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Modeling frequency distribution above a priority in

presence of IBNR

Nicolas Baradel*

December 12, 2024

Abstract

In reinsurance, Poisson and Negative binomial distributions are employed for mod-
eling frequency. However, the incomplete data regarding reported incurred claims
above a priority level presents challenges in estimation. This paper focuses on fre-
quency estimation using Schnieper's framework [7] for claim numbering. We demon-
strate that Schnieper's model is consistent with a Poisson distribution for the total
number of claims above a priority at each year of development, providing a robust
basis for parameter estimation. Additionally, we explain how to build an alternative
assumption based on a Negative binomial distribution, which yields similar results.
The study includes a bootstrap procedure to manage uncertainty in parameter esti-
mation and a case study comparing assumptions and evaluating the impact of the
bootstrap approach.

1 Introduction

In his profession, a reinsurer has to quote prices for excess of loss covers. Generally,
the reinsurer estimates the frequency and severity distributions. For the frequency, the
most common choices are the Poisson and Negative binomial distributions. The Poisson
distribution can be viewed as the natural distribution in an ideal world: when all claims are
independent and occur with a non-random intensity, the distribution is Poisson. However,
when there is some uncaptured randomness, the variance is greater than the mean. In the
particular case where the intensity of a Poisson distribution follows a Gamma distribution,
the overall distribution is known to be a Negative binomial one.

The data the reinsurer receives are often incomplete: only the reported incurred claims
above a certain threshold, typically known as the priority. In the context of excess of loss,
[7, Schnieper] proposed a model that separates the IBNR (Incurred But Not Reported)
into what he termed true IBNR: newly reported claims, and IBNER (Incurred But Not
Enough Reported): variation in estimated cost over time.

*Inria, CMAP, CNRS, École polytechnique, Institut Polytechnique de Paris, 91200 Palaiseau, nico-
las.baradel@polytechnique.edu.
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Although [4, Mack] used some of the ideas from the Schnieper's method, it has not
received much attention. Major contributions based on the Schnieper model include [3]
and [2]. In the former, the author derives an estimator for the mean square error of the
reserves. In the latter, they proposed a non-parametric bootstrap procedure to estimate
the distribution of the reserve. Additionally, some valuable insights inspired by Schnieper's
model are found in [5] and [6]. In the former, the author uses Schnieper's approach to
determine the implicit part of the IBNER in the Chain Ladder reserve. In the latter, they
adapt the methodology in order to also separate the paid from the incurred claims.

Schnieper also addressed a special case: claim numbering above a priority. The fre-
quency of claims exceeding the priority over time is divided into: claims that newly reach
the priority and claims that fall below it. In particular, he proposed assuming a Poisson
distribution for claims that reach the priority and a Binomial distribution for claims that
drop below it.

In this paper, we focus on frequency estimation in presence of incomplete data, speci�-
cally the reported incurred above a priority, using Schnieper' framework for claim number-
ing. We show that the total number of claims in his model follows a Poisson distribution at
each year of development. Consequently, this framework is consistent with a Poisson distri-
bution for the total number of claims above a priority and provides a consistent framework
for parameter estimation. We also propose an alternative assumption based on a Nega-
tive binomial distribution, which yields similar results. We show that the total number of
claims also follows a Negative binomial distribution for each year of development and we
provide an estimation procedure. Additionally, we address claim reserving by providing
the distribution of ultimate claim numbers, conditioned on current incurred claims.

The paper is organized as follows. Section 2 presents Schnieper's general model, with a
review of key estimators. Section 3 covers claim numbers above a priority. The �rst part
deals with the Schnieper assumption, from which we derive additional results. Speci�cally,
we obtain the distribution of the total number of claims for both purposes: quotation and
reserving. The second part presents an alternative assumption under which we show that
the total claim number above a priority follows a Negative binomial distribution. Section
4 describes a bootstrap procedure for each case, addressing uncertainty in parameter es-
timation. Finally, Section 5 provides a case study comparing assumptions and evaluating
the impact of the bootstrap approach and its contribution to the di�erent assumptions.

2 The general model

The Schnieper model, with an aim of excess of loss cover, separates two di�erent behaviors
in the IBNR data:

� The occurrence of newly reported claims, which are assumed to arise randomly based
on the level of exposure ;

� The progression of previously reported claims, which is determined by the current
known amounts.

The Schnieper's framework requires more summary statistics than the aggregated evolution
of the incurred claims, which we introduce below, where n ≥ 1 denotes the number of years,
1 ≤ i ≤ n represents the occurrence year, and 1 ≤ j ≤ n represents the development year:
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� The random variables (Ni,j)1≤i,j≤n represent the total amount of new excess claims,
referring to claims that have not been recorded as excess claims in previous develop-
ment years ;

� The random variables (Di,j)1≤i,j≤n represent the decrease in the total claims amount
between development years j − 1 and j, concerning claims that were already known
in development year j − 1.

The (Di,j)1≤i,j≤n can be negative in the event of an increase and, by construction,
Di,1 = 0 for all 1 ≤ i ≤ n.

Given (Ni,j)1≤i,j≤n and (Di,j)1≤i,j≤n, the cumulative incurred data (Ci,j)1≤i,j≤n can be
calculated using the following iterative process:

Ci,1 = Ni,1, 1 ≤ i ≤ n

Ci,j+1 = Ci,j +Ni,j+1 −Di,j+1, 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1
(1)

We also introduce non-negative exposures (Ei)1≤i≤n that are assumed to be known and
associated with the data mentioned above. Finally, we introduce the following �ltration:

Fk := σ(Ni,j, Di,j | i+ j ≤ k + 1), k ≥ 1.

The current available information is Fn. In the context of Schnieper's general model, the
following assumption is made:

Assumption 2.1.

H1 The random variables (Ni1,j, Di1,j)1≤j≤n and (Ni2,j, Di2,j)1≤j≤n are independent for
i1 ̸= i2.

H2 For 1 ≤ j ≤ n, there exists λj ≥ 0 and for 1 ≤ j ≤ n − 1, there exists δj ≤ 1 such
that

E(Ni,j | Fi+j−2) = λjEi, 1 ≤ i ≤ n,

E(Di,j+1 | Fi+j−1) = δjCi,j, 1 ≤ i ≤ n.

H3 For 1 ≤ j ≤ n− 1, there exist σ2
j ≥ 0 and τ 2j ≥ 0 such that

V ar(Ni,j | Fi+j−2) = σ2
jEi, 1 ≤ i ≤ n,

V ar(Di,j+1 | Fi+j−1) = τ 2j Ci,j, 1 ≤ i ≤ n.

The evolution of the (Di,j)1≤i,j≤n follows the same process as in Mack's model [4],
using incurred claims as the exposure combined with a development factor. However, the
new claims generated by the (Ni,j)1≤i,j≤n represent an additional additive component that
depends on the exposure.

From the above assumption, Schnieper introduced the following estimators for the λ's
and the δ's.

λ̂j :=

∑n−j+1
i=1 Ni,j∑n−j+1
i=1 Ei

,

δ̂j :=

∑n−j
i=1 Di,j+1∑n−j
i=1 Ci,j

.

(2)
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They are obviously biasfree estimates of the λ's and δ's respectively. Additionally, they
are the best linear estimators in

Ni,j

Ei
and

Di,j+1

Ci,j
respectively as a consequence of H3.

Schnieper developed a way to estimate the expected value of Cn+1,n and the pure
premium for the following year, including the total reserve along with its associated mean
square error based on estimators of the σ's and τ 's that he provides. We now present the
model for claim number, which can be considered a speci�c instance of the broader model.

3 The model for claim numbers

Schnieper also dealt with a special case: the number of claims above a priority, which is
the focus of this paper. From this point onward, for a given priority level, we de�ne

� The random variables (Ni,j)1≤i,j≤n represent the number of new excess claims pertain-
ing to accident year i in development year j (were below the priority or not reported
in development year j − 1) ;

� The random variables (Di,j)1≤i,j≤n represent the number of claims that exceeded the
priority in development year j − 1 but have since decreased in cost to fall below the
priority in development year j.

In this context, the (Di,j) are now non-negative and remain bounded by (Ci,j−1). Ad-
ditionally, all data are integer.

Schnieper proposed that the new claims, denoted as (Ni,j), follow a Poisson distribution,
while the claims decreasing below the priority, represented by (Di,j), follow a Binomial
distribution. The reasoning is as follows: claims that rise above the priority (either new or
previously below the threshold) occur independently at non random intensity, aligning with
a Poisson distribution. Meanwhile, each claim above the priority has a certain probability
of falling below the threshold each year, occurring independently and leading to a binomial
distribution. The next subsection will provide a detailed explanation of these assumptions
and additional results as stated in [7], including the �nding that (Ci,j) follows a Poisson
distribution at each date.

3.1 The Poisson assumption

The following assumption corresponds to [7, Assumptions A′′
1−A′′

2]. We add H1' to slighty
reinforce H1.

Assumption 3.1.

H1' The random variables (Ni1,j, Di1,j)1≤j≤n and (Ni2,j, Di2,j)1≤j≤n are independent for
i1 ̸= i2, and the pairs (Ni,j, Di,j) are independent for all 1 ≤ i, j ≤ n.

H2' For 1 ≤ j ≤ n, there exists λj ≥ 0 and for 1 ≤ j ≤ n − 1, there exists 0 ≤ δj ≤ 1
such that

Ni,j | Fi+j−2 ∼ P (λjEi) , 1 ≤ i ≤ n,

Di,j+1 | Fi+j−1 ∼ B(Ci,j, δj), 1 ≤ i ≤ n.
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Note that H1' implies H1, and H2' implies H2 and H3 from Section 2. H1' adds
independance betweenNi,j andDi,j on the same dates, while H2' speci�es the distributions.
We assume now that the assumptions H1' and H2' hold. Given these, [7] showed that the

λ̂'s and δ̂'s de�ned in (2) are also the maximum likelihood estimators and are e�cient,
with their variances given by the inverse of the Fisher information.

From what Schnieper stated in this framework, we shall show additional results. Specif-
ically, under H1 ' and H2', the (Ci,j)1≤i,j≤n follow a Poisson distribution. Before stating
the result, recall �rst a classic lemma that will be essential.

Lemma 3.1. Let N be a random variable with distribution P(λ) with λ > 0 and D a
random variable such that D | N ∼ B(N, p) for 0 < p < 1. Then

N −D ∼ P(λ(1− p)).

Proof. For completeness, we provide the proof of this elementary result . Let k ∈ N.

P(N −D = k) =
∑
n∈N

P ({D = n− k} | {N = n})P (N = n)

=
∑
n≥k

n!

k!(n− k)!
pn−k(1− p)k

e−λλn

n!

=
e−λ [λ(1− p)]k

k!

∑
n≥0

(pλ)n

n!

=
e−λ(1−p) [λ(1− p)]k

k!
.

Proposition 3.2. For all 1 ≤ i, j ≤ n, we have

Ci,j ∼ P
(
λ′
jEi

)
,

with

λ′
j :=

j∑
k=1

λk

(
j−1∏
ℓ=k

(1− δℓ)

)
.

Proof. We prove the lemma by induction. Let 1 ≤ i ≤ n be �xed. By construction
Ci,1 = Ni,1 ∼ P(λ1Ei). Assume as the induction hypothesis that Ci,j follows a Poisson
distribution with parameter λ′

jEi. Recall the relation in (1):

Ci,j+1 = Ci,j +Ni,j+1 −Di,j+1.

Under H2', by Lemma 3.1,

Ci,j −Di,j+1 ∼ P
(
λ′
jEi(1− δj)

)
,

and �nally, under H1' :

Ci,j+1 ∼ P
(
λj+1Ei + λ′

j(1− δj)Ei

)
= P

(
λ′
j+1Ei

)
.
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The above result provides the distribution of Cn+1,n given the corresponding exposure.
In practice, we are also interested in the conditional distribution Ci,j | Fn for i+ j > n+1.
Before presenting this result, we introduce an essential lemma.

Lemma 3.3. Let N ∈ N∗. Let D1 ∼ B(N, p1), and Dn+1 | {
∑n

i=1 Di = d} ∼ B(N−d, pn+1)
for n ≥ 1. Then

N −
n∑

i=1

Di ∼ B

(
N,

n∏
i=1

(1− pi)

)
.

Proof. We prove the lemma by induction. It is clear that N − D1 ∼ B(N, 1 − p1). Let
n ≥ 1, and assume by induction that

N −
n∑

i=1

Di ∼ B

(
N,

n∏
i=1

(1− pi)

)
.

Let k ∈ {0, . . . , N}. For ease of notation, we introduce 1− πn :=
∏n

i=1(1− pi). It follows
that

P

[
N −

n+1∑
i=1

Di = k

]
=

N∑
d=0

P

[
N −

n+1∑
i=1

Di = k

∣∣∣∣∣
n∑

i=1

Di = d

]
P

(
n∑

i=1

Di = d

)

=
N∑
d=0

P

[
Dn+1 = N − d− k

∣∣∣∣∣
n∑

i=1

Di = d

]
P

(
N −

n∑
i=1

Di = N − d

)

=
N−k∑
d=0

(N − d)!

k!(N − d− k)!
pN−d−k
n+1 (1− pn+1)

k N !

d!(N − d)!
πd
n(1− πn)

N−d

=
N !

k!(N − k)!
(1− πn+1)

k

N−k∑
d=0

(N − k)!

(N − d− k)!d!
pN−d−k
n+1 πd

n(1− πn)
N−d−k

=
N !

k!(N − k)!
(1− πn+1)

k (πn + pn+1(1− πn))
N−k

=
N !

k!(N − k)!
(1− πn+1)

kπN−k
n+1 .

Proposition 3.4. For all 1 ≤ i, j ≤ n such that i+ j > n+ 1, we have

Ci,j | Fn ∼ B(Ci,n−i+1, δ
′
i,j) + P

(
λ′
i,jEi

)
,

where the right-hand side should be interpreted as the sum of two independent random
variables, and with

δ′i,j :=

j−1∏
k=n−i+1

(1− δk),

λ′
i,j :=

j∑
k=n−i+2

λk

(
j−1∏
ℓ=k

(1− δℓ)

)
.
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Proof. We prove the lemma by induction. Let 1 ≤ i ≤ n be �xed. Since:

Ci,n−i+2 = Ci,n−i+1 −Di,n−i+2 +Ni,n−i+2,

from Lemma 3.3, Ci,n−i+1 − Di,n−i+2 | Fn ∼ B(Ci,n−i+1, 1 − δi,n−i+1) and Ni,n−i+2 | Fn ∼
P(λn−i+2Ei). Assume by induction that:

Ci,j | Fn ∼ B
(
Ci,n−i+1, δ

′
i,j

)
+ P

(
λ′
i,jEi

)
.

Remark that
Ci,j+1 = Ci,n−i+1 + (Ci,j − Ci,n−i+1) +Ni,j+1 −Di,j+1.

and Di,j+1 ∼ B(Ci,j, δj) = B(Ci,n−i+1, δj)+B(Ci,j −Ci,n−i+1, δj), where the right-hand side
should be interpreted as the sum of two independent random variables.
Under H2', by Lemma 3.3,

Ci,n−i+1 − B(Ci,n−i+1, δj) | Fn ∼ B
(
Ci,n−i+1, δ

′
i,j+1

)
,

and
(Ci,j − Ci,n−i+1)− B(Ci,j − Ci,n−i+1, δj) | Fn ∼ P

(
λ′
i,jEi(1− δj

)
)

and �nally, by Lemma 3.1

Ci,j+1 | Fn ∼ B
(
Ci,n−i+1, δ

′
i,j+1

)
+ P

(
λ′
i,j+1Ei

)
.

The result indicates that, following the observation of Fn, the distribution of an unob-
served Ci,j can be described as the sum of two components: current claims that exceed the
priority threshold and are likely to stay above it, and new claims that may initially rise
above the priority but might later fall below it.

If we are interested in estimating E(Ci,n | Fn), we can use the estimator Ĉi,n := λ̂′
i,nEi+

δ̂′i,nCi,n−i+1 where (λ̂′
i,n, δ̂

′
i,n) are estimators for (λ′

i,n, δ
′
i,n). The sequences (λk) and (δk) are

estimated by (λ̂k) and (δ̂k), as de�ned in (2).

In practice, the Poisson distribution is commonly used for modeling the number of
claims due to its simplicity and the assumption of independent arrivals with non-random
intensity across all claims. However, it is often observed that the empirical variance ex-
ceeds the empirical mean, suggesting that the claim data might not fully adhere to the
assumptions of the Poisson distribution.

For instance, if the intensity parameter of claim arrivals for each policy follows a Gamma
distribution, the total number of claims is known to follow a Negative binomial distribution.
This distribution is favored because it remains straightforward to use, accommodates excess
variance, and converges to the Poisson distribution when this variance diminishes.

In the following subsection, we propose using the Negative binomial distribution in-
stead of the Poisson, demonstrating that, with an appropriate assumption, it can yield
comparable results.
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3.2 The Negative binomial assumption

In this section, we aim to establish a Negative binomial framework that yields results
similar to those obtained from the previous Poisson framework. Speci�cally, we de�ne the
Negative binomial distribution as follows: let N ∼ NB(r, p) where r > 0 and 0 < p < 1.
The probability mass function of N is given by

P(N = n) =
Γ(r + n)

n!Γ(r)
pr(1− p)n, n ∈ N. (3)

We then proceed by introducing a new assumption that serves as a replacement for H2'.
The change of this assumption has an impact only on the sequence of random variables
(Ni,j)1≤i,j≤n.

Assumption 3.2.

H2" For 1 ≤ j ≤ n, there exists rj ≥ 0 and for 1 ≤ j ≤ n − 1, there exists 0 ≤ δj ≤ 1
such that

Ni,j | Fi+j−2 ∼ NB (rjEi, pj) in which pj+1 :=
pj

1− δj(1− pj)
, 1 ≤ i ≤ n,

Di,j+1 | Fi+j−1 ∼ B(Ci,j, δj), 1 ≤ i ≤ n.

Similarly, H2" implies H2 and H3 from Section 2. The structure of the p's may not
initially appear clear or intuitive. However, the representation of these parameters will be
clari�ed later. The free parameters are the (rj)1≤j≤n (which replace the λ's from H2' ),
the (δj)1≤j≤n−1 and p1 ∈]0, 1[. There is only one additional parameter, compared to H2'.
This extra parameter governs the additional variance due to the speci�c con�guration of
the family (pj)1≤j≤n.

Remark 3.5. The p's can be explicitly expressed in terms of p1 and the δ's:

pj =
p1

1− (1− p1)
[∑j−1

k=1 δk
∏k−1

ℓ=1 (1− δℓ)
] , 1 ≤ j ≤ n.

The above remark can be veri�ed through direct induction. Estimating the r's, δ's,
and p1 cannot yield explicit maximum likelihood estimates. For δ̂'s, we can use the same
estimator as the one de�ned in the Poisson framework in (2). When p1 is known, to
estimate the r's, we can use a moment estimator based on the expected value and set:

r̂j := λ̂j
pj

1− pj
, 1 ≤ j ≤ n. (4)

Finally, the estimation of p1 can be computed numerically using maximum likelihood meth-
ods:

p̂1 ∈ argmax
n∑

j=1

n−j+1∑
i=1

log f(Ni,j, r̂jEi, pj), (5)

in which (n, r, p) 7→ f(n, r, p) denotes the probability mass function of the Negative bino-
mial distribution with parameter (r, p), see (3).
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It remains to explain why we choose this form for the p's. It is a consequence of the
following result, in order to have a consistent form, as in the Poisson case. To establish
the distribution of the (Ci,j), we begin with a classic lemma.

Lemma 3.6. Let N be a random variable with distribution NB(r, p) for r > 0 and 0 <
p < 1, and D a random variable such that D | N ∼ B(N, δ) for 0 < δ < 1. Then

N −D ∼ NB(r, p′) with p′ :=
p

1− δ(1− p)
.

Proof. Let k ∈ N.

P(N −D = k) =
∑
n∈N

P ({D = n− k} | {N = n})P (N = n)

=
∑
n≥k

n!

k!(n− k)!
δn−k(1− δ)k

Γ(r + n)

n!Γ(r)
pr(1− p)n

=
(1− δ)k

k!
pr
∑
n≥0

δn

n!

Γ(r + n+ k)

Γ(r)
(1− p)n+k

=
[(1− δ)(1− p)]k

k!
pr
∑
n≥0

Γ(r + n+ k)

n!Γ(r)
[δ(1− p)]n

=
Γ(r + k)

k!Γ(r)

[
(1− δ)(1− p)

1− δ(1− p)

]k [
p

1− δ(1− p)

]r
.

The �nal line is obtained by noting that
∑

n≥0
Γ(r+k+n)
n!Γ(r+k)

[1− δ(1− p)]r+k[δ(1− p)]n = 1.

Proposition 3.7. For all 1 ≤ i, j ≤ n, we have

Ci,j ∼ NB
(
r′jEi, pj

)
,

with

r′j :=

j∑
k=1

rk.

Proof. We prove the lemma by induction. Let 1 ≤ i ≤ n be �xed. By construction
Ci,1 = Ni,1 ∼ NB(r1Ei, p1). Assume by induction that Ci,j follows a Negative binomial
distribution with parameter (r′jEi, pj). Recall that

Ci,j+1 = Ci,j +Ni,j+1 −Di,j+1.

Under H2�, by Lemma 3.6,

Ci,j −Di,j+1 ∼ NB
(
r′jEi, pj+1

)
,

and �nally:
Ci,j+1 ∼ NB

(
r′j+1Ei, pj+1

)
.
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The form of the p's can now be understood. Assuming new claims above the priority
threshold follow a Negative binomial distribution and that some claims may later fall below
the priority, we aim to maintain consistency at any point in time with the Negative binomial
distribution. Consequently, this leads to the speci�c form of the p's.

The p's are increasing, leading to a smaller excess of variance over time. Notably,
the likelihood of claims dropping below the priority with probabilities δ's in�uences the
Negative binomial distribution, including claims not yet reported in future development
years. And more likely the claim are droping below the thereshold, faster decreases the
excess of variance for the new claims.

In particular, for the extremal cases, if δj = 0, meaning that no claims drops below
the priority, the excess of variance does not reduce. Conversely, when δj → 1, meaning all
claims drop below the priority, the excess variance vanishes.

The preceding result provides the distribution of Cn+1,n given the related exposure.
Additionally, we may be interested in the distribution of Ci,j | Fn for i + j > n + 1, as
described in the following proposition.

Proposition 3.8. For all 1 ≤ i, j ≤ n such that i+ j > n+ 1, we have

Ci,j | Fn ∼ B(Ci,n−i+1, δ
′
i,j) +NB

(
r′jEi, pj

)
,

where the right-hand side should be interpreted as the sum of two independent random
variables, and with

δ′i,j :=

j−1∏
k=n−i+1

(1− δk),

r′j :=

j∑
k=n−i+2

rk.

Proof. The proof follows the same reasoning as in Proposition 3.4, with the key di�erence
being the application of Lemma 3.6 in place of Lemma 3.1.

If we are interested in estimating E(Ci,n | Fn), using (4) for the estimators of the r's
leads to the same estimator as the one suggested for Proposition 3.4.

4 Bootstrap methodology

In [2], the author discusses a bootstrap methodology for the general Schnieper model
to resimulate the λ's and δ's, accounting for uncertainty in the parameters. They also
simulate a Gaussian random variable to integrate the internal randomness of the process
for each development stage. This follows the main ideas of the non-parametric bootstrap
as summarized in [1].

Here, we present a distinct approach that utilizes the speci�c framework of claim num-
bers and proposes a comprehensive parametric bootstrap methodology without computing
residuals or making any additional assumption.
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4.1 The Poisson case

Let M ∈ N∗ be the total number of bootstrap simulations to be performed. To account for
the inherent randomness of the λ's and δ's, for 1 ≤ m ≤ M . To do it e�ciently, we shall
use the following lemma.

Lemma 4.1. Under H1 and H2', we have:

λ̂j | Bj−1 ∼
P
(
λj

∑n−j+1
i=1 Ei

)
∑n−j+1

i=1 Ei

, 1 ≤ j ≤ n,

δ̂j | Bj ∼
B
(∑n−j

i=1 Ci,j, δj

)
∑n−j

i=1 Ci,j

, 1 ≤ j ≤ n− 1,

where Bk := σ(Ni,j, Di,j | i+ j ≤ n+ 1, j ≤ k).

Proof. Direct consequence of H1 and H2'.

This provides a direct method to simulate the bootstrapped λ's and δ's.

(λ̂m
j )1≤m≤M

i.i.d.∼
P
(
λ̂j

∑n−j+1
i=1 Ei

)
∑n−j+1

i=1 Ei

, 1 ≤ j ≤ n,

(δ̂mj )1≤m≤M
i.i.d.∼

B
(∑n−j

i=1 Ci,j, δ̂j

)
∑n−j

i=1 Ci,j

, 1 ≤ j ≤ n− 1,

where (λ̂j)1≤j≤n and (δ̂j)1≤j≤n−1 come from (2) and the C's are the observed data.

Bootstrap simulation of Cn+1,n. Following Proposition 3.2, the bootstrap simulation
is performed as follows:

Cm
n+1,n ∼ P(λ̂′m

n En+1), 1 ≤ m ≤ M.

Bootstrap simulation of Ci,j | Fn. For the lower triangle, the simulation is conducted
using:

Cm
i,n−i+1 := Ci,n−i+1, 1 ≤ i ≤ n,

Cm
i,j+1 := Cm

i,j + P
(
λ̂m
j+1Ei

)
− B

(
Cm

i,j, δ̂
m
j

)
, n− i+ 1 ≤ j ≤ n− 1.

On the right-hand side of the last equality, the di�erence of the two distributions should
be interpreted as the di�erence of two independent random variables. This procedure
generates a bootstrap distribution for the random variable Ci,j | Fn on the lower triangle. In
this process, the uncertainty associated with the estimators of the parameters is integrated.
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Remark 4.2. Based on Proposition 3.4, when our focus is on Ci,n | Fn, we can e�ciently
simulate Cm

i,n, using

Cm
i,n ∼ B(Ci,n−i+1, δ̂

′m
i,n) + P

(
λ̂′m
i,nEi

)
,

where the right-hand side should be interpreted as the sum of two independent random
variables, and with

δ̂′mi,n :=
n−1∏

k=n−i+1

(1− δ̂mk ),

λ̂′m
i,n :=

n∑
k=n−i+2

λ̂m
k

(
n−1∏
ℓ=k

(1− δ̂mℓ )

)
.

This provides a more e�cient algorithm.

4.2 The Negative binomial case

We extend the Poisson model to �t the Negative binomial framework. To account for the
variability in the parameters r's, δ's and p1, for 1 ≤ m ≤ M . We have the following lemma,
similar to Lemma 4.1.

Lemma 4.3. Under H1 and H2", we have:

λ̂j | Bj−1 ∼
NB

(
rj
∑n−j+1

i=1 Ei, pj

)
∑n−j+1

i=1 Ei

, 1 ≤ j ≤ n,

δ̂j | Bj ∼
B
(∑n−j

i=1 Ci,j, δj

)
∑n−j

i=1 Ci,j

, 1 ≤ j ≤ n− 1,

where Bk := σ(Ni,j, Di,j | i+ j ≤ n+ 1, j ≤ k).

Proof. Direct consequence of H1 and H2".

However, unlike the Poisson case, we cannot apply the above lemma straightforwardly
since it does not provide the distribution of p1. Additionally, the estimator of p1, de�ned
in (5), is non-trivially dependent on the Ni,j.

Nonetheless, for the δ′s, we can proceed as follows:

(δ̂mj )1≤m≤M
i.i.d.∼

B
(∑n−j

i=1 Ci,j, δ̂j

)
∑n−j

i=1 Ci,j

, 1 ≤ j ≤ n− 1.

For the r's and p1, we resimulate the upper triangle Ni,j.

Nm
i,j ∼ NB (r̂jEi, p̂j) , 1 ≤ i ≤ n, 1 ≤ j ≤ n− i.

From these upper triangles, we can estimate the r's and p1. These are denoted respec-
tively as (r̂mj )1≤j≤n and p̂m1 .
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Bootstrap simulation of Cn+1,n. Following Proposition 3.7, the simulation is straight-
forward:

Cm
n+1,n ∼ NB(r̂′m

n En+1, p̂
m
n ), 1 ≤ m ≤ M.

Bootstrap simulation of Ci,j | Fn. For the lower triangle, we simulate :

Cm
i,n−i+1 := Ci,n−i+1, 1 ≤ i ≤ n,

Cm
i,j+1 := Cm

i,j +NB
(
r̂mj+1Ei, p̂

m
j+1

)
− B

(
Cm

i,j, δ̂
m
j

)
, n− i+ 1 ≤ j ≤ n− 1.

On the right-hand side of the last equality, the di�erence of the two distributions
should be interpreted as the di�erence of two independent random variables. Similarly
to the approach discussed in Remark 4.2 for the Poisson case, if our focus is solely on the
distribution Ci,n | Fn, we can bypass simulating the entire lower triangle using Proposition
3.8.

5 Example

We present two triangles of simulated data to illustrate both cases with n = 6 years of
observations. For the �rst one, the exposure and the C triangle are:

i Ei Ci,1 Ci,2 Ci,3 Ci,4 Ci,5 Ci,6

1 20 5 9 11 12 13 11

2 25 11 16 13 11 17

3 32 9 17 22 22

4 38 10 10 11

5 42 17 18

6 45 14

whose decomposition in N and D is:

i Ni,1 Ni,2 Ni,3 Ni,4 Ni,5 Ni,6

1 5 4 5 2 1 0

2 11 9 4 4 6

3 9 14 9 3

4 10 7 5

5 17 10

6 14

i Di,1 Di,2 Di,3 Di,4 Di,5 Di,6

1 0 0 3 1 0 2

2 0 4 7 6 0

3 0 6 4 3

4 0 7 4

5 0 9

6 0

We can derive directly the λ's and δ's.

j 1 2 3 4 5 6

λ̂j 0.327 0.28 0.2 0.117 0.156 0

δ̂j 0.5 0.346 0.217 0 0.154 �

13



Let En+1 = 50 be the exposure for the upcoming year. Under the Poisson assumption,
using the estimator of the intensity leads to:

Cn+1,n ∼ P (27.752)

Under the Negative binomial assumption and utilizing the λ's and the δ's, and computing
p1 by maximum likelihood leads to optimal p1 → 1. In this case, the Negative binomial
distribution converges to the Poisson distribution: the assumption does not appear suitable.

To account for the uncertainty in the unknown parameters, we can use the bootstrap
procedure. We get that the variance of Cn+1,n is now around 53.361, which is notably
higher than the variance obtained when using the Poisson distribution with the estimated
parameter. Figure 1 illustrates the histogram of Cn+1,n with the distribution P (27.752)
(lighter on the left) compared to the distribution obtained from the bootstrap procedure
(darker on the right).
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Figure 1: Comparison of the distribution of the estimated distribution P (27.752) (on the
left), and the associated bootstrap distribution (on the right); with M = 107 simulations.

We now introduce a second set of triangles, the exposure and the C triangle are:
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i Ei Ci,1 Ci,2 Ci,3 Ci,4 Ci,5 Ci,6

1 20 8 4 12 12 14 13

2 25 3 5 7 10 15

3 32 5 10 11 9

4 38 27 20 29

5 42 23 18

6 45 14

whose decomposition in N and D is:

i Ni,1 Ni,2 Ni,3 Ni,4 Ni,5 Ni,6

1 8 3 9 4 3 0

2 3 5 4 3 6

3 5 7 3 3

4 27 8 13

5 23 7

6 14

i Di,1 Di,2 Di,3 Di,4 Di,5 Di,6

1 0 7 1 4 1 1

2 0 3 2 0 1

3 0 2 2 5

4 0 15 4

5 0 12

6 0

Again, we can derive directly the λ's and δ's.

j 1 2 3 4 5 6

λ̂j 0.396 0.191 0.252 0.13 0.2 0

δ̂j 0.591 0.231 0.3 0.091 0.071 �

Given an exposure of En+1 = 50 for the next year and assuming a Poisson distribution,
we get that

Cn+1,n ∼ P (30.243)

Computing p1 by maximum likelihood does not lead to p1 → 1 anymore. We �nd p̂1 =
0.397. This implies that

j 1 2 3 4 5 6

p̂j 0.397 0.616 0.676 0.749 0.767 0.78

r̂j 0.263 0.402 0.418 0.448 0.328 0.177

In particular, under the Negative binomial assumption,

Cn+1,n ∼ NB (106.94, 0.780) .

By construction, the expected value of Cn+1,n remains at 30.243, but the variance increases
to 38.796.

To choose between the two assumptions, we can calculate the log-likelihood and AIC
for both cases. Table 1 presents the results.
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log-L. AIC

P -53.937 119.875

NB -50.793 115.586

Table 1: Log-likelihood and AIC for both assumptions.

It appears that using the Negative binomial distribution is the most suitable choice
in this scenario. Given that the δ's are also part of the de�nition of the p's, one might
question whether it would be bene�cial to estimate both (p1, (δj)1≤j≤n−1) simultaneously

using data from both N and D. Let (p̃1, (δ̃j)1≤j≤n−1) denote the new estimators. Table 2
provides a comparison, which shows that the di�erence is minimal.

j 1 2 3 4 5

δ̂j 0.591 0.231 0.3 0.091 0.071

δ̃j 0.601 0.232 0.305 0.092 0.071

j 1 2 3 4 5 6

p̂j 0.397 0.616 0.676 0.749 0.767 0.78

p̃j 0.393 0.619 0.679 0.753 0.77 0.783

Table 2: Comparison of the two estimation methods.

Figure 2 shows the distribution from the Poisson assumption (lighter on the left) com-
pared with the distribution from the negative binomial assumption (darker on the right).
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Figure 2: Comparison of the distribution of the estimated distribution P (30.243) (on the
left), and the distribution of the estimated distribution NB (106.939, 0.780) (on the right).

Figure 3 illustrates the bootstrap distribution from the Poisson assumption (lighter on
the left) and from the Binomial negative assumption (darker on the right). In each simu-
lation using the negative binomial approach, if the estimated p̂1 was close to 1, suggesting
that the Poisson distribution was a better �t, the simulation was conducted using the Pois-
son framework. The bootstrap results show that the variance of the distribution under the
Poisson assumption is 62.633, while the variance under the negative binomial assumption
is 67.658.
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Figure 3: Comparison of the Bootstrap distribution obtained with the Poisson assumption
(on the left), and with the Negative binomial assumption (on the right); with M = 107

simulations.
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