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Classification of Buried Objects from Ground
Penetrating Radar Images by using Second Order

Deep Learning Models
Douba Jafuno, Ammar Mian, Guillaume Ginolhac, Senior Member, IEEE, Nickolas Stelzenmuller

Abstract—In this paper, a new classification model based on
covariance matrices is built in order to classify buried objects.
The inputs of the proposed models are the hyperbola thumbnails
obtained with a classical Ground Penetrating Radar (GPR)
system. These thumbnails are then inputs to the first layers
of a classical CNN, which then produces a covariance matrix
using the outputs of the convolutional filters. Next, the covariance
matrix is given to a network composed of specific layers to
classify Symmetric Positive Definite (SPD) matrices. We show in a
large database that our approach outperform shallow networks
designed for GPR data and conventional CNNs typically used
in computer vision applications, particularly when the number
of training data decreases and in the presence of mislabeled
data. We also illustrate the interest of our models when training
data and test sets are obtained from different weather modes or
considerations.

Index Terms—Ground Penetrating Radar, covariance matrices,
buried objects classification, Symmetric Positive Definite matrix
networks

I. INTRODUCTION

The Ground Penetrated Radar (GPR) is a RADAR system
that provides an image of the underground [1]–[3]. In partic-
ular, it can be used to image buried objects such as mines,
pipes (metal, plastic, cast iron, etc.) and even cavities. The
main drawback of GPR images is that they are very noisy, in
particular due to the clutter that is the sum of all contributions
from micro-scatterers in the ground but also because of the
strong answer of the different layers of the ground. The buried
objects are therefore often difficult to detect/locate and even
more difficult to classify. One solution is to use complex
systems such as stepped frequency RADAR [4], Multiple Input
Multiple Output (MIMO) [5], or polarimetric sensors. But the
high cost of these devices is not always attractive for industrial
or civil engineering applications. In this paper, we consider
classical GPR systems emitting a single wave, called Ricker,
and whose image is created by a displacement on one axis of
the transmitting/receiving system. In the normal configuration,
the RADAR is positioned very close to the ground. In our
case, we will study the possibility of placing the RADAR at
a certain height above the ground. This study will enable us
to assess the robustness of our approach in the case of using
GPR placed on a drone.

Douba Jafuno, Ammar Mian and Guillaume Ginolhac are with LISTIC
(EA3703), University Savoie Mont-Blanc, FRANCE. Nickolas Stelzenmuller
is with Geolithe, FRANCE. This work has been done thanks to the facilities
offered by the Univ. Savoie Mont-Blanc - CNRS/IN2P3 MUST computing
center.

As noticed previously, the bad quality of the GPR image
requires the use of various signal processing, image processing
or machine learning techniques to achieve just the right
detection and localization performance. In machine learning,
it is possible to use deep learning techniques for denoising or
inversion [6]–[9], auto-encoders for detection [10] or pattern
recognition approaches for localization of buried objects [11].
In signal processing, it is possible to use statistical methods
normally used in detection [12]–[15], particle filtering [16],
Markov fields [17] or algebraic algorithms [18], [19]. In image
processing, most of methods are based on inversion [20], [21],
compressive sensing [22] or dictionary learning [23]. A robust
inversion method has been proposed in [24], which achieves
good performance whatever the type of soil or buried object.
All these works are essential for good object detection and
localization, but will not suffice if we wish to classify them
and thus determine their physical properties. In this paper,
we are interested in this last step. Before introducing the
proposed approach and those of the literature, we give the
different needed assumptions: firstly all the buried objects are
detected and correctly localized and secondly we have a certain
amount of labeled data at our disposal, enabling us to develop
supervised approaches.

For the classification of buried objects from GPR images,
a number of studies already exist, based either on classical
signal processing techniques [25], [26], machine learning [27],
[28] or deep networks [29]–[32]. In all these algorithms, the
classification is based on the shape of the hyperbola (in both
axes), which is partly related to the shape of the buried object
and its electromagnetic properties. Unfortunately, the shape of
the hyperbola also depends on elements completely indepen-
dent of the object. In particular, the technical characteristics
of the GPR (frequency, elevation) as well as the type of
soil and the number of layers between the object and the
ground have an enormous influence on this shape. The aim
of this paper is to propose a high-performance and robust
approach that will remain effective in as many experimental
configurations as possible. It seems complicated to achieve
this robustness by developing a shallow CNN model. One
solution is to use a very deep network, as is the case in
computer vision. But unfortunately, these networks require a
large amount of training data to achieve good performance
in terms of robustness. And it is well known that this large
amount of data is not readily available for applications such
as GPR.

One solution is then to change of features before the
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classification step. Instead of the image of the hyperbola,
a suitable transformation can achieve the performance and
robustness objectives sought in this study. For example, it is
possible to construct a covariance matrix from this image by
using the method proposed in [33]. It is known that second
order can improve classification performance, as for example
in computer vision [34], [35]. Moreover, we have shown in
[36] that this kind of feature brings robustness when a shift
is present between the training and the test data. By using
a similar approach of [33], we have shown in a previous
work [37] that this operation achieves better performance
with classical machine learning algorithms than using the
raw image. This covariance matrix is constructed from the
outputs of the first layers of a deep network. It measures the
correlations between these different layers for a given image.
To achieve a certain richness in this covariance matrix, it is
often useful to use a certain number of layers (around 8-10). In
this case, however, the covariance matrix is very large, making
classification impossible caused by singularities issues. To
solve this issue, a preliminary work [38] has proposed specific
layers for Symmetric Positive Definite (SPD) matrices, proper-
ties of covariance matrices, to solve this problem of classifying
from large covariance matrices. Similar models have also been
proposed for EEG data analysis [39], classification of RADAR
data [40] or classification in polarimetric SAR images [41].

In this paper, we propose a new classification model based
on a transformation of the raw image into a covariance matrix
and specific subsequent layers adapted to this SPD matrix. We
also propose a different approach to that proposed in [33] for
constructing our covariance matrix, which saves memory space
while preserving correlation information. To train and to test
our new model, we have from Geolithe, a sufficient database
containing 4 types of buried objects with different GPR con-
figurations (frequency and elevation) as well as several terrains
(dry and wet sand and gravel). We compare our approach
with shallow networks and conventional deep networks used in
computer vision. We will show good performance and, above
all, robustness of our pipeline to different experiments.

The outline of the paper is the following. First, section
II introduces the GPR principle as well as some physical
considerations allowing to better understand how the shape
of the hyperbolas and the buried object are linked. Section
III presents the new model to classify buried objects from
GPR images. Next, section IV gives some details on the used
database for the training and the steps. Finally, our approach
is tested and compared to other algorithms in the section V.

II. GROUND PENETRATING RADAR (GPR)

A. GPR Principle

Ground Penetrating Radar (GPR) is a radar system consist-
ing of an antenna that is typically placed on the surface of
the ground1. For a wide range of systems, the electromagnetic
wave transmitted by the GPR is a simple wavelet, known in
the community as a Ricker. An example of this type of signal
is shown in figure 1. The frequency of the wave, from 10MHz

1In our paper, we will also consider different elevations but the principle
presented applies still.
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Fig. 1: Waveform emitted by classical GPR, called Ricker.

Fig. 2: GPR Principle with acquisition (left), creation of the
A-scan (middle) and the B-scan (right).

to 2GHz, depends on the application. In fact, this frequency
is linked to the depth that can be reached. For example, for
mine detection, a high frequency will be chosen, as there is
no need to reach great depths, whereas the opposite will be
chosen if you want to know the composition of the ground
over several tens of meters.

The GPR is moved along an axis, as shown on the left of
the figure 2. All acquisitions, i.e. the amplitude of the signal
over time at a given point, are combined to form an image
known as the A-scan. From this A-scan, it is then possible to
construct an image of the ground called a B-scan or radargram.
All processing, from detection to classification, are classically
based on this image. If a buried object is present, it is then
seen several times by the GPR, leading to a hyperbola in the
B-scan image. Soils are often composed of several layers of
different types. In this case, the B-scan shows some lines to
represent these layers. On the right-hand side of the figure 2,
the B-scan shows the image of a buried object and two layers.
In this simple simulation, we do not take noise into account. In
reality, the signal-to-noise ratio of GPR images is very low. In
particular, there is a lot of clutter due to the Ricker reflecting
off small scatterers, such as rocks.

In the next section, we will look at how object type and
other parameters influence the shape of the hyperbola.

B. Influence of the physical parameters on the hyperbola
shape

Several factors influence the shape of the hyperbola in the
radargram. Firstly, GPR parameters, such as the frequency of
the transmitted wave or the elevation of the system relative
to the ground, strongly affect the resulting hyperbola. In this
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article, we will consider several frequencies as well as different
GPR elevations. This last point is useful in the case of an
airborne GPR, which cannot then be used too close to the
ground.

Another factor influencing the shape is obviously the soil
and its composition. Each type of soil has its own dielectric
permittivity and electrical conductivity, both of which influ-
ence the speed of the emitted wave. For example, higher
dielectric permittivity generally slows down the propagation
of electromagnetic waves or deflects radar waves more than
soils with lower permittivity. Furthermore, interfaces between
different layers also have an important influence, in part when
the two layer parameters are very different from each other. In
this case, the Ricker wavelet will undergo several deformations
(attenuation, spectral broadening, etc.). For more details on
these deformations, please refer to [1].

Finally, the shape of the hyperbola obviously depends on
the buried object reflecting the transmitted wave back to the
RADAR. Firstly, the size and shape of the object will influence
its shape, particularly in the axis of motion of the RADAR.
Finally, the electromagnetic properties of the buried object
have an impact on the hyperbola, but more in the time axis.
Conductive materials, such as metals, absorb more energy and
attenuate signals faster than non-conductive materials. To help
distinguish between metallic and non-metallic objects, we can
also look at the polarization of the hyperbola. Polarity reversal
occurs when radar waves reflect off objects whose permittivity
is higher than that of the surrounding medium (soil has a
lower permittivity than metallic objects). To define polarity,
we define that the black areas of the hyperbola correspond
to a negative polarity ’-’ and the lighter or white areas to
a positive polarity ’+’. So, depending on the polarity of the
incident wave, a metal object can appear as a positive (+ - +)
or negative (- + -) reflection.

We will show some examples of buried object images in
the next section.

C. Examples

On the radargrams in Figure 3, we have used the 200 MHz
GSSI antenna which have a positive polarity (+ - +) on wet
sand. So a change in polarity will be detected as negative or
reversed (- + -). It is therefore more appropriate to speak in
terms of normal polarity when the reflection polarity is the
same as the incident wave, or reversed polarity when these
polarities are different.

On the radargram (a), visible in Figure 3, the signature of
the shelter consists of:

• A wide hyperbola corresponding to the roof of the shelter
(flat surface). The width of the flattened, high-intensity
part corresponds to the width of the shelter (2 m). This
reflection specifically corresponds to the soil-air interface
(rather than soil-wood) due to the significant contrast
in dielectric permittivity between air and soil and the
thinness of the wood. The polarity is normal ((+ - +) here)
same like GSI antenna : there is no change in polarity at
the soil-air contact (decrease in dielectric permittivity).

(a) (b) (c) (d)

Fig. 3: Examples of preprocessed GPR images with the 200
MHz antenna in wet sand (after direct wave suppression and
histogram correction thanks to GPRpy which is an open-source
Ground Penetrating Radar processing and visualization soft-
ware available in https://github.com/NSGeophysics/GPRPy)
for different buried objects: Wooden shelter, dummy shell
(Metal) and wooden board coated with rubber (Non-Metal).
Noticed that the 3 radargrams have different scales.

• Two adjacent hyperbolas beneath the first reflection. They
correspond to reflections on the corners of the shelter.
Their polarity is inverse.

• A wide hyperbola below the previous hyperbolas, corre-
sponding to the base of the shelter.

On the radargram (b), we observe that the signature of a
dummy shell gives

• hyperbolas which are easily recognized by their high
intensity, well-defined hyperbolic shape and polarity op-
posite that of GSSI antennas (- + -). The polarity is
reversed for metallic objects.

On the radargram (c), we observe that the signature of a
wooden board coated with rubber gives a slightly flattened
hyperboles identified by a low intensity. Moreover, the polarity
are reversed (- + -) here.

D. Goal of the classification model

The 3 previous examples show that the shape of the hyper-
bola is linked to the buried object. In this article, we therefore
propose to build a classification model that takes as input a
thumbnail of each hyperbola. We assume that localization and
classification have been carried out in the previous steps. Some
pre-processing steps are given in [37].

One of the main concerns regarding the classification strat-
egy based on GPR images is robustness. Indeed, we noted
in the previous sections that the shape of the hyperbola also
depends on parameters other than those of the buried object,
such as the GPR and the soil. In this case, the classification
must be invariant to these deformations of the hyperbola
independently of the object.

https://github.com/NSGeophysics/GPRPy
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Fig. 4: Architecture of model CNN1 [30]

The proposed strategy in the next section consists in im-
posing a transformation on the thumbnail image in order
to classify it after this treatment. In particular, we study
the interest of the second-order model for achieving good
classification performance with good robustness, and all this
with relatively little training data.

III. SECOND ORDER MODEL

In our task of classifying our radargrams, we rely on
neural networks that have shown their effectiveness in image
classification tasks.

Let us first describe some of the models that we used as a
baseline and illustrate their respective limitations. From this
we will then describe our proposed approach that combines
several aspects of those models.

A. Shallow CNN network

As we are considering GPR images thumbnails of pre-
localized hyperbolas, the first classes of models that are natural
to consider are 2D Convolutional Neural Networks (CNNs)
that have been successfully applied in computer vision tasks
[42]. Rather than consider large models, and given that we
consider very few classes compared to the general image
classification problem, shallow CNNs have been considered
in [30], where several of such small scale architectures are
presented. From this study, we selectioned the best reported
model in terms of overall accuracy that is denoted S-CNN
(Shallow CNN) whose architecture is reported in Figure 4.

It is constructed as a succession of 3 embedding layers with
help of standard 2D convolutions, batch normalization, ReLU
non-linearity and max-pooling layers. Then a fully connected
layer is followed by a softmax for classes probabilities. While
this model allows for classification of the hyperbolas, the
obtained accuracies we obtained in practice were not as
satisfactory on our dataset2, than in the one used in [30], who
was trained on synthetic dataset and with a different number
of classes. Since our database consists of a great number of
real images more difficult to interpret than synthetic ones, it
can be intuited that the size of this model is not sufficient for
our task.

B. Computer-vision models

In order to circumvent the lower generalization capabilities
of shallow networks, we consider models that are successful in
computer vision tasks. In this work we focused on the ResNet

2as will be seen in section V.

architecture [43]. When using models from the literature, there
are two possible approaches:

• Using the pre-trained weights from another task, to
benefit from the rich embedding representations and
associated classification layers learned on a much bigger
dataset. In this case, the weights can be fine-tuned by
using the pre-trained values as initialization.

• Given a sufficient enough database size for the task, it is
possible to train from scratch. This is useful in situations
where the task is very different than traditional computer
visions tasks like the GPR classification problem.

In the following, we denote the first model as RFT (ResNet
Fine-Tuned) while the second is RRT (ResNet Re-Trained
from scratch).

Such models are appropriate in handling various classi-
fication tasks. However, a problem lies in the very high
number of parameters used for the task at hand, making the
inference costly compared in terms of amount of labeled data
to the previous shallow model. To address this issue, one can
consider taking advantage of recent approaches based upon
second-order statistics, which have shown promising results
in computer-vision as well as in other applications [39]–[41].

C. SPD models

Covariance representations have been shown to be a relevant
description when dealing with noisy signals coming from
radar systems [44]. Notably, statistical hypothesis testing over
second-order modeling have been successful in target detection
in GPR [15]. For classification tasks, building upon [45], a
preliminary study over a binary classification problem has been
done in [46] using a covariance pooling approach. The idea
is to take advantage of the standard convolutional embedding
layers that are learned from a computer-vision dataset while
employing second-order statistics as a mean to both reduce the
dimension of the embedded feature space while also providing
additional spatial invariance and better noise handling.

As described in [47], we propose to refine the standard
convolutional integration layers by backpropagating the loss
gradient onto the covariance estimation layers (input tensor
construction and estimation) using the matrix backpropagation
calculation given in [48]. This new strategy adopted in the
paper should enable us to better adapt the various layers to
GPR images, which are profoundly different from computer
vision data.

D. Proposed models

Based on those previous works we propose two architectures
names SRCNet (Stacked Residual Covariance Network) and
RCNet (Residual Covariance Network) that take advantage
of the covariance pooling approach while adding some layers
from the recent model [38] that are specifically designed to
handle covariance matrices. The idea behind those layers is to
reduce the dimension of the covariance matrices by non-linear
dimension reduction while preserving only the information
that is relevant for the classification task. The various pipelines
used in this paper are illustrated in Figure 5. Let’s describe
the different steps of the proposed model:
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Fig. 5: Illustration of the two architectures used in this paper. In RCNet (Residual Covariance Network), we take only the last output of the ResNet blocks
while in SRCNet (Stacked Residual Covariance Network), we stack the first 32 outputs (to save memory space) of the outputs features by interpolating them
to a common size of 38× 20. With RCNet (Residual Covariance Network), we have hi = 54 and wi = 30 for the first 3 layers and hi = 28 and wi = 15
for the others.

Resnet34 with l layers: First, we use the first l layers
of a non-pretrained ResNet-34 model3. In this paper, we use
l = 8, with each layer producing 64 output filters. We start
with a grayscale image I ∈ Rh×w whose initial image size
h = 112 and w = 60 is taken from [30], to provide a
basis for comparison in the remainder of this article. We have
considered two scenarios (SRCNet and RCNet), in which we
retain a portion of the output from each layer or only the last
one.

SRCNet: Starting from our grayscale image, the steps are
as follows:

• The first l layers of the ResNet34 model each contain
d̄ = 64 filters.

• Only d̄ = 32 filters will be retained for each layer to save
memory space.

• Therefore, the total number of filter outputs is given by
d = l · d̄.

• Let Ii ∈ Rhi×wi4 with i ∈ [1, d] represent the set of filter
outputs.

3Preliminary results have shown that performance is better with an non-
pretrained network than with one learned with computer vision data, surely
because the first layers generally contain simple features.

4Note that each images has a different size for each i which explains the
next step to resize all images with an identical size.

• Define Mh as the mean of hi and Mw as the mean of
wi.

• We need to resize the filter outputs Ii before stacking.
For this purpose, we resize Ii to Ĩi ∈ RMh×Mw .

• We then stack the resized filter outputs Ĩi into a tensor
T . Thus, T = {Ĩi}i∈[1,d] ∈ Rd×Mh×Mw .

• Finally, we reshape T into T where T ∈ Rd×M with
M = Mh ×Mw.

RCNet: In this alternative approach, the covariance will be
calculated without stacking the output filters, but by taking
the layers sequentially with all the output filters (and therefore
not just 32 in this configuration). In this way, the covariance
matrix will be estimated using only the characteristics of
the last l layer. In this case, the total number of filters is
d = 64, which leads to T = {Ĩi}i∈[1,d] ∈ Rd×hl×wl . Next, we
transform T into T where T ∈ Rd×M with M = hl×wl. The
strategy of this second option aims to explore the potential
benefits of residual connections and optimize performance in
terms of computation time and memory space.

After these steps to build the tensor data T by either
SRCNet or RCNet, we have the following steps:

Covariance Pooling (CovPool) Layer: Then a covariance
pooling layer is added. From T of SRCNet or RCNet we
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calculate5:
C = TĪTT,

where Ī = 1
N

(
I− 1N1T

N

)
and C ∈ Rd×d is a SPD Matrix

(denoted SPD for Symmetric Positive Definite).

SPD Net Layer [38]: The obtained covariance matrix C
can then be of very high dimension, and it seems interesting
to reduce the data space for better performance. Therefore,
we suggest adding convolutional layers adapted to covariance
matrices using the framework proposed in [38], denoted as
SPD Net. SPD Net is a model that, for k ≥ 1, takes as
input a matrix Xk−1 ∈ Sym+

dk−1
. In our case, we start with

X0 = C ∈ Rd×d, a symmetric positive definite matrix of
size dk−1. The dimensionality of the space is reduced through
several BiMap convolution layers and a ReEig regularization
layer based on an Eigenvalue Decomposition (EVD). Finally,
there is a LogEig layer to perform measurements between
covariance matrices in a common space (tangent plane to the
Riemannian manifold of SPD matrices taken at the identity).
The unknowns in the problem are the convolution matrices
Wk ∈ Rdk×dk−1

∗ , which are low-rank and belong to a Stiefel
manifold.

Here are some details about the different layers at each step
of the forward propagation:

• BiMap Layer (to generate more compact and discrimina-
tive SPD matrices):

Xk = f
(k)
b (Xk−1;Wk) = WkXk−1W

T
k ,

where Xk−1 is the input SPD matrix of the k-th layer,
Wk ∈ Rdk×dk−1

∗ , (dk < dk−1) is the orthonormal trans-
formation matrix (connection weights), Xk ∈ Rdk×dk is
the resulting matrix and f

(k)
b is the function for the k-th

layer.
• ReEig Layer (to improve discriminative performance,

inspired by ReLU):

Xk = f (k)
r (Xk−1) = Uk−1 max(ϵI,Σk−1)U

T
k−1,

where eigenvalue decomposition (EIG) of Xk−1 =
Uk−1Σk−1U

T
k−1, ϵ is a rectification threshold, I is an

identity matrix and max (ϵI,Σk−1) is a diagonal matrix
of the corrected eigenvalues in order to stay on the SPD
manifold.

Before the final steps, the BiMap and ReEig layers could be
repeated several times in order to find the best representation
for the classification.

In the final stage of the model, we aim to classify a lower-
dimensional discriminant SPD (Symmetric Positive Definite)
matrix. To enable the application of traditional fully connected
(FC) layers, we first transform the SPD matrix into a feature
in Euclidean space. This transformation is performed using the
LogEig operator, which calculates the matrix logarithm of the
input:

Xk = f
(k)
l (Xk−1) = Uk−1 log(Σk−1)U

T
k−1,

5Actually this covariance matrix is the classical Sample Covariance Matrix
(SCM) which assumes that the data distribution is Gaussian.
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is the classification output.

where log(Σk−1) is the diagonal matrix of logarithms of the
eigenvalues of the SPD matrix, from the EVD of Xk−1 as
with ReEig layer. Finally, we vectorize the resulting matrix
before the FC layers and we introduce a dropout mechanism
to mitigate the risk of overfitting.

Back-propagation Steps: Since the main steps are matrix
operations, the backward is not classical like in most of deep
learning models. In particular, the gradients of the operations
based on SVD have been firstly derived in [49]. A more stable
formula is given in [40] and will be used. An illustration of the
backpropagation steps can be found in Figure 6. Calculations
concerning Wk differ, as they are based on Riemannian
gradient descent on the Stiefel manifold, where Wk represents
an orthonormal matrix. Detailed explanations of this approach
can be found in [38]. Let us summarize hereafter the steps of
the backpropagation for the proposed model.

Given loss function L : RK ,RK → R, where K is the
number of classes. By denoting fl the l-th layer in the network,
we can define the loss starting at this layer as

Ll = L ◦ fℓ ◦ . . . fl−1︸ ︷︷ ︸
Ll−1

◦fl,

where ℓ is the number of total layers in the network.
Given those definitions, the backpropagation steps are as

follows:
• CovPool Layer: Let us consider this layer as some fl in

the network, meaning C = fl(T) = TĪTT and suppose
that we have already calculated ∂Ll+1

∂C . Since there is no
parameter to learn, the matrix chain-rule [49] on Ll(T) =
Ll+1 ◦ fl(T) yields:

⟨∂L
l+1

∂C
,dC⟩ = ⟨∂L

l

∂T
,dT⟩,
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where ⟨·, ·⟩ is the Frobenius inner product. We have that
dC = (dT)ĪTT +TĪ(dT)T and using symmetries on Ī
yields:

∂Ll

∂T
= 2ĪTT ∂Ll+1

∂C
.

• BiMap Layer: for this layer, we have two gradients to
propagate : ∂Ll

∂Xl−1
, the gradient towards the input of the

layer and ∂L↕

∂W , the gradient to update the weights W of
the bilinear mapping to be learned. We then use the same
matrix back-propagation principles as those presented for
the CovPool layer, but applied to fl : Sdl−1×Odl×dl−1

→
Sdl , where Om×n is the set of orthonormal matrices of
size m × n, and fl(Xl) = WXl−1W

T . The gradients
are then given by:

∂Ll

∂Xl−1
= WT ∂Ll+1

∂Xl
W

∂Ll

∂W = 2∂Ll+1

∂Xl
WXl−1

.

One additional thing to take into account is that W has a
special structure. Thus, while doing the gradient step, it
is necessary to use a Riemannian retraction operator [50]
to keep the weights on the Stiefel manifold.

• ReEig and LogEig Layer: Since both operations operate
on eigenvalue decomposition, we can decompose fl as
fl = f

′

l ◦ eig where eig means doing the EVD of the
input matrix anf

′

l is the operation on the eigenvalues and
reconstructing the matrix. The gradient towards input is
given by [40]:

∂Ll

∂Xl−1
=2Ul−1

PT ⊙

(
UT

l−1

∂Ll+1 ◦ f ′

l

∂Ul−1

)
sym

UT
l−1

+Ul−1

(
∂Ll+1 ◦ f ′

l

∂Σl−1

)
diag

UT
l−1,

where P is a square matrix given by

P(i, j) =

{
1

σi−σj
if i ̸= j,

0 otherwise
,

and σi are the eigenvalues of Xl−1.
For the ReEig layer, the sub-gradients are given by:

∂Ll+1 ◦ f ′

l

∂Ul−1
= 2

(
∂Ll+1

∂Xl

)
sym

Ul−1max(ϵI,Σl−1),

∂Ll+1 ◦ f ′

l

∂Σl−1
= QUT

l−1

(
∂Ll+1

∂Xl

)
sym

Ul−1,

where Q is a diagonal matrix with elements:

Q(i, i) =

{
1 if Σl−1(i, i) > ϵ,

0 otherwise.

For the LogEig layer, the sub-gradients are given by:

∂Ll+1 ◦ f ′

l

∂Ul−1
= 2

(
∂Ll+1

∂Xl

)
sym

Ul−1 log(Σl−1),

∂Ll+1 ◦ f ′

l

∂Σl−1
= Σ−1

l−1U
T
l−1

(
∂Ll+1

∂Xl

)
sym

Ul−1.

Thanks to all these steps, there is a backpropagation for
all the layers from the final fully-connected layers to the
ResNet34 convolution layers. This means that contrarily to
previous works [34], [38] we make advantage of both the bilin-
ear mapping with learnable weights to obtain a discriminative
SPD matrix for classification but also the best convolutions
and thus embedding space for the task at hand rather than
keeping pre-trained weights on another task.

Implementation: we provide a pyTorch implementation
of those steps available at https://github.com/ammarmian/
anotherspdnet.

Computation complexity : Regarding the complexity of the
proposed methods (RCNet and SRCNet), the main bottleneck
is the computation of the SVD of the covariance input in the
BiMap layers which is O(m3), m being the size of input6.
Intuitively, this makes the RCNet method more computa-
tionally attractive than its SRCNet counterpart. With regards
to classic methods, it is difficult to conclude on complexity
since deriving time complexity is a difficult for deep learning
models and highly dependent on the number of parameters
as well as the set of hyperparameters used in training. Given
the size of model S-CNN though, it is evident that this is
the faster method. In order to give an idea of computational
cost associated with our models, we consider hereafter a
comparison on time of training and inference of the different
models on the same hardware.

In figure 7, we show the average run time (training and
validation steps) as a function of the ratio of the training
dataset for the methods described above and two classical
methods (SVM and Random Forests). Full details and the
chosen parameters are given in the next section. As might
be expected, the classic ML algorithms and the shallow
network have the lowest computation times. On the other
hand, the SRCNet computation time is clearly the highest.
This approach, which consists in stacking all filter outputs, is
not at all interesting in terms of computation time. On the other
hand, RCNet’s computation time is really interesting, since it
is most of the time lower than that of ResNet34 -based deep
approaches for most training data ratios.

6m = 64 for RCNet and m = 32× l for SCRNet at the first BiMap.

https://github.com/ammarmian/anotherspdnet
https://github.com/ammarmian/anotherspdnet
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Fig. 7: Average runtime w.r.t. ratio of training data set over
100 different seeds. For each method, the line corresponds to
the mean of accuracy over all the seeds, and the filled area
corresponds to 5-th and 95-th quantiles.

Let us now present the experimental results obtained with
the proposed models in the next sections.

IV. DATASET DESCRIPTION

The database provided by the Geolithe company include
699 medium-sized radargrams of (Rx, Ry) = (4000, 800)
pixels, along with all the necessary acquisition information
such as radar frequency (200MHz or 350MHz for Geolithe),
radar elevation (0cm, 25cm, 50cm, 75cm, 100cm, 150cm),
and soil type (wet sand, dry sand, gravel, dry gravel). Each
radargram is associated with a mask of the same size. Main
preprocessing steps [37] consists to determine the rectangle
around each hyperbola in the radargram by using the mask
image in order to build a thumbnail image for each target.
An example of this preprocessing for one radargram is shown
in 8. All thumbnails are resized to (w, h) = (60, 112) before
to be treated by the different classification methods. We have
also created a class denoted ”empty” (in yellow in the figure
8). To create this class ”empty”, we selected 5 rectangles of
same size for each radargram of our dataset. The centers of the
rectangle are randomly chosen and we check if the rectangle
does not overlap with another rectangle containing an object.

The final database then consists of 1584 thumbnails, clas-
sified into four categories: Metallic, Non-Metallic, Wooden
Shelters, and Empty. Tables I and II provides more details
on the distribution of the four categories according to ele-
vation, soil and frequency. As used classicaly in supervized
approaches, we divide our dataset into three distinct parts: a
training set consisting of 1108 images, a validation set with
238 images, and finally, a test set also comprising 238 images.

The latter will be used to evaluate the accuracy of the different
tested models.

V. NUMERICAL EXPERIMENTS

A. List of models

As described in section III, we consider in this paper
three models with small variation which are recalled in the
following:

• S-CNN: the shallow architecture developed in [30] for
GPR image classification

• Resnet34: a deep network proposed in [43] initially
applied to computer vision applications. In this section
we will consider two models from this architecture:
– Resnet Re-Trained (RRT): the model is then trained

from scratch, which we initialize the weights randomly.
– Resnet Fine-Tuned (RFT): the model is fine-tuned

which consists in trained by using the pre-trained
weights. In this specific model, they are pre-trained
from the ImageNet database.

• Our proposed models in two configurations:
– SRCNet: all the l first layers (only 32 output filters

are selected for each layers to save memory space) are
considered to build our tensor. In this case the first size
of the SPD matrix is d0 = 256.

– RCNet: only the last layer with these 64 output filters
are used to build the tensor. In this case the first size
of the SPD matrix is d0 = 64.

For these both models, the number of layers of Resnet34
to build the tensor T is l = 8. Moreover, SPD Net is
designed with 4 consecutive BiMap and ReEig layers
where the sizes of each SPD matrices are specified in
Table III. The choice of 4 layers is common when using
SPD Net [38] and in particular it is shown in different
experiments [51] that it is useless to take more than 4
consecutive BiMap and ReEig layers. We also considered
models with less than 4 layers as well as other set of
output size and settled on this choice by cross-validation
with regards to performance.

All models are used with the same parameters each time. The
chosen optimizer is SGD with a momentum of 0.9, a batch
size of 8, and a learning rate of 0.007.

In the following subsections, we compare all these models
with our database described in IV, first by measuring the
influence of the number of training data on the classification
results, then the robustness in the presence of mislabeled data
in the training set, and finally the robustness to data shifts
between the training set and the test set. In all experiments,
100 different random generator seeds are used to construct
the partition between training and testing data sets. This
allows to obtain more representative results irrespective of the
initilialization. To showcase results, we decide to show the
5-th, 50-th and 95-th quantiles of the performance metric.

B. Influence of the number of training data

First, we study the influence of the number of training
data since we want to design classification models which can
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Fig. 8: Example for one radargram (bottom) and the corresponding image of the masks. The positions of the rectangles detected
on the masks were projected onto the radargrams. The yellow rectangles correspond to a thumbnail of the empty class.

Wooden Shelter Metallic Non Metallic Empty Total
Soil/Elevation (cm) 25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100

grave 20 16 12 4 13 17 6 11 16 14 8 4 20 12 18 12 203
dry grave 24 18 17 19 18 14 16 6 14 15 14 10 15 19 19 20 258

sand 37 44 48 54 48 40 55 50 40 44 44 48 45 50 45 43 735
wet sand 18 21 22 22 20 28 22 32 29 26 33 37 19 18 17 24 388

Total 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 1584

TABLE I: Distribution of our database for each soil and depending on the elevation of GPR.

Wooden Shelter Metallic Non Metallic Empty Total
Frequency/Elevation (cm) 25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100

200 MHZ 53 46 54 49 24 13 19 18 26 28 26 20 40 46 45 40 547
350 MHZ 46 53 45 50 75 86 80 81 73 71 73 79 59 53 54 59 1037

Total 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 1584

TABLE II: Distribution of our database for each frequency and depending on the elevation of GPR.

d0 d2 d4 d6 d8

SRCNet 256 235 217 179 128
RCNet 64 58 54 44 32

TABLE III: Output dimensions of SPDNet layers (BiMap and
ReEig).

provide good performance with a limited training dataset. The
results of test accuracy w.r.t training ratio are shown in Figure
9. We can observe that our proposed approaches, SRCNet
and RCNet both outperform the classical approaches at any
given training ratio and have lower variability over seeds.
The Resnet34 approaches perform better than [30] especially
when the number of training data increases. The retraining
approach, RRT, gives better results compared to the fine-

tuning approach, RFT, in particular when the training ratio
becomes smaller.

In order to showcase the benefits or using CNNs compared
to more classical machine learning methods, we also compare
these results to Support Vector Machine (SVM) and Random
Forests which are reported to be used in GPR applications [28],
[52]. To that end, we used standard image processing pipeline
: we vectorize the images and standardize to have zero mean
and variance 1. Then Principal Component Analysis (PCA)
is used to reduce dimensionality with a threshold of 95% of
explained variance. Concerning the methods, we use:
• SVM classifier using a radial basis function (RBF) ker-

nel whose hyperparameters are optimized through grid
search.

• RF classifer : We used Gini index [53] for node splitting.
Again the hyperparameters are tuned using a grid search
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Fig. 9: Results of test accuracy w.r.t to training dataset
percentage over 100 different seeds. For each method, the line
corresponds to the mean of accuracy over all the seeds, and
the filled area corresponds to 5-th and 95-th quantiles.

approach.
The results are presented in Figure 10 where they are com-

pared to our best performing model RCNet. This comparison
allows to show that deep learning models are better performing
in our scenario.
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Fig. 10: Comparison of results compared to classical machine
learning models. Test accuracy w.r.t to training dataset per-
centage over 100 different seeds. For each method, the line
corresponds to the mean of accuracy over all the seeds, and
the filled area corresponds to 5-th and 95-th quantiles.

C. Robustness to mislabeled Data

The second simulation studies the effect to have mislabeled
data in the training data set. Actually it can be difficult to
correctly labeled the hyperbola in particular because of the low
Signal to Noise Ratio (SNR) in radargram. For this simulation,
we introduce a variable level of mislabeled data, 0 to 20%
of error, in the training set. The results of test accuracy
w.r.t mislabelling percentage are presented in Figure 11. We
have comparable dynamic than the previous experiment with
better performance and robustness of RCNet and SRCNet

(with a better result when considering only the last layer for
the tensor construction). The case of [30] is interesting as
it shows that shallow models performance decreases quickly
as soon as there are a few mislabelled data. Like in the
previous simulation, we observe that our approaches have the
least variability over the seeds. In conclusion, this result is
in line with the analysis made in [54], which also shows
that covariance matrix utilization brings great robustness to
mislabeled data in metric learning methods.
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Fig. 11: Results of test accuracy w.r.t training dataset misla-
belling percentage. For each method, the line corresponds to
the mean of accuracy over all the seeds, and the filled area
corresponds to 5-th and 95-th quantiles. The legends are the
same as in Fig. 9.

D. Robustness to data shift

In the case of GPR data, data are collected in different con-
figurations: different frequencies and elevations for RADAR,
different soils and weather conditions. As it is difficult (if not
impossible) to have labeled data for all these configurations, it
is very important to build models with the property of being
robust to possible changes between training and test data.
These transformations are also known in many applications
and are referred to as data shifts. To study the behavior of the
models proposed in this article, we consider 4 scenarios:

* Scenario A: the training and validation sets include im-
ages obtained using a RADAR located at an altitude of
75 cm or 100 cm, while the test set is made up of images
acquired at an altitude of 50 cm.

* Scenario B: the frequency is chosen at 200 MHz for the
training and validation sets, while the test set uses only
data obtained with a frequency of 350 MHz.

* Scenario C: the training and validation sets are made up
of data acquired in dry gravel, whereas the test set uses
gravel.

* Scenario D: same scenario as C, with wet sand for the
training and validation sets, and dry sand for the test set.

The distribution and number of elements in the sets for each
scenario are detailed in table IV.

1) Scenario A: In Figure 12 we represent five boxplots
given the accuracy performances of the different models. We
easily concluded that our models, in particular RCNet perfor-
mance is almost unchanged compared to the classical case,
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Train Val Test

A: ELV 75,100 vs 50 634 79 79
B: FRQ 350 vs 200 394 49 49
C: GRD Dry Gravel vs Gravel 394 49 49
D: GRD Wet Sand vs Dry Sand 672 84 84

TABLE IV: Distribution of the training, validation and test
sets for the 4 scenario.

are particular robust to this transformation. In this case, main
transformations are scaling but the shape of the hyperbola
slightly changes. As expected, the shallow model is the less
robust. We also noticed that the variability over the seeds
is very small with the models built from covariance matrix.
This result is also in line with those obtained in [36] where
covariance matrix are used to classify crops in Satellite Image
Times Series.
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Fig. 12: Results of test accuracy results for scenario A (ELV
75,100 vs 50).

2) Scenario B: The box diagrams are now shown in figure
13. As in the previous scenario, the models we propose
outperform the classical models. But in this case, the best
algorithm is SRCNet and we notice a sharp degradation in the
performance of all approaches. The number of transformations
between the two sets is then too high. This is because the
frequency is linked to the penetration of the wave into the
ground, as well as to the possible resolution which results in
very different radargrams.
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Fig. 13: Results of test accuracy results for scenario B (FRQ
350 vs 200 394 49 49).

3) Scenario C and D: The boxplots for the scenario C are
shown in 14 while those for the scenario D are given in 15.
In both cases, the second order deep learning models give
better results and lower variabilities. We can conclude that if
we want to obtain robust performances, it is clear that our

approaches are better suited than shallow models or classical
deep learning models as Resnet34.
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Fig. 14: Results of test accuracy results for scenario C (GRD
Dry Gravel vs Gravel).
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Fig. 15: Results of test accuracy results for scenario D (GRD
Wet Sand vs Dry Sand).

VI. CONCLUSION

In this paper, we have proposed a new deep learning model
based on second-order moments to classify buried objects
from the hyperbola thumbnails obtained with a classical GPR
system. The proposed model is the concatenation of several
models: the first is composed of the first layers of a classical
CNN and is used to obtain a covariance matrix from the
outputs of convolutional filters, while the second is composed
of specific layers to classify SPD matrices. These models
are tested on a database composed of several radargrams
and compared with shallow models and conventional CNNs
typically used in computer vision applications. Our approach
gives better results, particularly when the number of training
data decreases and in the presence of mislabeled data. We
also illustrated the value of second-order deep learning models
when training data and test sets are obtained from different
weather modes or considerations.

Thanks to this last analysis, we believe that our algorithms
will perform well for other GPR datasets. In addition, the
proposed architecture will be interesting to test on other
RADAR data classification applications (e.g. remote sensing),
but also in medical applications (e.g. EEG). As in GPR, these
fields of application use very noisy data and do not have a
large number of labeled data.

The main extension of this work will be to develop a
robust, high-performance model that combines the detection,
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localization and classification stages. In particular, we want
to integrate second-order layers into the classical fast-RCNN
network [55]–[57]. Indeed, the first blocks of this network is
very close to our models, since it constructs a data tensor from
convolutional layers. As in the proposed work in the current
paper, these new layers could make it possible to obtain a more
robust and efficient network with a low number of labeled data.
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