm. An enlarged version of panel D 
without terrestrial sites can be found in Fig S3. For panels C and D, Sites from transitional 
realms were assigned to their parent core realm.

Figure 2: Spatial distribution of sampling sites. A) Latitudinal and topographic distribution 
of sampling sites across core realms. Due to their higher representation and to avoid 
overlapping site clusters, terrestrial sites are shown with transparency. The minimum 
(deepest seafloor) and maximum (highest elevation of land or sea level) topographical limits 
(dark grey lines) are shown against latitude, based on General Bathymetric Chart of the 
Oceans data105. Minimum topography above the sea level and maximum topography under 
the sea level were set to zero as the sea level represents the minimum and maximum in 
these cases. B) Number of sampling sites within different administrative regions (GADM 
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level 0 and IHO sea areas), split by core realm, across WDPA categories (Ia: strict nature 
reserve; Ib: wilderness area, II: national park). The areas that do not belong to the top 10 in 
terms of datasets have been aggregated under “others”. One subterranean site in Brazil is 
not shown. Sites from transitional realms were assigned to their parent core realm.

Figure 3: Temporal sampling distribution. A) Temporal sampling coverage across solar 
and lunar cycles for the three core realms. Cycles consist of solar (daily and seasonal) and 
lunar time cycles (lunar phase), subdivided in time windows. Seasons were only analysed in 
temperate regions. Sampling coverage is represented with sampling days in number labels. 
B) Mean number of sampling days per site within different administrative regions (GADM 
level 0, IHO areas, WDPA categories), split by core realm. WDPA categories (Ia: strict 
nature reserve; Ib: wilderness area, II: national park) are shown separately. One 
subterranean site in Brazil is not shown. Numbers to the right of bars indicate the number of 
sites the means were calculated from. Sites from transitional realms were assigned to their 
parent core realm.

Figure 4: Sampling distribution across ecological scales. A) Spatial extent of realms, 
based on major areas according to IUCN GET (coloured disk area proportional to area); 
spatial sampling density (in sites per Mkm2) and coverage (in number of sites); temporal 
extent (mean range between first and last recording day), coverage (days sampled per site 
and density (proportion of days sampled per extent). B) Frequency ranges of datasets 
across realms (using Nyquist frequency i.e., actual recorded frequencies) for the main 
studied taxa. The dots at the ends of colored lines represent means of the lowest and 
highest recorded frequencies, and the range between the minimum and maximum of these 
values are indicated with black error bars. The limits of human hearing are indicated with 
dashed lines. Number of datasets indicated above lines - datasets can be counted several 
times if they contain deployments targeting different taxa.

Figure 5: Soundscape components analysis. A) Mean acoustic space occupancy of 
soundscape components (biophony, geophony, anthropophony) as calculated from 
annotations for the selected ecosystems, measured in proportion of spectro-temporal space 
used, across eleven ecosystems over 150 recordings covering the time windows of the diel 
cycle. Annotated recordings are accessible at 
https://ecosound-web.de/ecosound_web/collection/show/49. Sample spectrograms are 
shown in the background. B) Soundscape component occupancy data illustrate three 
research questions linked to macroecology (i.e., biophony with distance from equator 
relationship), conservation biology trade-offs (i.e., biophony with anthropophony 
relationship); and phenological trends (i.e., mean biophony along diel time windows for each 
realm). Gray ribbons indicate 95% credible intervals and numbers indicate probabilities of 
positive or negative relationships.
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Data availability
 Database metadata   at Zenodo (version 2.0.0)
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