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Abstract

We revisit the famous Mack's model [4] which gives an estimate for the
mean square error of prediction of the chain ladder claims reserves. We intro-
duce a stochastic di�erential equation driven by a Brownian motion to model
accumulated total claims amount for the chain ladder method. Within this
continuous-time framework, we propose a bootstrap technique for estimating
the distribution of claims reserves. It turns out that our approach leads to
inherently capturing asymmetry and non-negativity, eliminating the necessity
for additional assumptions. We conclude with a case study and comparative
analysis against alternative methodologies based on Mack's model.

1 Introduction

Mack's model [4] o�ers an approach to retrieve estimators and claims reserves akin
to the well-known chain ladder method, under minimal assumptions. His framework
introduces a stochastic model that also facilitates the estimation of the Mean Squared
Error of Prediction (in short MSEP).

Mack's framework is distribution-free, with assumptions kept to a minimum. Sev-
eral works have been conducted, some with stronger assumptions that align with
those of Mack. For instance, in [1], a time series for claims development was intro-
duced, featuring independent and identically distributed noise that satis�es Mack's
assumptions.

In this paper, we introduce a continuous model for claims development based
on a well chosen stochastic di�erential equation driven by Brownian motion. We
demonstrate that our continuous model adheres to Mack's assumptions, and in a
speci�c scenario, we can leverage all of Mack's estimators. The primary advantage
lies in our ability to simulate total claims reserves using a parametric bootstrap
method, which inherently incorporates asymmetry and non-negativity without the
need for residual computation or additional assumptions.

*Inria, CMAP, CNRS, École polytechnique, Institut Polytechnique de Paris, 91200 Palaiseau,
nicolas.baradel@polytechnique.edu.
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The paper is organized as follows. Section 2 presents Mack's general model, with
a review of key estimators. Section 3 introduces a continuous model for the accu-
mulated total claims amount, for which we derive several properties and establishing
its connection to Mack's model. Section 4 describes a bootstrap procedure tailored
to the continuous model, addressing uncertainty in parameter estimation. Finally,
Section 5 provides a case study that assesses the impact of the continuous framework
and compares it with alternative approaches based on Mack's model.

2 The Mack's model

The Mack's model provides a probabilistic framework that aligns with the chain
ladder method. It calculates the MSEP for reserves without making any distribution
assumptions.

The model introduces the process (Ci,j)1≤i,j≤n which represents the accumulated
total claims amount for both occurrence year i and development year j across n years
of observations. For each 1 ≤ k ≤ n, we de�ne:

F i
k := σ (Ci,j, j ≤ k) , 1 ≤ i ≤ n.

We make the following assumption:

Assumption 2.1.

H1 The random variables (Ci1,j)1≤j≤n and (Ci2,j)1≤j≤n are independent for i1 ̸= i2.

H2 For 1 ≤ j ≤ n− 1, there exists Fj > 0 such that

E(Ci,j+1 | F i
j) = FjCi,j, 1 ≤ i ≤ n.

H3 For 1 ≤ j ≤ n− 1, there exists Σj ≥ 0 such that

V ar(Ci,j+1 | F i
j) = Σ2

jCi,j, 1 ≤ i ≤ n.

From the above assumption, we can derive the general expressions for the �rst
two moments across all dates:

Lemma 2.2. For all 1 ≤ i ≤ n and s ≤ j ≤ n,

E(Ci,j | F i
s) =

(
j−1∏
k=s

Fk

)
Ci,s,

V ar(Ci,j | F i
s) =

(
j−1∑
k=s

[(
j−1∏

ℓ=k+1

F 2
ℓ

)
Σ2

k

(
k−1∏
ℓ=s

Fℓ

)])
Ci,s.

Mack provides accurate estimators for both the F 's and the Σ2's:

F̂j :=

∑n−j
i=1 Ci,j+1∑n−j
i=1 Ci,j

,

Σ̂2
j :=

1

n− j − 1

n−j∑
i=1

Ci,j

(
Ci,j+1

Ci,j

− F̂j

)2

.

(1)
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Mack also provides an unbiased estimator for the ultimate value:

Ĉi,n := Ci,n−i+1

(
n−1∏

k=n−i+1

F̂j

)
, 2 ≤ i ≤ n,

which consequently leads to the reserve estimator:

R̂ :=
n∑

i=2

Ĉi,n − Ci,n−i+1.

Moreover, he presents an estimator for the MSEP of the reserve, accounting for
uncertainty arising from parameter estimation. An alternative method to assess
MSEP involves employing a bootstrap approach. For a comprehensive introduction
to this technique in the realm of insurance reserving, refer to [2]. Unlike solely
estimating the MSEP of the reserve, bootstrap analysis o�ers insight into the entire
distribution.

The aim of this paper is to establish a continuous framework using stochastic
di�erential equations that ful�ll Assumption 2.1.

In [1], a time series methodology was employed, yielding the following model:

Ci,j+1 = FjCi,j + Σj

√
Ci,jεi,j, (2)

where the ε's represent independent variables with a mean of zero and a variance
of one. Our framework, which is elaborated on in the following section, o�ers a
continuous extension of the yearly-based model outlined in (2).

3 A continuous model

Let ΩW := C([1, 2n],Rn) denote the space of continuous functions mapping [1, 2n] to
Rn, where functions start with value 0 at 1. We denote by W (ω) = ω the canonical
process and let PW be the Wiener measure de�ned on the Borelian sets of Ω. Con-
sequently, W = (W i)1≤i≤n comprises n independent Brownian motions. Let Ω1 be a
Polish space and P1 a Borelian measure on Ω1. Finally, we de�ne Ω := Ω1 ×ΩW and
the product measure P := P1 ⊗ PW on the Borelian sets of Ω.

We introduce the following �ltrations, which represent the knowledge at develop-
ment time t for an occurrence year i:

F i
t := σ(Ci

1; W i
s , s ≤ t), 1 ≤ i ≤ n, 1 ≤ t ≤ n,

in which the (Ci
1)1≤i≤n are random variables de�ned on Ω1 and valued in R+. We

de�ne the �ltration of the entire knowledge at time t ∈ [1, n].

Ft := σ(Ci
1, i ≤ t; W i

s , i+ s ≤ t+ 1, s ≤ n), 1 ≤ t ≤ 2n.

Hereafter, all random variables are considered within the probability space (Ω,F2n).

Let (Ci
t)

i∈{1,...,n}
t∈[1,n] represent the processes of accumulated total claims amount for oc-

currence year i at development date t.
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Assumption 3.1.

H1' The random variables (Ci
1)1≤i≤n are square integrable and independent.

H2' There exist two measurable and bounded functions f : [1, n] → R and σ :
[1, n] → R+ such that, for all 1 ≤ i ≤ n, (Ci

t)1≤t≤n is the unique strong solution
of the stochastic di�erential equation:

Ci
t = Ci

s +

∫ t

s

fuC
i
udu+

∫ t

s

σu

√
Ci

udW
i
u, 1 ≤ s ≤ t ≤ n. (3)

The processes Ci are well-de�ned by (3) since these stochastic di�erential equa-
tions possess a unique (non-negative) strong solution, as established in, for instance,
[6] or [5, Theorem 4.6.11]. Furthermore, they satisfy:

E
[
sup

1≤t≤n
(Ci

t)
2

]
< +∞, 1 ≤ i ≤ n. (4)

Remark 3.2. In the speci�c case where the coe�cients f and σ are constant, this
process is referred to as the Feller process, originally introduced in [3].

The above process bears resemblance to the Cox-Ingersoll-Ross process commonly
employed in �nance, yet it distinguishes itself by lacking mean reversion. Notably, it
is well-known in population dynamics studies, as it can be interpreted as the limit
of the Galton-Watson branching process. Its primary characteristic is the branching
property. This property is also satis�ed in the classical Mack Chain Ladder model
and we �nd it again in the continuous time model in a general form.

Lemma 3.3. The processes (Ci
t)1≤t≤n satisfy the branching property: if for 1 ≤ i ≤ n,

(C ′i
t )1≤t≤n is another independent process satisfying (3) with a di�erent Brownian

motion, then (Ci
t + C ′i

t )1≤t≤n also satis�es (3) with yet another Brownian motion.

Proof. This property is standard when considering constant coe�cients. For instance,
refer to [5, Proposition 4.7.1]. With bounded time-dependent coe�cients, the proof
remains straightforward, without any signi�cant di�erences.

Remark 3.4. The branching property of Lemma 3.3 above implies the following con-
sequence: if we consider a portfolio consisting of d independent components, each
governed by the dynamics de�ned in (3) with identical parameters f and σ, then the
aggregation of these d components will also exhibit the dynamics described by (3).
Consequently, it will yield the same aggregated reserve distribution. Similarly, divid-
ing a portfolio into two homogeneous independent sub-portfolios maintains the same
dynamics and, consequently, the same aggregated reserve distribution. Implicit in this
assertion is the assumption that all constituents of a portfolio are independent.

Remark 3.5. We began de�ning the process at t = 1, with the initial condition
(Ci

1)1≤i≤n as random variable. This approach aligns with the Mack's general frame-
work, as we make no assumptions about (Ci

1) other than its implicit squared inte-
grability. Additionally, extending the process (Ci

t)1≤t≤n de�ned in (3) back to t = 0
would require Ci

0 > 0, which is not relevant. Implicitly, the randomness of (Ci
1)1≤i≤n,

corresponding to the year of occurrence, follows a di�erent process. This process does
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not need to be de�ned for the chain ladder technique to derive the reserves and their
MSEP or distribution, conditional on the current information. However, it should be
de�ned in order to simulate Cn+1

n .

We now derive the �rst two conditional moments of the C's to verify Assumption
2.1.

Proposition 3.6. The �rst two conditional moments of the processes (Ci
t)1≤t≤n are,

for all 1 ≤ s ≤ t ≤ n and 1 ≤ i ≤ n,

E
(
Ci

t | F i
s

)
= Ci

se
∫ t
s fudu,

V ar
(
Ci

t | F i
s

)
= Ci

s

∫ t

s

σ2
ue

∫ u
s fzdz+

∫ t
u 2fzdzdu.

Proof. Fix i ∈ {1, . . . , n}. For convenience, denote Ci as C, F i for F , and W i as W
throughout this proof.
1. Applying the expected value operator E to (3) and utilizing (4) for the local
martingale yields:

E (Ct | Fs) = Cs +

∫ t

s

fuE (Cu | Fs) du.

This forms a simple linear homogeneous ordinary di�erential equation with the unique
solution:

E (Ct | Fs) = Cse
∫ t
s fudu. (5)

2. The Itô's formula gives:

C2
t = C2

s + 2

∫ t

s

fuC
2
udu+ 2

∫ t

s

σuCu

√
CudWu +

∫ t

s

σ2
uCudu

Introducing the stopping times Tm := inf{t ≥ s : Ct = m}, which tends to in�nity
a.s. as m → +∞, and considering the process C on R+, we apply the expected value
operator:

E
(
C2

t∧Tm
| Fs

)
= C2

s + 2E
(∫ t∧Tm

s

fuC
2
udu | Fs

)
+ E

(∫ t∧Tm

s

σ2
uCudu | Fs

)
. (6)

Taking the limit as m → +∞, and using (4) along with the dominated convergence
theorem, we obtain:

E
(
C2

t | Fs

)
= C2

s + 2

∫ t

s

fuE
(
C2

u | Fs

)
du+

∫ t

s

σ2
uE (Cu | Fs) du. (7)

From (5), we have

E (Ct | Fs)
2 = C2

s e
2
∫ t
s fudu

thus, t 7→ E (Ct | Fs)
2 satis�es the following ordinary di�erential equation:

E (Ct | Fs)
2 = C2

s + 2

∫ t

s

fuE (Cu | Fs)
2 du
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Combining it with (7) and (5) gives:

V ar (Ct | Fs) = 2

∫ t

s

fuV ar(Cu | Fs)du+ Cs

∫ t

s

σ2
ue

∫ u
s fzdzdu

It is a linear non-homogeneous ordinary di�erential equation whose unique solution
is:

V ar (Ct | Fs) = Cs

∫ t

s

σ2
ue

∫ u
s fzdz+

∫ t
u 2fzdzdu.

Corollary 3.7. The processes (Ci
t)1≤t≤n for 1 ≤ i ≤ n satisfy assumptions H1, H2

and H3 of Assumption 2.1 by setting, for 1 ≤ j ≤ n:

Fj := e
∫ j+1
j fudu,

Σ2
j :=

∫ j+1

j

σ2
ue

∫ u
j fzdz+

∫ j+1
u 2fzdzdu.

Remark 3.8. We directly obtain the expected values of the continuous process Ci
t

conditionally to F i
s, which correspond to the discrete ones stated in Lemma 2.2.

There might be seasonal e�ects within a year of development, and there is no need
to precisely track the (f, σ) : t → (ft, σt) function continuously. To simplify matters,
we introduce an additional assumption: that the function remains constant over each
one-year interval. Consequently, we establish a connection between the estimators
derived from the classic framework and our continuous framework.

Assumption 3.9. The functions f and σ are constant on each [t, t + 1), i.e., for
1 ≤ t < n:

ft :=
n∑

j=1

fj1[j,j+1)(t),

σt :=
n∑

j=1

σj1[j,j+1)(t).

Lemma 3.10. Under the additionnal Assumption 3.9, the relation in Corollary 3.7
simpli�es to

Fj = efj

Σ2
j =

σ2
j

fj

(
e2fj − efj

) ⇐⇒
fj = log(Fj)

σ2
j =

Σ2
j log(Fj)

Fj(Fj − 1)

Proof. The proof follows straightforwardly from computing the simple integrals.

Note that in (3), as Ci
t approaches zero, both the term preceding dt and the

one preceding dW i
t vanish. We will now discuss the conditional distribution of Ci

t ,
particularly emphasizing that while it is possible for Ci

t to reach zero, this occurrence
is practically negligible.
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Remark 3.11. For j ≤ t ≤ j + 1, under Assumption 3.9, we have

P(Ci
t = 0 | F i

j) = exp

(
−

2fje
fj(t−j)Ci

j

σ2
j

(
efj(t−j) − 1

)) ,

as shown in the corollary following [5, Proposition 4.7.1]. This implies that the pro-
cesses (Ci

t)t≥1 can reach 0 (and remain there). However, in practice, as we will
observe, this probability is numerically close to 0, signifying the scenario where all
claims ultimately cost 0. Moreover, the distribution of Ci

t , conditioned to be positive,
is continuous.

In a Cox-Ingersoll-Ross framework, the conditional marginal distributions of the
process follow a continuous distribution, speci�cally a non-central chi-squared distri-
bution. However, within our framework, achieving a straightforward distribution is
not feasible. Despite the explicit Laplace transform (referenced in [5]), it fails to yield
a simple distribution. Hence, resorting to the Euler scheme with su�ciently small
discretization steps becomes a viable option for simulations.

Since Mack's assumptions are satis�ed, we obtain the same estimators for the re-
serves and can compute the same MSEP. Our goal is to propose a bootstrap method-
ology, tailored for our continuous framework, which will enable the estimation of the
distribution of the reserves.

4 The bootstrap methodology

There are the two classical steps:

1. Bootstrapping the parameters: the F 's and the Σ's, to account for the estima-
tion error ;

2. Simulating the lower part of the triangle using the bootstrapped coe�cients to
incorporate the process error.

We adapt the bootstrap approach described in [2] to our framework.

1. For bootstrapping the coe�cients,

Ci,m
j+1 = Ci

j +

∫ j+1

j

f̂jC
i,m
u du+

∫ j+1

j

σ̂j

√
Ci,m

u dW i,m
u , i+ j ≤ n, 1 ≤ m ≤ M.

Note that the above stochastic di�erential equation uses Ci
j as its initial condition, not

Ci,m
j . The simulation can be approximated using the Euler scheme. For K ≥ 1, let

∆t := 1/K be the su�ciently small time step. And for t ∈ {j+k∆t, 0 ≤ k ≤ K−1}:

Ci,m
t+∆t = Ci,m

t + f̂jC
i,m
t ∆t+ σ̂j

√
Ci,m

t (W i,m
t+∆t −W i,m

t ), i+ j ≤ n, 1 ≤ m ≤ M,

starting from Ci,m
j := Ci

j and with W i,m
t+∆t −W i,m

t
i.i.d.∼ N (0,∆t). We obtain the new

estimators (F̂m
j ) and (Σ̂m

j ) de�ned as, for all 1 ≤ m ≤ M :

7



F̂m
j :=

∑n−j
i=1 Ci,m

j+1∑n−j
i=1 Ci

j

,

Σ̂m,2
j :=

1

n− j − 1

n−j∑
i=1

Ci
j

(
Ci,m

j+1

Ci
j

− F̂m
j

)2

.

(8)

We then derive (f̂m
j ) and (σ̂m

j ) using Lemma 3.10.
2. For bootstrapping the process error:

Ci,m
n = Ci

n−i+1+

∫ n

n−i+1

f̂m
u Ci,m

u du+

∫ n

n−i+1

σ̂m
u

√
Ci,m

u dW i,m
u , 2 ≤ i ≤ n, 1 ≤ m ≤ M.

To approximate this process, we use again an Euler scheme. ForK ≥ 1, let∆t := 1/K
be the su�ciently small time step. And for t ∈ {n−i+1+k∆t, 0 ≤ k ≤ (i−1)K−1}:

Ci,m
t+∆t = Ci,m

t + f̂m
[t]C

i,m
t ∆t+ σ̂m

[t]

√
Ci,m

t (W i,m
t+∆t −W i,m

t ), 2 ≤ i ≤ n, 1 ≤ m ≤ M,

where [t] is the integer part of t, Ci,m
n−i+1 := Ci

n−i+1, and W i,m
t+∆t −W i,m

t
i.i.d.∼ N (0,∆t).

3. It yields to the simulation of the reseves:

Rm :=
n∑

i=2

Ci,m
n − Ci

n−i+1, 1 ≤ m ≤ M. (9)

The vector (Rm)1≤m≤M approximates the distribution of the reserves, conditional on
our observations.

Remark 4.1. We described a bootstrap procedure to simulate the reserves. This
method can be adapted to simulate Cn+1

n . Given that the only assumption on Cn+1
1

is its square integrability, an additional assumption is needed to simulate it. One
approach is to use the exposure and a corresponding parametric distribution, such
as G (αEn+1, β), where G denotes the Gamma distribution, En+1 > 0 represents the
exposure at year n + 1, and α > 0 and β > 0 are parameters to be �tted using the
observations (Ci

1)1≤i≤n, assuming the exposure information is available. Once this

is done, we can combine the simulations of Cn+1
1 with the (f̂m

j ) and (σ̂m
j ), and then

apply the Euler scheme to obtain the simulations of Cn+1
n .

5 Example

We use the example provided by [4], applying our bootstrap method within our
continuous framework. We then compare our results to those obtained by Mack, as
well as to the distribution generated by the classical bootstrap procedures.
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i Ci,1 Ci,2 Ci,3 Ci,4 Ci,5 Ci,6 Ci,7 Ci,8 Ci,9 Ci,10

1 357848 1124788 1735330 2218270 2745596 3319994 3466336 3606286 3833515 3901463

2 352118 1236139 2170033 3353322 3799067 4120063 4647867 4914039 5339085

3 290507 1292306 2218525 3235179 3985995 4132918 4628910 4909315

4 310608 1418858 2195047 3757447 4029929 4381982 4588268

5 443160 1136350 2128333 2897821 3402672 3873311

6 396132 1333217 2180715 2985752 3691712

7 440832 1288463 2419861 3483130

8 359480 1421128 2864494

9 376686 1363294

10 344014

Table 1: The numerical data provided in this example by [4].

We now compare the MSEP and the bootstrap distribution across the following
models:

� The Mack's model [4], using the MSEP formula and assuming a Normal pa-
rameterized distribution for the reserves' distribution;

� Mack's model with the bootstrap method;

� The time series model [1] with the bootstrap technique;

� Our continuous model with bootstrap.

Let's brie�y review the �rst three models. Our continuous model with bootstrap was
described in the previous section.

5.1 Mack's model with a parameterized Normal distribution

We employ the classic estimator Ĉi,n := Ci,n−i+1

∏n−1
k=n−i+1 f̂k, which leads to the

estimation of the expected value for the total reserve:

µ̂R := R̂.

We denote by σ̂2
R the MSEP of [4]. Finally, we approximate the distribution of the

reserve with a Normal distribution:

N
(
µ̂R, σ̂

2
R

)
.

5.2 Mack's model with Bootstrap

For comparison purposes, we calculate both the MSEP and its distribution using a
bootstrap method, where the MSEP is the variance of the bootstrap distribution.

We employ the procedure outlined in [2], which we brie�y summarize here. First,
we compute the Pearson residuals (ri,j).

9



1. We simulate:

Cm
i,j+1 := F̂jCi,j + Σ̂j

√
Ci,jr

m
i,j, 1 ≤ m ≤ M,

where each rmi,j is chosen uniformly from (ri,j) and independently. Using (1), we

compute (F̂m
j , Σ̂m

j )1≤j≤n−1 for 1 ≤ m ≤ M .

2. We initiate the simulation with Cm
i,n−i+1 := Ci,n−i+1, and then iteratively simulate

the lower triangle for 2 ≤ i ≤ n as follows:

Cm
i,j+1 ∼ N

(
F̂m
j Cm

i,j, (Σ̂
m
j )

2Cm
i,j

)
,

and we deduce the bootstrap distribution of the total reserve with the formula (9).

5.3 Time series with Bootstrap

The model developped in [1] is based on the relation de�ned in (2), which is:

Ci,j+1 = FjCi,j + Σj

√
Ci,jεi,j,

where the ε's are independent and centered with unit variance. We introduce the
following hypothesis:

(εi,j)1≤i,j≤n
i.i.d.∼ N (0, 1).

Now, we describe the bootstrap method for this model.

1. We simulate:
Cm

i,j+1 ∼ N
(
F̂jCi,j, Σ̂

2
jCi,j

)
, 1 ≤ m ≤ M.

Using (1), we derive (F̂m
j , Σ̂m

j )1≤j≤n−1 for 1 ≤ m ≤ M . Additionally, it is noteworthy
that when Ci,j is �xed,

F̂m
j ∼ N

(
F̂j,

Σ̂2
j∑n−j

i=1 Ci,j

)
,

(Σ̂m
j )

2 ∼ Σ̂2
j

χ2
n−j−1

n− j − 1
.

(10)

We can simulate the (F̂m
j , Σ̂m

j )1≤j≤n−1 directly.

2. As in Section 5.2, we begin Cm
i,n−i+1 := Ci,n−i+1, we simulate iteratively, for

2 ≤ i ≤ n the lower triangle:

Cm
i,j+1 ∼ N

(
F̂m
j Cm

i,j, (Σ̂
m
j )

2Cm
i,j

)
,

and we deduce the bootstrap distribution of the total reserve with the formula (9).
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5.4 Comparison and conclusion

We begin by computing the MSEP of the di�erent methods, as well as the 99.5%
quantile, all in terms of the common reserve estimator R̂.

Method
√
M̂SEP (in % of R̂) Q(R; 99.5%)− R̂ (in % of R̂)

Mack Normal 13.0995 33.7420

Mack Bootstrap 11.7585 33.0675

Time series Bootstrap 13.1030 36.2963

Continuous Bootstrap 13.0241 36.5266

Table 2: The MSEP of the three other methods introduced and our continuous
Bootstrap from Section 4.

We obtain results closely resembling Mack's original formula for the MSEP, as seen
in the Time Series Bootstrap approach. The Mack Bootstrap yields a lower MSEP,
di�ering from the Time Series Bootstrap only in the simulations of (F̂m

j , Σ̂m
j )1≤j≤n−1.

This discrepancy primarily arises from the Pearson's residuals being more regular, in-
dicating smaller values. Regarding quantiles, we observe an approximate 3% increase
compared to Mack's Normal (or Bootstrap). In terms of SCR, it is approximately
10% higher.

In our simulations, both the Mack Bootstrap and Time Series Bootstrap meth-
ods occasionally yield Ci,j < 0. Although rare in this example due to the data's
regularity, occurring roughly once every 105 simulations, such occurrences have been
removed, with the introduced bias being negligible. The processes (Ci

t)1≤t≤n remain
non-negative. Nevertheless, in Remark 3.11, we noted that P(Ci

j = 0) > 0 and as-
serted it to be numerically negligible. The highest probabilities arise for j = 2, and
we have:

P(Cn
2 = 0) = exp(−52.3031) ≈ 1.9277× 10−23.

Nonetheless, with the discretization, we can also observe Ci
j < 0 when the process is

close to zero, but this eventuality is practically nonexistent given the aforementioned
probability.

With less regularly structured data, the Mack or Times series Bootstrap methods
might more frequently yield Ci,j < 0, potentially introducing bias if the corresponding
simulations are removed. However, such occurrences should never arise within our
continuous framework.

In Figure 1, we present the complete distributions associated with the various
models and our framework.
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Figure 1: Estimated distributions of the total reserve; with M = 106 simulations and
K = 250 discretization steps for our Continuous Bootstrap, and M = 107 simulations
for the other bootstraps.

As observed in Table 2, the distribution within our framework closely resem-
bles that of Mack with the Normal parameterized distribution and the Time Series
Bootstrap. The latter o�ers a signi�cant advantage: we simulate quasi-continuously
(utilizing the Euler scheme), thereby eliminating negative values and resulting in a
non-normal distribution.

Finally, in Figure 2, we plot the distribution of Cn
2 compared to the Gaussian

version, using the estimated F̂1 and Σ2
1, as well as a Gamma distribution with the

same moments.
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Figure 2: Estimated distributions of Cn
2 ; with M = 107 simulations and 250 dis-

cretization steps for our Continuous model, and with parameterized Normal and
Gamma distribution with the �rst two moments. In our continuous model, P(Cn

2 = 0)
is neglected.

We observe that our continuous model provides a slight asymmetry which is close,
in this particular case, to the one provided by a Gamma distribution.
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