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ABSTRACT
We present a framework for simulating the open dynamics of spin–boson systems by combining variational non-Gaussian states with a
quantum trajectories approach. We apply this method to a generic spin–boson Hamiltonian that has both Tavis–Cummings and Holstein
type couplings and which has broad applications to a variety of quantum simulation platforms, polaritonic physics, and quantum chemistry.
Additionally, we discuss how the recently developed truncated Wigner approximation for open quantum systems can be applied to the same
Hamiltonian. We benchmark the performance of both methods and identify the regimes where each method is best suited. Finally, we discuss
strategies to improve each technique.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0226268

I. INTRODUCTION

Advances in the control of quantum systems over the past
decade have led to the development of a wide variety of differ-
ent platforms for investigating almost coherent quantum dynamics.
However, in the absence of robust fault-tolerant operations, stud-
ies of these platforms must contend with various sources of noise
induced by couplings to an environment. Moreover, these noisy
intermediate-scale quantum (NISQ1) devices can often be arbitrar-
ily controlled, opening possibilities of creating states far out of
equilibrium. In light of this, understanding the out-of-equilibrium
dynamics of open quantum many-body systems has become of great
interest, e.g., for understanding and realizing a quantum advantage
in the NISQ era.

A particularly challenging class of problems arises for sys-
tems containing both spin and bosonic degrees of freedom with
an (even locally) unbounded Hilbert space, applicable to quantum

simulation and computation platforms ranging from supercon-
ducting circuits to trapped ions,2–16 to paradigmatic problems in
impurity physics,17,18 quantum chemistry,19 or polaritonic chem-
istry.20 The ubiquity and complexity of spin–boson Hamiltoni-
ans have led to the development of various techniques for their
study and characterization. These include methods for the bosonic
space, namely path integral techniques,21–24 effective Hamiltonian
formulation,25–28 or lightcone conformal truncation used predom-
inantly in high-energy physics,29–31 as well as methods such as
non-equilibrium Monte Carlo or tensor networks,32–34 which have
allowed for the simulation of (open) out-of-equilibrium dynamics
of quantum many-body systems,35–48 also in large-system scenarios.
However, these methods are often constrained to one-dimensional
setups, closed systems, a mesoscopic number of particles, or a
combination thereof.

The number and breadth of the aforementioned approaches
illustrate that no single method can tackle the range of systems
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described by spin–boson type Hamiltonians or even the full para-
meter space of a specific model. As such, it is important to pinpoint
the strengths and shortcomings of each method. In this work, we
undertake a comparative study between two methods: (i) the time-
dependent variational ansatz using non-Gaussian states (NGS)49,50

and (ii) the truncated Wigner approximation (TWA) combined
with its generalization to discrete spaces, discrete truncated Wigner
approximation (DTWA). Figures 1(a) and 1(b) show a schematic
of each method. These methods may allow us to circumvent
some of the aforementioned limitations49–53 and have recently been
generalized to open quantum systems.54–61 Analyzing fundamental

FIG. 1. (a) Schematic overview of NGS. The ansatz ∣ψ(z⃗(t))⟩ is a point in a
manifold embedded in Hilbert space. For different variational parameters, we can
describe a variety of quantum states (some examples of accessible Wigner func-
tions are shown). The action of an operator O, which can be a Hamiltonian H,
non-Hermitian Hamiltonian Heff , or quantum jump c, can cause the state to leave
the variational manifold, so the state is projected back to the manifold P∣ψ⟩.
(b) Schematic depiction of TWA. (i) The initial quantum state of the spin and
bosonic degrees of freedom can be represented by the spin Wigner functions
W i(θ0,ϕ0) and bosonic Wigner functions W j(A0, A∗0 ), respectively. (ii) Clas-
sical phase space points are individually sampled from the initial Wigner functions
for each degree of freedom and (iii) evolve according to the classical (stochas-
tic) equations of motion. (iv) Expectation values of observables are evaluated in
phase space by computing the average of the associated Weyl symbols over ntraj
phase space trajectories. (c) Both NGS and TWA apply to generic spin–boson sys-
tems, but we depict here the system studied in this work: Ns spins-1/2 interact with
a common mode a with strength g and particle loss at rate κ. Each spin also inter-
acts with a mode b at strength λ. The spins also undergo collective loss at rate Γ.
(d) Schematic summary of our results illustrating the regions where each method
tends to perform well together with reference to figures studying the dynamics in
the respective parameter regimes (see Fig. 5 and Sec. V for more details).

quantum effects in macroscopic limits can thus be enabled with NGS
and TWA approaches.

In NGS, one exploits the continuous variable structure of
bosonic states to build a time-dependent variational wave function
ansatz of non-Gaussian states. Here, we specifically use a super-
position of squeezed displaced bosonic states, which converges to
the true wave function due to the over-completeness of the set of
coherent states. Since each state in the superposition is Gaussian,
much of the previously developed machinery for Gaussian states
can be reutilized. This method has been successfully applied to
studies of systems ranging from the Kondo impurity problem,62 cen-
tral spin,63 spin-Holstein models,64 Bose and Fermi polarons,65–67

and (sub/super) Ohmic spin–boson model.68 We also note that the
closely related Davydov state ansatz has been applied in the studies
of molecular crystals and polaritonic physics.69–75

TWA is a semi-classical approach that factorizes the phase
space functions (Weyl symbols) that describe a quantum observable
in the phase space representation. As such, TWA is reminiscent of
a product-state mean-field ansatz on Hilbert space. Like the latter,
TWA allows one to treat systems with very large sizes [O(104

) par-
ticles] while still capturing some essential quantum features such as
spin-squeezing or entanglement.51,76–80 TWA can be easily adapted
to systems with both bosonic and discrete degrees of freedom, com-
bining sampling strategies from continuous81 and discrete Wigner
functions.51–53

Here, we consider the open and closed dynamics of a
spin–boson Hamiltonian featuring multiple spins coupled to a dis-
crete set of bosonic modes via Holstein and Tavis–Cummings cou-
plings, thus ensuring the broad applicability of our results. We begin
by introducing the two methods: the variational NGS method using
the formulation introduced in Ref. 68 is discussed in Sec. II. We
extend the method to open quantum systems using the quantum
trajectories method in Sec. III. We discuss TWA with its discrete
variant DTWA for closed and open systems in Sec. IV. In Sec. V, we
introduce the Holstein–Tavis–Cummings spin–boson Hamiltonian,
which we use to compare both methods over a range of parameters.
Finally, in Sec. VI, we summarize our findings and discuss how each
method can be improved to increase its accuracy and/or applicabil-
ity both in terms of systems to which they can be applied and also in
terms of the observables that can be accessed.

II. NON-GAUSSIAN ANSATZ FOR A CLOSED SYSTEM
We begin by introducing the non-Gaussian ansatz before dis-

cussing how to compute the equations of motion for the variational
parameters. We consider a system of Ns spins-1/2 and Nb bosonic
modes governed by some Hamiltonian H(t). Our wave function,
∣ψ(z⃗)⟩, is a variational ansatz in the form of a non-Gaussian state
parameterized by a set of real numbers z⃗,

∣ψ(z⃗)⟩ =
2Ns

∑
σ=1

Np

∑
p=1

U(σ)p ∣σ, 0⟩, (1)

where the summation over σ is over all 2Ns spin basis states.82 The
summation over p produces a superposition of Np bosonic states
U(σ)p ∣0⟩ for each spin degree of freedom. We choose the operator
U(σ)p to be of the form of a Gaussian unitary,
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U(σ)p = eκ
(σ)
p +iθ(σ)p D(α⃗(σ)p )S(ζ⃗

(σ)
p ). (2)

The parameters κp and θp determine the weight and phase fac-
tors, while the many-mode displacement D(α⃗) and squeezing S(ζ⃗)
operators are defined as

D(α⃗) =
Nb

∏
k=1

D(αk) =
Nb

∏
k=1

exp [αka†
k − α

∗
k ak], (3a)

S(ζ⃗) =
Nb

∏
k=1

S(ζk) =
Nb

∏
k=1

exp [
1
2
(ζ∗k a2

k − ζka†
k

2
)], (3b)

where we dropped the σ and p indices of α⃗, ζ⃗ for simplicity. In
this article, we always follow the convention that the many-mode
operators appear with vector parameters α⃗ and ζ⃗, i.e., D(α⃗), S(ζ⃗).
Here, ak (a

†
k) is the annihilation (creation) operator of the kth

mode satisfying the commutation relations [a j , a†
k] = δ jk. The com-

plex numbers αk = xk + iyk and ζk = rkeiϕk describe the displace-
ment and squeezing amplitudes of the kth mode, respectively. The
parameters xk, yk, rk, and ϕk are real, and we collect them, along
with κp and θp for each Gaussian state, into a set {κ, θ, x, y, r,ϕ}
indexed by ℓ. The total set of variational parameters z⃗ is indexed by
four indices: σ ∈ {1, . . . , 2Ns}, p ∈ {1, . . . , Np}, k ∈ {1, . . . , Nb}, and
ℓ ∈ {1, . . . , 6}. The total number of variational parameters is then
M = 2Ns Np(2 + 4Nb).

The set of all coherent states forms an over-complete basis for
the bosonic Hilbert space. Therefore, in the limit Np →∞, the NGS
ansatz ∣ψ⟩, even without squeezing (ζ⃗(σ)p = 0 ∀ p, σ), approaches the
true wave function ∣Ψ⟩. The inclusion of diagonal squeezing in our
formalism, Eq. (2), is intended to enhance the descriptive power
of the ansatz at finite Np. However, in Fig. 2 and Sec. V, we show
that for the systems studied in this work, a superposition of coher-
ent states (i.e., ζ⃗ = 0) for reasonable Np is typically sufficient to
describe the relevant physics. One could further generalize the Gaus-
sian unitary to U ∝ D(α⃗) exp (−iATMA) instead of Eq. (2), where
A = (a1, . . . , aNb , a†

1 , . . . , a†
Nb
)

T and M is a symmetric matrix.49,50

FIG. 2. Comparison between the NGS ansatz Eq. (1) with a superposition
of displaced squeezed states vs a superposition of coherent states for evo-
lution under the anharmonic oscillator, both with Np = 4. The initial state is
∣ψ(0)⟩ = ∣α = 1⟩. The inclusion of squeezing (blue dashed) results in closer
agreement with exact numerics (solid black) compared to the absence of squeez-
ing in the ansatz (orange dashed). However, both capture the dynamics with small
infidelities 1 − F < O(10−2

). Here, F(t) = ∣⟨Ψ(t)∣ψ(t)⟩∣, where ∣Ψ(t)⟩ is
the quantum state obtained with exact numerics.

However, we find that this significantly complicates all subsequent
manipulations while not substantially reducing the Np required to
capture the relevant features of the systems studied in this work.

We start our analysis by adopting the Dirac–Frenkel varia-
tional principle.83 In this framework, for a given H(t), one can
derive equations of motion (EOMs) for the variational parameters
z⃗(t) describing either real- or imaginary-time evolution of the wave
function,50

Real − time ev.: ż ν = −(ωμν)−1∂μE(z⃗, t), (4a)

Imag − time ev.: ż ν = −(gμν)−1∂μϵ(z⃗, t), (4b)

where μ, ν = (σ, p, k, ℓ) index the variational parameters z⃗ and
∂μ = ∂/∂zμ. Here, E(z⃗, t) = ⟨ψ(z⃗)∣H(t)∣ψ(z⃗)⟩ is the energy and
ϵ(z⃗, t) = E(z⃗, t)/⟨ψ(z⃗)∣ψ(z⃗)⟩ is the normalized energy. We intro-
duce the tangent vectors of the variational manifold at point z⃗,

∣vμ⟩ = ∂μ∣ψ(z⃗)⟩. (5)

In terms of the tangent vectors, the symplectic formω and the metric
of the tangent space g are defined as

ωμν = 2 Im⟨vμ∣vν⟩, (6a)

gμν = 2 Re⟨vμ∣vν⟩, (6b)

with their inverses denoted Ωμν
≡ (ωμν)−1 and Gμν

≡ (gμν)−1.
Next, we discuss a subtle property of the employed variational

principle following the discussion in Ref. 50. We assume that the
variational parameters are real, z⃗ ∈ R. Then, the tangent space T ψ of
the variational manifold at each point ∣ψ(z⃗)⟩ is a real vector space
spanned by the tangent vectors ∣vμ⟩ embedded in complex Hilbert
space. Therefore, for each basis vector ∣vμ⟩, i∣vμ⟩ is not guaranteed
to lie in the tangent space and has to be projected onto T ψ . As the
tangent space is not a complex linear space, this projection takes the
form

Pψi∣vν⟩ = 2∣vμ⟩GμσRe⟨vσ ∣i∣vν⟩ = Jμν∣vμ⟩, (7)

where the complex structure, i.e., the representation of the projec-
tion of the imaginary unit, is introduced as Jμν = −Gμσωσν. If J2

≠ −1,
the projection is non-trivial, that is, i∣vμ⟩ does not lie in the tangent
space. On the other hand, when J2

= −1 on every tangent space, the
tangent space of the variational manifold is called a Kähler space.
Then, i∣vν⟩ = Jμν∣vμ⟩. In this case, J specifies the decomposition of
i∣vν⟩ on the tangent space vectors ∣vμ⟩. Having a tangent space T ψ
to be a Kähler space ensures that the three variational principles
(Lagrangian, McLachlan, and Dirac–Frenkel) coincide and prevents
incorrect couplings in the equations of motion, as shown in Ref. 50.
Finally, we note that satisfying J2

= −1 in the case of real variational
parameters is equivalent to requiring a holomorphic parametrization
in the case of complex parameters.

In the supplementary material, we prove that J2
= −1 for

the NGS ansatz, both in the case of a superposition of dis-
placed squeezed states and a superposition of coherent states
(supplementary material).
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A. Analytic expressions for energies
and energy gradients

Having introduced the NGS ansatz in Eq. (1) and its equations
of motion in Eq. (4), we now show how to obtain analytic expres-
sions for the two crucial ingredients to the equations of motion: the
energy gradients ∂μE and the geometric structures g,ω.

Consider a generic spin–boson Hamiltonian. Any such Hamil-
tonian can be cast in the form H = ∑(Hs ⊗Hb), where Hs describes
the spin degrees of freedom and Hb describes the bosonic degrees
of freedom and can be decomposed into monomials of bosonic
operators as Hb = ⊗

Nb
k=1H(k)b .

For a single spin, Ns = 1, the Pauli matrices {σ0, σx, σy, σz}

form a complete basis for Hs. For Hs = σz and Hs = σx, we obtain,
respectively,

⟨σzHb⟩ψ =

Np

∑
p,p′
⟨U(↑)p′

†
HbU(↑)p ⟩ − ⟨U

(↓)

p′
†
HbU(↓)p ⟩, (8a)

⟨σxHb⟩ψ =

Np

∑
p,p′
⟨U(↑)p′

†
HbU(↓)p ⟩ + ⟨U

(↓)

p′
†
HbU(↑)p ⟩, (8b)

where the expectation values on the right-hand side are evaluated
with respect to the bosonic vacuum ∣0⟩. Equivalent expressions
for Hs = σ0 and Hs = σy can be obtained using the same proce-
dure. Therefore, the computation reduces to evaluating the many-

mode overlap ⟨0∣U(σ
′
)

p′
†
HbU(σ)p ∣0⟩ for each p, p′, σ, σ′. Because both

the multi-mode displacement D(α⃗) and squeezing S(ζ⃗) operators
in our ansatz are diagonal in mode operators, we can write the
many-mode overlap as a product of single-mode overlaps,

⟨U(σ
′
)

p′
†
HbU(σ)p ⟩

=
N

∏
k=1
⟨0∣S†

(ζ(p
′
)

k )D†
(α(p

′
)

k )H(k)b D(α(p)k )S(ζ
(p)
k )∣0⟩, (9)

where H(k)b is the bosonic operators of Hb that act on mode k,
as defined earlier. To evaluate the single mode overlaps in Eq. (9)
without specifying H(k)b , we use the following identity:

⟨Θ∣a†m

an
∣Φ⟩s = (

∂

∂β
)

m

(−
∂

∂β∗
)

n

χs
g(β)∣

β=0
, (10)

where ∣Θ⟩, ∣Φ⟩ are any two quantum states84 and

χs
g(β) = ⟨Θ∣D(β)∣Φ⟩e(s/2)ββ

∗
, (11)

is a generalized s-ordered characteristic function with s = 1 (s = −1)
denoting (anti-)normal ordering of the bosonic operators a, a† that
appear in the left-hand side of Eq. (10). We note that in the calcula-
tion of the single mode overlaps in Eq. (9) using Eq. (10), ∣Θ⟩ and ∣Φ⟩
are single mode Gaussian states. The overlap between any two sin-
gle mode Gaussian states can be evaluated analytically,85 which gives
us an analytic expression for χs

g(β). Therefore, we can evaluate the

partial derivatives in Eq. (10) with respect to β,β∗ for any m, n and
find analytic expressions for the energy of any Hamiltonian that is
polynomial in a, a† operators. From this, we can also obtain analytic
expressions for the energy gradients, ∂μE, as needed in the EOMs.

Example: Energy gradient of harmonic oscillator To demon-
strate the above-mentioned machinery, we compute the energy
gradient of the harmonic oscillator H = a†a with respect to the
NGS ansatz with coherent states only, i.e., ζ⃗ = 0. We set Np = 2, so
∣ψ⟩ = eκ1+iθ1 ∣α1⟩ + eκ2+iθ2 ∣α2⟩, with αi = xi + iyi. The energy is

E = ⟨H⟩ = e2κ1(x2
1 + y2

1) + e2κ2(x2
2 + y2

2)

+ (eκ1+κ2+i(θ1−θ2)(x1 + iy1)(x2 − iy2) + h.c.),

and its partial derivatives with respect to x1 and κ1 are
given by ∂x1 E = 2e2κ1 x1 + [eκ1+κ2+i(θ1−θ2)(x2 − iy2) + h.c.] and
∂κ1 E = 2e2κ1(x2

1 + y2
1) + [e

κ1+κ2+i(θ1−θ2)(x1 + iy1)(x2 − iy2)], respec-
tively. The partial derivatives ∂y1 E, ∂x2 E, ∂y2 E, ∂κ2 E, ∂θ1 E, and
∂θ2 E can be evaluated using the same procedure. We note that
these expressions can be extended to any Np and to any bosonic
Hamiltonian that is polynomial in a, a† using Eq. (10).

B. Tangent vectors and the overlap matrix
Next, we explain how to compute the tangent vectors of the

ansatz, ∣vμ⟩ = ∂μ∣ψ(z⃗)⟩ = ∂σ,p,k,ℓ∣ψ(z⃗)⟩. Plugging Eq. (1) into Eq. (5),
we find

∣vμ⟩ =
∂

∂zσ,p,k,ℓ
U(σ)p ∣σ, 0⟩ =

Nb

∏
k′≠k
[D(αk′)S(ζk′)]

×
∂

∂zσ,p,k,ℓ
[eκ+iθD(αk)S(ζk)]∣σ, 0⟩. (12)

The calculation involving many modes and a superposition of
squeezed-displaced states now reduces to calculating the tangent
vector of a single-mode Gaussian state for a single Gaussian, i.e.,

∂
∂zσ,p,k,ℓ

eκ+iθD(αk)S(ζk)∣0⟩. We proceed as follows: (i) using the dis-
entangled forms of the displacement and squeezing operators, we
normal order D(αk)S(ζk)∣0⟩ such that only a† operators remain,
which (ii) enables us to obtain concise analytic expressions for the
tangent vectors of D(αk)S(ζk)∣0⟩, and (iii) obtain expressions for
the general NGS ansatz and outline the computation of the overlap
matrix ωμν.

The disentangled forms of the single-mode displacement and
squeezing operators are given by

D(α) = eαa†−α∗a
= e−

∣α∣2
2 eαa†e−α

∗a, (13)

S(ζ) = e
1
2 (ζa†

2
−ζ∗a2

)
= er̄ a†

2

e−ř (a†a+ 1
2 )e−r̄ a2

, (14)

where ζ = reiϕ, r̄ = eiϕ tanh (r)/2, and ř = ln (cosh (r)). When
applied to ∣ψ(z⃗)⟩, S(ζ) always acts directly on the bosonic vacuum,
which simplifies its action to

S(ζ)∣0⟩ = 1
√

cosh r
er̄ a†

2

∣0⟩. (15)
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After normal-ordering D(α)S(ζ)∣0⟩, we arrive at

D(α)S(ζ)∣0⟩ = e−
∣α∣2

2 er̄α∗2

√
cosh (r)

eαa†er̄ (a†
2
−2α∗a†)

∣0⟩, (16)

where we used the relation exaf(a, a†
)e−xa

= f(a, a†
+ x) [Ref. 86, §3.3

Theorem 2] and the fact that e−α
∗a
∣0⟩ = ∣0⟩. Note that this expres-

sion contains only a† and, therefore, all terms commute, enabling us
to take the derivative with respect to the variational parameters to
obtain the tangent vectors.

Computing tangent vectors. For each p, σ, and k, there are six
variational parameters: {κ, θ, x, y, r,ϕ}. The tangent vectors for the
norm κ and phase θ are simply

∂κU(σ)p ∣σ, 0⟩ = U(σ)p ∣σ, 0⟩, (17a)

∂θU(σ)p ∣σ, 0⟩ = iU(σ)p ∣σ, 0⟩, (17b)

and are independent of the mode number k. We use the
normal-ordered form of D(α)S(ζ)∣0⟩, Eq. (16), and define
∣α, ζ⟩ ≡ D(α)S(ζ)∣0⟩ to find the tangent vectors for x, y, r, and ϕ,

∂x∣α, ζ⟩ = ( fx + gxa†
)∣α, ζ⟩, (18a)

∂y∣α, ζ⟩ = ( fy + gya†
)∣α, ζ⟩, (18b)

∂r ∣α, ζ⟩ = ( fr + gra†
+ hra†2

)∣α, ζ⟩, (18c)

∂ϕ∣α, ζ⟩ = ( fϕ + gϕa†
+ hϕa†2

)∣α, ζ⟩, (18d)

where we have introduced the following c-number functions f , g:

fx = eiϕ tanh (r)(x − iy) − x, (19a)

gx = 1 − eiϕ tanh (r), (19b)

fy = −eiϕ tanh (r)(y + ix) − y, (19c)

gy = i(1 + eiϕ tanh (r)), (19d)

fr = (1/2)[− tanh (r) + eiϕsech(r)2
(x − iy)2

], (19e)

gr = (1/2)eiϕsech(r)2
(2iy − 2x), (19f)

hr = (1/2)eiϕsech(r)2, (19g)

fϕ = (i/2)eiϕ tanh (r)(x − iy)2, (19h)

gϕ = (i/2)eiϕ tanh (r)(2iy − 2x), (19i)

hϕ = (i/2)eiϕ tanh (r). (19j)

Note that further simplification of the terms with creation oper-
ators in Eq. (18) in the form of D(α)S(ζ)∣1⟩ and D(α)S(ζ)∣2⟩
is not possible as we imposed that S(ζ) must act directly on the
vacuum to obtain the simplified version of S(ζ)∣0⟩ in Eq. (15).

Equations (18a)–(18d) are simple analytic expressions for the
single mode tangent vectors of D(α)S(ζ)∣0⟩. When combined with
Eq. (12), we can, therefore, construct all the tangent vectors for any
σ, p, and k.

Computing tangent vector overlaps to construct geometric struc-
tures. Having obtained the tangent vectors, we finally briefly com-
ment on the calculation of the overlap matrix ⟨vμ∣vν⟩, which is used
to construct the metric gμν and symplectic form ωμν. We note that
due to Eq. (12), the overlap between two tangent vectors ⟨vμ∣vν⟩
can be written as a product of single-mode overlaps. Each single-
mode overlap can be evaluated using the expressions in Eq. (18)
and applying Eq. (10) to evaluate expectation values of the type
⟨α′, ζ′∣(a†

)
man
∣α, ζ⟩.

Example: Quantum anharmonic oscillator As an example
of the results of the above-mentioned machinery and to illus-
trate the role of squeezing in the ansatz, we use Eq. (4) and solve
for the dynamics of a simple anharmonic oscillator, H = ωa†a
+ μ(a†a)2.87–90 Results for the strong coupling regime setting
ω = μ = 1 are shown in Fig. 2 with Np = 4. We observe that the
ansatz containing squeezing (dashed blue line) has a better agree-
ment with the actual state ∣Ψ⟩ (solid black line, obtained from the
exact numerical solution of the Schrödinger equation) than the
ansatz without squeezing (dashed orange line). While this observa-
tion always depends on the specific system being studied, we observe
that for many applications in this work, the improvement in accu-
racy from including squeezing comes at the expense of additional
computational resources. Motivated by this, for the remainder of
this article our results utilize the NGS ansatz of a superposition of
(many-mode) coherent states.

III. OPEN DYNAMICS: COMBINING NGS
WITH QUANTUM TRAJECTORIES

To extend the NGS machinery to open dynamics, there are sev-
eral options available. For instance, in Ref. 55, which in turn builds
on the developments in Ref. 54, an ansatz for the density matrix
was developed. This was then used to formulate the master equa-
tion and find the corresponding equations of motion governed by
the Lindbladian.

Here, we discuss how the ansatz introduced previously, ∣ψ(z⃗)⟩
in Eq. (1), can be used within the quantum trajectories frame-
work. In Sec. III A, we recall the basic formulation of the quantum
trajectories approach before formulating equations of motion for
the effective non-Hermitian Hamiltonian in Sec. III B. We give a
recipe for how to formulate the action of quantum jumps within
the NGS ansatz in Sec. III C, and we finally discuss the relevant
issues related to the implementation of the equations of motion in
Sec. III D. To elucidate the formalism, we provide specific exam-
ples throughout this section. Our examples are motivated by typical

J. Chem. Phys. 161, 184113 (2024); doi: 10.1063/5.0226268 161, 184113-5

© Author(s) 2024

 21 January 2025 08:11:12

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

sources of decoherence in spin–boson quantum simulation plat-
forms governed by Hamiltonians of the form that will be introduced
in Sec. V.

A. Quantum trajectories
Many problems of the dynamics of open quantum systems are

amenable to the standard time-local master equation in the Lindblad
form91–93

ρ̇ = −i[H, ρ] +∑
m

cmρc†m −
1
2
{c†mcm, ρ}, (20)

where cm are the jump operators and {⋅, ⋅} the anticommutator.
An alternative approach is to use the quantum trajectories

method.47,94–96 Here, rather than evolving the full density matrix
described by 22Ns elements (for Ns spin-1/2 particles), one stochas-
tically evolves a pure quantum state ∣ψ⟩ described by 2Ns ele-
ments. This approach consists of two steps: (i) continuous evolution
under the Schrödinger equation with an effective non-Hermitian
Hamiltonian,

Heff = H −
i
2∑m

c†mcm = H − iK, (21)

and (ii) discrete evolution under the action of a quantum jump
operator cm. Such stochastic evolution of the wave function ∣ψ⟩
constitutes a quantum trajectory. Observables of interest are then
evaluated by averaging over ntraj such quantum trajectories. In
scenarios where it is possible to obtain the observables of inter-
est with sufficient accuracy using ntraj < 2Ns , quantum trajecto-
ries can be more efficient as compared to solving the master
equation.47,48,95

Our key contribution is to perform both (i) and (ii) using NGS.
The details of the quantum trajectories method and a step-by-step
description of its implementation can be found in Ref. 47.

B. Equations of motion for non-Hermitian
Hamiltonians

In between the quantum jumps, the wave function evolves con-
tinuously under the effective non-Hermitian Hamiltonian Eq. (21).
Here, we follow the procedure in Ref. 97 to derive equations of
motion for evolution under Heff. Note that the same procedure
is used to derive the real-time and imaginary-time equations of
motion given in Eq. (4) describing evolution under a Hermitian
Hamiltonian H. The NGS wave function evolves according to the
Schrödinger equation

∂t ∣ψ⟩ = −iHeff∣ψ⟩. (22)

McLachlan’s variational principle requires the variation of the
norm resulting from the Schrödinger equation to vanish,

δ∥(d/dt + iHeff)∣ψ⟩∥ = 0. (23)

Since it is more convenient to work with the square norm, we rewrite
Eq. (23) as δ∥(d/dt + iHeff)∣ψ⟩∥2

= 0, obtaining

∥(d/dt + iHeff)∣ψ⟩∥
2
=∑

μ,ν
⟨vμ∣vν⟩żμżν + (i⟨vμ∣Heff∣ψ⟩żμ + h.c.)

+ ⟨ψ∣Heff
†Heff∣ψ⟩. (24)

After making the following substitutions:

Aμν = ⟨vμ∣vν⟩, (25a)

Cμ = ⟨ψ∣H∣vμ⟩, (25b)

Dμ = ⟨ψ∣K∣vμ⟩, (25c)

the variation of the square of the norm is

δ∥(d/dt + iHeff)∣ψ⟩∥
2
=∑

μ
∑
ν
(Aμν + h.c.)żνδzμ

+ [i(C†
μ − iD†

μ) + h.c.]δzμ, (26)

which yields the equations of motion,

∑
ν

Re[Aμν]żν = Re[Dμ] + Im[Cμ]. (27)

The object 2Re[Aμν] is precisely the metric g of the tangent
space introduced in Eq. (6b), which we showed how to compute in
Sec. II B. Re[Dμ] can be related to ∂μ⟨K⟩ via

2Re[⟨vμ∣K∣ψ⟩] = ⟨vμ∣K∣ψ⟩ +h.c. = ∂μ⟨K⟩, (28)

where we substituted the definition of the tangent vector into the
definition of D in Eq. (25c) and used the fact that K = K†. We showed
how to analytically compute the gradient of expectation value such
as ∂μ⟨K⟩ in Sec. II A.

Although Im[Cμ] can be computed by directly calculating the
overlaps in the definition in Eq. (25b), if the tangent space is a Kähler
manifold (i.e., J2

= −1, as discussed in Sec. II), then from the relation
Jμν∣vμ⟩ = i∣vν⟩we can relate Im[Cμ] to the complex structure Jμν and
the gradient ∂μ⟨H⟩ using

2Im[Cν] = i⟨vν∣H∣ψ⟩ − i⟨ψ∣H∣vν⟩

= −⟨vμ∣(Jμν)
TH∣ψ⟩ − ⟨ψ∣HJμν∣vμ⟩

= −∑
μ

Jμν∂μE. (29)

As such, the non-Hermitian equations of motion in Eq. (27) can be
computed from g, ∂μ⟨H⟩, and ∂μ⟨K⟩. The total number of elements
to compute scales as M2

+ 2M, compared to M2
+M for purely real-

or imaginary-time evolution, where M is the number of variational
parameters.

Example: Computing Im[Cμ] for the coherent state ansatz.
Here, we relate Im[Cμ] to the energy gradients ∂μ⟨H⟩ for the
coherent state ansatz with explicit normalization and phase fac-
tors, ∣ψ⟩ = eκ+iθe−(x

2
+y2
)/2e(x+iy)a†

∣0⟩, with z⃗ = (κ, θ, x, y) ∈ R. The
tangent vectors corresponding to μ ∈ {1, 2, 3, 4} are

J. Chem. Phys. 161, 184113 (2024); doi: 10.1063/5.0226268 161, 184113-6

© Author(s) 2024

 21 January 2025 08:11:12

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

∣v1⟩ = ∣ψ⟩, (30a)

∣v2⟩ = i∣ψ⟩, (30b)

∣v3⟩ = (a†
− x)∣ψ⟩, (30c)

∣v4⟩ = (ia†
− y)∣ψ⟩. (30d)

We begin by relating Im[C1] = Im[⟨ψ∣H∣v1⟩] to ∂z2 E,

Im[C1] = −
1
2
[i⟨ψ∣H∣v1⟩ − i⟨v1∣H∣ψ⟩]

= −
1
2
(⟨ψ∣H∣v2⟩ + ⟨v2∣H∣ψ⟩) = −

1
2
∂z2 E. (31)

Similarly for Im[C2] = Im[⟨ψ∣H∣v2⟩], we have

Im[C2] =
1
2
∂z1 E. (32)

To relate Im[C3] = Im[⟨ψ∣H∣v3⟩] to the gradients of E, we notice
that we can write i∣v3⟩ as a real span of the tangent vectors {vμ}.
That is, i∣v3⟩ = ∣v4⟩ + y∣v1⟩ − x∣v2⟩. Using this, we obtain

Im[C3] = −
1
2
(∂z4 E + y∂z1 E − x∂z2 E), (33)

and finally for Im[⟨v4∣H∣ψ⟩], using i∣v4⟩ = −∣v3⟩ − x∣v1⟩ − y∣v2⟩, we
obtain

Im[⟨v4∣H∣ψ⟩] =
1
2
(∂z3 E + x∂z1 E + y∂z2 E). (34)

Therefore, we have related the computation of Im[Cμ] to the energy
gradients of E = ⟨H⟩. In this example, we explicitly noticed that
i∣vμ⟩ can be written as a real span of tangent vectors {∣vμ⟩}. In the
supplementary material, we provide the constructions of gμν, ωμν,
and Jμν for this single-mode coherent state ansatz, showing that
∣vν⟩ = Jμν∣μ⟩, as derived in Eq. (29). We provide Jμν for the NGS
ansatz and prove that J2

= −1.
Finally, we provide a simple example of non-Hermitian dynam-

ics using NGS and the equations of motion in Eq. (27) by computing
the evolution of the coherent state ansatz for Nb = 1 mode under
Heff = ξ(a + a†

) − (i/2)κa†a. Since the Hamiltonian is a Gaussian
operator, if the initial state of interest can be accurately described
by the NGS ansatz with Np coherent states, NGS is exact in that it
captures precisely the dynamics at all times also with Np coherent
states. The results for an Np = 2 initial state and a comparison against
exact numerics are shown in Fig. 3, depicting perfect agreement as
expected.

C. Quantum jumps
We will now incorporate the action of a quantum jump cm in

the NGS formalism. After each quantum jump, the wave function
may (i) remain in the variational manifold or (ii) leave it. We dis-
cuss these two possibilities using the examples of single particle loss
and gain, respectively. We have chosen these two processes as they
are often the dominant sources of single particle decoherence in a
variety of systems.

FIG. 3. Dynamics of the effective Hamiltonian Heff = ξ(a + a†
) − (i/2)κa†a with

ξ = 0.5, κ = 1.0 using the NGS ansatz without squeezing (i.e., ⃗ζ = 0) with Np = 2.
The non-Hermitian term corresponds to a cavity loss jump operator. The initial
state is a random superposition of two coherent states. The NGS results (dashed
colors) agree perfectly with exact numerics (solid black), including the decay of the
norm ⟨ψ∣ψ⟩ due to the non-hermitian term.

1. Jumps inside the manifold
To demonstrate the effect of a jump operator that produces a

state that remains within the variational manifold, we consider single

particle loss at rate κ(1). The jump operator is c =
√

κ(1)a. The action
of c on the single-mode NGS ansatz in Eq. (1) without squeezing, i.e.,
∣ζ⃗∣ = 0 ∀ p, is given by

√

κ(1)a∣ψ⟩ =
√

κ(1)a∑
p

eκp+iθp D(αp)∣0⟩

=∑
p

√

κ(1)eκp+iθpαpD(αp)∣0⟩

=∑
p

eκ
′
p+iθ′p D(αp)∣0⟩, (35)

where we used a∣α⟩ = α∣α⟩ and defined the updated norm and phase
factors as

κ′p = log (
√

κ(1)eκp ∣αp∣), (36a)

θ′p = arg (∣κ(1)∣eiθp+κpαp). (36b)

We can easily extend the above-mentioned analysis to the two-

photon loss case with the jump operator c =
√

κ(2)a2, where the
updated norm and phase factors are now defined as

κ′p = log (
√

κ(2)eκp ∣αp∣
2
), (37a)

θ′p = arg (
√

κ(2)eiθp+κpα2
p). (37b)

It is important to note that our results rely on the coherent
state being the eigenstate of the jump operator considered earlier.
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Therefore, for any other state, e.g., the squeezed coherent state ∣α, ζ⟩,
the single-particle loss jump operator will take the state out of the
variational manifold. This will be a more generic scenario for most
jump operators. In Sec. III C 2, we describe how to deal with such
situations.

2. Jumps outside the manifold
If the state after the jump is not within the variational manifold,

we project it back to the manifold by maximizing its fidelity with the
variational ansatz. To do so, we use gradient descent (GD) as an effi-
cient numerical procedure. We note that while simulated annealing
(SA) finds a global extremum of a function in the asymptotic limit
of infinitely slow cooling rate, we find that in all cases studied in this
work, the performance of GD is comparable to that of SA (the infi-
delity difference between the post-jump variational state found by
each of the two methods is ≲ 10−3), with the advantage that GD is
typically significantly faster.

Again, we consider a single mode NGS ansatz without squeez-
ing (i.e., ζ⃗ = 0), which we write as

∣ψ⟩ =
Np

∑
i=1

ci∣αi⟩, (38)

with complex coefficients ci and complex amplitudes αi. For single
photon gain with jump operator c = a†, the state after applying the
jump operator a†

∣ψ⟩ is projected back onto a generic variational state
∣ψ̃⟩ by optimizing its variational parameters c̃i, α̃i to maximize the
normalized fidelity given by

F = ∣⟨ψ̃∣a†
∣ψ⟩∣2

∣⟨ψ̃∣ψ̃⟩∣∣⟨ψ∣aa†
∣ψ⟩∣

, (39)

where the unnormalized overlap is

⟨ψ̃∣a†
∣ψ⟩ =

Np

∑
i,j

c̃∗i cjα̃∗i e−
1
2 (∣α∣

2
+∣α̃∣2)+α̃∗i αj , (40)

and the normalization factors are

⟨ψ∣ψ⟩ =
Np

∑
i,j

c∗i cje−
1
2 (∣αi ∣

2
+∣α j ∣

2
+α∗i α j), (41a)

⟨ψ∣aa†
∣ψ⟩ =

Np

∑
i,j

c∗i cj(1 + α∗i αj)e−
1
2 (∣αi ∣

2
+∣α j ∣

2
)+α∗i α j . (41b)

In the case of Np = 1, with α = ∣α∣eiφα , α̃ = ∣α̃∣eiφα̃ , Eq. (40) is
maximized for φα̃ = φα and for the amplitude of α̃, which is the solu-
tion to ∣α̃∣2 − ∣α∣ ∣α̃∣ − 1 = 0. For instance, if α = 0, ∣α̃∣ = 1, ∀φα̃, cf.
Fig. 4(a), and similarly for α ≠ 0, cf. Fig. 4(b). The starting point of
the GD search is denoted by the red cross and the maximum of the
numerically found maximum of the overlap, Eq. (40), by the white
cross. We remark that the achievable fidelity after projecting back
to the manifold is strongly dependent on the jump operator and
the number of coherent states. For instance, for the case shown in
Fig. 4(a), the state after the jump is a Fock state ∣1⟩. As such, after
projecting it back to a single coherent state, its fidelity is given by
e−∣α̃∣

2
/2
∣α∣n/
√

n!→ e−1/2
≈ 0.61 with n = 1 and ∣α̃∣ = 1.

FIG. 4. (a) and (b) Fidelity of a†
∣α⟩ projected back onto the variational manifold

here formed by the set of all coherent states ∣α̃ = x̃ + iỹ⟩. The red cross denotes
the initial state upon which acts the jump operator a†, and the white cross denotes
the maximum of Eq. (40) found via GD. The used initial states are (a) ∣α = 0⟩ (with
a ring of global maxima due to the symmetry of a†

∣0⟩) and (b) ∣α = 0.3 + i0.8⟩.
(c) and (d) Difference in optimized fidelities, cf. Eq. (39), found by GD vs bounded
SA. The jump operators are (c) a† and (d) x = a + a†.

In the case of the NGS ansatz with Np > 1, the optimization
landscape becomes more complex. In Figs. 4(c) and 4(d), for Np = 1
(blue), Np = 2 (orange), and Np = 3 (green), we use Eq. (39) and plot
the difference in optimized fidelities ∣FGD − FSA∣, with the opti-
mization performed by GD with backtracking (FGD) and bounded
SA (FSA). We consider two quantum jumps, (c) single-particle
gain c = a† and (d) momentum kicks c = x = a + a†. Our choice of
single-particle gain is motivated by its relevance to many spin–boson
systems (see Secs. V and VI), while the momentum kick jump plays
a crucial role in laser cooling large ion crystals.98 We generate 103

initial (pre-jump) random states ∣ψ⟩. As the generic variational start-
ing state ∣ψ̃⟩ to be optimized, for GD we use the pre-jump state ∣ψ⟩,
while for the SA we seed a random starting state ∣ψ̃⟩ whose coef-
ficients [see Eq. (38)] are drawn from a uniform unit distribution
{ci,αi, c̃i, α̃i} ∈ [0, 1]. We set a sufficiently slow SA cooling rate such
that the algorithm converges to the same local maxima irrespective
of the randomly chosen starting point. For all the studied cases, the
fidelities of the states obtained by the two numerical optimizers agree
within ≲10−3.

D. Time evolution
We are now equipped to implement the quantum trajectories

program for the NGS ansatz outlined in Sec. III A. In principle, one
could evolve the wave function ∣ψ⟩ between the jumps according to
the equations of motion in Eq. (27) while tracking the decay of the
norm to identify the time tj of a jump. In practice, we find it con-
venient to Trotterize the time evolution between jumps governed by
Heff, Eq. (21), in the usual way as
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e−i(H−iK)δt
≈ e−iHδte−Kδt , (42)

for sufficiently small δt. The norm during the unitary dynamics
under e−iHδt is preserved due to the use of the norm factors κ as
variational parameters (we note that the opposite case, namely the
absence of a global norm factor as a variational parameter, can result
in unphysical couplings, see Ref. 50). During the imaginary-time
evolution e−Kδt, we track the decay of the norm to determine the
time of the jump tj, at which point we apply the corresponding jump
operator cm.

IV. TRUNCATED WIGNER APPROXIMATION
FOR SPINS AND BOSONS

The phase space picture of quantum mechanics provides alter-
native means to simulate and analyze the quantum many-body
dynamics in systems with mixed spin and bosonic degrees of
freedom, in particular in a semi-classical framework known as
the truncated Wigner approximation (TWA).81 The Wigner–Weyl
transform maps Hilbert space operators O of a quantum system to
functions of classical phase space variables, known as Weyl sym-
bols OW . The Weyl symbol corresponding to the density matrix is
known as the Wigner function and provides a full ensemble descrip-
tion of arbitrary quantum states in terms of a (potentially negative)
quasi-probability distribution.

A general Wigner–Weyl transform can be defined using the
framework of phase point operators.99 For example, consider-
ing particles in 1D with positions x and momenta p, operators
A(x, p) for each point in phase space define the Wigner–Weyl
transformation via OW(x, p) = tr[A(x, p)O]/

√
2π and vice versa

O = ∫dxdp OW(x, p)A(x, p). Given a proper orthonormal
definition of phase point operators,99 for any state ρ and
any observable Q, expectation values can be evaluated from
the Wigner function W(x, p) = tr[A(x, p)ρ]/

√
2π via ⟨Q⟩

= ∫ dxdpQW(x, p)W(x, p). Equivalent constructions can be made
for spin phase spaces, either using spin–boson mappings (suitable
for large spin scenarios),81 using spherical coordinate representa-
tions of spins A(θ,ϕ),59 or for phase spaces using only a discrete set
of points.99

Closed-system time-evolution equations of motion can be
obtained by Wigner–Weyl transforming the Heisenberg equations
of motion, which leads to the exact quantum dynamics for Weyl
symbols being governed by Q̇W(x, p) = {QW(x, p), HW(x, p)}MB,
using the Weyl symbol of the Hamiltonian HW , and the Moyal
bracket defined as {QW , HW} = 2QW sin(Λ/2)HW , with Λ the
symplectic operator (with h ≡ 1) Λ = ∑i

←Ð
∂
∂xi

Ð→
∂
∂pi
−
←Ð
∂
∂pi

Ð→
∂
∂xi

. Expand-
ing the sine function in the Moyal bracket at the lowest order is
known as TWA and leads to a classical evolution of Weyl symbols
Q̇W(x, p) ≈ {QW(x, p), HW(x, p)}P, where {⋅, ⋅}P now denotes the
classical Poisson bracket. The Poisson bracket ensures that the Weyl
symbols for any complex observable will always factorize into phase
space variables and, therefore, in TWA it suffices to only com-
pute the classical evolution of the phase space variables.53 This
makes TWA a very practical and efficient numerical method for the
case of a positive initial Wigner function: Random positions and
momenta can be sampled from the Wigner function and evolved
in parallel using classical equations of motion, giving xη(t) and

pη(t) for trajectory η. Expectation values in TWA are then statisti-
cally approximated by ⟨Q⟩ ≈ 1

ntraj
∑

ntraj
η QW(xη(t), pη(t)), using ntraj

trajectories.
Importantly, for small-spin systems, and in particular for spin-

1/2 models as considered here, TWA can be drastically improved
when using a sampling of the initial Wigner function using only
a discrete set of initial phase points.51 Considering a system
consisting of a single spin-1/2 described by the Pauli operators
σ = (σx, σy, σz), we define the corresponding phase space variables
as S = (Sx, Sy, Sz). One can then define discrete Wigner func-
tions, which are only defined for the eight different discrete points
S0 = (±1,±1,±1). For example, taking a state of Ns spin-1/2 par-
ticles of the form ∣ψ⟩ = ⊗Ns

i=1∣↓⟩i, it is straightforward to show that
any possible observable can be exactly described by sampling each
spin from a discrete Wigner function with only non-zero values
of W↓

i (Sx = ±1, Sy = ±1, Sz = −1) = 1/4. Correspondingly, the state
∣ ↑⟩i is exactly described by the discrete distribution with non-zero
elements W↑

i (Sx = ±1, Sy = ±1, Sz = +1) = 1/4.
Furthermore, it can be shown in general that equivalent discrete

sampling strategies can lead to exact quantum state descriptions
for general discrete D-level systems and for eigenstates of gen-
eral spin-S operators, in the sense that the measurement statistics
for any observable can be exactly reproduced from sampling the
Wigner function.53 Discrete sampling in combination with classi-
cal evolution is known as (generalized) discrete truncated Wigner
approximation, (G)DTWA.51,53 Classical equations of motion for
the spin-variables can be derived by Wigner–Weyl transforming the
Heisenberg equations of motion while factorizing the Weyl sym-
bols into the phase space variables. (G)DTWA has been shown to
capture quantum features in spin-model dynamics in several theory
settings77,79,100–102 and in comparison with experiments.76,78,103,104

Below we will consider a system consisting not only of spins
but also of bosonic a(a†

) degrees of freedom. For the bosonic part,
we will consider the complex numbers a→ A and a†

→ A∗ as the
classical phase space. We note that for additional bosonic degrees
of freedom with operators denoted as b(b†

), one can introduce a
corresponding classical phase space with b(b†

)→ B(B∗) (see, for
example, Sec. V). Then, considering a system with Ns spin-1/2 par-
ticles coupled to Na/b bosonic modes a/b, computing expectation
values of an observable Q(σi, aj, bk)with TWA at time t corresponds
to numerically evaluating

⟨O(t;{σi, aj , bk})⟩ ≈ ∫

Ns

∏
i=1

Na

∏
j=1

Nb

∏
k=1

dSi
0d2A j

0d2Bk
0

×Wi(Si
0)Wj(A j

0)Wk(B
k
0)

×OW({Si
cl(t), A j

cl(t), Bk
cl(t)}), (43)

where dS0 = dSx
0dSy

0dSz
0, d2A0 = dReA0dImA0/π, and the subscript 0

indicates the initial values at t = 0. The classical variables for spin i
and bosons j and k are sampled from the initial Wigner functions
Wi(Si

0), W j(A j
0), and Wk(Bk

0), respectively. Note that we always
assume an initial product state between all degrees of freedom such
that the Wigner functions factorize. For the spins we will use the dis-
crete distributions W↑/↓

i defined earlier, while for the bosonic modes
we use standard continuous Wigner functions, in particular
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Wj(A j
0) =

1
2πw2

j
exp{−∣Aj − ᾱj ∣

2
/(2w2

j)}, (44)

where w2
j = (n̄ j + 1/2)/2 and α center of the Wigner function.

For the vacuum state n̄ j = ᾱ j = 0, while for a coherent state
∣α⟩, n̄ j = 0 and ᾱ j = α (see Refs. 52 and 81 for more details).
OW({Si

cl(t), A j
cl(t), Bk

cl(t)}) is the Weyl symbol corresponding to
the observable of interest. We use the subscript cl on the time-
dependent variables Si

cl(t), A j
cl(t), and Bk

cl(t) to indicate that they
obey the classical equations of motion for spin i, boson j, and boson
k, respectively. In Sec. V, we will provide the full classical equations
of motion for our problem of interest for examples of both closed
and open system dynamics. (G)DTWA methods have been recently
developed further to also include open-system dynamics under
Lindblad master equations.56–60 For our simulations, we follow the
procedure in Ref. 59 and use a spherical coordinate parametrization
of the phase space for spin i with phase point operators defined as

Ai(θi,ϕi) =
1
2
[𝟙i + s(θi,ϕi) ⋅ σi], (45)

where we use the vector on the surface of a sphere with radius
√

3,
si =
√

3(sin θi cosϕi,− sin θi sinϕi,− cos θi)
⊺.

In Ref. 59, it was shown that for open spin-1/2 models, it is
convenient to work with flattened Wigner functions of the form
χi(θi,ϕi) ≡Wi(θi,ϕi)

sin θi
2π . The equations of motion for an open

system can then be found by deriving correspondence rules (rem-
iniscent of Bopp representations for bosonic systems81), i.e., rules
for mapping terms such as Xiρi, ρiXi, or XiρiX†

i with Pauli opera-
tors X = σx,y,z

i to the phase space, which leads to terms incorporating
the four linearly independent differential operations 𝟙, d

dθi
, d

dϕi
, d2

dϕ2
i

acting on χ(θi,ϕi). It can be shown that the resulting EOMs lead
to standard Fokker–Planck equations. This is only valid, without
further approximations, for systems of non-interacting spins or if
the initial state is a large coherent spin state. In these scenarios,
the dynamics are given by the solution to the Fokker–Planck equa-
tions. Rather than solving these equations directly, we solve the
corresponding Itô stochastic differential equations and average the
relevant expectation values over many trajectories.93

In our discrete sampling, we select the initial angles θi,ϕi
according to the parametrization given in Eq. (44). However, rather
than sampling from the discrete W↑/↓

i Wigner distribution, we
sample from a slightly modified flattened Wigner function

χ↑/↓(θ,ϕ) =
1

2π
δ(θ ± arccos

1
√

3
), (46)

which is generated by rotating the discrete Wigner function W↑/↓

i
around the z-axis. This initial Wigner function is uniform in ϕ and,
therefore, guarantees that ∂2

∂ϕm∂(θn−θn+1)
cross diffusion terms, which

are dropped in TWA, vanish at t = 0.59 For more details, we refer
the reader to Ref. 59 and Sec. V, where the detailed equations for our
problem of interest are introduced.

V. RESULTS
To evaluate the performance of our two numerical methods, we

consider the disordered Holstein–Tavis–Cummings model describ-
ing a system of Ns spins coupled to a single bosonic mode (a),
representing a coupling to a cavity mode, and Ns local vibrational
modes (bi) associated with each spin. The system is described by the
Hamiltonian,33

H = HTC +Hvib +HH +Hdis, (47)

where

HTC =
Δ
2

Ns

∑
j=1
(σz

j + 𝟙) +
g
√

Ns

Ns

∑
j=1

aσ+j + a†σ−j , (48a)

Hvib = ν
Ns

∑
j=1

b†
jbj , (48b)

HH = −
λν
2

Ns

∑
j=1
(bj + b†

j)(σ
z
j + 𝟙), (48c)

Hdis = −
1
2

Ns

∑
j=1

ϵj(σz
j + 𝟙), (48d)

where Δ describes the detuning of the spin transition frequency rela-
tive to the cavity mode, g/

√
Ns the single-spin coupling to the cavity,

ν the frequency of the vibrational modes, λ the relative strength of
the Holstein coupling, and ϵj the disorder in the transition frequency
for spin j.

The dynamics of the Holstein–Tavis–Cummings model, in par-
ticular in the presence of disorder, have importance, e.g., in the
field of polaritonic chemistry.105 It has been previously studied using
a matrix product state method33 and also using a similar non-
Gaussian state framework to the one discussed here.71 By tuning
the relative strength of the various terms, this Hamiltonian can be
reduced to spin–boson Hamiltonians applicable, e.g., to trapped ion
quantum simulators, impurity models, and quantum chemistry. The
relative strength of g, λ, and ν allows us to go from the weak cou-
pling regime between the spin and bosonic degrees of freedom to
a model governed by a Tavis–Cummings type interaction to a Hol-
stein coupling or a combination thereof. We schematically illustrate
the performance of the two numerical methods in each of these
regimes in Fig. 5(a).

Furthermore, we investigate how both methods perform in the
presence of sources of decoherence. In this case, we are interested in
the evolution of the density matrix ρ as described by the Lindblad
master equation given in Eq. (20). We study open dynamics with the
following types of Lindblad jump operators:

● Cavity decay (rate κ): cm =
√
κa.

● Single spin decay (rate γ): cm =
√γσ−i .

● Collective spin decay (rate Γ): cm =
√
Γ∑i σ

−
i .

We summarize the performance of the two methods in the presence
of these decoherence sources schematically in Fig. 5(b).
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FIG. 5. Schematic of the performance of TWA and NGS for (a) closed and (b)
open dynamics. In the present study, NGS is limited to at most Np = 16 multi-mode
coherent states and no squeezing. (a) The performance in g − λ parameter space
for closed dynamics. When g, λ ≲ 1, TWA performs well, while when g ≲ 1, λ ≳ 1,
NGS is the better choice. When g ≳ 1, TWA captures short-time dynamics but
can produce incorrect mid-to late-time results. In comparison, NGS typically does
not capture quantitative details beyond the first spin relaxation but does provide
qualitative insights into the dynamics by correctly capturing the magnitude of the
persistent spin–cavity dynamics. (b) Open dynamics. We operate in the g ≲ 1,
λ ≳ 1 region, so NGS outperforms TWA at small κ. At large κ, TWA performs well
again, with both NGS and TWA agreeing. When evolving under only HTC with the
spins decaying collectively at rate Γ, NGS and TWA agree when using the large
Ns Holstein–Primakoff (HP) transformation at small Γ. At large Γ the collective
spin quickly decays to the ground state, which is inaccessible as the first order
expansion of the root in HP is no longer sufficient near the ground state since it
was expanded around the excited state (small a†

s as), so neither method is able to
capture intermediate-to-late-time dynamics.

A. Details of NGS and TWA simulations
In principle, the NGS ansatz can be used directly to treat the

spin degrees of freedom. However, to avoid the explicit exponential
scaling with Ns, we use a Holstein–Primakoff (HP) transformation
to map each spin-1/2 to a bosonic mode. We use the following form
of the HP transformation:106

S+ = (1 − a†
s as)as, (49a)

Sz = 1/2 − a†
s as, (49b)

which is exact for spin-1/2, and where we use the s subscript
to denote a bosonic operator acting on the spin degree of free-
dom. As such, the dynamics are restricted to the ∣0⟩ ≡ ∣e⟩ and
∣1⟩ ≡ ∣g⟩ subspace, with ∣g⟩⟨g∣ = a†

s as and ∣e⟩⟨e∣ = 1 − a†
s as. The vac-

uum is a Gaussian state and can, therefore, be described using
only Np = 1. The Fock state ∣1⟩ can be described using Np = 2, by

∣1⟩ = 1/N limα→0(∣α⟩ − ∣ − α⟩), where N is a normalization fac-
tor,107 with α ∼ 0.001 sufficient to describe the state with high
fidelity. As such, each spin can be captured using Np = 3 coherent
states.

For the NGS simulations, we employ the NGS ansatz with
Nb = 2Ns + 1 modes. We include cavity decay at strength γ using the
simple parameter update prescription outlined in Sec. V. Note that,
as a consequence of the HP mapping, the ansatz is not well-suited to
some scenarios. For example, there is no spin–spin coupling when
evolving under only Hdis, so an unentangled initial state will evolve
as a tensor product of single spins, each requiring Np = 3. The num-
ber of coherent states therefore scales exponentially in the number
of spins, 3Ns . This limitation could potentially be mitigated by mod-
ifying the ansatz to be a superposition of squeezed displaced Fock
states.55

For the TWA simulations, to more accurately capture the
dynamics of the cavity and vibrational modes, we extend the set
of TWA equations by including the classical equations of motion
for the mode excitation numbers a†a→ NA, b†

kbk → NBk . Including
all three sources of decoherence described earlier, the stochastic
equations of motion for the spin degrees of freedom are

θ̇i,cl = (Γ + γ)(cot θi,cl −
csc θi,cl
√

3
) +

2g
√

Ns
Im[e−iϕi,cl Acl]

−
Γ
√

3
2 ∑

j
cos (ϕi,cl − ϕj,cl) sin θj,cl, (50a)

dϕi,cl = (− Δ + ϵn + 2λνRe[Bi,cl] −
2g
√

Ns
cot θi,clRe[Acle

−iϕi,cl]

−
Γ
√

3
2 ∑

j
cot θi,cl sin θj,cl sin (ϕi,cl − ϕj,cl)

⎞

⎠
dt

+
√
(Γ + γ) f (θi,cl)dWϕi , (50b)

where we introduced the function f (θi,cl) = 1 + 2 cot θi,cl
2

− 2 cot θi,cl csc θi,cl/
√

3. The stochastic behavior of the equations of
motion is generated by the Wiener increments dWϕi acting on ϕi.
For each timestep dt, the Wiener increment dWϕi for each angle is
independently drawn from a normal distribution with zero mean
and a variance of dt.

The equations of motion for the bosonic degrees of freedom are
given by

Ȧcl = −
κ
2

Acl − i
√

3g
2
√

Ns
∑

i
eiϕi,cl sin θi,cl, (51a)

ṄA,cl = −κNA,cl −

√
3g
√

Ns
∑

i
sin θi,clIm[Acle

−iϕi,cl], (51b)

Ḃk,cl = −iνBk,cl + i
λν
2
(1 −

√
3 cos θk,cl), (51c)

ṄBk,cl = λν(1 −
√

3 cos θk,cl)Im[Bk,cl]. (51d)

The initial state used for all NGS simulations includes a small
amount of randomness for each variational parameter to break the
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degeneracy of the Gaussian states. We draw random values from
a uniform distribution between (0, 10−4

). We find that this is suf-
ficient to ensure each Gaussian state in the superposition evolves
independently while preserving extremely small infidelity with the
true initial state, 1 − F(t = 0) < O(10−6

), as seen in Fig. S1 of the
supplementary material.

B. Closed system dynamics
In this section, we compare the performance of the two numer-

ical methods. We consider a system with Ns = 3 spins, the corre-
sponding three phonon modes, and one cavity mode. For this system
size and suitable initial states and Hamiltonian parameters, choos-
ing a moderate Fock state truncation ∼10 allows us to compare our
results to exact numerics. Our initial state is spins polarized up,
the vibrational modes in the vacuum, and the cavity in a coherent
state, ∣ψ(0)⟩ = ∣↑⟩⊗Ns ∣α = 1⟩a∣0⟩⊗Ns

b . Note that, in contrast to Ref. 71,
our initial state is a superposition of several excitation manifolds,
precluding further simplifications to the ansatz.

For all closed dynamics simulations, we setΔ = 0. For evolution
under the Holstein–Tavis–Cummings model in Eq. (47), we find
that while both methods are generally able to capture the short time
dynamics, at later times they outperform one another in different
parameter regimes. We summarize our findings in Fig. 5(a), where
we qualitatively depict the performance for different parameter
regimes in the absence of decoherence. More detailed dynamics
for each regime are plotted in Figs. 6–9, with the first and second
rows of each figure showing dynamics without and with disorder ϵ,
respectively.

We begin in the weak coupling regime g = λ = 0.1, shown in
Fig. 6. Here, the dynamics is slow on the considered time-scale. In
both the disorder-free (first row) and disordered (second row) set-
tings, NGS and TWA accurately capture the small fluctuations of the
vibrational modes at all times. Both methods also capture the ini-
tial spin relaxation; however, NGS misses the revival time. TWA’s
ability to capture the first oscillation appears universally in all of

the parameter regimes considered in this work. This behavior can
be understood as follows: due to our choice of a factorisable initial
state with a corresponding positive semi-definite Wigner function,
the TWA sampling is able to reproduce the initial state and the
mean-field and low order correlations that are generated during the
short-time dynamics.

A generic feature of TWA is that when extending into the
medium-to-long-time dynamics, the potential buildup of higher
order correlations is not captured by the method. While this is not
visible in Fig. 6, it can be seen clearly in the figures corresponding to
the regimes discussed below.

The second regime we consider is the strong spin–vibrational
coupling λ≫ g, shown in Fig. 7. Here, we expect NGS to perform
well, as NGS is exact with any coherent state number Np for HH.
In the disorder-free regime (top row), although NGS with Np = 12
does not fully capture the dynamics at late times, it does outperform
TWA, which majorly underestimates the spin decay. In this case, the
lack of disorder is challenging for our NGS ansatz: each spin evolves
identically, requiring the superposition of coherent states to be fac-
tored into a product. This symmetry is broken when introducing
disorder (second row), and we see that NGS captures accurately the
dynamics for all considered times, including the initial decay and
then revival of ⟨Sz⟩. For TWA, although the numerics match better
for the vibrational dynamics in the presence of disorder, this is pri-
marily a consequence of the fact that the disorder causes the Holstein
interactions to dominate, and the spin and cavity dynamics continue
to disagree with the exact solution.

Third, we move to the strong spin–cavity coupling regime,
g ≫ λ, shown in Fig. 8. After accurately capturing the first oscil-
lation, the TWA spin dynamics equilibrate about ⟨Sz⟩ ∼ 0, unlike
the exact dynamics which, although they do oscillate about ⟨Sz⟩ ∼ 0,
exhibit persistent oscillations with magnitude ⟨Sz⟩ ∼ 1/2. Similarly,
NGS with Np = 4 coherent states fails to capture any of the spin,
vibration, or cavity dynamics. This is unsurprising because, in this
regime where the Tavis–Cummings term dominates, we expect the
number of coherent states required to scale as ∼3Ns , as each spin

FIG. 6. Closed dynamics: g = λ = 0.1, Δ = 0. Top row: Without disorder. Both NGS and TWA capture the initial spin relaxation, but NGS incorrectly predicts a slower
revival. Bottom row: Disordered, ϵ⃗ = [2g, 3g, 4g]. Here, TWA captures the dynamics more accurately compared to NGS. NGS is with Np = 4, TWA is with ntraj = 104 with
standard error shaded.
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FIG. 7. Closed dynamics: g = 0.1, λ = 1, Δ = 0. Top row: Without disorder. Neither TWA nor NGS completely capture the spin–cavity observables, but NGS more closely
tracks the dynamics. Bottom row: Disordered, ϵ⃗ = [2g, 3g, 4g]. NGS performs well, capturing all dynamics with small error. Interestingly, here TWA overestimates the
magnitude of changes in the spin–cavity observables. Here NGS uses Np = 12, TWA is with ntraj = 104 with standard error shaded.

must be described using Np = 3 coherent states. Although increasing
Np would eventually improve the accuracy, we found that increasing
it up to Np ≲ 16 did not provide a substantial increase in accuracy
while increasing the computational cost. In principle, TWA does
not suffer from the same problem. However, if one needs to access
higher order correlations with TWA, the introduction of higher
order cumulants and the BBGKY hierarchy may become necessary.
This poses an analogous problem to the number of Gaussian states
in the ansatz: an exponentially increasing number of equations and
potential numerical instabilities.108

Fourth, we consider the strong spin–cavity and spin–vibration
regime λ = g = 1, shown in Fig. 9. Without disorder, both

methods struggle to capture the dynamics at late times, although
TWA in particular is able to capture qualitative features with rea-
sonable accuracy. Introducing disorder breaks the collective nature
of the spins, enabling both methods to more accurately track the
dynamics. TWA is able to qualitatively reproduce the periodic peaks
in the spin and cavity dynamics at even later times than NGS. Both
methods correctly obtain the vibrational dynamics.

Finally, we note that an advantage of NGS is the accessibility
of the wave function. This means that any desired quantity, includ-
ing entanglement entropy, can be computed. Furthermore, for small
systems, strict performance measures such as fidelity can be easily
computed. These are shown in the supplementary material for the

FIG. 8. Closed dynamics: g = 1, λ = 0.1, Δ = 0. Top row: Without disorder. Beyond initial spin relaxation, both TWA and NGS perform relatively poorly. TWA incorrectly
predicts equilibration of the spin–cavity dynamics. NGS does continue to produce spin–cavity dynamics but overestimates the magnitude of the oscillations. Bottom row:
Disordered, ϵ⃗ = [2.6g, 3.2g, 4.2g]. TWA incorrectly predicts equilibration of both spin and cavity observables after the first oscillation, while NGS produces qualitatively
correct dynamics, even with only Np = 4 coherent states. Here NGS uses Np = 2 for the first row and Np = 4 for the second row, and TWA is with ntraj = 104 with standard
error shaded.
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FIG. 9. Closed dynamics: g = 1, λ = 1, Δ = 0. Top row: Without disorder. TWA accurately captures the dynamics at early times as compared to the NGS. Bottom row:
Disordered, ϵ⃗ = [2.6g, 3.2g, 4.2g]. TWA correctly captures key oscillations, even at late times. NGS also captures some of these features, but less accurately. Both methods
perform similarly for the vibrational dynamics. Here NGS uses Np = 4, TWA is with ntraj = 104 with standard error shaded.

four different coupling regimes (g, λ) considered in Figs. 6–9. The
analogous plots for TWA cannot be generated.

C. Open system dynamics
1. Holstein Tavis–Cummings

Next, we introduce decoherence to our simulations. Figures 10
and 11 show the spin and bosonic dynamics for Ns = 3 in the pres-
ence of cavity loss a at strengths κ = g (Fig. 10) and κ = 10g (Fig. 11),
and in the regime λ≫ g, where NGS provides more accurate pre-
dictions in the closed setting (cf. Fig. 7). In the top row we set the
disorder ϵ = 0, while the bottom row shows the dynamics in the

presence of disorder, ϵ⃗ = [2g, 3g, 4g]. Although exact dynamics were
accessible for a closed system of this size, obtaining exact numerics
in the open dynamics setting is challenging. In the supplementary
material, we compare the two methods against exact numerics for a
smaller system of Ns = 1. (supplementary material)

For these parameters, we find that, perhaps unsurprisingly,
NGS continues to perform well in both κ = g and κ = 10g deco-
herence regimes. In the weaker decay limit shown in Fig. 10, NGS
and TWA agree only at short times. The under and over-estimation
of spin–cavity dynamics by TWA in the non-disordered and dis-
ordered systems, respectively, is consistent with the behavior of
TWA in the closed system (see Fig. 7). In the large decay limit
shown in Fig. 11, NGS and TWA are in reasonable agreement with

FIG. 10. Open dynamics. g = 0.1, λ = 1, Δ = 0, and cavity decay κ = g. Top row: Without disorder. Bottom row: With disorder ϵ⃗ = [2g, 3g, 4g]. NGS and TWA capture the
same short-time dynamics but disagree beyond νt ∼ 5. Based on the corresponding closed dynamics results in Fig. 7, we expect NGS to be more reliable in this regime.
Exact numerics is challenging for open dynamics of systems of this size (see Fig. S2) for benchmarking of smaller systems. Here, NGS uses Np = 8 and ntraj = 40 with
standard error indicated by the error bars; TWA uses ntraj = 104 with standard error shaded.
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FIG. 11. Open dynamics. g = 0.1, λ = 1, Δ = 0, and cavity decay κ = 10g. Top row: Without disorder. Bottom row: With disorder ϵ⃗ = [2g, 3g, 4g]. We observe compatible
results for the spins and a remarkable agreement between NGS and TWA for the vibrational and cavity dynamics, including the small amplitude oscillations in ⟨ncav⟩ at late
times. Here NGS uses Np = 8 and ntraj = 40 with standard error indicated by the error bars; TWA uses ntraj = 104 with standard error shaded.

one another for the spin dynamics and in near total agreement for
the vibrational and cavity dynamics. Both show fast decay of the
cavity to the vacuum and remarkably both capture small oscilla-
tory dynamics at late times with excellent agreement. Physically,
both methods demonstrate that strong cavity decay stabilizes the
spin dynamics, which we attribute to the reduction of the effec-
tive Tavis–Cummings coupling strength and the prevention of the
buildup of correlations in the system between the spins, as well as
spin–boson correlations, due to the loss of cavity excitations.

2. Tavis–Cummings
Next, we consider the effect of spin decay. We set ϵ, λ = 0 in

Hamiltonian (47) such that evolution is only under HTC and include

collective spin decay at rate Γ. We set Δ = 1 and g = 0.1. Within the
TWA formalism, we treat the dynamics using two methods. First,
we continue to treat the system as a collection of individual spins,
as described in Sec. IV. In Fig. 12, we plot the resulting dynam-
ics, where TWA (CD) refers to implementing this sampling in the
presence of collective spin decay at Γ = 0.1g/

√
Ns and g/

√
Ns. TWA

(SSD) uses the same sampling, but the decay mechanism is single
spin at the corresponding rate. The agreement between the two and
the disagreement with exact numerics (EXA) indicate that treating
the spins individually with either of these two methods is inadequate
to simulate collective spin decay.

This motivates our second strategy. Because the Hamiltonian
is HTC, the dynamics takes place in the collective Tavis–Cummings

FIG. 12. Collective spin dynamics.
ν = ϵ = λ = 0, Δ = 1, g = 0.1. Top row:
Γ = 0.1g/

√

Ns. NGS (HP) and TWA
(HP) use the Holstein–Primakoff repre-
sentation of the collective spin and agree
excellently with exact numerics (EXA).
On the other hand, when TWA treats the
spins individually, the collective decay
dynamics TWA (CD) agrees with the sin-
gle spin decay dynamics TWA (SSD),
but both deviate from the exact evolution
due to TWA’s failure to capture the cor-
relations. Bottom row: Γ = g/

√

Ns. NGS
(HP) and TWA (HP) agree with exact
numerics (EXA) until tν ∼ 5, when the
first order Taylor series expansion of the
HP mapping breaks down. Here, NGS
uses Np = 8 and ntraj = 40 with stan-
dard error indicated by the error bars;
TWA uses ntraj = 104 with standard error
shaded.
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manifold as HTC conserves the total excitation number Nex = a†a
+∑i σ

z
i . Then, we can use the Holstein–Primakoff (HP) transforma-

tion to map the collective spin S to a single bosonic mode,

S+ =
√

2s − a†
s as as, (52a)

Sz = s − a†
s as, (52b)

where s ≡ Ns/2. We use a Taylor series to expand the square root in
powers of 1/s to first order. The NGS simulation then proceeds using
the NGS ansatz with Nb = 2 bosonic modes. We can include collec-
tive spin decay ∑i σ

−
i at strength Γ using the manifold projection

technique described in Sec. III C.
For the TWA simulations, the equations of motion for the

cavity mode A and the large spin HP mode B are

Ȧcl = −
κ
2

Acl − i
g

2
√

2s
B∗cl(4s −NB,cl), (53a)

ṄA,cl = −κNA,cl −
g
√

2s
Im[AclBcl](4s −NB,cl), (53b)

Ḃcl = ΓBcl[s −
1
8s
+NB,cl(

∣Bcl∣
2

16s
−

1
2
)]

+
ig

2
√

2s
[AclB

2
cl − 2A∗cl(2s −NB,cl)] + iΔBcl, (53c)

ṄB,cl = Γ[2S +NB,cl(
1
4s
+ 2(s − 1) + F(Bcl))]

−
g
√

2s
Im[AclBcl](4s −NB,cl), (53d)

where we introduce the function F(Bcl) =
1
8s ∣Bcl∣

2
(4 − 8s + ∣B2

cl∣).
We sample the cavity (mode A) assuming a coherent state ∣α = 1⟩
and sample the large spin (mode B) assuming the spins are polar-
ized pointing up, which corresponds to sampling the vacuum for
mode B.

Our results using this approach, including collective spin decay,
are shown in Fig. 12 in the lines labeled as TWA (HP) and NGS
(HP). In the weak spin decay limit Γ = 0.1g/

√
Ns, both NGS (HP)

and TWA (HP) are in excellent agreement with the exact numer-
ics (EXA). NGS in particular captures the cavity dynamics with little
error, while the error bars on the spin dynamics are still somewhat
large due to our use of relatively few trajectories, ntraj = 40. In the
large decay limit Γ = g/

√
Ns, both NGS and TWA correctly capture

the rapid spin decay until νt ∼ 5. Beyond this point, the first order
Taylor series expansion of the HP mapping breaks down as highly
excited Fock states are populated. One can potentially circumvent
this issue by simulating collective spin decay, as was performed in
Ref. 80 with DTWA. There, the spins were collectively coupled to a
single cavity whose cavity loss was much stronger than the collec-
tive spin–cavity coupling, resulting in effective collective spin decay
and without the utilization of the HP mapping. Comparing the per-
formance of these approaches in different parameter regimes and

for different models, e.g., for more complex forms of collective spin
decay, represents an interesting future direction.

VI. CONCLUSIONS AND OUTLOOK
Summary and conclusions: In this work, we presented a non-

Gaussian variational ansatz approach to studying the dynamics of
open quantum systems composed of spin and bosonic degrees of
freedom. While several other works in recent years have utilized
NGS to study the time evolution of open quantum systems, pre-
vious efforts have focused on developing an equivalent ansatz for
the density matrix and simulating the Lindblad equations. Here, we
utilized the quantum trajectories method, allowing us to take advan-
tage of the previously developed machinery and analytic expressions
obtained for real- and imaginary-time dynamics.

In addition to providing a comprehensive overview of this
method, we performed extensive numerical simulations over a broad
range of parameters of a spin–boson Hamiltonian [Eq. (47)] with
Tavis–Cummings (TC) and Holstein couplings, which is applica-
ble to a broad range of quantum simulation platforms as well as
problems of interest in quantum chemistry, atomic physics, and con-
densed matter theory. We compared the performance of NGS with
a method using the truncated Wigner approximation for systems
with mixed bosonic and spin degrees of freedom, extended to open
quantum systems following the approach in Ref. 59.

In the absence of decoherence, our findings are as follows: for
strong TC coupling, TWA is the more accurate method, while for
strong Holstein couplings, NGS is the better choice. When neither
term dominates, for both weak and strong coupling regimes, TWA
captures the short-time dynamics, while NGS generally displays the
correct qualitative behavior, even at late times. After introducing
spin disorder, the performance of NGS typically improves, while
for TWA the vibrational dynamics match the exact dynamics bet-
ter, which is attributable to the fact that disorder causes the Holstein
interaction to dominate.

For open quantum dynamics, we focused on the regime where
the Holstein term dominates and considered the effect of cavity
loss. At weak decay rates, the NGS continues to perform well.
TWA improves as the cavity decay rate increases due to the loss of
quantum correlations, with both NGS and TWA showing excellent
agreement. In the presence of collective spin decay, we considered
the TC model only, finding that in the limit of small collective decay,
both methods perform well when using a Holstein–Primakoff trans-
formation for the large spin. In the limit of large collective decay,
NGS and TWA both only capture the short time dynamics, as the
Holstein–Primakoff transformation is no longer accurate at later
times. Using TWA, we were able to also treat each spin individually.
However, TWA does not capture the collective nature of the decay,
with the results closely matching the effect of single spin decay.

Further considerations should also be made when deciding
between the two methods. Although the NGS ansatz can be made
less computationally demanding by reducing the number Np of
coherent states, in general, TWA methods are easier to implement
and require fewer computational resources. The resource require-
ment and the complexity of NGS are offset by the advantages that it
is a controlled approximation and gives access to the wave function,
allowing one to access any observable, including higher-order corre-
lations. The TWA framework needs to be amended if one hopes to
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capture these correlations accurately. A potential strategy to remedy
this can be to use a cluster TWA approach.109 There, several sub-
system parts are grouped into a single (discrete or continuous) large
sub-system that, provided a proper sampling strategy, follows the
fully exact quantum evolution, while correlations between clusters
are approximated in TWA. Such approaches allow to use the cluster
size as a controllable parameter to enhance the simulation toward
the exact one.

Outlook: The extension of NGS to open quantum systems using
the quantum trajectories formulation that we presented in this work
is perhaps the most natural pathway. For Hermitian jump operators,
an alternative approach and a simple extension of this work would
be to instead solve the stochastic partial differential equations that
result from the unraveling of the master equation. Furthermore, one
could explore the impact of the chosen unraveling on the perfor-
mance of the NGS method at a fixed Np, as it has been shown that
this choice can have a large effect on the entanglement buildup in
the trajectory.110,111

Another limitation of the present formulation is that the spin
states in Eq. (1) are exact and span the full spin Hilbert space of
dimension 2Ns , thus limiting the use of the ansatz to a handful of
spins unless approximations such as the large Ns expansion in the
Holstein–Primakoff mapping used in Sec. V C 2 are invoked. On the
one hand, studies using a fermionic Gaussian state representation of
spins have been performed,112 and these might be combined in prin-
ciple in a straightforward way with the NGS ansatz for bosons.49 On
the other hand, it would be highly interesting to combine the NGS
ansatz with other variational techniques highly suitable for the spins
such as tensor network based approaches.39–41 Furthermore, similar
to the present comparison between NGS and TWA, it would be ben-
eficial to apply the here-presented non-Gaussian ansatz to the study
of other systems, which might be challenging to simulate other-
wise. These include, for instance, purely bosonic models, such as the
Bose–Hubbard model, with disorder and on non-regular lattices.113

Such extensive studies will allow for a comparison between our
approach and the corresponding master equation approach based
on extending the ansatz of Eq. (1) to density matrices.54,55

Finally, we note that a particular promising application field of
the methodologies introduced here could be in the emerging field
of polaritonic chemistry.114–117 Recent experiments have demon-
strated that large collective strong cavity couplings (e.g., gc = g

√
N)

can be functionalized to modify chemical reactivity. A theoretical
understanding for such modifications is currently centered around
the question of how a delocalized polaritonic state can play a role
in changing chemistry on the single-molecule level as local ampli-
tudes of collective polaritons vanish in the thermodynamic limit.
In spin–boson approximations to the problems, in particular for
the disordered Holstein–Tavis–Cummings105 model that we stud-
ied here, it was recently discovered that the interplay of disorder
and collective cavity couplings can give rise to robust local quantum
effects in the large-N limit in the form of non-Gaussian distri-
butions of the nuclear coordinate.33 Using matrix product state
methods, it was possible to push simulations to systems with 160
effective molecules, but in particular the TWA approach discussed
here would allow access to much larger systems. Typical parameter
regimes discussed here are well covered by the TWA approach (e.g.,
the typical parameters from Ref. 33 correspond to λ ∼ 0.1ν and
g ≪ ν) and, therefore, hint to a general applicability of the method

in the relevant regime. Furthermore, the TWA approach can be
straightforwardly adapted to simulate nuclear dynamics not only
on harmonic but also arbitrary potential energy surfaces, while the
NGS ansatz using the machinery presented here can also model
anharmonic Hamiltonian terms. In the future, this may allow for
the analysis of quantum effects in realistic chemical reaction models,
even in a macroscopic limit.

SUPPLEMENTARY MATERIAL

In the supplementary material, we show that the tangent space
of the variational manifold for the NGS ansatz is a Kähler manifold
and benchmark NGS and TWA against exact numerics for a single
spin Ns = 1.
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