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Abstract (220 words) 

Liver resection is one of the best treatments for small hepatocellular carcinoma, but post-resection 

recurrence is frequent. Biotherapies have emerged as an efficient adjuvant treatment making the 

identification of patients at high risk of recurrence critical. Microvascular invasion, poor 

differentiation, pejorative macrotrabecular, and “vessels encapsulating tumor clusters” 

architectures are the most accurate histological predictors of recurrence but their evaluation is 

time-consuming and imperfect. A supervised deep learning-based approach with ResNet34 on 

680 Whole Slide Images from 107 liver resection specimens allowed to build an algorithm for the 

identification and quantification of these pejorative architectures. This model achieved an 

accuracy of 0.864 at patch-level and 0.823 at Whole Slide Image-level. To assess its robustness, 

it was validated on an external cohort of 29 hepatocellular carcinomas from another hospital with 

an accuracy of 0.787 at Whole Slide Image-level, affirming its generalization capabilities. 

Moreover, largest connected areas of the pejorative architectures extracted from the model were 

positively correlated to the presence of microvascular invasion and the number of tumor emboli. 

These results suggest that the identification of pejorative architectures could be an efficient 

surrogate of microvascular invasion and have a strong predictive value for the risk of recurrence. 

This study is the first step in the construction of a composite predictive algorithm for early post-

resection recurrence of hepatocellular carcinoma, including artificial intelligence-based features.  
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List of nonstandard abbreviations 

AI: artificial intelligence 

HCC: hepatocellular carcinoma 

HES: hematoxylin, eosin, and saffron  

MTM: macrotrabecular massive  

mVI: microvascular invasion  

VETC: vessels encapsulating tumor clusters 

WHO: World Health Organization 

WSI: Whole Slide Image 
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Original article (6072 words) 

Introduction 

Hepatocellular carcinoma (HCC) is the main primary malignancy of the liver, ranking as the sixth 

most commonly diagnosed cancer and the third leading cause of cancer death worldwide in 2020, 

with approximately 906,000 new cases and 830,000 deaths1. In Western countries, HCC 

predominantly develops in the context of cirrhosis caused by non-alcoholic fatty liver disease, 

alcohol-related liver disease, or chronic viral hepatitis B or C. The prognosis for HCC remains poor 

with a 5-year survival rate of less than 10%2. Many cases are diagnosed at advanced stages 

making them inaccessible to curative treatment at the time of diagnosis. Even for resectable 

tumors, the rate of recurrence after surgical treatment exceeds 50% at 5 years post-liver 

resection3,4. Most recurrences occur early, within 2 years of resection, and are considered as true 

recurrences of the initial tumor and not as independent tumors5. 

Liver transplantation can be curative for both HCC and underlying cirrhosis with a lower recurrence 

rate of around 10%-15% at 5 years but the shortage of grafts limits access to this treatment and 

a large majority of patients are not eligible for transplantation. Chemotherapy is not efficient in 

HCC. Immunotherapy alone or in combination with targeted Tyrosine Kinase Inhibitors or 

antiangiogenic drugs emerged as a promising therapeutic strategy for advanced HCC6,7. The use 

of these biotherapies as post-resection adjuvant treatment is the next step in the therapeutic 

strategy for HCC. Interim analysis of a randomized multicentric phase 3 trial aiming to assess the 

efficacy of adjuvant atezolizumab plus bevacizumab versus active surveillance in patients with 

resected or ablated high-risk HCC demonstrated a 28% lower risk of recurrence or death in 

patients receiving adjuvant atezolizumab plus bevacizumab8. Thus, the identification of patients 

at high risk of relapse is critical for the design of adjuvant studies because post-operative therapy 

might particularly benefit this subgroup. Pre-operative risk stratification of patients eligible for liver 

resection is still suboptimal although pre-operating imaging demonstrated acceptable 

performance as potential surrogates of pejorative histological features, thanks to technological 
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progress and radiomic approaches9,10. Nevertheless, the current gold standard for the 

identification of the most accurate prognosis indicators is the pathological examination of surgical 

specimens.  

Indeed, microvascular invasion (mVI)11, poor histological differentiation, macrotrabecular 

architecture12,13 or “vessels encapsulating tumor clusters” (VETC) architecture14,15 have been 

identified as highly predictive of HCC recurrence risk. Identification of these histopronostic 

pejorative factors requires extensive sampling of the tumor and its adjacent parenchyma and 

careful examination of microscopic slides. Their evaluation of surgical specimens by conventional 

pathological examination is imperfect, time-consuming, and not very reproducible, in particular for 

the histological grade and the presence of mVI. Indeed, the broad histological heterogeneity of 

HCC makes the prognostic stratification of patients challenging. However, it has been shown that 

macrotrabecular and VETC architectures are correlated one with another and also with the 

presence of mVI12,15. These correlations have been demonstrated for a stringent definition of 

macrotrabecular massive (MTM) HCC subtype and VETC HCC phenotype, defined respectively 

by macrotrabecular growth pattern in >50% and VETC pattern in ≥55% of tumor, but the predictive 

value of less abundant pejorative components for the presence of mVI has not been assessed.  

Recently, artificial intelligence (AI) applied to Whole Slide Images (WSIs) has emerged as a 

helpful, faster, and more reproducible approach to performing segmentation and classification of 

tumors including liver tumors16–18.  

This study aims to build a deep learning-based approach for automatic and robust identification 

and quantification of pejorative macrotrabecular and VETC HCC architecture on WSIs from liver 

surgical curative resection specimens and to assess the correlation between pejorative tumor 

architectures and the presence of mVI. It is the first step in the process of building a composite 

predictive model of the risk of post-resection recurrence of HCC, including AI-based features. 

 

Materials and Methods 
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Ethics Approval 

The study conforms to the General Data Protection Regulation and was approved by the 

Institutional Review Board of Mondor Hospital (IRB#00011558, notification number: 2022-135). 

Patients 

A series of 107 patients over 18 years old who underwent curative hepatic resection for HCC, 

excluding liver transplantation, between January 2016 and December 2020 in Paul-Brousse 

Hospital, France was retrospectively collected. None of these patients had received cancer 

treatment before surgery. Patients with R1 and R2 resection were excluded.  

The following clinico-biological data were systematically collected for all patients: age, sex, 

etiology of the underlying liver disease, serum alpha-foetoprotein, albumin, and total bilirubin 

before surgery. 

The following data (Table 1) were extracted from the pathological reports for all tumors: number 

of nodules and size, satellite nodules, multinodular expansive macroscopic pattern, histological 

grade, and HCC subtype according to the World Health Organization (WHO) Classification of 

Tumors: Digestive System Tumors 201919, presence of mVI, American Joint Committee on Cancer 

8th edition stage20 and METAVIR fibrosis score for non-tumor liver parenchyma21.  

An external validation cohort of 29 patients selected according to the same criteria from the 

Department of Pathology at Henri-Mondor Hospital, France, was used as an external validation 

for the model. The same clinico-biological and pathological data were systematically extracted 

from patient records.  

Whole Slide Images 

Surgical specimens were fixed with 4% neutral formaldehyde. For each tumor of the cohort, 2 to 

21 blocks were sampled from tumoral and peri-tumoral tissue according to the tumor size with at 

least one block for 1 cm of the highest diameter. Blocks were embedded in paraffin and cut at 

4 µm thick. Slides were stained with hematoxylin, eosin, and saffron (HES) in the Department of 

Pathology at Bicêtre Hospital.  
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All slides (n=680) were digitized at 20 × objective plus 1.6 × doubler by 3DHISTECH (Budapest, 

Hungary) PANNORAMIC® 1000 or 250 DX scanners and stored in MRXS format. The scanning 

resolution of WSIs was 0.25 μm / pixel. 

An additional slide from 3 different tumors from the main cohort was cut and stained with HES in 

the Department of Pathology at Charles Nicolle Hospital in Rouen, France, to introduce another 

pre-analytical procedure.  

Annotations and information extraction from WSIs 

All WSIs were meticulously reviewed by 3 pathologists to exclude slides with noticeable artifacts 

or inadequate staining to ensure data quality. Faded slides were replaced by new sections from 

the original blocks. 

Two experienced pathologists (C.G. and A.L.B.) and one junior pathologist (L. C.), blinded to the 

clinico-biological data, manually annotated all WSIs. Annotations were defined as follows, 

identifying three tissue classes: non-tumor liver (NT); tumor tissue with non-pejorative architecture 

(NP) i.e. non-macrotrabecular and non-VETC architecture, and tumor tissue with pejorative 

architecture (P) i.e. macrotrabecular and/or VETC architecture. 

The macrotrabecular architecture is defined by hepatocyte trabeculae mostly being ≥10 cells thick 

according to the WHO Classification of Tumors: Digestive System Tumors 2019. VETC pattern is 

defined by clusters of tumor cells bordered by a complete rim of endothelial cells15. The two 

architectures can be combined in the same tumor14. 

To obtain a tumor architecture diagnostic model, the 107 patients were randomly divided into a 

training set (56%, i.e. 60 patients), a validation set (12%, i.e. 13 patients), and an independent 

test set (32%, i.e. 34 patients), with all WSIs from a given patient exclusively grouped within the 

same set. This data splitting method was employed to prevent data leakage between datasets. 

The WSIs, stored in MRXS format, had an average size of 10⁶ × 10⁶ pixels. To extract information 

from training (n=399 WSIs) and validation (n=77 WSIs) sets, annotations were first made using 

fixed squares measuring 5888 × 5888 pixels (1400 µm × 1400 µm), with each rectangle containing 
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only one tissue class. The annotations were exported as TIFF format images, accompanied by 

their coordinates stored in a metadata file in XML format on an external encrypted hard drive. 

The test set was annotated in two ways: with fixed squares as mentioned above for training and 

validation sets (n=81 WSIs) or with free-hand drawn polygons of different colors containing only 

one tissue class and covering the whole tissue section (n=123 WSIs) as shown in Figure 1. This 

latter annotation method made it possible to obtain metrics on the model performance at the level 

of entire slides and not just patches.  

On slides annotated with fixed squares (557 WSIs from 87 patients), mVI images were also 

outlined by the 3 pathologists, allowing them to quantify the number of tumor emboli per tumor. 

WSI processing (Figure 2) 

Exported TIFF images of size 5888 × 5888 pixels cannot be processed quickly by standard 

machine learning algorithms. Each image was divided into non-overlapping square patches of 

512 × 512 pixels also called tiles22,23. Non-overlapping square patches of the same dimension 

were derived directly from the whole surface of free-hand drawn polygon annotations.  

The model analyzes images across multiple resolution: levels to reproduce the pathologist's 

observation at different scales24. Every single patch of 512 × 512 pixels was extended with an 

increased size determined by a growth factor 𝑑 = 1.5. This operation was repeated to come up 

with three tiles at three distinct scales: 512 × 512 pixels, 768 × 768 pixels, and 1152 × 1152 pixels. 

Generated patches inherited their class from the annotated region. Finally, 768 × 768 pixels and 

1152 × 1152 pixels patches were down-sampled to size 512 × 512 pixels by making use of an 

anti-aliasing filter25,26, to generate a stack of three images of the same size. 

After extracting patches from the images, a filtration step was implemented to eliminate patches 

that contained more than 80% white pixels. The rationale behind this filtration is to ensure that the 

analysis focuses on patches that contain relevant data, enhancing the overall reliability of the 

results. 
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The final step was an image data augmentation process27–29, a standard technique allowing to 

enrich the dataset during training. The primary objective of data augmentation is to generate 

modified images that introduce new variations to the diagnostic model at each training iteration. 

To accomplish this, various spatial transformations, such as random vertical and horizontal flips, 

as well as random rotations with reflection mode within a rotation degree range of [-45, 45]30–33 

were applied. A standardization method to scale down the input values in the data set to a nominal 

range between zero to one was used. This method is crucial not just due to potential variations in 

the features present across images, which could influence the model's outcomes34, but also 

because it aids in maintaining the weights near zero, thereby enhancing the stability of the network 

during backpropagation35. 

Dataset description of the diagnostic model based on deep learning. 

Characteristics of the 3 disjoint data sets: training set (60 patients), validation set (13 patients), 

and test set (34 patients) are described in Supplementary Information: Table S1. The percentages 

of non-tumor patches, non-pejorative architecture patches, and pejorative architecture patches in 

the training test were respectively 39.84%, 44.46%, and 15.70%. 

Due to the class imbalance in the training set, the image quantity of the underrepresented classes 

in the training set was adjusted by combining two main techniques: oversampling the 

underrepresented categories by randomly duplicating non-tumor patches and pejorative patches36 

and using a weighted cross-entropy loss37 defined as: 

𝑳𝒐𝒔𝒔(𝒚, 𝒑) =∑∑𝑾𝒋 (𝒚
𝒊𝒋 𝒍𝒐𝒈(𝒑𝒊𝒋) + (𝟏 −  𝒚𝒊𝒋) 𝒍𝒐𝒈(𝟏 −  𝒑𝒊𝒋))

𝑪

𝒋=𝟏

 

𝑵

𝒊=𝟏

 

where 𝑵 stands for the number of samples, 𝑪 represents the number of classes (i.e., 3 in our 

study). 𝑾𝒋 is the weight of the class j, 𝒚𝒊𝒋 is the ground truth label of the sample 𝒊 for the class 𝒋, 

𝒑𝒊𝒋 is the predicted probability of the sample 𝒊 belonging to the class 𝒋. 

Neural network architecture (Figure 3) 
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The model input was structured around three parallel patches, each measuring 512 × 512 pixels. 

These patches were derived from the extended patches described in the WSI processing, 

distinguished by varying image magnification factors. The neural network was based on the 

ResNet architecture38. For the needs of this work, a ResNet34 was trained from scratch on the 

dataset. The architecture of this model involves three ResNet34 networks operating in parallel, 

where each input patch undergoes ResNet34 processing to generate a feature vector. The three 

generated feature vectors were then concatenated into a global vector. Subsequently, this global 

vector passed through three trainable fully connected layers, incorporating linear layers, a batch 

normalization layer, and a rectified linear unit (RELU) activation function39. Through this intricate 

process, the model produced the final output corresponding to the input class. 

Ensembling Approach 

The final stage consisted of an ensembling of the core ResNet34 (Supplementary Information: 

Figure S1). First, the training images and the validation images were merged and then split into 

5-folds, out of which four were exclusively used for training, while the fifth served as a validation 

set. Importantly, the 5-folds split closely adhered to the 5-fold cross-validation methodology40–42, 

ensuring a balanced representation of the three classes within each training fold.  

For each pairing of the training and validation folds, each model was trained for 50 epochs with 

Adam optimizer43. The initial learning rate was set at 0.01 with a decrease of 0.1 when there was 

no improvement after 10 epochs. For neural network calibration purposes44,45, a label smoothing 

technique46–48 was used in the loss function with a smoothing parameter 𝛼 = 0.125.  

For each training fold, weights were exclusively saved for the best-performing model, determined 

by the minimum value of the loss function. In this way, the weight for 5 folds corresponding to the 

five best models was saved. Afterward, a final prediction was generated as a probability score. To 

obtain the average probability, the mean of the outputs from the five final fully connected layers, 

also called logits, was computed. The SoftMax activation function39 was finally applied to these 

mean values to obtain the probabilities indicating the likelihood of belonging to one of the three 
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predefined classes. Three types of means arithmetic, geometric, and harmonic were tested. Their 

formulas are described below: 

Arithmetic mean: µ𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 =
1

𝑀
∑ 𝑝𝑖
𝑀
𝑖=1  

Geometric mean: µ𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 = (∏ 𝑝𝑖
𝑀
𝑖=1 )

1

𝑀 

Harmonic mean: µℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 =
𝑀

∑
1

𝑝𝑖

𝑀
𝑖=1

 

where 𝒑𝒊 is the probability vector generated by model 𝒊 and 𝑴 is the number of models (𝑴 = 𝟓). 

The arithmetic operations were performed component-wise. 

At inference, the five models were applied in parallel, and the type of mean giving the best metrics 

was used to classify all data. 

Visualization of the model prediction on WSIs 

A simplified visual heatmap of the WSI was generated to construct an interpretable and conclusive 

tumor segmentation mask for each WSI. During the initial tiling preprocessing step, each extracted 

patch's coordinates (x, y) were meticulously saved. Subsequently, the WSI was reconstructed 

using these stored (x, y) coordinates. In this process, every patch contributed to the final 

visualization, with each pixel on the heatmap assigned to a color corresponding to its predictive 

classification. The non-tumor liver tissue is represented in green, the non-pejorative tumor area in 

yellow, and the pejorative tumor area in red. This method provides a concise and intuitive display 

of the model predictions across the entirety of the WSI for the pathologists since it generates an 

interpretable tumor mask for each WSI. 

Features extracted using the diagnostic model 

From the heatmaps generated with the diagnostic model, two features were extracted as 

described below: the largest connected area of the pejorative architecture from each WSI of a 

given patient (AreaP) and the largest connected area of the pejorative architecture among all the 

WSIs of a given patient (AreaP_max). 
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These features were correlated with the presence of mVI and the exact number of tumor emboli 

when this information was available.  

External validation cohort 

Paraffine blocks from the external validation cohort of Henri-Mondor Hospital were cut and stained 

at Henri-Mondor. All slides (n=32) were digitized at 20 × objective by Hamamatsu (Hamamatsu, 

Japan) NanoZoomer S360 Digital slide scanner and stored in NDPI format. The scanning 

resolution of WSIs was 0.46 μm / pixel. 

Those 32 WSIs from the external validation cohort were annotated using the second method of 

large free-hand drawn polygons. 

Due to the variability introduced by a different pre-analytical procedure and a different scanner, 

the model trained with Paul-Brousse cohort could not be directly applied to Henri-Mondor cohort 

with satisfactory results. The primary difference between these cohorts lies in the scanner 

resolution. Consequently, to surmount the resolution disparity and facilitate the application of the 

model, a mathematical procedure known as interpolation was employed to mitigate the divergence 

in resolution by generating new pixels within the patches obtained from Henri-Mondor and thereby 

fostering a smoother transition during the upscaling of these patches to align with the resolution 

of the first cohort. In this instance, the spline interpolation method49–52 was selected as the 

preferred mathematical approach to achieve the necessary resolution harmonization. 

Evaluation metrics  

For the model evaluation, confusion matrices53,54 were used, facilitating a thorough examination 

of model performance by aligning its predictions with the actual ground truth labels and displaying 

the number of accurate and inaccurate instances. Plotting confusion matrices, rather than relying 

solely on accuracy, offers several advantages, especially with unbalanced data. This approach 

provides a more transparent and informative way to communicate model performance, 

highlighting areas of excellence and indicating areas for improvement. It offers a clear breakdown 

of true positives, true negatives, false positives, and false negatives for each class, providing a 
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comprehensive picture of the model performance. This matrix is crucial for computing essential 

classification metrics, including accuracy, balanced accuracy, F1 Score, precision, and sensitivity 

(Supplementary Information: Figure S2). 

 

Results 

Patient characteristics  

Patients' baseline characteristics are summarized in Table 1.  

For the Paul-Brousse cohort, among 107 patients, 87 (81%) were male. The underlying liver 

disease was predominantly viral hepatitis in 42% of cases followed by non-alcoholic fatty liver 

disease, and alcohol-related liver disease in 23% and 12% of cases respectively. In 11% of the 

patients, HCC occurred without an underlying liver disease. The non-tumor liver was F0-F2 in 36% 

and F3-F4 in 64% of cases according to METAVIR fibrosis score. Most patients had a single 

tumor. Tumor size ranged from 0.8 to 23 cm with a median size of 4 cm. WHO histological grade 

was 1 in 16 tumors (15%), 2 in 79 tumors (74%), and 3 in 12 tumors (11%). Microvascular tumor 

invasion was identified in 58 tumors (54%).  

For the external cohort, among 29 patients, 22 (75%) were male. The underlying liver disease was 

mostly unknown (35%), then predominantly viral hepatitis in 34% of cases followed by alcohol-

related liver disease and non-alcoholic fatty liver disease in 21% and 7% of cases respectively. 

Non-tumor liver was F0-F2 in 62% and F3-F4 in 38% of cases. Most patients had a single tumor. 

Tumor size ranged from 1.2 to 19.5 cm with a median size of 4.5 cm. WHO histological grade was 

1 in 2 tumors (7%), 2 in 22 tumors (76%), and 3 in 5 tumors (17%). Microvascular tumor invasion 

was identified in 9 tumors (31%).  

Performances of the algorithm at the patch-level (test subset 1) 

The performance metrics of the 5-fold cross-validation before ensembling at the patch-level on 

test subset 1 are shown in Table 2. They are described with harmonic mean ensembling in Figure 

4. The performance metrics with the three types of mean are detailed in Supplementary 
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Information: Table S2. Stable and consistent performances were observed whatever the 

employed mean. The models under evaluation demonstrated an accuracy metric above 0.860 

reflecting the model's proficiency in correctly classifying instances. The arithmetic mean registered 

an accuracy of 0.862, and both the geometric and harmonic means achieved values of 0.864. For 

balanced accuracy, a metric accounting for imbalanced class distribution, the harmonic mean 

exhibited superior performance, achieving a score of 0.851, surpassing the corresponding values 

of 0.843 and 0.845 for the arithmetic and geometric means, respectively. Moreover, the F1 score 

achieved a satisfying value exceeding 0.82. The F1 metric is the harmonic mean of precision and 

recall, offering a balanced assessment of the model ability to correctly identify positive instances 

while minimizing false positives and false negatives. Considering these observations, the 

forthcoming presentation of results will prioritize those obtained through the harmonic mean, given 

it demonstrated superior performance compared to the other two means. However, it is essential 

to acknowledge that the arithmetic and geometric means yielded results that are approximately 

comparable to each other. 

Performances of the algorithm at the WSI-level (test subset 2) 

The performance metrics of the 5-fold cross-validation, before ensembling, at the WSI-level on 

test subset 2 are shown in Table 3. Furthermore, the performance metrics of the model at the WSI 

level on test subset 2 with harmonic mean are described in Figure 4. The performance metrics of 

the model at the WSI-level on test subset 2 for the three types of mean are detailed in 

Supplementary Information: Table S3. Again, stable and consistent performance regardless of the 

type of mean was observed with a slight superiority for the harmonic mean. The accuracy metric 

achieved a score of 0.823 and a balanced accuracy of 0.819. The F1 Score attained 0.851. The 

precision and sensitivity scores were 0.928 and 0.823. 

The slight decrease in performance between the two test subsets at the patch-level and WSI-level 

could be attributed to the fact that polygonal annotations may contain some noise, as accurately 

limiting and precisely defining the borders between the three architectural patterns is challenging.  
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To clearly visualize the model prediction, Figure 5 showcases an example of a WSI processed by 

the model. Overall, the majority of the heatmap regions were successfully predicted with a high 

confidence level. Furthermore, in cases where the model partially misclassified certain zones, it 

reflected a low confidence level, serving as an alert to pathologists about the necessity of a human 

check for these regions. 

Impact of the staining procedure on performances of the algorithm at WSI-level 

In the endeavor of assessing the robustness of the model against domain shifts such as staining 

differences in distinct sites, an evaluation of the model was conducted on 3 WSIs from the test set 

colored in two different hospitals: Bicêtre and Rouen. The comparative analysis of the heatmaps 

from one of these WSI, shown as an example in Supplementary Information: Figure S3, reveals 

the resilience of the model against staining variability. The performance metrics show noteworthy 

achievements for both staining sites and a marginal superiority arises when evaluating the model 

on the WSIs stained at Bicêtre Hospital, which aligns with the training data distribution. 

Performance of the algorithm on the external validation cohort 

In this study, the robustness and efficacy of the algorithm predictions were validated by 

incorporating an external dataset from Henri-Mondor Hospital. This dataset, sourced from another 

renowned medical institution, served as a critical external validation for the model, providing a 

diverse set of cases for which the fixation procedure, the staining process, tissue section 

thickness, and scanner parameters were different. WSIs were annotated using polygonal 

annotations as test subset 2.  

The evaluation of the model on the external validation cohort yielded commendable performances, 

affirming its generalization capabilities beyond the first cohort dataset. The accuracy achieved 

0.787. The balanced accuracy reached a notable value of 0.731, indicative of the model's ability 

to maintain effectiveness across different classes. Furthermore, the F1 Score attained 0.812. The 

precision of 0.850 underscores the model's accuracy in correctly identifying positive instances, 

while the sensitivity of 0.802 emphasizes its capacity to capture a significant proportion of actual 
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positive cases. These results collectively highlight the model's robust performance and its potential 

utility in diverse real-world scenarios. The outcomes of this validation process are presented in 

Figure 6. 

Correlation of pejorative architecture and presence of mVI 

The correlation coefficients between various AI features related to pejorative architecture i.e. the 

largest connected area of the pejorative architecture from each WSI of a given patient and the 

largest connected area of the pejorative architecture among all the WSIs of a given patient were 

computed with the presence of mVI and the number of emboli. The correlation matrix is displayed 

in Figure 7. 

The adverse architectural features exhibited a positive correlation with both the presence of mVI 

and the number of emboli. Notably, the dimensions of the adverse area (AreaP) and the maximum 

adverse area across all WSIs from patients (AreaP_max) emerged as viable predictors for mVI 

and the number of emboli. Specifically, the correlation coefficient (ranging from -1 to +1) for AreaP 

and mVI was 0.342, while the correlation coefficient for AreaP_max and mVI reached 0.384. 

Similarly, as regards the number of emboli, the correlation coefficients for AreaP and AreaP_max 

were 0.536 and 0.566, respectively. These coefficients underscore the potential predictive utility 

of AreaP and AreaP_max, yet simultaneously signal the complexity of predicting mVI.  

 

Discussion 

This study made it possible to develop a deep learning model capable of classifying non-tumor 

areas, tumor areas with non-pejorative architecture, and tumor areas with pejorative architecture 

of HCC on digital histopathological slides from liver surgical specimens. The choice was made for 

a supervised approach on a large sampling for each tumor to take into account tumor 

heterogeneity which is a hallmark of HCC and to obtain fully explicable results and best 

performances. In addition, the model was trained and validated on small and unequivocal square 

annotations and then trained on larger images. The dataset was substantial, encompassing more 
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than 700.000 tiles thus allowing a robust approach to address challenges associated with 

overfitting, a common concern in deep learning, particularly when dealing with limited data55. The 

presence of 3 annotators added diversity and thus limited classification bias. The neural network 

chosen was ResNet since it was designed for image classification and has been shown to be a 

powerful classifier, adopted in various computer vision applications in medical fields56–60. The final 

stage of the algorithm consisted of an ensembling of the core ResNet. Indeed, ensembling 

methods have gained interest today since it was proven that aggregating multiple algorithms is 

successful in increasing the overall prediction accuracy in a wide range of fields, especially in 

healthcare61–63. As a result, the model achieved a patch-level accuracy of 0.864 and a WSI-level 

accuracy of 0.823.  

The automatic detection of pejorative architectures in HCC through the AI algorithm allows precise 

quantification within the entire tumor making it already a potential aid to diagnosis in the general 

context of pathologists shortage. Moreover, it generates AI features relevant to prognostic 

predictions, such as the largest connected area of pejorative architecture across all slides from a 

patient, i.e. the most extensive area of pejorative architecture. The model demonstrated robust 

performance on slides stained in another Department of Pathology using a different procedure, as 

well as for an external validation cohort. 

This work marks the initial step in developing an accurate predictive tool for HCC recurrence after 

liver resection. Indeed, the availability of systemic therapies with promising results in HCC makes 

it essential to accurately stratify patients according to their risk of recurrence after surgical 

resection to identify the best candidates for adjuvant systemic treatment.  

Among the different elements of a predictive model for the risk of recurrence, histopathological 

criteria are of paramount importance in this prognostication as they reflect the biological 

aggressiveness of the tumor. One of the main features in HCC is the presence of mVI, visible only 

at the microscopical level and defined by tumor invasion of vessels lined by endothelial cells. 

However, the variability in sampling surgical specimens from one pathologist to another64, the poor 
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reproducibility in assessing mVI, and the lack of grading of this lesion have led to great 

heterogeneity in evaluating this valuable histological feature in HCC65.  

More recently, macrotrabecular architecture12,13 and VETC pattern14,15 have been identified as 

other markers of tumor aggressiveness. Macrotrabecular architecture had initially been defined 

as having trabeculae >6 cells thick66 but the definition retained in the WHO classification published 

in 2019 is trabeculae being ≥10 cells thick. This discrepancy in the definition of macrotrabecular 

architecture may result in slightly different prevalence figures. Nevertheless, macrotrabecular 

architecture in at least 20% of tumor area is observed in around 50% of HCC12,15. The MTM HCC 

characterized by a predominant macrotrabecular growth pattern represents from 7 to 15% of HCC 

and is correlated with satellite nodules, macrovascular and microvascular invasion12,67. Jeon et 

al.68 suggest that ≥30% of macrotrabecular architecture could be used as the more appropriate 

cut-off for defining MTM HCC. Whatever the definition, MTM HCC is associated with poorer overall 

survival, a higher recurrence rate, and a worse recurrence-free survival after liver resection12,68.  

VETC pattern characterized by clusters of tumor cells bordered by a complete rim of endothelial 

cells is also a pejorative pattern correlated with the presence of macrotrabecular architecture and 

mVI, and associated with poorer overall survival, poorer disease free survival and early 

recurrence15. This pattern is observed in 39% of HCC with a cut-off ≥5% and in 19% of HCC with 

a cut-off ≥55% which defines VETC phenotype. In addition, VETC pattern may act as a predictor 

of sorafenib benefit for HCC69. 

In a recent study, Chen et al.70 developed a deep learning model to predict mVI in HCC from tumor 

areas of WSIs. Visualization results showed that macrotrabecular architecture with rich blood 

sinuses was one of the key features associated with mVI. Accordingly, a positive correlation 

between the presence of pejorative tumor architecture and the mVI status for the 107 patients of 

Paul-Brousse cohort was shown. All these data suggest that the identification of these two 

pejorative architectures within a tumor could have a strong predictive value for the risk of 

recurrence and could be an efficient surrogate of mVI. It is evident that achieving accurate 
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predictions necessitates more sophisticated features, such as nucleus features, beyond the scope 

of conventional AI features alone. 

The digital transition of pathology has paved the way for the application of AI in pathology. Recent 

advances in machine learning, especially in deep neural networks, have enabled the identification 

of histopathological patterns through computer vision. Several recent studies have applied AI in 

the field of liver tumors. Part of them are segmentation studies aiming to distinguish HCC from 

adjacent non-tumor liver71–77. The dataset for these studies ranges from 50 to 1733 WSIs. 

Although it is difficult to compare these different studies because of the use of different metrics, 

their performances are good or excellent with an accuracy ranging from 0.88 to 0.9716. Another 

part of the AI studies in the field of HCC proposes algorithms predicting either recurrence risk after 

surgery78–80 or patient survival81. These studies include a first step of tumor/non-tumor 

segmentation and a second step of weakly supervised model labeling recurrence/non-recurrence 

or survival/non-survival at the patient level with usually only one digital slide per patient.  

In the current study, to develop a predictive tool for HCC recurrence after resection, the first step 

was to build an AI model able to identify 3 tissue classes on the WSIs from surgical specimens of 

HCC resection: non-tumor liver, non-pejorative tumor architecture, and pejorative tumor 

architecture including macrotrabecular and VETC patterns. Access to the architectural map will 

enable us to better understand the results returned by the algorithm and avoid the black-box effect. 

To the best of our knowledge to date, no AI algorithm has been published to classify the 

histological patterns of HCC. For other tumors such as lung cancer or glioblastoma, algorithms for 

classifying histological subtypes have been published with various levels of performance82–85. In 

the field of liver pathology, only three studies aimed to produce classification algorithms available 

to differentiate benign, dysplastic, and malignant hepatocellular nodules18 and HCC from 

cholangiocarcinoma17,86. A recently published study87 aimed at developing a deep pathomics 

score for predicting HCC recurrence after liver transplantation included a first step of classification 
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of tissue in 6 categories: normal liver tissue, portal area, fibrous tissue, immune cells, tumor region 

and hemorrhage/necrotic tissue but did not identify different tumor classes.  

The approach of the current study is a fully supervised learning method based on over a hundred 

patients with a mean number of WSIs per patient over 6 whereas most studies included a single 

WSI per patient. The choice of this approach is based on the impossibility of labeling histological 

features at slide-level due to the heterogeneity of HCC. The performance of the model is stable 

and consistent whatever the employed mean for the ensembling method. The harmonic mean 

from the ensembling method slightly outperforms the geometric and the arithmetic means with an 

accuracy of 0.864, a balanced accuracy of 0.851, a F1 Score of 0.829, a precision of 0.814 and a 

sensitivity of 0.851. The confusion matrix indicates that the model is excellent to segment tumor 

versus non-tumor areas. The results are quite correct to differentiate tumor pejorative and non-

pejorative architectures with 75% of pejorative areas being correctly identified. A possible 

explanation for the difficulty in distinguishing the two pejorative architectures is that one of the 

important visual criteria to identify them is the accentuated visibility of the sinusoidal lumens. This 

aspect may be obscured due to tissue compression phenomena or fixation artifacts and 

consequently missed during annotations. 

Interestingly, the annotation method of the test set influenced the performance of the model. Test 

subset 1 was annotated as the training and validation sets through fixed squares of 5888 × 5888 

pixels containing only one tissue class and including 25 patches of 512 × 512 pixels. Test subset 

2 was annotated through large free-hand drawn polygonal areas containing only one tissue class 

and covering the whole tumor surface. This second annotation method allows to calculate the 

accuracy of the model at WSI-level. However, with this annotation method, the area borders 

between pejorative and non-pejorative tumor architectures cannot be very precisely defined, 

leading to a suboptimal ground truth and a slightly decreased but still high accuracy of 0.823.  

External validation of AI algorithms is critical to ensure their robustness and assess their 

generalization capability. Digital histopathological slides may differ drastically from one 
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Department of Pathology to another due to pre-analytic process including fixation, temperature, 

section thickness, staining procedure, and also to digitization step according to the slide scanner 

type that governs the WSI format and resolution. The first step was to test the impact of a different 

staining process applied to the same slides. Tissue sections from 3 HCC of Paul-Brousse cohort 

were cut in the Department of Pathology at Bicêtre Hospital and stained in the Department of 

Pathology at Charles Nicolle Hospital in Rouen without affecting the model performances. In a 

second step, the model was validated on a completely independent series of HCC samples from 

Henri-Mondor Hospital. HES slides from 29 surgical liver specimens with HCC harvested at the 

same period as the surgical specimens of Paul-Brousse cohort were digitized with a Hamamatsu 

scanner providing a lesser resolution of 0.46 μm / pixel versus 0.25 μm / pixel. Due to the variability 

introduced by slide preparation and scanning, the model trained with Paul-Brousse cohort could 

not be directly applied to Henri-Mondor cohort with satisfactory results. The patches of 512 × 512 

pixels were resized to take into account the difference in image resolution between the two 

cohorts. After these corrections, the model performances for the external cohort were quite 

satisfactory with an accuracy of 0.787 at WSI-level. The external validation through a real life 

external cohort is probably better than using The Cancer Genome Atlas collections which can 

introduce some biased behavior according to the utilized Deep Neural Networks with WSI 

classification based on their acquisition site88. In addition, the external cohort provides information 

on post-surgical recurrence and not only on patient survival as The Cancer Genome Atlas.  

In conclusion, this work provides a practical and immediately applicable tool for pathologists, 

leveraging a highly supervised approach with extensive annotations provided by three expert 

pathologists, on multiple slides per case to account for tumor heterogeneity. The novelty of this 

work lies in its direct clinical relevance, enabling precise characterization and quantification of 

adverse architectures, a task previously unexplored. These characteristics, often challenging to 

discern with the naked eye, especially across multiple slides, are crucial for systematic and 

accurate recording in patient reports. Consequently, this algorithm facilitates the diagnosis of the 
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most aggressive histological subtypes of HCC with high precision and holds promise for 

developing a combined predictive score of early recurrence. 

In terms of machine learning, the innovation stems from the smart integration of several 

techniques, which proved essential for achieving robust results and accommodating 

heterogeneous data from three different hospitals. The main point is a novel pipeline operating on 

patches. This includes a neural network architecture operating concurrently at multiple scales 

(three resolution levels), with results further enhanced through a sophisticated ensembling 

approach. Additionally, our methodology carefully addresses class imbalance in the data. 

The following steps are to implement this algorithm in the routine workflow of a fully digitalized 

Department of Pathology and to create a predictive model of post-surgical recurrence including AI 

features from the algorithm, nuclear features obtained by image analysis, macroscopic tumor 

characteristics, and biological data.  
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Figure legends 

Figure 1:  

Annotation methods on a Whole Slide Image stained with hematoxylin, eosin, and saffron; non-

tumor liver is in green, tumor tissue with non-pejorative architecture is in yellow, and tumor tissue 

with pejorative architecture is in red. Fixed square annotations containing only one tissue class at 

5 × magnification (A), large free-hand drawn polygons containing only one tissue class and 

covering the whole tissue section at 5 × magnification (B) and examples of non-tumor liver (green 

square), tumor tissue with non-pejorative architecture (yellow square), tumor tissue with pejorative 

architecture (red square) at 200 × magnification (C). 

Figure 2: Flowchart of the data collection and whole slide images (WSIs) processing; on tumor 

segmentation, non-tumor liver (NT) appears in green, tumor tissue with non-pejorative architecture 

(NP) in yellow and tumor tissue with pejorative architecture (P) in red. 

Figure 3: Neural network based on the ResNet architecture (NT: Non-Tumor, NP: Non-Pejorative, 

P: Pejorative). 

Figure 4: Performances (A) and confusion matrices after ensembling on test subset 1 i.e. patch-

level (B) and test subset 2 i.e. Whole Slide Image (WSI)-level (C). 

Figure 5: Example of the model predictions on a Whole Slide Image and its performances with 

non-tumor liver in green, tumor tissue with non-pejorative architecture in yellow, and tumor tissue 

with pejorative architecture in red: the Whole Slide Image and the ground truth (A), model 

predictions (B), model confidence level (C), model performances on this Whole Slide Image (D) 

and confusion matrix (E). 

Figure 6: Performances (A) and confusion matrix (B) for Henri-Mondor Hospital Whole Slide 

Images. 

Figure 7: Correlation matrix between microvascular invasion (mVI), number of emboli and artificial 

intelligence features of pejorative architecture i.e. the largest connected area of the pejorative 

architecture from each Whole Slide Image of a given patient (AreaP) and the largest connected 
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area of the pejorative architecture among all the Whole Slide Images of a given patient 

(AreaP_max). 
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Table 1: Clinico-biological and pathological data of the internal and external cohorts. 

 Bicêtre Henri-Mondor 

Number of patients (men / women) 107 (87 / 20) 29 (22 / 7) 

Mean age (min - max) 66 (21 - 86) 68 (40 - 85) 

Etiology of the 

underlying liver 

disease 

Alcohol-related liver 

disease (%) 
13 (12) 6 (21) 

Non-alcoholic fatty liver 

disease (%) 
25 (23) 2 (7) 

Hepatitis B (%) 20 (19) 5 (17) 

Hepatitis C (%) 25 (23) 5 (17) 

Mixed etiology (%) 6 (6) 1 (3) 

Other etiology (%) 6 (6) 10 (35) 

Normal liver (%) 12 (11) 0 (0) 

Serum alpha-

foetoprotein (µg / L) 

N < 7 

Data available (%) 106 (99) 21 (72) 

Median value (min-max) 6.9 (1 - 98,000) 6.0 (1 - 60,000) 

Albumin (g / L) 

N: 35-45 

Data available (%) 101 (94) 16 (55) 

Mean value (min-max) 39.5 (24.6 - 49.9) 39.5 (31 - 51) 

Total bilirubin 

(µmol / L) 

N < 17 

Data available (%) 106 (99) 16 (55) 

Mean value (min-max) 12.0 (5 - 36) 9.4 (4 - 21) 

Number of hepatocellular carcinoma 

nodules (mean per patient) 
116 (1.1) 36 (1.2) 

Median size in cm (min - max) 4 (0.8 - 23) 4.5 (1.2 - 19.5) 
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Satellite nodules (%) 39 (36) 8 (28) 

Multinodular expansive 

macroscopic pattern (%) 
46 (43) 7 (24) 

Hepatocellular 

carcinoma 

histological grade19 

1 (%) 16 (15) 2 (7) 

2 (%) 79 (74) 22 (76) 

3 (%) 12 (11) 5 (17) 

Hepatocellular 

carcinoma subtype19 

Steatohepatitic (%) 8 (7) 1 (3) 

Clear cell (%) 3 (3) 2 (7) 

Macrotrabecular 

massive (%) 
9 (8) 3 (10) 

Lymphocyte-rich (%) 5 (5) 5 (17) 

Microvascular invasion (%) 58 (54) 9 (31) 

Hepatocellular 

carcinoma stage20  

 

T1a (%) 12 (11) 4 (14) 

T1b (%) 39 (36) 13 (45) 

T2 (%) 46 (43) 10 (34) 

T3 (%) 3 (3) 2 (7) 

T4 (%) 7 (7) 0 (0) 

Non-tumor liver 

parenchyma fibrosis 

score21 

0-2 (%) 38 (36) 18 (62) 

3-4 (%) 69 (64) 11 (38) 
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Table 2: Performances of 5-Fold cross validation on test subtest 1 (patch-level). 

 Accuracy 
Balanced 

Accuracy 
F1 Score Precision Sensitivity 

Fold 1 0.822 0.814 0.798 0.787 0.813 

Fold 2 0.833 0.794 0.785 0.778 0.795 

Fold 3 0.788 0.760 0.740 0.728 0.761 

Fold 4 0.822 0.817 0.788 0.774 0.818 

Fold 5 0.841 0.840 0.798 0.789 0.841 

 

Table 3: Performances of 5-Fold cross validation on test subtest 2 (WSI-level). 

 Accuracy 
Balanced 

Accuracy 
F1 Score Precision Sensitivity 

Fold 1 0.803 0.803 0.789 0.778 0.802 

Fold 2 0.814 0.785 0.777 0.772 0.785 

Fold 3 0.770 0.751 0.732 0.718 0.760 

Fold 4 0.801 0.804 0.775 0.762 0.808 

Fold 5 0.822 0.834 0.788 0.785 0.837 

 


