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Abstract. We propose a new framework for the analysis of program
execution, devoted to identifying cryptographic functions and retrieving
cryptographic secrets. The need for a new tool arises from our experi-
mental observation that the generic analysis tools are clearly too intru-
sive / resource-consuming for the inspected process, leading to failures
such as timeouts. Thus our aim is to build dynamic monitoring tools as
lightweight as possible to inspect the execution of sensitive code without
impacting the execution.

In march 2024, the vulnerability CVE-2024-3094 targeting XZ Utils was re-
vealed by the Microsoft software developper Andres Freund3. The backdoor was
introduced within the library liblzma by a mysterious Jia Tan (their github’s
name). In this attack, there were three challenges: the first one was to introduce
the vulnerability within the targeted library, the second was to distribute it. The
third one was to keep the backdoor discreet. Having a direct access to the source
repository, Jian Tan could fulfill the two first ones in a single step. Unfortunately
for him, but not for us, despite efforts, he failed at the last one. In which terms
could we reproduce such an attack? Let us explicit our attack model. The at-
tacker we have in mind knows that his victim is using some binary EXE. He knows
that this EXE is manipulating some cryptographic functions. Finally, we suppose
that the attacker will be able to patch some libraries on his victim’s computer.
On the other side, we do not suppose he has permanent access on the victim’s
machine, he has only the ability to patch a library. Furthermore, we make the
hypothesis that the attacker has no access to the source of EXE. In other words,
our challenge will be to forge the backdoor on a ”black-box” executable. Finally,
as a model of stealthiness, the patched library should behave as the original one
up to the backdoor, and we only allow this library a constant time overhead.

We also slightly modify the attack goal: rather than obtaining a reverse-shell
on the victim machine, our target will be to retrieve cryptographic secrets which
allow, in a second step, to retrieve secrets or establish a remote connection to
the victim machine.

From a more general perspective, the main goal of this article is to study
the resistance of program execution to the recovery of cryptographic secrets.

3 https://lwn.net/ml/oss-security/20240329155126.kjjfduxw2yrlxgzm@awork3.anarazel.de/
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As a program runs, its instructions and registers can be recovered (for exam-
ple using Intel’s Pin functionality4), and it is only natural to wonder whether
such knowledge can allow an attacker to recover some secret material that the
program is using. Using pintools to perform dynamic analysis is not new. For
instance, this is typically what we did in [2] where it was used to deal with
self-modification. Deobfuscation is an other example, see for instance the nice
work by Bardin, Potet and Salwan [16]. However, those preceding works require
heavy resource-consumption.

We also study how much data is actually sufficient to recover secret informa-
tion. Indeed, getting the full execution trace is slow, which (1) makes it easily
detectable and (2) is impractical for real-time programs such as Internet con-
nections (which timeout). Hence if we can identify parts of the trace which are
sufficient for secret-recovery, this can make the approach stealthier and adapted
to real-time applications.

Our main focus will be on the OpenSSL cryptographic library [18]. The reason
to focus on OpenSSL is that it is largely used to build secure connections. It is the
most commonly used library to implement the TLS protocol [14], which ensures
the security in Internet connections (in particular in HTTPS connections). It is
also the most commonly used library to generate cryptographic keys for use in
remote-desktop communications (like SSH [19]) or file sharing (like GIT5).

Although OpenSSL is open-source, its code6 is hard to read, as it contains
layers of sub-libraries, layers of wrapping functions, and is highly customisable
(as many cryptographic algorithms are available). Also, there is a gap between
what is read in the source code and what is actually executed by a program,
especially a program which is not OpenSSL directly but uses some OpenSSL
functionalities. Therefore it is a good model for a blackbox analysis and we base
our study on the program execution directly, rather than relying first on the
source code and documentation.

Finding a secret within a binary is a quite common activity in reverse-
engineering, think of ”Capture The Flags” challenges. For that sake, symbolic
analysis has shown to be very powerful. It is one of the use case of tools such as
Binsec, Angr (see [17]) or MIASM (e.g. [5]). However, symbolic analysis takes a
lot of computational power. Our approach relies only on an analysis of a trace.
The closest work we are aware of is [6] where the authors use traces as a basis
for symbolic analysis. Compared to their approach, on one side, we do not use
symbolic analysis, on the other side we focus on a much more specific target,
that is cryptographic functions analysis.

Paper structure. First, we design a tool which allows to identify the parts of
an execution trace that manipulate cryptographic secrets (inside an Internet
connection in our use-case). With this isolation of the cryptographic part of the

4 https://www.intel.com/content/www/us/en/developer/articles/tool/

pin-a-dynamic-binary-instrumentation-tool.html
5 https://git-scm.com/
6 https://github.com/openssl/openssl
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trace, useless parts of the trace can be thrown away. In a second step, we analyse
in detail a specific cryptographic execution, namely the execution of openssl

genrsa, and we show that the private key material can be recovered during
execution.

1 Identifying the cryptographic parts in the execution of
of an Internet connection

In this section, we will study the execution traces of several Internet connections,
with the aim to identify parts of the traces which execute sensitive operations,
such as the cryptographic operations of the TLS protocol. In order to ensure
that cryptography is present, we focus on HTTPS connections, and for ease of
scripting, we use curl7 to launch the connections.

1.1 Obtaining and filtering the execution traces

We wrote a little scraper with the aim to establish some connections via four
different encryption protocols, namely:

– TLS AES 256 GCM SHA384
– TLS AES 128 GCM SHA256
– TLS ECDHE RSA WITH AES 128 GCM SHA256
– TLS ECDHE RSA WITH AES 256 GCM SHA384

These are the most common TLS configurations (we verified it experimentally
on about 5000 websites).

They give a diversity of cryptographic building blocks: two AES versions [4],
the GCM mode [15], two SHA2 variants [7], ECDHE [8] and RSA [10]. Further-
more, the variations on the keys length avoid patterns related to that factor.

Concerning the web connection, the scrapper uses curl without specific op-
tions. The cryptographic connection protocol is retrieved by means of wireshark8.
After that step, we could select 50 websites for each of the four categories. For
each of the selected websites, we run our two byte tracer:

pin -t "two_bytes.so" -- curl website

One word about the two byte tracer. For each instruction, it outputs the
first two bytes of the instruction. Why not the instruction itself, or its address?
The problem of the latter idea is that the amount of data is so huge that the
traced program becomes too slow to keep a reliable connection to the target
website. In that case, traces simply end on a “timeout”. Keeping two bytes for
each instruction is sufficient to identify them roughly. To conclude, generally
speaking, we get traces having a size around 5GB, thus the limitation to a small
number of websites.

7 https://curl.se/docs/manpage.html
8 https://www.wireshark.org/
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1.2 Analysis of function calls

One way to reduce the trace size while keeping the structure is to keep only the
function calls (ASM instruction call). We will use it to identify the parts of the
execution which execute cryptographic functions.

The trace of function calls yields files of about 1 MB,
We start with several issues that arise, then make observations on the sensi-

tive instructions that we identify.

Parallelism. Through this filtering, we identify an issue: a high level of paral-
lelism, which makes the structure of the program hard to grasp. This complexity
can be canceled if the attacker/analyser is the one launching the execution, in
which case they can turn off the parallelism. In other cases, parallelism will ren-
der the analysis more complex. The pintool is able to separate traces between
parallel threads to some extent, but we observe that this separation does not
always work. In particular, calls to OpenSSL’s CRYPTO THREAD xxx functions,
which launch a new thread (either a pthread or a Windows thread depending
on the operating system), do not seem to be separated by the pintool.

Black-box calls. We also observe that OpenSSL’s libcrypto uses some functions
in an opaque environment called “exdata”. Everything in these functions is ex-
ecuted in a black box ensured by what OpenSSL calls “BIO”. The idea is that
for each of these calls to a BIO box, only the inputs and outputs can be seen,
and not what is happening inside the box. That is the goal of BIO according to
OpenSSL’s documentation, and it seems to thwart the pintool well enough, at
least with no further work.

Cryptographic function initialisations. Another issue for the analysis is that
even if OpenSSL will only use few ciphers and hash functions during the TLS
connection, it still initialises all ciphers (called EVP CIPHER) and hash functions
(called EVP DIGEST) available in its library. This means that if we aim to identify
which cryptographic functions are used in the connection by filtering instructions
which contain their name, every cryptographic function will have at least a
few function calls using its name during the initialisation. Identifying which
cryptographic function is actually used is therefore slightly harder.

Elements on cryptography and TLS. At this point, we would want to identify
which function calls in a TLS connection manipulate sensitive variables. This
requires some understanding of how TLS works, hence we will give a short sum-
mary of the main steps and sensitive variables in a TLS connection from a
theoretical point-of-view.

Let us first recall the three main cryptographic types of tools: 1. ciphers,
which allow to make data readable only to those having a secret key, 2. sig-
natures, which allow to verify the identity of the sender of some data and 3.
cryptographic hash functions, which allow to verify the integrity of the data
(i.e. that is was not modified).



Ciphers manipulate secret keys during the decryption of data (not necessar-
ily during its encryption). Signatures manipulate secret keys during the server
signing operation (not when the client verifies the signature). Hash functions
manipulate no secret key.

TLS (for Transport Layer Security) is a protocol that can be plugged onto
any communication protocol to ensure the security of the connection. It works
in several steps, and some important steps happen before the connection.

1. Key generation (before connection): the server creates a couple (public key,
private key). These variables allow anyone knowing the public key to
securely connect to the server. The security of this connection requires the
private key to remain secret, hence private key is sensitive.

2. Public key sharing (before connection): the server must then share its public
key with the client. Although this key is not confidential, its integrity and
the authentication of its owner are required, which requires a secure means
of communication. This step is complicated and does not rely directly on
cryptography (or on secrets). It relies on Public-Key Infrastructures (PKI),
usually based on a public-key certificate (a tuple containing the public key

and the server URL, plus other details).
3. Shared-secret generation (connection start): for efficiency reasons, a secure

cryptographic channel relies on symmetric-key cryptographic algorithms,
which require the client and server to know a common secret. Creating this
common secret is the goal of this crucial step. In TLS, the shared secret

generation is handled through a variant of the classical Diffie-Hellman algo-
rithm (precisely Elliptic-Curve Diffie-Hellman Ephemeral). This secret shar-
ing requires that both client and server share the public key. The shared

secret is sensitive.
4. Secure session (during connection): using the shared secret, server and

client can communicate securely. Several algorithms can be used to this end,
but in TLS (and in general) most of these algorithms rely on a cryptographic
block-cipher called AES (in TLS, the variant is usually AES-GCM).

With these theoretical elements in mind, let us see where secrets are manip-
ulated in practice.

Public-key certificates. Parallelism and cryptographic function initialisation add
some amount of noise to the traces. Another source of noise comes from the
public-key certificates.

Let us remind how public-key certificates work [1]: in order to start a secure
connection, the server and the client need to share a secret key (which will be used
by symmetric-key algorithms, such as AES-GCM). This secret key is shared using
a public-key algorithm (usually ECDHE). ECDHE relies on the server’s pair of
keys: a private key and a public key. For ECDHE to work, the server’s public
key must be sent to the client. Yet although this public key is not confidential
(by definition), it must still be sent securely to ensure its integrity and the
identity of its owner (using a signature). This secure sending of the public key is



done using a Public-Key Infrastructure, which shares the public key in a public-
key certificate. This certificate contains various information, including (1) the
server’s URL, (2) the server’s public key and (3) the server’s public key, signed
by a third party (a Certificate Authority).

This is important to understand, because this means that the client must
use a signature algorithm to verify the certificate. And contrarily to every other
cryptographic function, this signature algorithm is not chosen during the TLS
connection, as it was chosen prior to the connection by the certificate authority.

This means that in every trace, for every public-key certificate on which the
connection depends, there will be a call to a signature algorithm that we cannot
predict. In every trace, we actually observe that many certificates are verified,
for two reasons. First, because the certificates actually depend on a hierarchy of
Certificate Authorities, not just one, and all their certificates need to be verified.
Second, because most web pages actually contain plug-ins from other websites,
which require a connection to each of the websites and a verification of their
certificate.

Overall, many signature algorithms are called during every trace, and we
cannot predict which. It is important to understand that these signature calls are
noise! They do not manipulate any secret, as they are only signature verifications
(they only use public keys).

Sensitive instructions. To understand which instructions may manipulate cryp-
tographic secrets, some understanding of cryptography is required. For instance,
in the previous paragraph, it is clear that the signature verifications cannot
manipulate any secret values.

Other cryptographic functions do not manipulate any keys. This is the case
of cryptographic hash functions (such as SHA1, SHA256, SHA384, SHA512 and
SHA3 [7]). One could argue that such hash functions are sometimes used to hash
sensitive data, as is the case when combined with RSA [10] to sign messages, but
this does not happen in a TLS connection. The only case in which cryptographic
hash functions do manipulate sensitive data in a TLS connection is in the case of
HMAC [11], a Message Authentication Code algorithm that uses hash functions.
In that case, recovering the input of the hash function may yield information
that could endanger the integrity of the connection. However nowadays, HMAC
is only supported by very few websites, and is never the default algorithm.

We are sure that some cryptographic functions do manipulate secrets: it is the
case for AES [4], which is the block-cipher used in almost every TLS connection.
Hence we look for instructions concerning AES. In the traces, AES is called in 4
zones of instructions: (1) 2 calls in the initialisation, (2) a few calls in a zone of
200 function calls, (3) a few calls in a zone of 7000 function calls in the middle of
the trace and (4) a few calls in a zone of 120000 function calls towards the end of
the connection. All these calls are actually to the instruction AES unwrap key. If
other function calls are related to AES, they would be in the BIO black boxes.

Overall during the core of a TLS connection, the only cryptographic secrets
that are manipulated are the symmetric keys, and they are almost always used



by AES, and we can positively identify the zones in which AES is executed by
the program.

1.3 Automatic identification of the zones which manipulate
sensitive keys

In order to identify the zones of instructions that manipulate sensitive keys,
we will focus on AES based on the previous analysis. We will detect calls to
AES unwrap key.

Of course, if the attacker/analyser has access to the name of function calls,
they can directly detect calls to AES unwrap key. We will now focus on a less
powerful attacker/analyser who does not have the names of functions, and we
will see if such an attacker can still identify calls to AES unwrap key during the
execution.

Note that for the rest of Section 1.3, we will consider all instructions of the
traces, not only ASM instruction call.

Learning. The idea will be to learn the execution pattern of AES unwrap key us-
ing supervised learning, then use this to detect the execution of AES unwrap key

during a full trace execution.

For the learning, we will use traces of AES unwrap key as examples of positive
detection, and execution traces not containing AES unwrap key as examples of
negative detection.

Final format of the data. To identify the execution pattern, we do not require the
whole instruction trace. We will only keep the first two bytes of each instruction
(the opcode), which identifies the type of operation that is applied. This allows
to largely reduce the trace size to around 500 MB.

Learning data. The data is the full execution trace of an Internet connec-
tion. Within it, we will look for windows of 50 instructions corresponding to
AES unwrap key. To allow for real-time detection during an execution, we will
cut the trace into blocks of 200 instructions, and we will perform the detection
of the 50-instruction window inside of this 200-instruction block.

For positive learning traces, we position the 200-instruction block around
a call to AES unwrap key, making sure to capture at least the 50-instruction
window after the call to AES unwrap key.

For negative learning traces, we pick a random position and extract a 200-
instruction block. We check that there is no call to AES unwrap key inside of
this block, otherwise we pick another one.

In proportion, we generate about 10 times more negative cases than positive
ones, as learning the negative case is harder (it is more diverse).

In total, we use 18202 negative traces and 1841 positive traces for the learning
phase, then 513 negative traces and 509 positive traces for tests.



Learning tools and results. We used several learning tools, as it was not obvious
which method would be the best:

– Recurrent Neural Network [13], and more specifically Long-Short TermMem-
ory [9], which is a deep learning method fit for the detection of sequences,
based on time relation between data. Our RNN was made of an embedding
part for preprocessing of traces (extraction of trace characteristics), then
the learning LSTM part made out of 64 gates, and finally a dense part to
classify and extract the result as a 0 or 1. The results of using the RNN are
summarised in the following confusion matrix:[

True Positive True Negative
False Negative False Positive

]
=

[
357 9
152 504

]
Our RNN is excellent at distinguishing negative cases, but is less precise
for positive cases. We compute a score of accuracy of 0.784 (as the mean
between true positives and false negatives, weighted by number of positives
and number of negatives).

– Convolutive Neural Network [12], which is a deep learning method fit for
the detection of patterns. Our CNN was made of a convolution part for
preprocessing of traces, then a max pooling to extract the most saliant char-
acteristic, then another convolution and another max pooling steps, followed
by a flatten part to extract the data as a 1-dimensional array, and finally a
dense part to classify and extract the result as a 0 or 1.
To represent our data as a picture, we transformed each instruction into a
pixel, where the first opcode byte is used for Red, the second opcode byte is
used for Green, and the Blue is set to 0. The results of using the CNN are
summarised in the following confusion matrix:[

True Positive True Negative
False Negative False Positive

]
=

[
373 29
136 484

]
The results with the CNN are similar to the RNN case, with a small im-
provement for the detection of positive cases. The accuracy score is 0.8053,
slightly better than the RNN.

– Support Vector Machine [3], which is fit for classification and regression. We
kept the default linear separation of the SVM and got the following results:[

True Positive True Negative
False Negative False Positive

]
=

[
485 2
24 511

]
The SVM is better than the CNN and RNN at distinguishing the negative
cases, and is also very good at distinguishing the positive cases. This gives
an accuracy score of 0.9907. The SVM model therefore seems quite fit for
learning in our case.

Conclusion. Overall, using an SVM, we manage to successfuly learn when and
where cryptography is used in an execution trace (and more precisely in this



case of the AES unwrap key function), and validate that the knowledge of the
function calls is not required, the opcode of each instruction is sufficient.

The size of the window (200), the number of instruction (50) do not look to
be crucial factors. We got almost the same results when shifting them slightly.
For instance, for window size, we even tried windows of 1k.

This can be used for a monitoring program, which recovers the trace in real
time, and can use this detection to throw away the trace parts which are useless
for secret recovery. In a second part, we will study how to recover secrets in the
cryptographic parts of a trace, now that we have a way to isolate this part.

2 Analysis of OpenSSL’s RSA key generation

In the first part, we showed in which terms, we could perform some coarse grain
analysis of cryptographic libraries, by coarse grain, we mean at function level.
In this second part, we want to perform a finer inspection of the binary. We
would like to extract precisely the instructions that deal with cryptographic
data. Of course, we could do it via reverse engineering. But, let us try to do it
in a completely automatic way.

We consider the following attacking scenario. The attacker would like to per-
form some identity fraud with respect to some victim. For that sake, they have
the possibility to replace one library by an other one on the victim’s machine.
Then, identifying the instructions manipulating keys makes sense. Indeed, sup-
pose you can determine that for the program used by the victim, the instruction
at relative address a within library L.dll deals with the secret key, say in register
RAX. It is fairly easy to transform the library so that it retransmits the contents
of the registers RAX via an auxiliary channel to the attacker. You ”simply” have
to hook the instruction at address a to the payload and then return back to
normal operations.

Now that our plan is set, let us do it on a concrete example. Again, we will
focus on an example of program which manipulates cryptographic secrets: the
generation of a private/public RSA key pair using OpenSSL’s genrsa command.
This key generation is classically used to generate cryptographic keys used in
protocols like GIT or SSH, and is similar to the key generation of TLS.

All along, we consider the execution of openssl:

openssl genrsa -out {file} [512|1024|2048]

that will create a file containing the newly generated key. Then, applying

openssl rsa -in {file} -noout -text



the details of the cryptographic keys are printed by OpenSSL (into the stan-
dard output). The secrets are named privateExponent, prime1 and prime2.
But can we retrieve those data at generation time, not a posteriori as we did
here. We will focus on the determination of the private exponent, but that is
more or less arbitrary and actually, we will have access to all parameters9. Nat-
urally, as stated in introduction, there is a surreptitious usage of this idea. Such
a tool could serve as a hidden door within an attack as we described in intro-
duction. In other words, outside protocol analysis, achieving our goal can be
interpreted as a security issue.

Final preliminary remark: we have made experiments on openssl’s key gen-
eration, but our approach is more generic. We only rely on two hypotheses: 1.
that the program uses some key, hidden or not, and 2. that this key could be
retrieved by a legitimate user after program execution. This second hypothesis
is somewhat limiting, but it is necessary to generate learning data for our tool.

Our general plan is drawn on the figure below with time flying from left to
right:

openssl

genrsa

tracer trace

keys extractor factors

synthesizer
backdoor

data

backdoor

engine

Roughly speaking, our learning process works as follows. We run the exe-
cutable openssl within a tracer . At the same time, or just after the execution,

we extract the “secret”: this is the box extractor in our schema. In the present
case, we will take the private exponent within the private key. Finally in the

synthesizer phase, from this knowledge of the secret and the execution trace,

we build backdoor data, that is instructions, registers or memory that specifi-
cally manipulates the secret, obtained by correlating the trace with the known
private exponent (”factors”). In other words, the synthesier returns the main

ingredients to build the backdoor, that is done by the engine . The backdoor

9 Also in an RSA key, the knowledge of the private exponent or one of the primes is
enough to recover the full key.



behaves exactly as the original program openssl up to the exception that it
extracts the private exponent in a separate channel.

Since we do not aim to create real backdoors, actually, our engine forges a
pintool openssl backdoor.so such that running the pintool behaves exactly as
expected: it will perform as openssl does, except that for RSA key generation,
it will save the secret key in a side file. In short, we replace openssl args by
pin -t openssl_backdoor.so args.

One could argue that saving the key in a local file is not really useful from
an attacking perspective. However, transforming that to a remote connection
is standard engineering. This could be done in an additionnal step. We rather
focus on the data stored within this file, called side-keys in the following.

The last step is to validate that the side-keys correspond to the real secret.
On our testbed, we check that the backdoor pintool provides the same data our
extractor does. The openssl backdoor outputs keys (normal behavior) together
with data in a side channel (side-keys). We extract the secret factors as we did

above with extractor , and we check that they agree with the side-channel
values.

openssl

backdoor

side-keys

keys extractor factors

checker

ok

nok

In this process, the tracer and synthesizer are generic, while the extractor is
specific to the target program and the searched secret.

2.1 Obtaining and filtering the traces

The tracer is in charge of extracting an execution trace from a run. Our tool
records instructions’ address and data values at every point during execution.
For a program, that may lead to huge amounts of data. Typically, a run has
a length of magnitude 109 instructions. Recording addresses (8 bytes long), of
10 registers (each being 8 bytes long) leads to a file of approximately 100GB.
Thanks to Section 1, we can parametrize our tool to restrict data recording
to some specific libraries (for instance libcrypto) and even more to specific
functions.

Furthemore, we can change the list of considered registers. These two tricks
save a lot of space in practice. For our experiments, we got trace files with size
of the order of 1GB. We managed those hyper-parameters manually, but it is
clear that we could do it via an automatic process.

By data recording, we mean two sorts of entries. First, we may record the
value of some register, say RAX, XMM2 and so on. But that is not sufficient in
practice. We also record pieces of memory corresponding to the ”Memory Effec-
tive Address” denoted by the instructions. Registers come with an underlying



size. For memory, we use a parameter. So far, a size of 32-bytes has shown to be
sufficient. To simplify the management of all these parameters, we use a global
configuration file.

Trace content. In the end, after application of our pintool, we get a (binary)
file storing each instruction’s address and a list of values (with their underlying
size):

struct entry{

uint64_t address;

uint8_t * value;

uint8_t size;

}

where values denotes the concatenation of recorded data. Given an entry E, we
denote by E.address its underlying address and by E[r] the value corresponding
to the data r. Recall that r denotes either a register (hence the notation) or the
memory effective address.

2.2 Recovering the private RSA keys

The analyzer is devoted to a post-treatment that retrieves key information.
For instance, for the command openssl genrsa mentioned above, we get back
the private exponent corresponding to the key with the command

openssl rsa -in new_key_file.key -noout -text

followed by a simple filtering process. The result is stored within a file that will
be read by the synthesizer.

2.3 Trace analysis

The learning phase of the synthesizer works as follows: we take the true value
of the secret extracted by the extractor tool and the execution trace in the
form of entries in file binary trace.bin. The secret is a sequence of bytes next
denoted k, of length len(k), while the entries of the trace are denoted as S and
their size as N . Recorded registers are denoted R.

In a first step, we need to filter instructions/registers that share some part
of the secret. For this purpose, we build the following dictionary D. Its keys are
pairs (i, r) with i ≤ N and r ∈ R. To any key, we associate the longest substring
between the registers value and the secret. Actually, since factors of length 1 and
2 are way too common, we restrict the dictionary to sequences of size at least 4.

In a second step, we consider the set of instructions occurring within the
trace. Instructions are identified by their address a = S[i].address. Let an
address a, we compute the (ordered) list



S_a = [ i < N | a = S[i].address]

In other words, this is the list of entries specific to some address a.
An address a and a register r are said to be compatible with the key k

whenever there are three constants α, β, γ and an increasing list of indices
ℓ0, ℓ1, . . . , ℓlen(k) ≤ len(k) such that for all 0 ≤ j < γ,

– ℓ0 = 0, ℓγ = len(k)
– D[Sa[α+ j × β], r] = [kℓj , ...kℓj+1 ],

In other words, after α applications of the instruction at address a, every β
application of this instruction, the content register r at position q will perform
a linear sweep within the secret. We afford to drop the last γ instructions within
the trace. Sometimes, we observed that two loops are necessary to get a correct
adequation between the register and the key. Hence the factor β.

To sum up, identifying a covering sequence means we are capable of rebuilding
the key from the value of registers at corresponding instructions.

2.4 Pintool synthesis

We suppose we succeeded to find a sequence {(a1, r), . . . , (at, r)} as above with
the respective parameters. Then, we are capable to build a pintool that will
skip the first occurrences of the applications of an instruction. Dropping the last
instructions can be done via a buffer. Finally counting modulo β is (almost)
immediate.

So, actually, the main difficulty of this part is to choose the “best” sequence.
Indeed, once there is one, we noticed that there are actually many. Some will
involve more instructions, leading to a constant time factor efficiency loss.

Since the pintool is based on interruption on a very small number of instruc-
tions (usually, even 1, when the succeeding sequence is composed of a singleton),
the time overhead is marginal.

2.5 Result

Concerning out dataset, we tested our tool on the Windows platform, on different
Linux platforms (Ubuntu, Debian) with the tool as presented above. All the
experiments we did so far succeeded : the addresses, the registers we found
contain the secret data.

Further, again, to test the robustness of the approach, we tested different
versions of the libraries. We made the experiment on libcrypto 3.0, 3.1 and
(3.2) (and some subvariants). We got positive results in all cases.

Even more, we tested the tool on a Raspberry Pi.3 to test if an other pro-
cessor (here, an ARM-32bits little-endian) would lead to an other conclusion. For
that sake, we had to use an other tracer since pin only works on x86 platforms.
We transposed all the work on the ARM processor, thanks to the dynamorio10

framework. All the conclusions remain the same : we find the secret.
10 https://dynamorio.org/

https://dynamorio.org/


Finally, we tested the tool on different key lengthes, 512, 1024, 2048, 3096.
First, in each case, we get a correct answer. But second, all the results are
compatible. The addresses we got for a key length of 512 are those for the other
sizes. From the attacker perspective, this is good news. He will not have to steal
the information before the attack.

2.6 Discussion

First, in each cases mentionned above, the addresses that the tool provides were
lying within the libcrypto library. Here is one of the example displayed with
Cutters:

In the latter example, the tool is able to name some of the structures involved
in the computation. We recognize some zone in memory starting with the prefix
EVP ASYM CIPHER, some central data of the cryptographic mechanisms. When
we made the snapshot, we knew that we were on good tracks.

Second, we encountered a large variety of registers: rax, rsi, ymm0, r11

and even in memory. Here an example of the tool on the ARM processor:

Final point of discussion. All experiments were done with a time limit of 1
minute. Beyond, we think that we enter the domain of symbolic analysis. We used
standard (standalone) machines, for instance an Intel i5-1140G7. Building the
trace takes around 20 seconds (to be compared with around 2 seconds without
trace recording). The number of recorded data is the main factor for this step of
the analysis. Then, the synthesis takes also around 30 seconds (again, depending
on the size of the data).

3 Conclusion

In this work, we have studied the recovery of secrets during program execution. It
appears that during the execution of a program using some OpenSSL functions,



it is possible to identify where and when cryptographic functions are executed.
This allows to isolate the sensitive parts of the execution. Identifying these parts
does not require much information, only the opcode of the instructions, and can
be done on-the-fly during an Internet connection.

In a second part, we have demonstrated how one can recover some secret value
during the execution of an OpenSSL function. We experimented on openssl

genrsa, but our tool is hardly limited to this use-case. We positively recover the
private key of the RSA key generation during the execution of genrsa.

Our tool can be downloaded on our website.

Future works. Several options arise for future works. Much of OpenSSL’s sensi-
tive computation appear to be happening inside of black boxes. These are meant
to resist pintool analysis, but we did not put much effort to penetrate these black
boxes in this work. Sutdying their actual resistance thus seems like an important
work.

Another interesting direction is to keep on evaluating how much data is actu-
ally required to recover cryptographic secrets. It appears that the execution trace
is already very powerful, but also that the opcodes only are enough to recover a
lot of information. An attacker/analyser does not always have a strong access to
the user’s account or to the fully-detailed instructions trace. However some func-
tion of the instructions is more available, such as side-channel traces, whether
they be time consumption, energy consumption or electromagnetic emissions.
These leak information on the program during execution. Although this infor-
mation is not full and noisy, it is available to anyone with a physical access to the
device. A typical model of electric leakage is to assume that the attacker/analyser
can recover the Hamming weight of each register (that is the number of bits to
1 in the register). It would be interesting to see if it is still possible to recover
the secrets while relaxing the needs of the attacker/analyser.
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