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BILINEAR CONTROL OF A DEGENERATE HYPERBOLIC

EQUATION

P. CANNARSA, P. MARTINEZ, AND C. URBANI

Abstract. We consider the linear degenerate wave equation, on the interval
(0, 1)

wtt − (xαwx)x = p(t)µ(x)w,

with bilinear control p and Neumann boundary conditions. We study the con-

trollability of this nonlinear control system, locally around a constant reference
trajectory, the “ground state”.

Under some classical and generic assumption on µ, we prove that there

exists a threshold value for time, Tα = 4
2−α , such that the reachable set is

• a neighborhood of the ground state if T > Tα,

• contained in a C1-submanifold of infinite codimension if T < Tα,

• a C1-submanifold of codimension 1 if α ∈ [0, 1), and a neighborhood of
the ground state if α ∈ (1, 2) if T = Tα, the case α = 1 remaining open.

This extends to the degenerate case the work [K. Beauchard, Local control-

lability and non-controllability for a 1D wave equation with bilinear control,
J. Differential Equations, 250 (2011), pp. 2064-2098] , and adapts to bilinear

controls the work [F. Alabau-Boussouira, P. Cannarsa and G. Leugering, Con-

trol and stabilization of degenerate wave equations, SIAM J. Control Optim.,
55 (2017), pp. 2052-2087].

Our proofs are based on a careful analysis of the spectral problem, and on
Ingham type results, which are extensions of Kadec’s 1

4
theorem.

1. Introduction

1.1. The context and the problem we study.
Degenerate partial differential equations appear in many domains, in particular

physics, climate dynamics, biology, economics (see, e.g., [11, 16, 21]). For instance,
when studying propagation of waves on a spherical domain (e.g. the Earth), see
[30, Sections 8.3 and 7.3], the Legendre’s equation [30, (7.3.1)] plays a central role.
Such equation is degenerate at both boundary points of the space domain (−1, 1),
with the same kind degeneracy that we shall consider in this paper.

Control of degenerate parabolic equations is, by now, a fairly well-developed
subject (see, for instance, [10, 11, 12, 13, 18]), but very few results are available
in the case of degenerate hyperbolic equations. To our best knowledge, a class of
degenerate wave equations has been studied from the point of view of control theory
in [1], where boundary control is studied using HUM and multiplier methods, and
in [35, 34], where locally distributed control are considered.
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On the other hand, in many applications, one is naturally led to use bilinear con-
trols, as such controls are more realistic than additive ones to govern the evolution
of certain systems, see in particular [27] for several models coming from physics,
and [3, 2, 8, 14, 17, 19, 20] for parabolic equations. This is why, in this paper, we
address a bilinear control problem for the degenerate hyperbolic equation

(1. 1)


wtt − (xαwx)x = p(t)µ(x)w, x ∈ (0, 1), t ∈ (0, T ),

(xαwx)(x = 0) = 0, wx(x = 1) = 0, t ∈ (0, T ),

w(x, 0) = w0(x), wt(x, 0) = w1(x), x ∈ (0, 1).

Here,

• α ∈ [0, 2) is the degereracy parameter (α = 0 for the classical wave equation
and α ∈ (0, 2) in the degenerate case),

• p ∈ L2(0, T ) is a multiplicative control,
• µ is an admissible potential (and a key feature will be to analyze to which

class µ has to belong in order to prove a controllability result.)

System (1. 1) describes the vibration of a linear elastic string, made of a “smart
material” (see [27]), having free ends with a prescribed slope. The displacement is
due to an external force (e.g. temperature, electric or magnetic field) which alters
the axial load ν(t, x) = p(t)µ(x). The coefficient a(x) = xα can be interpreted as
the spatially varying stiffness of the string which exhibits a defect at the point of
degeneracy x = 0 (when α > 0), see [28].

Let us recall that the action of bilinear controls is weaker than the one of additive
controls, in the sense that, with bilinear controls, one cannot expect the same kind
of controllability results that can be proved with additive controls. This fact is
described by the negative result obtained by Ball-Marsden-Slemrod in [5], where it
is shown that the attainable set of any abstract linear system, subject to a bilinear
control, has a dense complement.

For the Schrödinger equation, and then for the classical wave equation, attain-
ability results with bilinear controls were obtained by Beauchard and Laurent in
[7] and Beauchard in [6]. In particular in [6]

• it is proved that, starting from the “ground state” (which is the constant
state associated to the first eigenvalue, 0), the solution is more regular than
expected:

(w(T ), wt(T )) ∈ H3(0, 1)×H2(0, 1),

• controllability properties have been established, distinguishing the cases
T > 2, T = 2 and T < 2.

The goal of our paper is to extend these results to the degenerate case α ∈ (0, 2).

1.2. Main results, novelties and open questions.
First, we show that the solution starting from the ground state has additional

regularity properties, see Proposition 3.2.
Moreover, starting from the the ground state, we analyse the reachable targets

close to the ground state in the H3
α(0, 1)×H2

α(0, 1) topology. If µ verifies some nat-
ural conditions generically satisfied in some suitable Banach space (see Proposition
3.3), we prove that the threshold value for the controllability time is

Tα =
4

2− α
:

• if T > Tα: any target which is close to the ground state is reachable in time
T (see Theorem 3.1),
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• if T = Tα and α ∈ (1, 2): any target state close to the ground state is
reachable in time Tα, except for a countable set of values of α (see Theorem
3.2),
• if T = Tα and α ∈ [0, 1), the set of reachable targets close to the ground

state is a C1-manifold of codimension 1 (see Theorem 3.2)
• if T < Tα, the set of reachable targets close to the ground state is con-

tained in a C1-manifold of infinite dimension and of infinite codimension
(see Theorem 3.3).

Our approach follows the strategy proposed by Beauchard [6] for the (nonde-
generate) wave equation. However, it is worth noting that several new difficulties
appear in the degenerate case:

• the spectral analysis is entirely new, nontrivial and crucial, see Proposition
3.1; moreover, the loss of regularity of the eigenfunctions influences the
choice of the potential µ and the analysis of the problem,

• we prove our controllability results by using the moment method, coupled
to an inversion theorem. The moment problem is studied

– in a classical way when T > Tα, using Ingham’s arguments,
– thanks to some extensions of the classical Kadec 1

4 Theorem ([33]),
that allow us to treat the case T = Tα (see Lemma 3.1),

– combining general results on non-minimal families of exponentials (see
[4]) with density properties of the eigenvalues of our problem when
T < Tα,

• when T = Tα, there exists a countable set of values of α for which our
methods do not apply in order to solve the controllability issue. Among
them, the case α = 1 is the most interesting open problem, see Section 8.3.

To conclude, let us observe that, as the reader may have noticed, we have assumed
the degeneracy exponent α to be in the interval [0, 2): this restriction is partly
due to our method, but on the other hand, it is known that problem (1. 1), with
(additive) boundary controls, fails to be controllable for α ≥ 2 (see [1]).

1.3. Outline of the paper.

• In section 2, we recall the functional setting and the well-posedness results
for the degenerate wave equation.

• In section 3, we state our main results:
– the analysis of the eigenvalue problem associated to (1. 1), see Propo-

sition 3.1,
– a hidden regularity result of the value map, which is a fundamental

observation to study the bilinear control problem, see Proposition 3.2,
– a positive bilinear control result, see Theorem 3.1, when T > 4

2−α ,

– a bilinear control result, see Theorem 3.2, when T = 4
2−α ,

– a “negative” bilinear control result, see Theorem 3.3, when T < 4
2−α .

• In section 4, we prove the well posedness results.
• In section 5, we prove Proposition 3.1.
• In section 6, we prove Proposition 3.2.
• In section 7, we prove Theorem 3.1.
• In section 8, we prove Theorem 3.2.
• In section 9, we prove Theorem 3.3.
• In section 10, we prove Proposition 3.3.

Due to editorial requirements, some parts of the proof have only been sketched. The
reader will find all technical details in the Supplementary material or in extended
version of this paper [9], available on arXiv.
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2. Functional setting and well-posedness

2.1. Weighted Sobolev spaces.
We treat separately the cases of weak degeneracy, α ∈ [0, 1), and strong degen-

eracy, α ∈ [1, 2):

• for 0 ≤ α < 1, we define

(2. 1) H1
α(0, 1) :=

{
u ∈ L2(0, 1), u abs. cont. in [0, 1], xα/2ux ∈ L2(0, 1)

}
,

• for 1 ≤ α < 2, we define

(2. 2) H1
α(0, 1) :=

{
u ∈ L2(0, 1), u loc. abs. cont. in (0, 1], xα/2ux ∈ L2(0, 1)

}
,

where by abs. cont. and we mean absolutely continuous and by loc. abs. cont. we
mean locally absolutely continuous. For any α ∈ [0, 2) we define the spaces

(2. 3) H1
α,0(0, 1) := {u ∈ H1

α(0, 1) : (xαux)(0) = 0, ux(1) = 0}
and

(2. 4) H2
α(0, 1) :=

{
u ∈ H1

α(0, 1), xαux ∈ H1(0, 1)
}
,

and we consider the operator A : D(A) ⊂ L2(0, 1)→ L2(0, 1) defined by

(2. 5)

{
∀u ∈ D(A), Au := (xαux)x,

D(A) := {u ∈ H2
α(0, 1), (xαux)(0) = 0, ux(1) = 0}.

Then, the following results hold:

Proposition 2.1. Let α ∈ [0, 2). Then,
a) H1

α(0, 1) is a Hilbert space;
b) A : D(A) ⊂ L2(0, 1)→ L2(0, 1) is a self-adjoint negative operator with dense

domain.

We deduce that, for any α ∈ [0, 2), A is the infinitesimal generator of an analytic
semigroup of contractions eAt on L2(0, 1).

The proof of Proposition 2.1 is similar to those of [12, Proposition 1] and [13,
Proposition 2.1] and can be found in the Supplementary material or in [9, Propo-
sition 2.1 and 2.2].

2.2. Well posedness of the problem.
Consider the non-homogeneous problem

(2. 6)


wtt − (xαwx)x = p(t)µ(x)w + f(x, t), x ∈ (0, 1), t ∈ (0, T ),

(xαwx)(x = 0) = 0, wx(x = 1) = 0, t ∈ (0, T ),

w(x, 0) = w0(x), wt(x, 0) = w1(x), x ∈ (0, 1).

We introduce the spaces

(2. 7) V (1,∞)
α := {µ ∈ H1

α(0, 1), xα/2µx ∈ L∞(0, 1)},
and

(2. 8) V 1
α :=

{
H1
α(0, 1) if α ∈ [0, 1),

V
(1,∞)
α if α ∈ [1, 2).

Then, we have the following well-posedness result:

Proposition 2.2. Let T > 0, p ∈ L2(0, T ), f ∈ L2((0, T ), H1
α(0, 1)), and µ ∈ V 1

α .
Then, for all w0 ∈ D(A), w1 ∈ H1

α(0, 1), there exists a unique classical solution of
(2. 6), i.e. a function

(w,wt) ∈ C0([0, T ], D(A)×H1
α(0, 1)).

The proof of Proposition 2.2 is contained in Section 4.
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3. Main results

3.1. The associated spectral problem.
We investigate the eigenvalues and eigenfunctions of the operator −A, hence we

look for solutions (λ,Φ) of the problem

(3. 1)


−(xαΦ′)′ = λΦ, x ∈ (0, 1),

xαΦ′(x) = 0, x = 0,

Φ′(1) = 0.

The difference with the spectral analysis of [12, 13] is the boundary condition at
the point x = 1 which leads to new difficulties.

Proposition 3.1. Given α ∈ [0, 2), set

κα :=
2− α

2
, να :=

α− 1

2− α
,

and consider the Bessel function Jνα of order να and of first kind, and the positive
zeros (jνα+1,n)n≥1 of the Bessel function Jνα+1. Then, the set of solutions (λ,Φ)
of problem (3. 1) is

S = {(λα,n, ρΦα,n), n ∈ N, ρ ∈ R},
where

• for n = 0,

(3. 2) λα,0 = 0, Φα,0(x) = 1,

• and for n ≥ 1,

(3. 3) λα,n = κ2α j
2
να+1,n, Φα,n(x) = Kα,n x

1−α
2 Jνα

(
jνα+1,n x

2−α
2

)
,

where the positive constant Kα,n is chosen such that ‖Φα,n‖L2(0,1) = 1.

Moreover, the sequence (Φα,n)n≥0 forms an orthonormal basis of L2(0, 1). Addi-

tionnaly, the sequence (
√
λα,n+1 −

√
λα,n)n≥1 is decreasing and

(3. 4)
√
λα,n+1 −

√
λα,n →

2− α
2

π as n→∞.

The proof of Proposition 3.1 is contained in Section 5.

3.2. Hidden regularity.
Let us start by introducing some notation which will be used in the proofs of

our results. To avoid possible problems generated by the eigenvalue 0, we define

(3. 5) λ∗α,n :=

{
1 for n = 0,

λα,n for n ≥ 1.

It will be useful to introduce the following intermediate Sobolev spaces for any
s > 0:

(3. 6) Hs
(α) := D((−A)s/2) =

{
ψ ∈ L2(0, 1),

∞∑
k=0

(λ∗α,k)s〈ψ,Φα,k〉2L2(0,1) <∞
}
,

equipped with the norm

‖ψ‖Hs
(α)

:=
( ∞∑
k=0

(λ∗α,k)s〈ψ,Φα,k〉2L2(0,1)

)1/2
.

It can be checked that the spaces H1
α,0(0, 1) and H1

(α)(0, 1) coincides as sets and

the associated norms are equivalent, as well as the spaces D(A) and H2
(α)(0, 1) (see

the Supplementary material).
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We also define the following spaces

(3. 7) V (2,∞)
α := {µ ∈ H2

α(0, 1), xα/2µx ∈ L∞(0, 1)},

(3. 8) V (2,∞,∞)
α := {µ ∈ H2

α(0, 1), xα/2µx ∈ L∞(0, 1), (xαµx)x ∈ L∞(0, 1)}.
Given (w0, w1) ∈ H1

α(0, 1)×L2(0, 1) and p ∈ L2(0, T ), we will denote by w(w0,w1;p)

the solution of (1. 1) associated to initial conditions w0, w1 and control p. In
particular, when (w0, w1) = (1, 0) and p = 0, we note that the constant function

equal to 1 satisfies (1. 1), hence w(1,0;0) = 1, and w
(1,0;0)
t = 0.

In the following, we will be interested in the regularity of the solution of (1. 1)
starting from the ground state (1, 0), that is, the solution w(1,0;p) (or simply w(p))
of

(3. 9)


wtt − (xαwx)x = p(t)µ(x)w, x ∈ (0, 1), t ∈ (0, T ),

(xαwx)(x = 0) = 0, wx(x = 1) = 0, t ∈ (0, T ),

w(x, 0) = 1, wt(x, 0) = 0, x ∈ (0, 1).

We will prove the following result, that extends the regularity result of [6, Theorem
3] to the degenerate case:

Proposition 3.2. Let T > 0 and

(3. 10) µ ∈ V 2
α :=

{
V

(2,∞)
α if α ∈ [0, 1),

V
(2,∞,∞)
α if α ∈ [1, 2).

Then, for all p ∈ L2(0, T ), the solution w(p) of (3. 9) satisfies

(3. 11) (w(p)(T ), w
(p)
t (T )) ∈ H3

(α) ×D(A).

The proof of Proposition 3.2 is contained in Section 6.

3.3. Main controllability results.
Because of the negative result contained in [5], one could not expect any con-

trollability property to hold in the spaces H2
(α)(0, 1)×H1

α(0, 1). However, since the

multiplication operator Bu := µu does not preserve the space H3
(α)(0, 1), the chance

to achieve controllability results in H3
(α)×H

2
(α)(0, 1) is still open. For this purpose,

we will need additional assumptions on the admissible potential µ. Furthermore,
we observe that controllability properties will depend on a threshold value for the
controllability time because of the finite speed of propagation, as it always happens
for hyperbolic equations.

We will show that the value

(3. 12) Tα :=
4

2− α
,

is the threshold time for controllability.
Let us define the following subclass of admissible potentials µ

(3. 13)

V (adm) :=
{
µ ∈ V 2

α , such that ∃ c > 0 : λ∗α,n|〈µ,Φα,n〉L2(0,1)| ≥ c, ∀n ≥ 0
}
.

We observe that the space V (adm) is not empty. Indeed, in the proposition that
follows we exhibit an admissible potential µ ∈ V (adm).

Proposition 3.3. The function µ(x) = x2−α belongs to V (adm). Moreover, the
space V (adm) is dense in V 2

α .

The proof of Proposition 3.3 is contained in Section 10. We refer to the recent
work of Alabau-Boussouira, Urbani [31, Chapter 5] where sufficient conditions for
building polynomial functions that fulfill the last condition in (3. 13) are given.

Let us state our controllability results.



7

Theorem 3.1. Given α ∈ [0, 2), let µ ∈ V (adm) (defined in (3. 13)) and

(3. 14) T > Tα.

Then, there exists a neighbourhood V(1, 0) of (1, 0) in H3
(α)(0, 1)×D(A) such that

for all (wf0 , w
f
1 ) ∈ V(1, 0) there exists a unique pf ∈ L2(0, T ) close to 0 such that

(w(pf )(T ), w
(pf )
t (T )) = (wf0 , w

f
1 ).

Moreover, the application

Γα,T : V(1, 0)→ L2(0, T ), (wf0 , w
f
1 ) 7→ pf

is of class C1.

The proof of Theorem 3.1 can be found in Section 7.

Theorem 3.2. Let µ ∈ V (adm) (defined in (3. 13)) and

(3. 15) T = Tα.

Then,
a) for α ∈ [0, 1), the reachable set is locally a C1-submanifold of H3

(α)(0, 1)×D(A)

of codimension 1,
b) for α ∈ (1, 2) and 1

2−α /∈ N, the reachable set is a whole neighborhood of (1, 0)

in H3
(α)(0, 1)×D(A).

The proof of Theorem 3.2 is contained in Section 8.

Theorem 3.3. Let µ ∈ V (adm) (defined in (3. 13)) and

(3. 16) T < Tα.

Then, the reachable set is locally contained in a C1-submanifold of H3
(α)(0, 1)×D(A)

of infinite dimension and of infinite codimension.

The proof of Theorem 3.3 is in Section 9.
The proof of Theorem 3.2 (T = Tα) is based on the following extension of the

Kadec’s 1
4 Theorem ([26], [33, Theorem 1.14 p. 42]), which is close to results of Joó

[25, Theorem F p. 149].

Lemma 3.1. Consider an odd sequence of real numbers {xn, n ∈ Z}, that is x−n =
−xn, such that there exist k ∈ N∗, δ ∈ (0, 14 ) and N0 ≥ 0 for which

(3. 17) n ≥ N0 =⇒
∣∣∣xn − n− k

2

∣∣∣ ≤ 1

4
− δ.

Then, choosing distinct real numbers x′1, · · · , x′k /∈ {xn, n ∈ Z}, the set

{eix
′
1t, · · · , eix

′
kt} ∪ {eixnt, n ∈ Z}

is a Riesz basis of L2(−π, π).

The proof of Lemma 3.1 is contained in Section 8.2.b.

3.3.a. Remarks and open problems.
When T > Tα and T < Tα, Theorems 3.1 and 3.3 describe the sets of reachable

states. The case T = Tα is the most delicate and we would like to draw the
attention to the different nature of the reachable set for the weak (α ∈ [0, 1))
and strong (α ∈ [1, 2)) degeneracy: while in the first case it is a submanifold of
codimension 1, in the latter case it is a complete neighborhood of (1, 0), except for
a countable number of values of α. These exceptional values αk = 2 − 1

k , k ∈ N∗,
are the points where the nature of the set {eiωα,nt, n ∈ Z} (where ωα,n =

√
λα,n

for n ≥ 0) changes:
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• for α ∈ [0, 1) it is a Riesz basis of L2(0, Tα),
• for α ∈ (1, 32 ) it has a deficiency equal to 1 in L2(0, Tα),

• for α ∈ ( 3
2 ,

5
3 ) it has a deficiency equal to 2 in L2(0, Tα),

and so on (see Lemma 8.4 for a detailed study, that derives from the Kadec’s 1
4

Theorem). What happens for these exceptional values of α is still an open problem,
and the case α = 1 is particularly challenging (see Section 8.3).

4. Functional setting: proof of Proposition 2.2

In order to recast (2. 6) into the a first order problem, we introduce

W :=

(
w
wt

)
, W0 :=

(
w0

w1

)
, F(x, t) :=

(
0

f(x, t)

)
,

the state space

X := H1
α(0, 1)× L2(0, 1),

and the operators

(4. 1) A :=

(
0 Id
A 0

)
, D(A) := D(A)×H1

α(0, 1),

and

(4. 2) B :=

(
0 0
µ 0

)
, D(B) := H1

α(0, 1)× L2(0, 1).

So, problem (2. 6) can be rewritten as

(4. 3)

{
W ′(t) = AW(t) + p(t)BW(t) + F(t),

W(0) =W0.

Let us now prove the following regularity result:

Lemma 4.1. Let µ ∈ V 1
α . Then, the operator B defined in (4. 2) satisfies

B ∈ Lc(D(A), D(A)).

Proof of Lemma 4.1. We have to prove that w0 ∈ D(A) =⇒ µw0 ∈ H1
α(0, 1), and

that there exists C > 0 such that

(4. 4) ‖µw0‖H1
α(0,1)

≤ C‖w0‖D(A).

We distinguish the cases α ∈ [0, 1) and α ∈ [1, 2).
α ∈ [0, 1)α ∈ [0, 1)α ∈ [0, 1): we can decompose w′0 as follows w′0 = (xα/2w′0)(x−α/2). Since w0 ∈

H1
α(0, 1), we deduce that w′0 ∈ L1(0, 1) and thus w0 ∈ L∞(0, 1). The same holds

for µ because V 1
α = H1

α(0, 1) for α ∈ [0, 1). Hence, (µw0)′ = µ′w0 + µw′0 ∈
L1(0, 1) and therefore µw0 is absolutely continuous on [0, 1]. Furthermore, we
have that xα/2(µw0)′ = (xα/2µ′)w0 + µ(xα/2w′0) ∈ L2(0, 1) and so we infer that
µw0 ∈ H1

α(0, 1). Finally, there exists C > 0 such that

∀w ∈ H1
α(0, 1), ‖w‖L∞(0,1) ≤ C‖w‖H1

α(0,1)
,

and this implies that (4. 4) holds.
α ∈ [1, 2)α ∈ [1, 2)α ∈ [1, 2): first, we observe that µ ∈ V 1,∞

α (0, 1) implies that |µx| ≤ C
xα/2

.

Therefore, we get that µx ∈ L1(0, 1), and so µ ∈ L∞(0, 1) and µw0 ∈ L2(0, 1).
Moreover, xα/2(µw0)′ = (xα/2µx)w0 + (xα/2w′0)µ and since xα/2µx ∈ L∞(0, 1)
and w0 ∈ L2(0, 1), we have that (xα/2µx)w0 ∈ L2(0, 1). Furthermore, since
xα/2w′0 ∈ L2(0, 1) and µ ∈ L∞(0, 1), we deduce that (xα/2w′0)µ ∈ L2(0, 1) and
hence xα/2(µw0)′ ∈ L2(0, 1). By reasoning as in the case α ∈ [0, 1), we deduce that
(4. 4) is verified. �
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The proof of Proposition 2.2 follows in a classical way from a fixed point argu-
ment, considering the map

K : C0([0, T ], D(A))→ C0([0, T ], D(A))

defined by

∀ t ∈ [0, T ], K(W)(t) := eAtW0+ ∈ T tαeA(t−s)(p(s)BW(s) + F(s)) ds.

Moreover, using Gronwall’s lemma, one can prove that there exists C = C(α, T, p) >
0 such that the fixed point W satisfies

(4. 5) ‖W‖C0([0,T ],D(A)) ≤ C
(
‖W0‖D(A) + ‖F‖L2(0,T ;D(A))

)
.

(See the Supplementary material or [9, Proposition 2.3] for a complete proof.) �

5. Spectral problem: proof of Proposition 3.1

We split the proof of Proposition 3.1 into five steps, each of which is treated in
one of the subsections below.

5.1. A classical change of variables.
First we note that if (λ,Φ) solves (3. 1), then λ ≥ 0: indeed, multiplying by Φ,

we obtain

λ

∫ 1

0

Φ2 =

∫ 1

0

−(xαΦ′)′Φ = [−(xαΦ′)Φ]10 +

∫ 1

0

xα(Φ′)2 =

∫ 1

0

xα(Φ′)2.

Moreover, if λ = 0, then x 7→ xαΦ′ is constant and by imposing the boundary
conditions we find that it is actually equal to 0. Thus, the constant functions are
the only ones associated to the eigenvalue λ = 0.

We now investigate the positive eigenvalues: if λ > 0, we introduce the function
ψ and the associated new space variable defined by the relations

Φ(x) = x
1−α
2 ψ

( 2

2− α
√
λx

2−α
2

)
, y =

2

2− α
√
λx

2−α
2 ,

(see, e.g., [13, 22]). After some classical computations, we obtain that ψ satisfies
the following problem:

(5. 1)


y2ψ′′(y) + yψ′(y) +

(
y2 − ( 1−α

2−α )2
)
ψ(y) = 0, y ∈ (0, 2

2−α

√
λ),

y
1

2−αψ′(y) + 1−α
2−αy

α−1
2−αψ(y)→ 0 as y → 0,√

λψ′( 2
2−α

√
λ) + 1−α

2 ψ( 2
2−α

√
λ) = 0.

The first equation in (5. 1) is the Bessel equation of order ν = |να| (see [32] or
[30]). Our study will be based on well-known properties of Bessel functions, and it
is similar to the one in [13], the only difference, which makes the analysis interesting,
lying in the boundary condition at point x = 1. In the following, we solve (3. 1)
using (5. 1) when α ∈ [0, 1). The case α ∈ [1, 2) is similar and has been analyzed
in [9, Section 5.3].

5.2. Analysis of the ODE for α ∈ [0, 1).
In this section we solve

(5. 2) y2ψ′′(y) + yψ′(y) + (y2 − ν2)ψ(y) = 0, y ∈ I ⊂ (0,+∞)

with ν = |να| ∈
(
0, 12
]

and I =
(

0, 2
2−α

√
λ
)

. The above equation is called Bessel’s

equation for functions of order ν. The fundamental theory of ordinary differential
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equations establishes that the solutions of (5. 2) generate a vector space Sν of
dimension 2. Consider the Bessel function of order ν and of the first kind Jν

(5. 3) Jν(y) :=

∞∑
m=0

(−1)m

m! Γ(m+ ν + 1)

(y
2

)2m+ν

=

∞∑
m=0

c+ν,my
2m+ν , y > 0.

and J−ν

(5. 4) J−ν(y) :=

∞∑
m=0

(−1)m

m! Γ(m− ν + 1)

(y
2

)2m−ν
=

∞∑
m=0

c−ν,my
2m−ν , y > 0.

Since ν 6∈ N, the functions Jν and J−ν are linearly independent and therefore the
pair (Jν , J−ν) forms a fundamental system of solutions of (5. 2), (see [32, section
3.1, eq. (8), p. 40], [32, section 3.12, eq. (2), p. 43] or [30, eq. (5.3.2), p. 102])).
Hence,
(5. 5)

ψ solution of (5. 2) on I =⇒ ∃ C+, C− ∈ R, ψ = C+J|να| + C−J−|να|.

Thus, going back to the original variables, we obtain that

(5. 6) −(xαΦ′)′ = λΦ on (0, 1) =⇒ ∃ C+, C− ∈ R,Φ = C+Φ+ + C−Φ−,

with

(5. 7) Φ+(x) = x
1−α
2 J|να|

( 2

2− α
√
λx

2−α
2

)
=

∞∑
m=0

c̃+α,λ,mx
1−α+(2−α)m

and

(5. 8) Φ−(x) = x
1−α
2 J−|να|

( 2

2− α
√
λx

2−α
2

)
=

∞∑
m=0

c̃−α,λ,mx
(2−α)m.

Observe that thanks to the above series development, it is possible to check that
Φ+,Φ− ∈ H2

α(0, 1). Hence, any linear combination of Φ+ and Φ− belongs to
H2
α(0, 1).

5.3. Information given by the boundary condition at x = 0 for α ∈ [0, 1).
An eigenfunction must satisfy additionally the boundary conditions. In particu-

lar, we should have that xαΦ′(x)→ 0 as x→ 0. We observe that

xαΦ′−(x)→ 0 as x→ 0,

while

xαΦ′+(x)→ c̃+α,λ,0(1− α) 6= 0 as x→ 0.

Therefore, we conclude that{
−(xαΦ′)′ = λΦ, x ∈ (0, 1)

(xαΦ′)(0) = 0
=⇒ ∃ C− ∈ R,

{
Φ(x) = C−Φ−(x),

x ∈ (0, 1),

5.4. Information given by the boundary condition at x = 1 for α ∈ [0, 1).
As regards the boundary condition at x = 1, Φ has to solve Φ′(1) = 0. We

compute Φ′−:

Φ′−(x) =
1− α

2
x
−1−α

2 Jνα

( 2

2− α
√
λx

2−α
2

)
+x

1−α
2

√
λx−α/2J ′να

( 2

2− α
√
λx

2−α
2

)
.

Hence, if Φ is an eigenfunction, C− 6= 0 and Φ′−(1) = 0, therefore

(5. 9)
1− α

2
Jνα

( 2

2− α
√
λ
)

+
√
λJ ′να

( 2

2− α
√
λ
)

= 0.
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This is the equation that characterizes the eigenvalues λ. Multiplying by 2
2−α and

introducing the variable Xλ = 2
2−α

√
λ, (5. 9) becomes

(5. 10) −να Jνα(Xλ) +Xλ J
′
να(Xλ) = 0.

We now consider the following well-known relation (see [32, p. 45, formula (4)])

(5. 11) z J ′ν(z)− ν Jν(z) = z Jν+1(z).

Combining (5. 10) and (5. 11), we obtain that

(5. 12) 0 = −να Jνα(Xλ) +Xλ J
′
να(Xλ) = XλJνα+1(Xλ),

which implies that

(5. 13) Jνα+1(Xλ) = 0.

Thus, the possible values for Xλ are the positive zeros of Jνα+1:

∃n ≥ 1 :
2

2− α
√
λ = Xλ = jνα+1,n.

We obtain that the eigenvalues of (3. 1) have the following form:

∃n ≥ 1 : λn = κ2αj
2
να+1,n.

Vice-versa, given n ≥ 1, consider

λn := κ2α j
2
να+1,n and Φn(x) = x

1−α
2 Jνα

(
jνα+1,nx

2−α
2

)
.

From the previous analysis we deduce that Φn ∈ H2
α(0, 1) and that (λn,Φn) solves

(3. 1).
Finally, the proof of (3. 4) follows directly from [29, p. 135]: since να + 1 ≥ 1

2 ,
the sequence (jνα+1,n+1 − jνα+1,n)n≥1 is nonincreasing and

jνα+1,n+1 − jνα+1,n → π as n→∞.

This concludes the proof of Proposition 3.1 for α ∈ [0, 1).
When α ∈ [1, 2), several cases have to be distinguished depending on whether να

is an integer or not. The study involves Bessel’s functions of order ν and of second
kind when να ∈ N, see [32, section 3.54, eq. (1)-(2), p. 64] or [30, eq. (5.4.5)-(5.4.6),
p. 104]). We refer to [9, Propositions 3.1 and 3.2] for a complete discussion of the
spectral problem.

5.5. Additional information on the eigenfunctions.

Lemma 5.1. Let α ∈ [0, 2) and n ≥ 1. Then, Φα,n has finite limits as x → 0+

and x→ 1−, and satisfies

(5. 14) |Φα,n(1)| =
√

2− α,

and

(5. 15) Φα,n(0) ∼ 1

Γ(να + 1)2να

√
(2− α)π

2
(jνα+1,n)

1
2+να as n→ +∞.

In particular, the sequence (Φα,n(0))n≥1 is unbounded for any α > 0.

Proof of Lemma 5.1. First, we note that jνα+1,n is not a zero of Jνα . Indeed, if
Jνα(jνα+1,n) = 0, we derive from (5. 11) that J ′να(jνα+1,n) = 0, and then the
Cauchy problem satisfied by Jνα would imply that Jνα is constantly equal to zero.

We also derive from (5. 11) that

(5. 16) J ′να(jνα+1,n) =
να

jνα+1,n
Jνα(jνα+1,n).
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We compute the value of the constant Kα,n that appears in (3. 2)

1 = K2
α,n

∫ 1

0

x1−α Jνα

(
jνα+1,n x

2−α
2

)2
dx =

2K2
α,n

2− α

∫ 1

0

y Jνα

(
jνα+1,n y

)2
dy,

and using [30, formula (5.14.5) p.129] and (5. 16), we obtain

(5. 17) ∀α ∈ [0, 1),∀n ≥ 1, Kα,n =

√
2− α

|Jνα(jνα+1,n)|
.

Hence, (5. 14) is satisfied and we have that

(5. 18) Φα,n(0) =

√
2− α

|Jνα(jνα+1,n)|
1

Γ(να + 1)2να
(jνα+1,n)να .

Moreover, from the following classical asymptotic development ([30, formula (5.11.6)
p. 122])

(5. 19) Jν(z) =

√
2

πz

[
cos(z − νπ

2
− π

4
)(1 +O(

1

z2
)) +O(

1

z
)
]

as z →∞

we deduce that

(5. 20) zJν(z)2 + zJν+1(z)2 → 2

π
as z → +∞.

Applying (5. 20) to z = jνα+1,n and using (5. 18), we finally obtain (5. 15). �

6. Proof of Proposition 3.2

The proof of Proposition 3.2 is based on several steps, the first one consists in
analyzing the eigenvalues and eigenfunctions of the operator A.

6.1. Eigenvalues and eigenfunctions of A.
Let us give the following preliminary result.

Lemma 6.1. Consider, for all n ∈ Z,

(6. 1) ωα,n :=


−
√
λα,|n|, n ≤ −1,

0, n = 0,√
λα,n, n ≥ 1,

and Ψα,n :=

(
1

iωα,n

)
Φα,|n|.

Then, {ωα,n}n∈Z and {Ψα,n}n∈Z fulfill

(6. 2) ∀n ∈ Z, AΨα,n = i ωα,n Ψα,n.

The proof of Lemma 6.1 is immediate, see the Supplementary material or [9,
Lemma 6.1].

6.2. Two integral expressions for the solution of (3. 9).
Since the family {Φα,n}n∈N is an orthonormal basis of L2(0, 1), we can decompose

the solution w(p) of (3. 9) under the form

w(p)(x, t) =

∞∑
n=0

wn(t)Φα,n(x).

Introducing

(6. 3) rn(t) = 〈p(t)µ(·)w(p)(·, t),Φα,n〉L2(0,1),

we deduce from (3. 9) that the sequence (wn(t))n≥0 satisfies{
w′′0 (t) = r0(t),

w0(0) = 1, w′0(0) = 0,
and

{
w′′n(t) + λα,nwn(t) = rn(t),

wn(0) = 0, w′n(0) = 0,
∀n ≥ 1.
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Solving these Cauchy problems, we obtain that the solution of (3. 9) satisfies

w(p)(x, t) =
(

1 +

∫ t

0

r0(s)(t− s) ds
)

+

∞∑
n=1

(∫ t

0

rn(s)
sin
√
λα,n(t− s)√
λα,n

ds
)

Φα,n(x),

and

w
(p)
t (x, t) =

(∫ t

0

r0(s)ds
)

+

∞∑
n=1

(√
λα,n

∫ t

0

rn(s)
cos
√
λα,n(t− s)√
λα,n

ds
)

Φα,n(x).

Denoting

(6. 4) Γ
(p)
0 (T ) =

(
1 +

∫ T
0
r0(s)(T − s) ds∫ T
0
r0(s) ds

)
=

(
γ
(p)
00 (T )

γ
(p)
01 (T )

)
,

and

(6. 5) ∀n ∈ Z∗, γ(p)n (T ) =

∫ T

0

r|n|(s) e
−iωα,ns ds,

one can check (see [9, Section 6.2]) that

(6. 6)

(
w(p)(x, T )

w
(p)
t (x, T )

)
= Γ

(p)
0 (T ) +

∑
n∈Z∗

1

2iωα,n
γ(p)n (T ) Ψα,n(x) eiωα,nT .

Formula (6. 6) shows the role of the functions (x, t) 7→ Ψα,n(x) eiωα,nt, which are
solution of the homogeneous equation

(Ψα,n(x) eiωα,nt)t = A(Ψα,n(x) eiωα,nt).

6.3. A sufficient condition to prove Proposition 3.2.
We derive from (6. 6) that w(p)(T ) ∈ H3

(α)(0, 1) if and only if

∞∑
n=1

λ3α,n

∣∣∣ 1

2iωα,n

(
γ(p)n (T ) eiωα,nT − γ(p)−n(T ) e−iωα,nT

)∣∣∣2 <∞,
and that w

(p)
t (T ) ∈ H2

(α)(0, 1) if and only if

∞∑
n=1

λ2α,n

∣∣∣1
2

(
γ(p)n (T ) eiωα,nT + γ

(p)
−n(T ) e−iωα,nT

)∣∣∣2 <∞.
Therefore,

(6. 7)
∑
n∈Z

λ2α,|n| |γ
(p)
n (T )|2 <∞ =⇒ (w(p)(T ), w

(p)
t (T )) ∈ H3

(α)(0, 1)×D(A),

that is, the hidden regularity stated in Proposition 3.2. Hence, to prove Proposition
3.2, it is sufficient to prove that

(6. 8)
∑
n∈Z

λ2α,|n| |γ
(p)
n (T )|2 <∞,

or, equivalently, using (6. 5) and (6. 3), that

(6. 9)

∞∑
n=1

λ2α,|n|

∣∣∣∫ T

0

p(s)〈µ(·)w(p)(·, s),Φα,n〉L2(0,1) e
iωα,ns ds

∣∣∣2 <∞.
This kind of result is related to the regularity in (x, t) of the function (x, t) 7→
p(t)µ(x)w(p)(x, t) (through its Fourier coefficients in x and its nonharmonic Fourier
coefficients in t). The proof of (6. 9) will be a direct consequence of the following
regularity results (see Lemmas 6.2 and 6.3).
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6.4. Regularity results for proving Proposition 3.2.
We introduce the following closed subspace of H2

α(0, 1)

(6. 10) W (2,0)
α := {w ∈ H2

α(0, 1), (xαwx)(0) = 0},

and we will prove the following regularity results:

Lemma 6.2. Let T > 0, p ∈ L2(0, T ), g ∈ C0([0, T ],W
(2,0)
α (0, 1)). Consider the

sequence (S
(p,g)
n )n≥1 defined by

(6. 11) ∀n ≥ 1, S(p,g)
n =

∫ T

0

p(s) 〈g(·, s),Φα,n〉L2(0,1) e
i
√
λα,ns ds.

Then, there exists a constant C(α, T ) > 0 independent of p ∈ L2(0, T ) and g ∈
C0([0, T ],W 2,0

α (0, 1)) such that

(6. 12)
( ∞∑
n=1

λ2α,n |S(p,g)
n |2

)1/2
≤ C(α, T ) ‖p‖L2(0,T ) ‖g‖C0([0,T ],W

(2,0)
α (0,1))

.

Lemma 6.3. If µ ∈ V 2
α (defined in (3. 10)) and w ∈ C0([0, T ], D(A)), then µw ∈

C0([0, T ],W
(2,0)
α (0, 1)). Moreover, there exists C(α, T ) > 0, independent of µ ∈ V 2

α

and w ∈ C0([0, T ], D(A)), such that

(6. 13) ‖µw‖
C0([0,T ],W

(2,0)
α (0,1))

≤ C(α, T ) ‖µ‖V 2
α
‖w‖C0([0,T ],D(A)).

In the following section, we will prove Lemma 6.2. The proof of Lemma 6.3 is
classical, see the Supplementary material or [9, Lemma 6.7].

Proof of Proposition 3.2 assuming Lemmas 6.2 and 6.3. By applying Lemma 6.3

with w = w(p), we obtain that µw(p) ∈ C0([0, T ],W
(2,0)
α (0, 1)). Then, from Lemma

6.2, with g = µw(p), we deduce that (6. 9) holds true and then (6. 7) shows that

(w(p)(T ), w
(p)
t (T )) ∈ H3

(α)(0, 1) ×D(A), which completes the proof of Proposition

3.2. �

6.5. Proof of Lemma 6.2.
We proceed as in [6], and the properties of the space W

(2,0)
α (0, 1) will be crucial to

overcome some new difficulties. (Note that W
(2,0)
α (0, 1) = H2

α(0, 1) for α ∈ [1, 2).)
First, using that −λα,nΦα,n = (xαΦ′α,n)′, we derive that

(6. 14) −λα,n S(p,g)
n =

∫ T

0

p(s) 〈g(·, s), (xαΦ′α,n)′〉L2(0,1) e
i
√
λα,ns ds.

Then, integrating twice by parts, we have

〈g(·, s), (xαΦ′α,n)′〉L2(0,1) = [g(x, s))xαΦ′α,n(x)]10

− [xαg′(x, s)Φα,n(x)]10 +

∫ 1

0

(xαg′(x, s))′Φα,n(x) dx.

Using the above expression of the scalar product in (6. 14), we get

(6. 15) −λα,n S(p,g)
n = S(1)

n − S(2)
n + S(3)

n ,

with

(6. 16) ∀ i ∈ {1, 2, 3}, S(i)
n =

∫ T

0

h(i)n (s) ei
√
λα,ns ds,



15

and associated functions

(6. 17)

h
(1)
n (s) = p(s) [g(x, s)xαΦ′α,n(x)]x=1

x=0,

h
(2)
n (s) = p(s) [xαgx(x, s)Φα,n(x)]x=1

x=0,

h
(3)
n (s) = p(s) 〈(xαgx)x,Φα,n〉L2(0,1).

6.5.a. Study of h
(1)
n and (S

(1)
n )n.

We claim that

(6. 18) ∀n ≥ 1, h(1)n = 0 in L2(0, T ),

which will imply that

(6. 19) ∀n ≥ 1, S(1)
n = 0.

Indeed, since g(·, s) ∈ H2
α(0, 1), then g(·, s) ∈ H1( 1

2 , 1) and has a finite limit as
x → 1. Therefore, thanks to the Neumann boundary condition Φ′α,n(1) = 0, we
deduce that g(x, s)xαΦ′α,n(x)→ 0 as x→ 1. For x→ 0, we have to distinguish the
cases of weak and strong degeneracy:

• α ∈ [0, 1)α ∈ [0, 1)α ∈ [0, 1): we observe that gx(x, s) = (xα/2gx(x, s))x−α/2, which implies
that gx(·, s) ∈ L1(0, 1). Therefore, g(·, s) has a finite limit as x → 0.
Furthermore, since xαΦ′α,n(x) → 0 as x → 0, (6. 18) holds true when
α ∈ [0, 1),

• α ∈ [1, 2)α ∈ [1, 2)α ∈ [1, 2): from (3. 3) we deduce that there exists Cα,n > 0 such that
|xαΦ′α,n(x)| ≤ Cα,nx. Moreover, it is possible to check that (xg(x, s))x ∈
L1(0, 1) and thus x 7→ xg(x, s) has a finite limit as x→ 0. Such a limit has
to be equal to 0 since g(·, s) ∈ L2(0, 1). Hence, (6. 18) holds true.

We refer to [9, Lemma 6.4] for a more detailed proof.

6.5.b. Study of h
(3)
n and (S

(3)
n )n.

Notice that

|S(3)
n |2 ≤

(∫ T

0

|h(3)n (s)| ds
)2
≤ ‖p‖2L2(0,T )

(∫ T

0

|〈(xαgx)x,Φα,n〉L2(0,1)|2 ds
)
,

hence, applying Parseval’s equality, we obtain that

∞∑
n=1

|S(3)
n |2 ≤ ‖p‖2L2(0,T )

(∫ T

0

∞∑
n=1

|〈(xαgx)x,Φα,n〉L2(0,1)|2 ds
)

≤ ‖p‖2L2(0,T )

(∫ T

0

‖(xαgx)x‖2L2(0,1) ds
)
≤ ‖p‖2L2(0,T )T‖g‖

2

C0([0,T ],W
(2,0)
α (0,1))

,

which will be useful to prove (6. 12).

6.5.c. Study of h
(2)
n and (S

(2)
n )n.

From the definition (6. 17) of h
(2)
n , using the fact that xαgx(x, s)→ 0 as x→ 0

(g(·, s) ∈ W (2,0)
α (0, 1)) and that Φα,n has finite limits in 0 and 1 (Lemma 5.1), we

obtain that

h(2)n (s) = ±
√

2− α gx(1, s) p(s),

where the sign ± is determined by the sign of Φ′α,n(1). Therefore,

∞∑
n=1

|S(2)
n |2 =

∞∑
n=1

∣∣∣∫ T

0

h(2)
n (s) ei

√
λα,ns ds

∣∣∣2 = (2− α)
∞∑
n=1

∣∣∣∫ T

0

gx(1, s) p(s) e
i
√
λα,ns ds

∣∣∣2,
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Observe that Proposition 3.1 implies that

∀α ∈ [0, 2), ∀n ≥ 1,
√
λα,n+1 −

√
λα,n ≥

2− α
2

π,

and so we can apply a general result of Ingham (see, e.g., [29, Theorem 4.3], gen-
eralized by Haraux [23], see also [7, Theorem 6]), and we deduce that given

T1 >
2π

2−α
2 π

=
4

2− α
= Tα,

there exist C1(α, T1), C2(α, T1) > 0 such that, for for every sequence (cn)n≥1 with
finite support and complex values, it holds that

(6. 20) C1

∞∑
n=1

|cn|2 ≤
∫ T1

0

∣∣∣ ∞∑
n=1

cne
i
√
λα,nt

∣∣∣2 dt ≤ C2

∞∑
n=1

|cn|2.

If T1 > Tα, (6. 20) implies that the sequence (ei
√
λα,nt)n≥1 is a Riesz basis of

Vect {ei
√
λα,nt, n ≥ 1} ⊂ L2(0, T1) (see [7, Proposition 19, point (2)]). Thus, we

infer that for all T > 0, there exists a positive constant CI(α, T ) such that

(6. 21) ∀ f ∈ L2(0, T ),

∞∑
n=1

∣∣∣∫ T

0

f(t)ei
√
λα,nt dt

∣∣∣2 ≤ CI(α, T )‖f‖2L2(0,T ).

Indeed, if T > Tα then (6. 21) comes directly by applying [7, Proposition 19, point
(3)]. Otherwise, if T ≤ Tα, it is sufficient to extend f by 0 on (T, Tα), see [7,
Corollary 4].

Finally, from (6. 21) with f(t) = gx(1, t) p(t), we obtain that
∞∑
n=1

|S(2)
n |2 ≤ (2− α)CI(α, T )‖gx(1, ·)p‖2L2(0,T ).

By the continuous injection of H1(0, 1) into C0([0, 1]), there exists a positive con-
stant C∞ such that

|gx(1, s)| ≤ C∞‖g(·, s)‖H2
α(0,1)

≤ C∞‖g‖C0([0,T ],W
(2,0)
α (0,1))

,

which gives
∞∑
n=1

|S(2)
n |2 ≤ C ′ ‖gx(1, ·)p‖2L2(0,T ) ‖g‖

2

C0([0,T ],W
(2,0)
α (0,1))

.

Therefore, the above results on S
(1)
n , S

(2)
n and S

(3)
n yield (6. 12) and conclude the

proof of Lemma 6.2. �

6.6. Complement to Proposition 3.2.
Thanks to Proposition 3.2, if µ ∈ V 2

α , one can consider the application

(6. 22) ΘT : L2(0, T )→ H3
(α) ×D(A), ΘT (p) := (w(p)(T ), w

(p)
t (T )).

We prove the following

Lemma 6.4. The map ΘT (defined in (6. 22)) is of class C1, and, fixed p ∈
L2(0, T ), the map DΘT (p) : L2(0, T )→ H3

(α)(0, 1)×D(A) is given by

DΘT (p) · q = (W (p,q)(T ),W
(p,q)
t (T )),

where W (p,q) is the solution of
(6. 23)

W
(p,q)
tt − (xαW

(p,q)
x )x = p(t)µ(x)W (p,q) + q(t)µ(x)w(p), x ∈ (0, 1), t ∈ (0, T ),

(xαW
(p,q)
x )(x = 0, t) = 0, W

(p,q)
x (x = 1, t) = 0, t ∈ (0, T ),

W (p,q)(x, 0) = 0, W
(p,q)
t (x, 0) = 0, x ∈ (0, 1).
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Proof of Lemma 6.4. We start by proving that ΘT is differentiable at every p ∈
L2(0, T ). Let p0, q ∈ L2(0, T ). Consider w(p0) solution of (3. 9) with p = p0,
and w(p0+q) solution of (3. 9) with p = p0 + q. Formally, let us write a limited
development of w(p0+q) with respect to q:

w(p0+q) = w(p0) +W1(q) + · · · .

We use this development in (3. 9) to find the equation satisfied by the supposed
first order term W1(q): denoting

Pw := wtt − (xαwx)x,

we have

P (w(p0) +W1(q) + · · · ) =
(
p0(t) + q(t)

)
µ(x)

(
w(p0) +W1(q) + · · ·

)
,

hence we deduce that W1(q) is solution of

PW1(q) = p0(t)µ(x)W1(q) + q(t)µ(x)w(p0),

which is the motivation to consider W1(q) as the solution of (6. 23) with p = p0,
that is, W1(q) = W (p0,q). So, we introduce

(6. 24) v(p0,q) := w(p0+q) − w(p0) −W (p0,q),

and we have that

ΘT (p0 + q) = ΘT (p0) + (W (p0,q)(T ),W
(p0,q)
t (T )) + (v(p0,q)(T ), v

(p0,q)
t (T )).

By using Lemma 6.2, one can prove the following lemmas (see the Supplementary
material or [9, Lemmas 6.8 and 6.9] for the proofs):

Lemma 6.5. The application

L2(0, T )→ H3
(α)(0, 1)×D(A)

q 7→ (W (p0,q)(T ),W
(p0,q)
t (T ))

is well-defined, linear and continuous.

Lemma 6.6. The application

L2(0, T )→ H3
(α)(0, 1)×D(A)

q 7→ (v(p0,q)(T ), v
(p0,q)
t (T ))

is well-defined, and satisfies

(6. 25)
‖(v(p0,q)(T ), v

(p0,q)
t (T ))‖H3

(α)
(0,1)×D(A)

‖q‖L2(0,T )
→ 0, as ‖q‖L2(0,T ) → 0.

Then, we conclude that ΘT is differentiable at p0 and that

DΘT (p0) · q = (W (p0,q)(T ),W
(p0,q)
t (T )).

With the same argument, one can prove that ΘT is of class C1, and this concludes
the proof of Lemma 6.4. �

7. Reachability when T > Tα: proof of Theorem 3.1

The proof follows from the classical inverse mapping theorem applied to the
function ΘT : L2(0, T ) → H3

(α) × D(A) at the point p0 = 0. We recall that

ΘT (p0 = 0) = (1, 0). In what follows we study DΘT (0).
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7.1. Surjectivity of DΘT (0): study of the associated moment problem.
The key point of the proof of Theorem 3.1 is the following result:

Lemma 7.1. Let µ ∈ V (adm) (defined in (3. 13)) and T > Tα. Then, the linear
application

DΘT (0) : L2(0, T )→ H3
(α) ×D(A)

q 7→ (W (0,q)(T ),W
(0,q)
t (T ))

is surjective, and

DΘT (0) : Vect {1, t, cos
√
λα,nt, sin

√
λα,nt, n ≥ 1} → H3

(α) ×D(A)

is invertible.

Proof of Lemma 7.1. Since w(0) = 1, (6. 23) implies that W (0,q) is solution of
the following linear problem

(7. 1)


W

(0,q)
tt − (xαW

(0,q)
x )x = q(t)µ(x), x ∈ (0, 1), t ∈ (0, T ),

(xαW
(0,q)
x )(x = 0, t) = 0, W

(0,q)
x (x = 1, t) = 0, t ∈ (0, T ),

W (0,q)(x, 0) = 0, W
(0,q)
t (x, 0) = 0, x ∈ (0, 1).

Following the procedure of section 6.2, we introduce

(7. 2) rn(s) = 〈q(s)µ,Φα,n〉L2(0,1) = µα,nq(s) with µα,n = 〈µ,Φα,n〉L2(0,1),

and we can express the solution of (7. 1) at time T , (W (0,q)(T ),W
(0,q)
t (T )) as

follows

W (0,q)(x, T ) =

∫ T

0

r0(s)(T − s) ds+

∞∑
n=1

(∫ T

0

rn(s)
sin
√
λα,n(T − s)√
λα,n

ds
)

Φα,n(x),

and

W
(0,q)
t (x, T ) =

∫ T

0

r0(s) ds+

∞∑
n=1

(√
λα,n

∫ T

0

rn(s)
cos
√
λα,n(T − s)√
λα,n

ds
)

Φα,n(x).

To prove the surjectivity of DΘT (0), we choose any pair (Y f , Zf ) ∈ H3
(α) ×D(A),

and we have to show that there exists q ∈ L2(0, T ) such that

(7. 3) (W (0,q)(T ),W
(0,q)
t (T )) = (Y f , Zf ).

Introducing the Fourier coefficients of the target state

Y fα,n = 〈Y f ,Φα,n〉L2(0,1) and Zfα,n = 〈Zf ,Φα,n〉L2(0,1),

we have that (7. 3) is satisfied if and only if

(7. 4)



∫ T
0
r0(s) ds = Zfα,0,√
λα,n

∫ T
0
rn(s)

cos
√
λα,n(T−s)√
λα,n

ds = Zfα,n, for all n ≥ 1,∫ T
0
rn(s)

sin
√
λα,n(T−s)√
λα,n

ds = Y fα,n, for all n ≥ 1,∫ T
0
r0(s)(T − s) ds = Y fα,0.

We define the function

Q(s) := q(T − s),
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and, using (7. 2), we rewrite problem (7. 4) as

(7. 5)


µα,0

∫ T
0
Q(t) dt = Zfα,0,

µα,n
∫ T
0
Q(t) cos

√
λα,nt dt = Zfα,n, for all n ≥ 1,

µα,n
∫ T
0
Q(t) sin

√
λα,nt dt =

√
λα,n Y

f
α,n, for all n ≥ 1,

µα,0
∫ T
0
Q(t) t dt = Y fα,0.

System (7. 5) is usually called moment problem. Observe that (7. 5) can only be
solved in full generality if µα,n 6= 0 for all n ≥ 0, which is contained in assumption
(3. 13).

Let us introduce the coefficients

(7. 6)

A
f
α,0 :=

Zfα,0
µα,0

,

Bfα,0 :=
Y fα,0
µα,0

,
and

Afα,n :=
Zfα,n
µα,n

,

Bfα,n :=

√
λα,n Y

f
α,n

µα,n
,

∀n ≥ 1,

and the functions defined on (0, T ):

(7. 7)

{
cα,0 : t 7→ 1,

s̃α,0 : t 7→ t,
and

{
cα,n : t 7→ cos

√
λα,nt

sα,n : t 7→ sin
√
λα,nt

∀n ≥ 1.

So, (7. 5) becomes

(7. 8)


〈Q, cα,0〉L2(0,T ) = Afα,0,

〈Q, cα,n〉L2(0,T ) = Afα,n for all n ≥ 1,

〈Q, sα,n〉L2(0,T ) = Bfα,n for all n ≥ 1,

〈Q, s̃α,0〉L2(0,T ) = Bfα,0.

We are going to prove that system (7. 8) has (at least) a solution Q in two steps:

• we prove that the reduced system

(7. 9)


〈Q, cα,0〉L2(0,T ) = Afα,0,

〈Q, cα,n〉L2(0,T ) = Afα,n for all n ≥ 1,

〈Q, sα,n〉L2(0,T ) = Bfα,n for all n ≥ 1

has at least a solution Qα,
• using Qα, we construct a solution Q of the full system (7. 8) (by using a

suitable orthogonal projection).

We use results stated in [7, Appendix] (see also [15]).
Step 1: Existence of a solution of the reduced system (7. 9). We consider the

space

Eα := Vect {cα,0, cα,n, sα,n, n ≥ 1},
which is a closed subspace of L2(0, T ). To solve the reduced system, we use
the following characterization of Riesz Basis (see ([7, Prop. 19]): the family
{cα,0, cα,n, sα,n, n ≥ 1} is a Riesz basis of Eα if and only if there exist C1(α, T ), C2(α, T ) >
0 such that, for all N ≥ 1 and for any (an)0≤n≤N , (bn)1≤n≤N it holds that

(7. 10) C1

(
a20 +

N∑
n=1

a2n + b2n

)
≤
∫ T

0

∣∣∣S(a,b)
N (t)

∣∣∣2 dt ≤ C2

(
a20 +

N∑
n=1

a2n + b2n

)
,

where

(7. 11) S
(a,b)
N (t) = a0cα,0(t) +

N∑
n=1

ancα,n(t) + bnsα,n(t).

Now, recalling the definition (6. 1) of (ωα,n)n∈Z, since ωα,n+1−ωα,n > 0 for all n ∈
Z and ωα,n+1−ωα,n ≥ 2−α

2 π for all |n| ≥ 2, we can apply a general result of Haraux
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[23] (see also [7, Theorem 6]) that ensures that if T > 2π
2−α
2 π

= 4
2−α = Tα, then

there exist C
(T )
1 , C

(T )
2 > 0 independent of N and of the coefficients (dn)−N≤n≤N

such that

(7. 12) C
(T )
1

N∑
n=−N

|dn|2 ≤
∫ T

0

∣∣∣ N∑
n=−N

dne
iωα,nt

∣∣∣2 dt ≤ C(T )
2

N∑
n=−N

|dn|2.

For any real valued sequences (an)n≥0 and (bn)n≥1, we can always define the com-
plex valued sequence (dn)n∈Z defined by

dn =
a−n

2
− b−n

2i
, for n ≤ −1, d0 = a0, dn =

an
2

+
bn
2i

for n ≥ 1.

Then we have that

S
(a,b)
N (t) := a0cα,0(t) +

N∑
n=1

an cosωα,n(t) + bn sinωα,n(t) =

N∑
n=−N

dne
iωα,nt,

and
N∑

n=−N
|dn|2 = a20 + 2

N∑
n=1

a2n + b2n
4

.

Therefore we get that (7. 12) implies that (7. 10) holds true, and so the family
{cα,0, cα,n, sα,n, n ≥ 1} is a Riesz basis of Eα. Thus, the application F : Eα →
`2(N):

F(f) = (〈f, cα,0〉L2(0,T ), 〈f, cα,1〉L2(0,T ), 〈f, sα,1〉L2(0,T ), 〈f, cα,2〉L2(0,T ), · · · )
is an isomorphism (see, e.g., [7, Proposition 20]). Finally, we note that (3. 13)
ensures us that if Y f ∈ H3

(α)(0, 1) and Zf ∈ D(A), then the sequences (Afα,n)n and

(Bfα,n)n belong to `2(N). Therefore, there exists a unique Qα ∈ Eα such that

F(Qα) = (Afα,0, A
f
α,1, B

f
α,1, A

f
α,2, · · · ),

and the application

`2(N)→ Eα, (Afα,0, A
f
α,1, B

f
α,1, A

f
α,2, · · · ) 7→ Qα

is continuous. This proves the continuous solvability of the reduced system (7. 9).
Step 2: Existence of a solution of the full system (7. 8). We claim that s̃α,0 /∈ Eα:

indeed, if t 7→ t was the limit of a sequence of linear combinations of cα,0, cα,n and
sα,n, the same would be true for the function t 7→ t2, by integration. Then, by
iterating this procedure, we deduce that all the polynomials could be written in
this form. Therefore, L2(0, T ) would be equal to Eα and (7. 9) would have a
unique solution. However, this is not the case. Indeed, suppose that Eα = L2(0, T )
and consider the sequences

∀n ≥ 0, Ãfα,n = 〈1, cα,n〉L2(0,T ) =

∫ T

0

cα,n(s) ds,

∀n ≥ 1, B̃fα,n = 〈1, sα,n〉L2(0,T ) =

∫ T

0

sα,n(s) ds.

By integration, we obtain that
∑
n≥1 |Ãfα,n|2 + |B̃fα,n|2 < ∞ (thanks to (3. 3) and

(8. 4)). Let T ′ ∈ (Tα, T ). We can choose, for example, T ′ = T+Tα
2 . From Step 1,

the following problem

(7. 13)


〈Q̃α, cα,0〉L2(0,T ′) = Ãfα,0,

〈Q̃α, cα,n〉L2(0,T ′) = Ãfα,n for all n ≥ 1,

〈Q̃α, sα,n〉L2(0,T ′) = B̃fα,n for all n ≥ 1,
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has at least a solution Q̃α ∈ L2(0, T ′). We extend function Q̃α to 0 on (T ′, T ).
Then, such extended function satisfies

(7. 14)


〈Q̃α, cα,0〉L2(0,T ) = Ãfα,0,

〈Q̃α, cα,n〉L2(0,T ) = Ãfα,n for all n ≥ 1,

〈Q̃α, sα,n〉L2(0,T ) = B̃fα,n for all n ≥ 1.

Hence, Q̃α − 1 is orthogonal in L2(0, T ) to the family {cα,0, cα,n, sα,n, n ≥ 1}, that

generates Eα, and therefore L2(0, T ). This would imply Q̃α − 1 equal to 0, which
is not true on (T ′, T ). Thus, s̃α,0 /∈ Eα.

If we denote p⊥α,0 the orthogonal projection of s̃α,0 on Eα, then s̃α,0 − p⊥α,0 6= 0,
and

Q⊥α :=
s̃α,0 − p⊥α,0

‖s̃α,0 − p⊥α,0‖2L2(0,T )

is orthogonal to Eα, and furthermore

〈Q⊥α , s̃α,0〉L2(0,T ) = 1.

Thus,

Q := Qα + (Bfα,0 − 〈Qα, s̃α,0〉)Q⊥α
solves (7. 8). Moreover,

‖Q‖2L2(0,T ) = ‖Qα‖2L2(0,T ) + ‖
(
Bα,0 − 〈Qα, s̃α,0〉

)
Q⊥α ‖2L2(0,T )

≤ C
∞∑
n=0

|Afα,n|2 + |Bfα,n|2 = C

∞∑
n=0

1

µ2
α,n

|Zfα,n|2 +
λα,n
µ2
α,n

|Y fα,n|2

≤ C ′
∞∑
n=0

|λ∗α,n|2|Zfα,n|2 + |λ∗α,n|3|Y fα,n|2 = C ′‖(Y f , Zf )‖2H3
(α)
×D(A),

where we used the assumption on µ. This completes the proof of Lemma 7.1. �

7.2. Proof of Theorem 3.1 (inverse mapping argument).
We define the space

Fα := Vect {1, t, cos
√
λα,nt, sin

√
λα,nt, n ≥ 1}.

Then, the restriction of ΘT to Fα

Θα,T : Fα → H3
(α)(0, 1)×D(A),

p 7→ Θα,T (p) := ΘT (p)

is C1 (Lemma 6.3) and DΘα,T (0) is invertible (Lemma 7.1). Thus, the inverse
mapping theorem ensures the existence of a neighborhood V(0) ⊂ Fα and a neigh-
borhood V(1, 0) ⊂ H3

(α)(0, 1)×D(A) such that

Θα,T : V(0)→ V(1, 0)

is a C1-diffeomorphism. Hence, given (wf0 , w
f
1 ) ∈ V(1, 0), we set pf := Θ−1α,T (wf0 , w

f
1 ),

and so the solution of (3. 9) with p = pf satisfies

(w(T ), wt(T )) = ΘT (pf ) = ΘT (Θ−1α,T (wf0 , w
f
1 )) = (wf0 , w

f
1 ).

This concludes the proof of Theorem 3.1. �
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8. Reachability for T = Tα: Proof of Theorem 3.2

8.1. Proof of Theorem 3.2 first part: Reachability when α ∈ [0, 1).
The proof combines classical arguments concerning families of exponentials ([4])

in the space L2(0, T ) and the strategy of Beauchard [6]:

• we study the solvability of the moment problem (7. 4) (or equivalently
(7. 5)),
• we conclude using the inverse mapping theorem.

8.1.a. Main tools to study the solvability of the moment problem (7. 5).
We introduce the notation

(8. 1) Cfα,0 :=
Zfα,0
µα,0

, and

Cfα,n :=
Zfα,n−i

√
λα,n Y

f
α,n

µα,n
,

Cfα,−n :=
Zfα,n+i

√
λα,n Y

f
α,n

µα,n
,

∀n ≥ 1.

Then, from the definition of the natural scalar product in L2(0, T ;C), (7. 5) be-
comes

(8. 2)


〈Q, eiωα,0t〉L2(0,T ;C) = Cfα,0,

〈Q, eiωα,nt〉L2(0,T ;C) = Cfα,n for all n ≥ 1,

〈Q, eiωα,nt〉L2(0,T ;C) = Cfα,n for all n ≤ −1,

〈Q, s̃α,0〉L2(0,T ;C) = Bfα,0,

(where s̃α,0 and Bfα,0 have been defined in (7. 7) and (7. 6), respectively). We are
going to study first the solvability of the subsystem composed by the first three
equations, that is, the following moment problem

(8. 3) ∀n ∈ Z, 〈Q, eiωα,nt〉L2(0,T ;C) = Cfα,n.

8.1.b. Main solvability results.

Lemma 8.1. Let α ∈ [0, 1). Then, the sequence (eiωα,nt)n∈Z is a Riesz basis of
L2(0, Tα).

Lemma 8.2. Let α ∈ [0, 1) and T = Tα. Then, the moment problem (8. 3) has a
unique solution Q ∈ L2(0, Tα;R).

Lemma 8.3. Let α ∈ [0, 1) and T = Tα. Then, there exists a closed hyperplane of
H3

(α) ×D(A), denoted by P fα and defined in (8. 8), such that the moment problem

(8. 2) has a solution if and only if (Y f , Zf ) ∈ P fα .

8.1.c. Proofs of Lemmas 8.1, 8.2, 8.3.

Proof of Lemma 8.1. The proof follows from the Kadec’s 1
4 Theorem ([26], [33,

Theorem 1.14 p. 42]). First, we note that the sequence (ωα,n)n∈Z is odd, that is
ωα,−n = −ωα,n, and

∀n ≥ 1, ωα,n = καjνα+1,n =
2− α

2
j 1

2−α ,n
.

Mac Mahon’s formula (Watson [32, p. 506]) provides the following asymptotic
development of jν,n as n→∞:

(8. 4) jν,n = π(n+
ν

2
− 1

4
) +O(

1

n
),

from which we deduce that

(8. 5)
2

π(2− α)
ωα,n = n+

α

4(2− α)
+O(

1

n
) as n→ +∞,
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and, in particular,

2

π(2− α)
ωα,n − n→

α

4(2− α)
as n→ +∞.

Since α ∈ [0, 1), it holds that

α

4(2− α)
=

1

4

α

2− α
<

1

4
,

thus, we deduce that for any L ∈ ( 1
4

α
2−α ,

1
4 ) there exists N0 such that

∀n ≥ N0,
∣∣∣ 2

π(2− α)
ωα,n − n

∣∣∣ ≤ L < 1

4
.

Since the sequence ( 2
π(2−α) ωα,n)n∈Z is odd, the above bound holds also for negative

indices, hence

∀ |n| ≥ N0,
∣∣∣ 2

π(2− α)
ωα,n − n

∣∣∣ ≤ L < 1

4
.

We now consider the sequence (ω̃α,n)n∈Z defined by

ω̃α,n :=

{
n, ∀ |n| < N0,

2
π(2−α) ωα,n, ∀ |n| ≥ N0,

and we observe that

∀n ∈ Z,
∣∣∣ω̃α,n − n∣∣∣ ≤ L < 1

4
.

Hence, we can apply Kadec’s 1
4 Theorem which implies that (eiω̃α,nτ )n∈Z is a Riesz

basis of L2(−π, π;C) (where τ is the variable in (−π, π)), see [33, Theorem 1.14 p.
42]. Thanks to the change of variables

[−π, π]→ [0, Tα], τ 7→ t =
τ

π

Tα
2

+
Tα
2
,

we get that (eiω̃α,n
2π
Tα
t)n∈Z is a Riesz basis of L2(0, Tα;C). To conclude, we note

that

∀ |n| ≥ N0, ω̃α,n
2π

Tα
= ω̃α,n

2π
4

2−α
=

2

π(2− α)
ωα,n

π(2− α)

2
= ωα,n,

and since modifying a finite number of terms does not affect the fact of being a
Riesz basis ([4, Lemma II.4.11 p. 105]), we deduce that (eiωα,nt)n∈Z is a Riesz basis
of L2(0, Tα;C). �

Proof of Lemma 8.2. Since (eiωα,nt)n∈Z is a Riesz basis of L2(0, Tα;C), there exists
a unique biorthogonal sequence (σm(t))m∈Z satisfying

〈σm, eiωα,nt〉L2(0,Tα;C) =

∫ Tα

0

σm(t)e−iωα,nt dt = δmn.

Taking the conjugate, we obtain that∫ Tα

0

σm(t)eiωα,nt dt = δmn;

Recalling that ωα,n = −ωα,−n, we have

〈σm, eiωα,−nt〉L2(0,Tα;C) = δmn = 〈σ−m, eiωα,−nt〉L2(0,Tα;C),

which implies that for every m ∈ Z it holds that σm = σ−m. Now, using that
(eiωα,nt)n∈Z is a Riesz basis of L2(0, Tα;C), the moment problem (8. 3) has a unique
solution, given by

(8. 6) Q(t) =
∑
m∈Z

Cfα,mσm(t).
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It remains to verify that Q is real valued: taking the conjugate, we have

Q(t) =
∑
m∈Z

Cfα,mσm(t) =
∑
m∈Z

Cfα,−mσ−m(t) = Q(t).

Hence Q ∈ L2(0, Tα;R). �

Proof of Lemma 8.3. We have proved in Lemma 8.2 that the subsystem (8. 3) ad-
mits a unique solution Q ∈ L2(0, Tα;R), given by (8. 6). Therefore, the moment
problem (8. 2) is satisfied if and only if the solution Q satisfies also the last equation
in (8. 2). Since (eiωα,nt)n∈Z is a Riesz basis of L2(0, Tα;C), there exists a unique
sequence (βn)n∈Z ∈ `2(Z) such that

s̃α,0(t) =
∑
m∈Z

βm e
iωα,mt in L2(0, Tα;C).

Since s̃α,0 is real-valued, we have that∑
m∈Z

βm e
iωα,mt = s̃α,0(t) = s̃α,0(t) =

∑
m∈Z

βm e
−iωα,mt =

∑
m∈Z

β−m e
iωα,mt,

from which we deduce that for every m ∈ Z it holds that βm = β−m. Thus,

〈Q, s̃α,0〉L2(0,Tα;C) = 〈Q,
∑
m∈Z

βm e
iωα,mt〉L2(0,Tα;C)

=
∑
m∈Z

βm 〈Q, eiωα,mt〉L2(0,Tα;C) =
∑
m∈Z

βm C
f
α,m.

Hence, the solution Q given by (8. 6) solves (8. 2) if and only if

Bfα,0 =
∑
m∈Z

βm C
f
α,m,

or, equivalently, if and only if

(8. 7)
Y fα,0
µα,0

= β0
Zfα,0
µα,0

+
∑
m≥1

(
2(Re βm)

Zfα,m
µα,m

− 2(Im βm)ωα,m
Y fα,m
µα,m

)
.

where the relation of Bfα,0 and Cfα,m with (Y f , Zf ) are given in (7. 6) and (8. 1).

We now introduce the closed hyperplane P fα of H3
(α) ×D(A) defined by

(8. 8) P fα := {(Y f , Zf ) ∈ H3
(α) ×D(A) such that (8. 7) is satisfied}.

Therefore, (8. 2) has a solution if and only if (Y f , Zf ) ∈ P fα . �

8.1.d. Proof of Theorem 3.2 first part (inverse mapping argument).
As in section 7.2, we consider the application

(8. 9) ΘTα : L2(0, Tα)→ H3
(α) ×D(A), ΘTα(p) := (w(p)(Tα), w

(p)
t (Tα)).

We recall that P fα is the closed hyperplane of H3
(α) ×D(A) defined by (8. 8).

From the previous section it follows that DΘTα(0)(L2(0, Tα)) ⊂ P fα , and more-
over DΘTα(0) : L2(0, Tα) → P fα is invertible (see Lemma 8.2 and formula (8. 6)).
Now, consider (Y ⊥, Z⊥) 6= 0 and orthogonal to P fα : this allows us to decompose
the space H3

(α) ×D(A) into

H3
(α) ×D(A) = P fα ⊕ (P fα )⊥
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where (P fα )⊥ = R(Y ⊥, Z⊥) is one dimensional. Consider the associated orthogonal

projections projP fα and proj⊥
P fα

. Any (Y,Z) ∈ H3
(α)(0, 1)×D(A) can be decomposed

as

(Y,Z) = projP fα (Y,Z) + proj⊥
P fα

(Y,Z) with

{
projP fα (Y, Z) ∈ P fα ,
proj⊥

P fα
(Y, Z) ∈ (P fα )⊥.

The application

Θ̃α,Tα : L2(0, Tα)→ P fα , Θ̃α,Tα(q) = projP fα (ΘTα(q))

satisfies

DΘ̃α,Tα(0) : L2(0, Tα)→ P fα , DΘ̃α,Tα(0) = projP fα (DΘTα(0)).

Hence, DΘ̃α,Tα(0) : L2(0, Tα) → P fα is invertible, and therefore the inverse map-
ping theorem implies that there exists a neighborhood V(0) ⊂ L2(0, Tα) and a
neighborhood V(projP fα ((1, 0)) ⊂ P fα such that

Θ̃α,Tα : V(0) ⊂ L2(0, Tα)→ V(projP fα ((1, 0)) ⊂ P fα
is a C1-diffeomorphism. Therefore,

ΘTα(V(0)) = {(Y,Z) + proj⊥
P fα

(ΘTα(Θ̃−1α,Tα(Y,Z))), (Y,Z) ∈ V(projP fα ((1, 0))},

which means that ΘTα(V(0)) is the graph of the application

V(projP fα ((1, 0))→ (P fα )⊥, (Y,Z) 7→ proj⊥
P fα

(ΘTα(Θ̃−1α,Tα(Y, Z))),

hence ΘTα(V(0)) is a submanifold of codimension 1. This concludes the proof of
Theorem 3.3 in the case T = Tα and α ∈ [0, 1). �

8.2. Proof of Theorem 3.2 second part: Reachability when α ∈ [1, 2).
When α ∈ [1, 2), we derive from (8. 5) that

2

π(2− α)
ωα,n − n→

α

4(2− α)
as n→∞.

However, we notice that

α ∈ [1, 2) =⇒ α

4(2− α)
≥ 1

4
.

This fact represents the main difference with respect to the analysis of the solvability
of moment problem (8. 2) of section 8.1 (Lemma 8.1-8.3).

8.2.a. Main solvability results when α ∈ [1, 2).
In this section will prove the extension of the Kadec’s 1

4 Theorem ([26], [33,
Theorem 1.14 p. 42]) stated in Lemma 3.1. Our results are similar to those of [25,
Theorem F p. 149], however, thanks to our assumptions, we are able to give very
simple statements and proofs.

Lemma 8.4. Let α ∈ [1, 2). Assume that

(8. 10)
1

2− α
/∈ N.

Denote by kα the integer part of 1
2−α . Then, the set {eiωα,nt, n ∈ Z} can be com-

plemented by kα exponentials to form a Riesz basis of L2(0, Tα).

Lemma 8.5. Let α ∈ [1, 2) satisfy (8. 10) and let T = Tα. Then, moment problem
(8. 2) has a unique solution

Q ∈ L2(0, Tα;R) ∈ Fα := Vect {s̃α,0, eiωα,nt, n ∈ Z}.
To prove the above lemmas, we will use Lemma 3.1. So, let us first give the

proof of such result.



26 P. CANNARSA, P. MARTINEZ, AND C. URBANI

8.2.b. Proof of Lemma 3.1.
We are going to prove it for k = 1 and k = 2, and then the other cases are easily

deduced.
Case k even. We consider k = 2, however the method applies similarly for all k

even. For k = 2, the assumption reads as: there exist δ ∈
(
0, 14
)

and N0 ≥ 0 such
that

(8. 11) n ≥ N0 =⇒ |xn − (n+ 1)| ≤ 1

4
− δ.

Then, let us consider the following sequence:

(8. 12) ∀n ∈ Z, x(mod)n =


xn−1 if n ≥ N0 + 1,

n if |n| ≤ N0,

xn+1 if n ≤ −N0 − 1.

We claim that

(8. 13) ∀n ∈ Z, |x(mod)n − n| ≤ 1

4
− δ.

Indeed, (8. 13) is straightforward for any |n| ≤ N0. Moreover, if n ≥ N0 + 1 we get
that

|x(mod)n − n| = |xn−1 − n| ≤
1

4
− δ

thanks to (8. 11). Finally, if n ≤ −N0 − 1,

|x(mod)n −n| = |xn+1−n| =
∣∣∣−x|n+1|+ |n|

∣∣∣ = ∣∣∣−x|n|−1 + |n|
∣∣∣ = ∣∣∣x|n|−1− |n|

∣∣∣ ≤ 1

4
− δ

once again using (8. 11). Then (8. 13) is satisfied. We deduce from the Kadec’s 1
4

Theorem ([26], [33, Theorem 1.14 p. 42]) that the set {eix(mod)
n t, n ∈ Z} is a Riesz

basis of L2(−π, π). However, we can reorder the family {eix(mod)
n t, n ∈ Z} as follows

{eix
(mod)
n t, n ∈ Z} = {eixn+1t, n ≤ −N0 − 1} ∪ {eix

(mod)
n t, |n| ≤ N0} ∪ {eixn−1t, n ≥ N0 + 1}

= {eixmt, m ≤ −N0} ∪ {eix
(mod)
n t, |n| ≤ N0} ∪ {eixmt, m ≥ N0}

= {eixmt, |m| ≥ N0} ∪ {eix
(mod)
n t, |n| ≤ N0 − 1} ∪ {eix

(mod)
n t, |n| = N0}.

In order to keep the property to be a Riesz basis, we are allowed to modify a finite

number of the elements of the family {eix(mod)
n t, n ∈ Z} (see [4, Lemma II.4.11 p.

105]), if we do not consider twice the same element. Therefore, we can transform
the set of 2N0 + 1 elements

{eix
(mod)
n t, |n| ≤ N0 − 1} ∪ {eix

(mod)
n t, |n| = N0}

into

{eixnt, |n| ≤ N0 − 1} ∪ {eix
′
0t, eix

′′
0 t}

with x′0 6= x′′0 and x′0, x
′′
0 /∈ {xn, n ∈ Z}. Thus,

{eixmt,m ∈ Z} ∪ {eix
′
0t, eix

′′
0 t}

is a Riesz basis of L2(−π, π). Therefore Lemma 3.1 is proved for k = 2 and for
every even k greater than 2 it is easy to adapt the above method.

Case k odd. We now consider the case k = 1, which can be easily extended to
any k odd. For k = 1, the assumption reads as: that there exist δ ∈

(
0, 14
)

and
N0 ≥ 0 such that

(8. 14) n ≥ N0 =⇒
∣∣∣xn − n− 1

2

∣∣∣ ≤ 1

4
− δ.



27

Consider the following sequence

(8. 15) ∀n ∈ Z, x(mod)n =


xn − 1

2 if n ≥ N0,

n if −N0 ≤ n ≤ N0 − 1,

xn+1 − 1
2 if n ≤ −N0 − 1.

We claim that

(8. 16) ∀n ∈ Z,
∣∣∣x(mod)n − n

∣∣∣ ≤ 1

4
− δ.

Indeed, for −N0 ≤ n ≤ N0 − 1 (8. 16) is trivially true. Moreover, for n ≥ N0 we
have that ∣∣∣x(mod)n − n

∣∣∣ =
∣∣∣xn − 1

2
− n

∣∣∣ ≤ 1

4
− δ

thanks to (8. 14). Finally, for n ≤ −N0 − 1,∣∣∣x(mod)n − n
∣∣∣ =

∣∣∣xn+1 −
1

2
− n

∣∣∣ =
∣∣∣− x|n+1| −

1

2
+ |n|

∣∣∣
=
∣∣∣− x|n|−1 − 1

2
+ |n|

∣∣∣ =
∣∣∣x|n|−1 − |n|+ 1

2

∣∣∣ =
∣∣∣x|n|−1 − (|n| − 1)− 1

2

∣∣∣ ≤ 1

4
− δ

using that {xn}n∈Z is odd and, once again, thanks to (8. 14). Then, (8. 16) is
satisfied. We deduce from Kadec’s 1

4 Theorem ([26], [33, Theorem 1.14 p. 42]) that

the set {eix(mod)
n t, n ∈ Z} is a Riesz basis of L2(−π, π). Now we shift this basis. To

this purpose, we observe that if f ∈ L2(−π, π), then g : t 7→ g(t) = f(t)e−it/2 is
still a function of L2(−π, π). Hence, it can be decomposed as

f(t)e−it/2 =
∑
n∈Z

cne
ix(mod)
n t with A

∑
n∈Z
|cn|2 ≤ ‖g‖2L2(−π,π) ≤ B

∑
n∈Z
|cn|2,

since {eix(mod)
n t, n ∈ Z} is a Riesz basis of L2(−π, π). Therefore, we have that

f(t) =
∑
n∈Z

cne
i(x(mod)

n + 1
2 )t with A

∑
n∈Z
|cn|2 ≤ ‖f‖2L2(−π,π) ≤ B

∑
n∈Z
|cn|2.

Hence, the set {ei(x(mod)
n + 1

2 )t, n ∈ Z} is another Riesz basis of L2(−π, π) and can be
rewritten as

{ei(x
(mod)
n + 1

2 ))t, n ∈ Z}

= {eixn+1t, n ≤ −N0 − 1} ∪ {ei(x
(mod)
n + 1

2 ))t, −N0 ≤ n ≤ N0 − 1} ∪ {eixnt, n ≥ N0}

= {eixmt, |m| ≥ N0} ∪ {eix
(mod)
n t,−N0 ≤ n ≤ N0 − 1}.

The last set on the right-hand side of the above formula contains 2N0 elements
which can be modified without changing the Riesz basis property as follows

{eixmt, |m| ≤ N0 − 1} ∪ {eix
′
0t},

where x′0 /∈ {xn, n ∈ Z}. Therefore, Lemma 3.1 is proved for k = 1 and, similarly,
for any k odd. �

8.2.c. Proof of Lemma 8.4.
We know from (8. 5) that

2

π(2− α)
ωα,n − n→

α

4(2− α)
=: `α as n→ +∞.

Hence, we introduce

∀n ∈ Z, xn :=
2

π(2− α)
ωα,n.
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Since 1
2−α /∈ N, we can decompose it into the sum of its integer part kα and its

fractional part θα:

1

2− α
=
[ 1

2− α

]
+
{ 1

2− α

}
= kα + θα, where θα ∈ (0, 1).

Then, we can rewrite `α as

`α =
α

4(2− α)
=

1

4
(kα + θα)

(
2− 1

kα + θα

)
=

1

4
(2kα + 2θα − 1) =

kα
2

+
2θα − 1

4
.

Hence,

xn − n−
kα
2
→ `α −

kα
2

=
2θα − 1

4
∈
(
− 1

4
,

1

4

)
,

and (3. 17) is satisfied with k = kα. Therefore, the set {eixnt, n ∈ Z} can be
complemented by kα exponentials to form a Riesz basis of L2(−π, π). Consequently,
the set {eiωα,nt, n ∈ Z} can be complemented by kα exponentials to form a Riesz
basis of L2(0, Tα) (as we have seen in the proof of Lemma 8.1). This concludes the
proof of Lemma 8.4. �

8.2.d. Proof of Lemma 8.5.
As a consequence of Lemma 8.4, the set of solutions of the moment problem (8. 3)

is an affine space generated by a vectorial space of dimension kα. To solve the whole

moment problem (8. 2), first we note that s̃α,0 /∈ Vect {eiωα,nt, n ∈ Z}. Indeed, if

this was not the case, then Vect {eiωα,nt, n ∈ Z} would contain all the polynomi-
als (by integration, as shown in step 2 of section 7.1). Hence, it would contain

L2(0, Tα). However, this is contradiction with the fact that Vect {eiωα,nt, n ∈ Z} is
of codimension kα in L2(0, Tα) (from Lemma 8.4).

Thus, proceeding as in Step 2 of Section 7.1, the moment problem (8. 2) admits

a unique solution Q in Vect {s̃α,0, eiωα,nt, n ∈ Z} which is real valued. Indeed, we
derive from (8. 2) that∫ T

0

Q(t) cosωα,nt dt ∈ R,
∫ T

0

Q(t) sinωα,nt dt ∈ R, and

∫ T

0

Q(t) t dt ∈ R.

Hence, denoting by Q2 the imaginary part of Q, we have∫ T

0

Q2(t) cosωα,nt dt = 0,

∫ T

0

Q2(t) sinωα,nt dt = 0, and

∫ T

0

Q2(t) t dt = 0.

This gives that {∫ T
0
Q2(t) e−iωα,nt dt = 0 for all n ∈ Z,∫ T

0
Q2(t) t dt = 0,

which implies that Q2 is orthogonal to Vect {s̃α,0, eiωα,nt, n ∈ Z}. On the other

hand 2iQ2 = Q − Q ∈ Vect {s̃α,0, eiωα,nt, n ∈ Z}, thus Q2 = 0 and Q is real-
valued. �

8.2.e. Proof of Theorem 3.2 second part part (inverse mapping argument).
Thanks to the previous results, we can conclude the proof Theorem 3.2 with the

same procedure explained in section 7.2.
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8.3. The case of the exceptional values.
As already noted, the values of α such that 1

2−α ∈ N are particular, because the
Kadec’s Theorem can no more be applied.

Let us consider, for instance, the case α = 1. We observe that, for α ∈ [0, 1), the
family {eiωα,nt, n ∈ Z} is a Riesz basis of L2(0, 4

2−α ). However, it shows a deficiency

equal to 1 if α is greater and close to 1. The stability of Riesz bases ([33, Corollary,
p. 191]) implies that the family {eiω1,nt, n ∈ Z} is not a Riesz basis of L2(0, 4).
Indeed, if it was a Riesz basis, the family {eiωα,nt, n ∈ Z} would also be a Riesz
basis of L2(0, 4

2−α ) for all α sufficiently close to 1, which is not true. This can be

proved by performing a change of variables to work in the fixed space L2(−π, π).
Therefore, the solvability of the moment problem is not clear. The analysis of the
control problem for these special values α such that 1

2−α ∈ N is still a work in
progress.

9. Reachability when T < Tα: Proof of Theorem 3.3

9.1. Proof of Theorem 3.3 for α ∈ [0, 1).
We recall that in Lemma 8.1 we have proved that (eiωα,nt)n∈Z is a Riesz basis of

L2(0, Tα).

9.1.a. The moment problem (8. 2) is overdetermined when T < Tα.
Let T < Tα. Following [4, p. 100], we introduce

∀ r > 0, n(r) := card {n ∈ Z, |ωα,n| < r}.
We recall from Propositions 3.1 that the sequence (ωα,n+1−ωα,n)n in nonincreasing
and goes to καπ as n→∞. Hence, we deduce that

∀n ≥ 0, ωα,n ≥ καπ(n− 1).

Therefore, if n− 1 ≥ r
καπ

we have ωα,n ≥ r. This gives that

(9. 1) n(r) ≤ 2
r

καπ
+ 1,

where the factor 2 comes from the negatives indices.
On the other hand, given ε > 0, there exists n0 ≥ 0 such that

∀n ≥ n0, καπ ≤ ωα,n+1 − ωα,n ≤ καπ + ε.

Hence,

∀n ≥ n0, ωα,n0
+ καπ(n− n0) ≤ ωα,n ≤ ωα,n0

+ (καπ + ε)(n− n0).

Thus, given r > 0

0 ≤ n < n0 +
r − ωα,n0

καπ + ε
=⇒ ωα,n < r.

We derive that for all r large enough,

(9. 2) n(r) ≥ 2
(
n0 +

r − ωα,n0

καπ + ε

)
− 1,

Then, we obtain from (9. 1) and (9. 2) that

(9. 3) lim
r→+∞

n(r)

r
=

2

καπ
=

4

(2− α)π
=
Tα
π
.

Since T < Tα, we have

lim sup
r→+∞

n(r)

r
>
T

π
,

and so we can apply [4, Corollary II.4.2 p. 100], and we deduce that the family
{eiωα,nt, n ∈ Z} is not minimal in L2((0, T ),C).
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9.1.b. How much overdetermined the moment problem (8. 2) is when T < Tα.
As proved in Lemma 8.1, {eiωα,nt, n ∈ Z} is a Riesz basis of L2((0, Tα),C). From

Horváth-Joó [24] (see also [4, Theorem II.4.16 p. 107]) we deduce that there exists a
subfamily {eiωα,ϕ(n)t, n ∈ Z} which is a Riesz basis of L2((0, T ),C). Then, consider

∀ r > 0, nϕ(r) := card {n ∈ Z, |ωα,ϕ(n)| < r}.

Since {eiωα,ϕ(n)t, n ∈ Z} is minimal in L2((0, T ),C), we derive from [4, Corollary
II.4.2 p. 100], that

lim sup
r→+∞

nϕ(r)

r
≤ T

π
,

hence,

(9. 4) lim inf
r→+∞

n(r)− nϕ(r)

r
≥ Tα − T

π
.

Since
n(r)− nϕ(r) = card {n ∈ Z, |ωα,n| < r and n /∈ Im ϕ},

the asymptotic behaviour (9. 4) gives an idea of how much overdetermined the
moment problem (8. 2) is.

9.1.c. Solvability of the moment problem.
We consider (8. 2). First, assume that (8. 2) has a solution Q ∈ L2(0, T ;R).

This implies that

(9. 5) 〈Q, eiωα,ϕ(n)t〉L2(0,T ;C) = Cfα,ϕ(n) for all n ∈ Z.

Now, consider m /∈ Im ϕ. Then, eiωα,mt can be decomposed as follows

eiωα,mt =
∑
n∈Z

Ω
(m)
α,ϕ(n)e

iωα,ϕ(n)t in L2(0, T ;C).

Therefore, we have that

Cfα,m = 〈Q, eiωα,mt〉L2(0,T ;C) =
∑
n∈Z

Ω
(m)
α,ϕ(n)C

f
α,ϕ(n).

In the same way, s̃α,0 can be decomposed as follows

s̃α,0 =
∑
n∈Z

S̃α,ϕ(n)e
iωα,ϕ(n)t in L2(0, T ;C),

which implies that

Bfα,0 =
∑
n∈Z

S̃α,ϕ(n)C
f
α,ϕ(n).

Hence,

Q solution of (8. 2) =⇒

Cfα,m =
∑
n∈Z Ω

(m)
α,ϕ(n)C

f
α,ϕ(n) ∀m /∈ Im ϕ,

Bfα,0 =
∑
n∈Z S̃α,ϕ(n)C

f
α,ϕ(n).

This leads to consider the space
(9. 6)

Hf
α :=

(Y f , Zf ) ∈ H3
(α) ×D(A),

Cfα,m =
∑
n∈Z Ω

(m)
α,ϕ(n)C

f
α,ϕ(n) ∀m /∈ Im ϕ,

Bfα,0 =
∑
n∈Z S̃α,ϕ(n)C

f
α,ϕ(n)

 ,

where the relations between (Y f , Zf ) and Bfα,0, Cfα,m, m ≥ 1 are given in (7. 6)

and (8. 1). Thus, we have proved that

(9. 7) DΘT (0)(L2(0, T ;R)) ⊂ Hf
α.

Now, let us prove the following reverse inclusion.
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Lemma 9.1. Let α ∈ [0, 1), T < Tα and Hf
α be defined in (9. 6). Then, the

following identity holds

(9. 8) DΘT (0)(L2(0, T ;R) = Hf
α.

Proof of Lemma 9.1. Since we already proved (9. 7), it is sufficient to prove that
Hf
α ⊂ DΘT (0)(L2(0, T ;R). Let (Y f , Zf ) ∈ Hf

α. Since (eiωα,ϕ(n)t)n∈Z is a Riesz
basis of L2(0, T ), the moment problem (9. 5) has one and only one solution Q
(which can be expressed using the unique biorthogonal family to (eiωα,ϕ(n)t)n∈Z).
Then, for all m /∈ Im ϕ, we have

〈Q, eiωα,mt〉L2(0,T ;C) = 〈Q,
∑
n∈Z

Ω
(m)
α,ϕ(n)e

iωα,ϕ(n)t〉L2(0,T ;C)

=
∑
n∈Z

Ω
(m)
α,ϕ(n)〈Q, e

iωα,ϕ(n)t〉L2(0,T ;C) =
∑
n∈Z

Ω
(m)
α,ϕ(n)C

f
α,ϕ(n) = Cfα,m,

where the last equality derives from the fact that (Y f , Zf ) ∈ Hf
α. In the same way,

we get

〈Q, s̃α,0〉L2(0,T ;C) =
∑
n∈Z

S̃α,ϕ(n)〈Q, eiωα,ϕ(n)t〉L2(0,T ;C) =
∑
n∈Z

S̃α,ϕ(n)C
f
α,ϕ(n) = Bfα,0.

Hence, Q solves the whole moment problem (8. 2). It remains to prove that Q is
real-valued: this follows easily from the fact that

∀n ≥ 0,


∫ T
0
Q(t) e−iωα,nt dt = Cfα,n =

Zfα,n−i
√
λα,n Y

f
α,n

µα,n
,∫ T

0
Q(t) eiωα,nt dt = Cfα,n =

Zfα,n+i
√
λα,n Y

f
α,n

µα,n
.

By adding (subtracting) one to each other the above equations, we obtain

∀n ≥ 0,


∫ T
0
Q(t) cosωα,nt dt = 2

Zfα,n
µα,n

,∫ T
0
Q(t) 2i sinωα,nt dt =

2i
√
λα,n Y

f
α,n

µα,n
.

Thus, the real part of Q solves (7. 5), and its imaginary part Q2 satisfies

∀n ≥ 0,

∫ T

0

Q2(t) cosωα,nt dt = 0 =

∫ T

0

Q2(t) sinωα,nt dt.

Therefore, for every n ∈ Z it holds that 〈Q2, e
iωα,ϕ(n)t〉L2(0,T ;C) = 0, which implies

Q2 = 0 since (eiωα,ϕ(n)t)n∈Z is a Riesz basis of L2(0, T ). So, we have proved that Q
is real-valued and this completes the proof of (9. 8). �

We conclude by proving the following

Lemma 9.2. Hf
α is a closed vectorial space of H3

(α) ×D(A) of infinite dimension

and infinite codimension.

Proof of Lemma 9.2. Let us consider

∀m /∈ Im ϕ, LmT : H3
(α)×D(A)→ C, LmT (Y f , Zf ) := Cfα,m−

∑
n∈Z

Ω
(m)
α,ϕ(n)C

f
α,ϕ(n),

and

`0T : H3
(α) ×D(A)→ C, `0T (Y f , Zf ) := Bfα,0 −

∑
n∈Z

S̃α,ϕ(n)C
f
α,ϕ(n).

Observe that `0T and LmT are linear continuous forms and furthermoreHf
α = Ker `0T∩(

∩m/∈Im ϕKer LmT

)
. Hence, Hf

α is a closed vectorial space of H3
(α) ×D(A), and is

of infinite dimension. To prove that Hf
α has infinite codimension, we use the fact
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that Z \ (Im ϕ) is infinite (see section 9.1.b). Then, fix N ≥ 1, and n1, · · · , nN /∈
(Im ϕ ∪ {0}), and consider

Ln1,··· ,nN
T : H3

(α) ×D(A)→ CN , Ln1,··· ,nN
T (Y f , Zf ) :=

 Ln1

T (Y f , Zf )
· · ·

LnNT (Y f , Zf )

 .

Observe that

Ln1,··· ,nN
T (Φα,n1 , 0) = −iωα,n1

µα,n1

ε1, · · · , LmT (Φα,nN , 0) = −iωα,nN
µα,nN

εN ,

where ε1, · · · , εN is the canonical basis of CN . Hence, Ln1,··· ,nN
T is surjective, and

its kernel is of codimension N . Since this is true for all N ≥ 1, this implies that
Hf
α is a closed vectorial space of H3

(α) ×D(A) of infinite codimension. �

9.1.d. Proof of Theorem 3.3 for α ∈ [0, 1) (inverse mapping argument).
The proof follows the scheme of section 8.1.d, replacing the hyperplane P fα by

Hf
α. Therefore, ΘT (V(0)) turns out to be a submanifold of infinite dimension and

infinite codimension. �

9.2. Proof of Theorem 3.3: modifications when α ∈ [1, 2).
Given x ∈ R, r > 0, we define

N(x, r) := card {ωα,n, x ≤ ωα,n < x+ r}.
Thanks to (8. 5), one can prove that

N(x, r)

r
→ Tα

2π
, as r → +∞

uniformly with respect to x ∈ R (see [9, Section 9]).
Thus, from [4, Theorem II.4.18 p. 109] we deduce that given T < Tα, the family

(eiωα,nt)n∈Z contains a subfamily that forms a Riesz basis of L2(0, T ). And then,
once again, we can proceed as in section 9.1 to prove Theorem 3.3.

10. Proof of Proposition 3.3

First, it is easy to check that µ(x) = x2−α satisfies all the regularity assumptions:

µ ∈ V (2,∞)
α (0, 1) if α ∈ [0, 1), and µ ∈ V (2,∞,∞)

α (0, 1) if α ∈ [1, 2). We refer to [9,
Section 10] for a detailed proof. It remains to prove the validity of (3. 13). Direct
computations show that

〈µ,Φα,0〉L2(0,1) =

∫ 1

0

x2−α dx =
1

3− α
,

and, for all n ≥ 1, we develop the scalar product as follows

〈µ,Φα,n〉L2(0,1) =

∫ 1

0

µ(x)Φα,n dx =
1

λα,n

∫ 1

0

µ(x)(−xαΦ′α,n)′ dx.

Integrating twice by parts and thanks to Lemma 5.1, we obtain that

〈µ,Φα,n〉L2(0,1) =
2− α
λα,n

[xΦα,n(x)]
1
0 =

(2− α)3/2

λα,n
.

Hence, (3. 13) is satisfied. Finally, one can prove that the set of functions µ satisfy-
ing (3. 13) is dense in V 2

α , adapting suitably the method of [6], based on the Baire
theorem (see [9, Section 10], and [31, Chapter 5] for general explicit constructions
of such µ). �
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