
HAL Id: hal-04903101
https://hal.science/hal-04903101v1

Submitted on 21 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Studying timed aspects for cloud configuration
management tools: validation and recommendations for

safe execution
Evgenii Vinarskii, Natalia Kushik, Djamal Zeghlache

To cite this version:
Evgenii Vinarskii, Natalia Kushik, Djamal Zeghlache. Studying timed aspects for cloud con-
figuration management tools: validation and recommendations for safe execution. 2024 IEEE
International Conference on Web Services (ICWS), Jul 2024, Shenzhen, China. pp.1365-1367,
�10.1109/ICWS62655.2024.00171�. �hal-04903101�

https://hal.science/hal-04903101v1
https://hal.archives-ouvertes.fr

Studying timed aspects for cloud configuration
management tools: validation and recommendations

for safe execution
Evgenii Vinarskii

SAMOVAR, Télécom SudParis,
Institut Polytechnique de Paris

Palaiseau, France
vinarskii.evgenii@telecom-sudparis.eu

Natalia Kushik
SAMOVAR, Télécom SudParis
Institut Polytechnique de Paris

Palaiseau, France
natalia.kushik@telecom-sudparis.eu

Djamal Zeghlache
SAMOVAR, Télécom SudParis
Institut Polytechnique de Paris

Palaiseau, France
djamal.zeghlache@telecom-sudparis.eu

Abstract—Tools for automated deployment and management
are often used in the cloud computing platforms. Since this
technology is rapidly evolving, it is important to guarantee
the reliability and the efficiency of these tools. The paper
proposes a framework CMT-VSE for validation of configuration
management tools and for providing tenant requests with timed
recommendations for their safe execution. Such recommendations
can be utilized to execute the chains of commands in an
asynchronous mode. Experimental evaluation with Ansible-2.16
and SaltStack-3006 showcases the efficiency of CMT-VSE.

Index Terms—Cloud computing, validation, timed aspects,
tenant request recommendations, safe execution

I. INTRODUCTION & BACKGROUND

Configuration management tools (CMTs) such as Ansi-
ble [1] and SaltStack [2] play a crucial role in executing chains
of processes (workflows) on remote instances, e.g., virtual
machines. Such processes can be categorized as configuration
processes that modify VMs (e.g., open a port) and action
processes that are executed without modifying configurations
of VMs (e.g., send a message). These chains need to be
well-written and well-synchronized for their safe execution
on remote virtual machines. Let C = {c1, . . . , cm} denote a
set of positive configuration processes that make configuration
changes and C = {c1, ..., cm} be a set of negative ones that
revert them; C+ = {c+1 , . . . , c+m} and C+ = {c+1 , ..., c

+
m}

denote the notifications of the termination of the corresponding
configuration processes. Let A = {a1, ..., an} be a set of
action processes, A+ = {a+1 , ..., a+n } (A− = {a−1 , ..., a−n })
denote the notifications of correct (incorrect) executions of
processes of A. Since the result of the execution depends on
the current VM configuration, for every a ∈ A there is a
positive1 pre-post condition φ := C ′ ⇒ a where C ′ ⊆ C;
φ means that a can be terminated correctly (a+) if and only
if i) the related VMs are configured in a way that a can be
executed (C ′), and ii) a appears in the corresponding tenant
request. For example, φsend := (open, allow)⇒ send means

The work was supported by CCMC2 BPI project No DOS0185474/00.
1We assume that positive pre-post conditions describe the system behavior

that should be respected.

(1, 0)

(0, 0)start (1, 1)

(0, 1)

deny(29,65)/(denied,25.8)
open(44,79)/(opened,0.5)
send(25,40)/(sent,0.3)

allow(29,65)/(allowed,25.8)

close(44,79)/(closed,0.5)

deny(29,65)/(denied,25.8)
close(44,79)/(closed,0.5)

send(25,40)/(sent,0.3)

allow(29,65)/(allowed,25.8)

open(44,79)/(opened,0.5)

allow(29,65)/(allowed,25.8)
open(44,79)/(opened,0.5)

send(25,40)/(delivered,0.3)
deny(29,65)/(denied,25.8)

close(44,79)/(closed,0.5)

close(44,79)/(closed,0.5)
allow(29,65)/(allowed,25.8)
send(25,40)/(sent,0.3)

deny(29,65)/(denied,25.8)

open(44,79)/(opened,0.5)

Fig. 1: TFSM A

that a message will be delivered to vm2 if and only if i) vm2
is configured in a way that the port is open, the traffic from
vm1 is allowed, and ii) vm1 sends the message to vm2.

CMTs implement processes sequentially on remote in-
stances to configure an instance configuration (installed soft-
ware packages, firewall settings, . . .) preserving pre-post con-
ditions. However, some processes can be time-consuming,
therefore for optimization purposes, CMTs allow to run pro-
cesses asynchronously. This feature introduces the risk of the
violation of pre-post conditions caused by concurrency issues
among the processes. Ansible and SaltStack do not provide
explicit guidelines for setting timed parameters to prevent
process conflicts. The latter motivates to provide a tenant
request (a trace of configuration and action processes) with
recommendations on how to correctly set timed parameters to
avoid potential conflicts.

CMT is a real-time sequential reactive system whose be-
havior can be described by a Timed Finite State Machine
(TFSM) [3]. The TFSM behavior depends on the current state,
the timestamps of inputs, and the processing time for each
input. A transition s

i,(u,v)/(o,d)−→ s′ takes place if and only if
input i is applied within timed guard (interval) (u, v). Output

Fig. 2: CMT-VSE overview

delay d indicates the specified time needed to produce output
o after input i is applied. In this case, the TFSM contains
implicit concurrent procedures that can execute the next input
even if the output for the previous one is still pending2.

Consider TFSM A (see [3] for details) shown in
Fig. 1 that describes the behavior of Ansible-2.16
(see [4]), pb = open, allow, send and its timed
extensions pb1t = (open, 44.1), (allow, 73.2), (send, 98.3)
and pb2t = (open, 44.1), (allow, 73.2), (send, 98.8)
of pb. The output reaction of A for pb1t is
(opened, 44.6), (delivered, 98.6), (allowed, 99.0) where
delivered is produced before allowed, i.e., φsend is
violated. Otherwise, the output reaction of A for pb2t
is (opened, 44.6), (allowed, 99.0), (delivered, 99.1), i.e.,
φsend is preserved. Thus, the TFSM allows to provide a
timed extension for a trace of processes to guarantee that
the pre-post conditions are preserved. In this paper, we
introduce CMT-VSE – a framework based on TFSM theory
for validation of CMTs and for providing tenant requests
with timed recommendations for their safe execution.

II. CMT-VSE FRAMEWORK

CMT-VSE takes three inputs: i) CMT requirements Φ given
as pre-post conditions that describe the expected behavior
of a CMT, ii) an implementation at hand Impl of a CMT,
and iii) a tenant request pb; as an output, CMT-VSE returns
recommended timeouts pbt for its safe execution (see Fig. 2).
In this section, we just briefly discuss the main modules of
CMT-VSE, their detailed description can be found in [4].

A. Synthesis of an FSM preserving CMT requirements

Let φa := Ca ⇒ a be a pre-post condition, I = C ∪C ∪A
and O = C+ ∪ C+ ∪ A+ ∪ A− be a set of processes and
notifications of their terminations (see Section I). We say that
an FSM A preserves φa for an input/output trace β/γ over
I∗/O∗ if for every appearance of input/output pair a/a+ in
β/γ the following holds: i) c ≺β a for every configuration

2The number L of these procedures, if finite, is limited by the ratio of the
maximal output delay of the TFSM to the minimal left boundary [3].

process c ∈ Ca, and ii) if there exists c ∈ Ca such that c ≺β a,
then c ≺β c ≺β a. Consequently,A preserves Φ if A preserves
every φ of Φ for every input/output trace.

The synthesis module of CMT-VSE takes pre-post condi-
tions Φ and synthesizes the transition graph of FSM MΦ =
(S, I,O, hS , s0) preserving Φ. In order to do this, CMT-
VSE utilizes a breadth-first search algorithm. States represent
possible configurations of VMs, namely, a state is a Boolean
vector [is c1, . . . , is cm] that indicates which configuration
processes have been executed and have not been reverted.
The initial state is [is c1 ← false, . . . , is cm ← false].
CMT-VSE starts at the initial state, and at every step takes
an unvisited state and builds transitions from that state in the
following way: i) the next state for every positive configuration
process c ∈ C is is c← true and the transition is labeled by
pair c/c+, ii) for every negative configuration process c ∈ C,
it is is c← false and the transition is labeled by pair c/c+,
iii) for every action process a ∈ A with pre-post condition
φa := Ca ⇒ a if at the current state φa is preserved, the
transition is labeled by pair a/a+, otherwise the transition is
labeled by pair a/a−. The following theorem holds.

Theorem II.1. Let C and A be sets of configuration and
action processes and Φ be a set of pre-post conditions over
C and A, CMT-VSE derives FSM MΦ = (S, I,O, hS , s0)
preserving Φ, where |S| ≤ 2|C|.

B. FSM augmentation with timed parameters
To augment FSM MΦ, CMT-VSE works with the direct

simulation of an implementation Impl at hand. Given FSM
MΦ preserving pre-post conditions Φ, CMT-VSE extends
MΦ to TFSM T using the following algorithm. At the first
step, timed parameters (timed guards and delays) for every
transition are estimated. Namely, let tran = (s, i, o, s′) be
a transition of A, and a trace α′ = i1, . . . , ik bring A to
state s, pbα defines a tenant request for a CMT of interest
for trace α = α′, i. CMT-VSE runs pbα N > 0 times to
compute timed intervals (u, v) and (p, q), where (u, v) denotes
the fluctuation for the timestamp of process i, while (p, q)
denotes the fluctuation for the response time for command i.
We assign (u, v) as a timed guard of tran, since our purpose
is to satisfy pre-post conditions; further, we assign a delay for
transition tran in the following way. If i is a configuration
process, then the output delay for tran is equal to the right
boundary of the interval, i.e., d← q, otherwise d← p.

TFSM T does not necessarily preserve pre-post conditions
Φ (see Section II-C). At the second step, we derive TFSM
T SE
Φ by modifying timed guards (u, v) for transitions of T

to guarantee a safe execution property. The safe execution
means that if for input trace pb FSM MΦ preserves pre-post
conditions Φ, then there exists a timed extension pbt of pb
such that T SE

Φ preserves Φ for pbt. In order to transform
TFSM T to T SE

Φ , CMT-VSE extends the right boundaries of
every transition labeled by a positive configuration or an action
process (see details in [4]). Thus, TFSM T SE

Φ which models
the implementation of a CMT at hand and guarantees a safe
execution property is derived.

C. Timed recommendations for a tenant request

Let β be an input trace of A and βt be a timed extension
of β such that βt/γt is a timed input/output trace of T .
The order of outputs in γt can be not the same as the
order of the corresponding inputs in β, see for example the
output reaction for pb1t in Section I. Therefore, even if an
FSM preserves pre-post conditions for an untimed input trace,
TFSM augmented with timed parameters can violate them
for a timed input trace. The main purpose of this module
is to provide a tenant request with the timed recommenda-
tions for its safe execution w.r.t. TFSM T SE

Φ . We propose
a procedure Providing timed recommendation that takes
an untimed trace pb = i1, . . . , ik preserving Φ and returns
the timed extension pbt = (i1, t1), . . . , (ik, tk) preserving Φ
w.r.t. the timed parameters of T SE

Φ . To assign timestamps,
the procedure works according to the following algorithm.
Let L be the number of procedures of T SE

Φ , ε is chosen
as 1

2L . Since T SE
Φ extends MΦ, T SE

Φ has the sequence of

transitions s0
i1,(u1,v1)/(o1,d1)−→ s1 . . . sk−1

ik,(uk,vk)/(ok,dk)−→ sk.
The procedure assigns t1 ← u1 + ε and tj , j ∈ {2, . . . , k}, is
chosen in the following way.

1) If ij ∈ C and there exists ℓ ∈ {1, . . . , j − 1} such
that iℓ = ij and tℓ + dℓ > tj−1 + uj + dj , then tj ←
tℓ + dℓ − dj + ε; otherwise tj ← tj−1 + uj + ε3.

2) If ij ∈ A and there exists ℓ ∈ {1, . . . , j − 1} such
that iℓ ∈ C and tℓ + dℓ > tj−1 + uj + dj , then tj ←
max(t1+d1, . . . , tj−1+dj−1)−dj+ε; otherwise tj ←
tj−1 + uj + ε4.

Theorem II.2. Given pb = i1, . . . , ik, MΦ

preserves Φ for timed input trace pbt =
Providing timed recommendation(pb).

Corollary 1. Given pb = i1, . . . , ik, the complexity of
Providing timed recommendation is O(k2).

As an example we consider pb = open, allow, send and
TFSM shown in Fig. 1, correspondingly. As mentioned in Sec-
tion I, pb1t = (open, 44.1), (allow, 73.2), (send, 98.3) does
not preserve φsend := (open, allow) ⇒ send. However, if
we choose ε = 0.1, since 73.2 + 25.8 < 99.1, we conclude
that pb2t = Providing timed recommendation(pb) =
(open, 44.1), (allow, 73.2), (send, 98.8) preserves φsend.

III. EVALUATION & CONCLUSION

We have experimentally evaluated the performance of CMT-
VSE with Ansible-2.16 and SaltStack-3006 (run for OpenStack
2023.2 [5]). The goal of our experimental evaluation is to
estimate a CMT-VSE performance by comparing the average
execution time for naive and CMT-VSE-based strategies. The
former applies a next command of a tenant request only
if all previous commands of the request have been already
finished. The latter relies on the timeouts recommended by

3Therefore, tj + dj ≥ tℓ + dℓ − dj + dj + ε > tℓ + dℓ.
4Therefore, tj + dj ≥ max(t1 + d1, . . . , tj−1 + dj−1)− dj + dj + ε >

max(t1 + d1, . . . , tj−1 + dj−1).

Fig. 3: Performance evaluation of CMT-VSE

CMT-VSE and thus, the next command is executed at a
given timestamp suggested by the framework. Let φ :=
(vm2 open, vm1 allow sub2)⇒ vm1 send vm2 be a pre-
post condition, the derived FSM preserving φ can be found
in [4]. We estimated the average execution time for naive
and CMT-VSE-based strategies for input traces with length
10, 20, . . . , 500. The execution of the CMT-VSE-based strategy
is on average 1.24 and 1.86 times faster for Ansible-2.16 and
SaltStack-3006 than the naive one (see Fig. 3) [4].

One of the ways to analyze the obtained experimental results
is to compare CMT-VSE with scheduling approaches [6],
[7] for assigning proper timeouts to tenant requests. Due to
potential network channel instability, there can be significant
fluctuations for the delivery response time, for each task.
Moreover, the scheduling problem is NP-hard [8]. In TFSM-
based approach, to handle the complexity, CMT-VSE uses a
preprocessing to estimate timed parameters, and further takes a
quadratic time w.r.t. the length of the tenant request to provide
recommendations. The efficiency is showcased by the experi-
ments, even if performed for rather simple pre-post conditions
when building the CMT specifications. We recall that CMT-
VSE relies on simulating an implementation of a CMT at
hand to derive timed parameters for transitions, another way
to extract such parameters is based on the theoretical analysis
of the devices involved; we plan to develop such an approach
in the future.

REFERENCES

[1] Ansible-2.16. https://github.com/ansible/ansible, Accessed 2024.
[2] Saltstack-3006. https://github.com/saltstack/salt, Accessed 2024.
[3] Evgenii M. Vinarskii, Natalia Kushik, Nina Yevtushenko, Jorge López,

and Djamal Zeghlache. Timed transition tour for race detection in
distributed systems. In Proceedings of the 18th, ENASE 2023, pages
613–620, 2023.

[4] E. Vinarskii. Cmt-vse. https://github.com/vinevg1996/CMT-VSE, Ac-
cessed 2024.

[5] Openstack-2023.2. https://github.com/openstack, Accessed 2024.
[6] Said Nabi, Muhammad Aleem, Masroor Ahmed, Muhammad Arshad

Islam, and Muhammad Azhar Iqbal. RADL: a resource and deadline-
aware dynamic load-balancer for cloud tasks. J. Supercomput., 78:14231–
14265, 2022.

[7] Chandrashekar C., Krishnadoss P., K. Poornachary, B. Ananthakrishnan,
and K. Rangasamy. Hwacoa scheduler: Hybrid weighted ant colony
optimization algorithm for task scheduling in cloud computing. Appl.
Sci, 33, 2023.

[8] Jelke J. van Hoorn, Agustı́n Nogueira, Ignacio Ojea, and Joaquim A. S.
Gromicho. An corrigendum on the paper: Solving the job-shop scheduling
problem optimally by dynamic programming. Comput. Oper. Res.,
78:381, 2017.

