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Abstract. In medical image synthesis, the development of robust and
reliable baseline methods is crucial due to the complexity and variabil-
ity of existing techniques. Despite advances with architectures such as
GANs and diffusion models, a clear state-of-the-art has yet to be es-
tablished. This paper introduces a versatile adaptation of the nnU-Net
framework as a robust baseline for both cross-modality synthesis and
image inpainting tasks. Known for its superior performance in segmen-
tation challenges, nnU-Net’s automatic configuration and parameter op-
timization capabilities have been adapted for these new applications. We
evaluate this method on two use cases: pelvis MR to CT translation
using the Synthrad2023 challenge dataset and local synthesis using the
BraTs 2023 inpainting challenge dataset. Standard synthesis metrics -
MAE, MSE, SSIM and PSNR- demonstrate that our adapted nnU-Net
outperforms GAN-based methods like pix2pixHD and ranks among the
best methods for both challenges. We recommend this adapted nnU-Net
as a new benchmark for medical image translation and inpainting tasks,
and provide our implementations for public use on GitHub.

Keywords: Medical Image Synthesis - Medical Image Inpainting

1 Introduction

nnU-Net (or no-new-U-Net) [1] is a widely recognized method for the self-
configuration of deep learning networks in medical imaging. Due to the numerous
design decisions that can impact performance when selecting hyperparameters
for training, nnU-Net was originally introduced to provide a reliable and con-
sistent baseline for segmentation models by appropriately configuring settings
for specific segmentation problems. It has been reported as the winning solution
for numerous segmentation challenges and has achieved leading performance on
several popular medical segmentation benchmarks. Recent reports have further
solidified nnU-Net’s position as a competitive model [2]. Comparisons between
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the nnU-Net-configured baseline and various proposed architectural improve-
ments, including state-of-the-art transformer-based architectures, have demon-
strated that CNNs, given the same computational resources, can surprisingly
match or even outperform these complex models.

Over the past decade, medical image synthesis has emerged as a significant
trend in healthcare. This technique addresses the shortfall in medical datasets
by producing synthetic data, thereby enhancing data diversity and improving the
robustness of machine learning models. It also plays a crucial role in translating
between different imaging modalities, which is beneficial for applications such
as attenuation correction and radiation therapy planning. Additionally, medical
image synthesis can significantly enhance patient comfort by reducing the need
for repeated imaging procedures and minimizing exposure to harmful radiations.
The significant advancement in this field is mainly attributed to the evolution
of generative methods, such as generative adversarial networks [3] (GANs) and
diffusion models [10] (DMs) . Numerous recent studies have explored synthetic
data generation and cross-modality translation, addressing reconstruction chal-
lenges in anatomical areas such as the brain[11], pelvis [12], lungs [13].

In the specific area of image reconstruction, inpainting methods are also gaining
interest for restoring missing or damaged parts of images in a plausible manner.
This is especially relevant in brain MRI analysis, where traditional methods fail
due to a lack of contextual information about disease-related anomalies. The
introduction of challenges such as the BraTS Local Synthesis of Healthy Tis-
sues [14] in 2023 underscores the growing emphasis on using inpainting to syn-
thesize medical data. In practice, most state-of-the-art inpainting methods on
natural images rely on diffusion models [17]. However, the heavy computational
requirements of diffusion models and the processing of large 3D images neces-
sitate custom strategies to manage memory requirements. For example, some
propose using a 2D denoising model applied slice-wise on the axial plane [15].
Despite their effectiveness, diffusion models are hindered by the slow forward
diffusion process, making them less suitable for time-constrained applications.
Consequently, the primary approach for medical image inpainting remains Gen-
erative Adversarial Networks (GANS). For example, a 3D pix2pix [4] model was
proposed as a baseline for the inpainting task in the BraTS2023 challenge.
Despite these advances, there remains a need for a robust and adaptable baseline
in the fields of cross-modality translation and medical image synthesis. nnU-
Net has already demonstrated its efficacy in the SynthRad2023 challenge [8]
for medical image translation, ranking among the top methods. In this pa-
per, we present a versatile adaptation of the nnU-Net framework to serve as
a robust baseline for both medical translation and image inpainting tasks. We
aim to extend nnU-Net’s applications by enhancing its capabilities and adapt-
ing it to new tasks. We evaluate our adapted nnU-Net on two specific use
cases: Pelvis MR to CT translation and brain local inpainting with healthy
reconstruction, utilizing publicly available datasets from recent challenges. Fur-
thermore, to facilitate broader use and collaboration, we enhance the frame-



Adapted nnU-Net : A Robust Baseline for Cross-Modality Synthesis 3

work’s capabilities and make the adapted code freely available on GitHub :
https://github.com/Phyrise/nnUNet_translation

2 Methods

2.1 Adapted nnU-Net

In this section, we detail the adaptation of the nnU-Net framework for the tasks
of image synthesis, focusing on preprocessing, architectural modifications, loss
functions, validation techniques, and volume reconstruction.

Preprocessing We adapted the nnU-Net preprocessing procedures to support
(image, image) inputs instead of the traditional (image, segmentation) inputs.
Specifically, we disabled the cropping step in preprocessing because, by default,
the cropping settings are not uniform across different modalities. For the re-
maining steps, we adhered to the nnU-Net guidelines [1]. This includes z-score
normalization for MRI images and CT normalization for CT images, where in-
tensity values are collected from the foreground classes, the mean and standard
deviation are computed, values are clipped to the 0.5 and 99.5 percentiles, and
then normalized by subtracting the mean and dividing by the standard deviation.
Data augmentation was disabled to enable a fair comparison with state-of-the-art
methods.

Architecture We retain the same architecture as nnU-Net, with minor adap-
tations to ensure the output is treated as an image instead of a segmentation.
Specifically, we ensure that the output is retained in a floating point format,
rather than being cast to integers. Additionally, we have added support for both
nearest-neighbor and linear upsampling coupled with convolution layers as a
replacement for transposed convolutions. This modification helps in reducing
checkerboard artifacts when using a perceptual loss [6].

Losses and validation We adapt the loss function to support image synthe-
sis instead of image segmentation. Specifically, we replace the Dice loss used
in training and validation with a mean absolute error (L1) loss. Additionally,
we support the use of mean squared error (L2) loss and 3D perceptual loss,
leveraging the MedicalNet pre-trained model [7].

Volume reconstruction By default, nnU-Net operates using patches with a
50% overlap. For volume reconstruction, we replace the initial majority vot-
ing method with a mean reconstruction of patches. Support for median recon-
struction has also been added. While median reconstruction enables a visually
more accurate and detailed final output by preserving high-frequency details,
it generally yields poorer results on global intensity metrics compared to mean
reconstruction.
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2.2 Comparison with GAN-based approaches

pix2pixHD [5], originally developed for synthesizing 2D natural images, is a Gen-
erative Adversarial Network [3] (GAN) that employs a multi-scale approach. It
features a global generator and local generators, which work together to enhance
image quality across various resolutions. This GAN architecture is characterized
by its advanced adversarial loss, denoted feature-matching loss, which uses dis-
criminator embeddings to ensure consistency in intermediate layer features. For
our study, we implemented a 3D version of pix2pixHD, employing a patch-based
approach with median reconstruction, similar to our modifications for nnU-Net.

3 Experiments

3.1 Datasets

Pelvis dataset For the synthesis of pelvic images, we use the open-access
dataset from Task 1 of the SynthRAD2023 challenge. This dataset includes
paired MR and CT images from 180 patients used for training, with an ad-
ditional 30 patients designated for validation, with no ground truth CT publicly
available. The dataset provides high-quality, well-aligned MR and CT image
pairs, which eliminates the need for additional registration processes. The voxel
sizes in this dataset are standardized to 2.5 x 1 X 1 mm, ensuring consistent
spatial resolution across all images. The results of this MR to CT translation
task were obtained using the SynthRad2023 challenge online validation server.

Brain dataset The 2023 BraTS Local Synthesis of Healthy Brain Tissues Train-
ing dataset is comprised of 1251 T1w images pre-processed with bias field cor-
rection, spatial resampling to 1 X 1 x 1 mm, and cropped to a final spatial
resolution of 155 x 240 x 240. For each image, a corresponding healthy and
non-healthy tissue mask is provided. Non-healthy tissue mask, delineates areas
affected by tumoral invasion, while healthy tissue mask are generated accord-
ing to the process described in [14]. The dataset originally included a number
of images for validation and testing, hosted on the synapse servers, however,
evaluation on those images is no longer available since the closure of submis-
sion queues. As such, 251 subjects were randomly sampled and kept for testing.
Remaining subjects were used for training.

3.2 Implementation details

The training setup for nnU-Net closely followed the guidelines set in the orig-
inal publication [1], with the models undergoing 1000 epochs of training with
250 iterations per epoch. The automatic calculation of patch sizes resulted in
dimensions of 64x128%x224 for the pelvis task and 96x160x160 for the brain
task. In contrast, the pix2pixHD model was trained using a similar procedure
as defined in the original paper [5], with a training duration of 200 epochs with
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1000 iterations per epoch, and a uniform patch size of 128 x128x128.

All models were trained using PyTorch 2.3.0 and automatic mixed precision
to enhance computational efficiency and accelerate the training process. Train-
ings were configured with a batch size of 2 and completed within 24 to 48
hours, employing an NVIDIA RTX 6000 with 24GB of VRAM. An 80,20 train-
ing/validation split was maintained for robust evaluation in both tasks.

3.3 Evaluation

We employ the same metrics used in each challenge to facilitate direct compar-
ison with other methods. For the translation task, we report Mean Absolute
Error (MAE), Structural Similarity Index (SSIM), and Peak Signal to Noise
Ratio (PSNR). For the inpainting task, we report Mean Squared Error (MSE),
SSIM, and PSNR. These metrics are intensity-based and, while they do not fully
capture the visual appearance and medical conformity of the images, they are
effective for comparing our results with state-of-the-art methods.

4 Results

4.1 MR to CT translation

Table 1 presents a quantitative evaluation of the adapted nnU-Net’s performance
based on MAE, SSIM, and PSNR metrics between synthesized and ground truth
CT images. All metrics for our models are calculated using the SynthRAD2023
challenge validation server on 30 patients from the validation set. This table
shows that using a standard 3D pix2pixHD model yields inferior performance
compared to the nnU-Net for cross-modality synthesis. Results from the chal-
lenge report [9] are also listed for reference, although they are based on the test
set and not on the validation set. The trends between nnU-Net with MAE and
nnU-Net with MSE are strongly correlated. The challenge ranking is based not
only on reported intensity metrics but also on dose evaluation metrics, explaining
the observed ranking.

In Fig. 1, a comparison of MR to CT synthesis on the validation set is shown.
We observe that nnU-Net with MAE or MSE both perform exceptionally well
in reconstructing CT scans, demonstrating greater precision than pix2pixHD,
especially for bone reconstruction and body contouring. nnU-Net with Medi-
calNet also shows visually high-quality results, challenging the accuracy of the
intensity metrics reported in Table 1, which indicated poor performance for this
model. This discrepancy suggests that visual assessment may provide additional
insights beyond the standard intensity-based metrics.

4.2 Local Inpainting

The quantitative validation results for the local inpainting task are presented
in Table 2. Additionally, results from participant reports on the BraTS$S local



6 Longuefosse et al.

Table 1. Comparison of 3D networks performances using MAE, SSIM, and PSNR
metrics between real CT and synthesized CT for the pelvis MR to CT translation
task. Evaluation is performed on 30 patients.

Model MAE SSIM PSNR
3D nnU-Net MAE 65.74+12.72 0.851+0.030 27.94+1.48
3D nnU-Net MedicalNet 252.36 + 53.71 0.731 £ 0.050 23.09 £1.69
3D pix2pixHD 88.57 £ 17.53 0.815 4 0.029 26.64 £1.33

Results from Synthrad2023 challenge report
1st - SMU-MedVision
3D Hybrid Transformer U-Net 58.83 £13.41 0.885 4+ 0.029 29.61 +£1.79
2nd - Jetta Pang

3D nnU-Net MSE 65.73 £13.75 0.869 £+ 0.032 28.38 £1.68
3rd - FAYIU
3D Swin U-NetR 61.72 £ 13.32 0.876 = 0.030 28.83 £1.61

nnU-Net MSE nnU-Net MedicalNet 3D pix2pixHD

Fig. 1. Comparison of axial slices between input MR image, ground truth CT, and
synthesized CT from several nnU-Net implementations and 3D pix2pixHD model

inpainting test dataset are included, with the key difference being that the eval-
uations were conducted on the test set, whereas our approach utilized a subpart
of the training set due to the closure of the BraTS challenge validation server.
This table shows that our adapted nnU-Net with a standard MSE loss outpe-
forms both 3D pix2pixHD and 2D DDPM, and closely matches the 3D pix2pix.
Fig. 2 presents an example of a T1-weighted input slice alongside its corre-
sponding ground truth, and reconstruction from best nnU-Net and 3D pix2pix
models. Both models attempt to reconstruct the voided areas but differ in their
approaches. The nnU-Net, which optimizes the MSE loss known to smooth out-
put intensities, tends to produce blurred regions while preserving general image
structure. Conversely, the 3D pix2pixHD model, which also optimizes the GAN
loss, attempts to recreate these structures but results in outputs that appear
unnatural and show distinct boundaries with the surrounding image areas.



Adapted nnU-Net : A Robust Baseline for Cross-Modality Synthesis 7

Table 2. Comparison of 3D networks performances using MSE, SSIM, and PSNR
metrics between inpainted and original brain images. Evaluation is performed on 238
patients.

Model MSE SSIM PSNR
3D nnU-Net MAE 0.0129 +£0.0063 0.797 £0.113 19.45 +2.63
3D nnU-Net MSE 0.0116 £+ 0.0056 0.797 £0.115 19.87 £ 2.55

3D nnU-Net MedicalNet 0.0142 +£0.0064 0.749 £0.143 18.86 £2.11
3D pix2pixHD 0.0141 £0.0078 0.787 £0.129 19.28 £ 3.11

Results from available participants reports
N/A - Juexin Zhang, et al. [16]
3D pix2pix 0.0111 + 0.0068 0.807 +0.129 19.30 £+ 2.49
2nd - Alicia Durer et al. [15]
DDPM 2D slice-wise 0.0160 +0.0118 0.785 4+ 0.155 18.71 + 3.08

T1w voided nnU-Net MSE 3D pix2pixHD Ground-Truth

Fig. 2. Comparison of axial slices between the T1w voided image, reconstructions from
the best nnU-Net and 3D pix2pixHD models, and the original T1w image

4.3 Computational resources

Table 3. Comparison of networks computational resources in terms of memory cost
on GPU, number of parameters and training time per iteration. Here, (G) denotes the
generator and (D) the discriminator.

Model Memory Cost Parameters Time per iter.
nnU-Net MAE 8.3 GB 30.8 M 0.150 s
3D Pix2PixHD 15.9 GB 547.3M (G) + 22.1M (D) 0.630 s

Table 3 provides a comparison of the computational resources required by differ-
ent network models in terms of GPU memory usage, number of parameters, and
training time per iteration. The resources are evaluated for both the generator
(G) and the discriminator (D) components where applicable. This table high-
lights the differences in computational efficiency and resource demands among
the models used for MR to CT translation and local inpainting tasks.
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5 Discussion and Conclusion

This study presents a robust baseline for medical image synthesis based on an
adapted nnU-Net framework. Our findings reveal that this method effectively re-
constructs medical images and consistently outperforms GAN-based approaches,
challenging the prevalent reliance on such methods within the field. Specifically,
for the two evaluated tasks—Pelvis MR to CT translation and brain local in-
painting with healthy reconstruction—the adapted nnU-Net, configured with a
simple Mean Absolute Error (MAE) loss, produces solid results without the need
for a discriminator.

This success can be attributed to two key aspects of the framework. Firstly,
nnU-Net’s inherent adaptability and optimization capabilities ensure that it is
well-suited to a variety of medical imaging tasks. It is designed to automatically
configure itself optimally for the task at hand, making it highly versatile and
effective. Secondly, the use of a U-Net architecture allows the model to focus
directly on the defined cost function, in contrast to traditional GANs, which
rely on discriminators that prioritize generating images that visually resemble
the training dataset. Furthermore, the use of a simple U-Net architecture re-
sults in a lighter, more efficient model. As detailed in Table 3, nnU-Net operates
with fewer parameters and less computational costs, while also reducing train-
ing times compared to the more complex pix2pixHD. This efficiency not only
facilitates faster training cycles and inference but also reduces the likelihood of
overfitting or convergence issues commonly associated with GANs.

Although we did not enable data augmentation in our primary experiments to
maintain consistency in comparisons, our adapted nnU-Net framework does in-
clude capabilities for data augmentation. In trials, data augmentation did not
significantly enhance performance for these synthesis tasks, likely because the
databases employed were already diverse and of high quality.

Another crucial aspect of this adapted nnU-Net is its contribution to the repro-
ducibility of results. Reproducibility is often a challenge in medical image syn-
thesis, where slight variations in model implementation can lead to significantly
different outcomes. The nnU-Net framework helps standardize preprocessing and
model configuration, which, as observed in the various implementations of mod-
els like pix2pix during the SynthRad2023 challenge [9], can lead to disparate
results. By automating many aspects of its setup, nnU-Net makes it easier to
replicate results, ensuring that outcomes are consistent and reliable across dif-
ferent studies.

For the inpainting task, while nnU-Net delivers robust performance in terms of
intensity-based metrics, it tends to produce images with blurry tissues due to the
use of MAE/MSE loss. Although effective in minimizing intensity errors, these
losses fail to ensure detailed anatomical structure preservation, highlighting the
need for more suitable loss functions. Additionally, recent works on pseudo 3D
diffusion models [15] indicate they surpass other methods in the inpainting task,
suggesting that diffusion models are particularly well-suited for these challenges.
These models often incorporate a U-Net for the denoising process, suggesting
that our adapted nnU-Net could serve effectively as this backbone.
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Looking ahead, we plan to extend the adapted nnU-Net framework by incorpo-
rating an adaptive discriminator component and developing loss functions based
on anatomical structures rather than global intensities. This aims to generate
images that are both anatomically and medically realistic, further enhancing the
utility and accuracy of the model in clinical applications. By sharing our frame-
work on GitHub, we invite the community to collaborate and build upon this
work, potentially setting new standards in medical image synthesis.
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