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Metastatic Melanoma Treated by Immunotherapy: 

Discovering Prognostic Markers from Radiomics 

Analysis of Pretreatment CT with Feature Selection 

and Classification 

 

Purpose 

Immunotherapy has dramatically improved the prognosis of patients with metastatic 

melanoma (MM). Yet, there is a lack of biomarkers to predict if a patient will benefit from 

immunotherapy. Our aim was to create radiomics models on pretreatment computed 

tomography (CT) to predict overall survival (OS) and treatment response in patients with MM 

treated with anti-PD1 immunotherapy.  

Methods 

We performed a monocentric retrospective analysis of 503 metastatic lesions in 71 patients 

with 46 radiomics features extracted following lesion segmentation. Predictive accuracies for 

OS <1 year vs >1 year and treatment response vs no response were compared for five feature 

selection methods (Sequential Forward Selection, Recursive, Boruta, Relief, Random Forest) 

and four classifiers (Support Vector Machine (SVM), Random Forest, K Nearest Neighbour, 

Logistic Regression (LR)) used with or without SMOTE data augmentation. A 5-fold cross-

validation was performed at the patient level, with a tumour-based classification. 

Results 

The highest accuracy level for OS prediction was obtained with 3D lesions (0.91), without 

clinical data integration, when combining Boruta feature selection and the LR classifier. The 

highest accuracy for treatment response prediction was obtained with 3D lesions (0.88), 

without clinical data integration, when combining Boruta feature selection, the LR classifier 

and SMOTE data augmentation. The accuracy was significantly higher concerning OS 

prediction with 3D segmentation (0.91 vs 0.86) while clinical data integration led to 

improved accuracy notably in 2D lesions (0.76 vs 0.87) regarding treatment response 



 

prediction. Skewness was the only feature found to be an independent predictor of OS (HR 

(CI 95%) 1.34, p-value 0.001). 

Conclusion 

This is the first study to investigate CT texture parameter selection and classification methods 

for predicting MM prognosis with treatment by immunotherapy. Combining pretreatment CT 

radiomics features from a single tumour with data selection and classifiers may accurately 

predict OS and treatment response in MM treated with anti-PD-1.  
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ABBREVIATIONS  

    

CAD  Computer Aided Diagnosis 

CI  Confidence Interval 

CTLA-4 Cytotoxic T-Lymphocyte-Associated protein 4 

HR  Hazard Ratio 

KNN             K Nearest Neighbour 

LDH   Serum lactate dehydrogenase 

MM  Metastatic Melanoma 

OS  Overall Survival 

PD-1  Program cell Death 1 

PFS  Progression-Free Survival  

RECIST Response Evaluation Criteria In Solid Tumours  



 

RF             Random Forest 

ROI  Region Of Interest 

SFS                 Sequential Forward Selection 

SMOTE  Synthetic Minority Oversampling TEchnique 

SVM             Support Vector Machine 

   

 

  



 

1. INTRODUCTION 

Melanoma is a primary skin cancer causing approximately 55,500 deaths annually [1]. 

Metastatic Melanoma (MM) has the highest mortality rate with an estimated three-year 

survival rate of between 5% and 32% [2]. An early breakthrough in the treatment of MM 

involved targeted therapy used to block BRAF and MEK; a treatment available to only 40% 

of patients, for whom the tumour presents a BRAF V600 mutation [3]. The introduction of 

immunotherapy, (CTLA-4 checkpoint inhibitor: ipilimumab, and later PD-1 checkpoint 

inhibitor: pembrolizumab and nivolumab) associated with long overall survival (OS) in MM 

[4,5] constituted a second major breakthrough, and has become a common first-line therapy 

in MM.  

 Improvement in survival rates, following treatment by checkpoint inhibitor therapy 

however, remains heterogeneous. Predictors of immunotherapy response are essential as they 

enable clinicians to evaluate benefits of immunotherapy, to spare patients unnecessary risk of 

toxicity [6], to select the most suitable targeted therapy and to enrol patients in clinical trials 

[7]. 

Predictors in current use include the LDH value, visceral tumour burden (notably the 

presence of liver lesions), the relative eosinophil count, the relative lymphocyte count and 

age [8,9]. In addition, visual analysis of CT images performed by a radiologist may provide 

prognostic predictors such as the number, size and shape of lesions and number of metastatic 

sites. The heterogeneity of lesions, unquantifiable by the human eye, is reported to be a 

prognostic factor in some tumours [10]. Texture analysis, a technique used to quantify 

tumour heterogeneity [11,12], provides an analysis of the relationship between and 

distribution of pixel grey-levels in the tumour, thus revealing the spatial variation of grey-

levels in image patches. 

 Radiomics involves the extraction of high-dimensional sets of imaging features that 

characterize intra-tumoural heterogeneity. These features can be used to build models 

providing clinicians with key information for clinical diagnosis and assessment of prognosis 

and therapeutic effects. The extracted image features can be combined with other clinical, 

biological and genomic data, thus increasing the power of decision support systems. 

A large body of studies have reported on the benefit of texture analysis in many types 

of cancer, namely colorectal cancer [13,14], hepatocellular carcinoma [15], Hodgkin 

lymphoma [11], non small-cell lung cancer [16–18], soft tissue sarcoma [19], oesophageal 

cancer [20,21] and head and neck cancer [22], and provided information on survival rates, 



 

evaluation of treatment response [21,23–27] and histological characterisation of lesions [28–

30].  

 

A few studies have reported on the use of Computer Aided Diagnosis (CAD) 

including radiomics features, in MM. Some studies identified prognostic factors: Smith et al. 

[31] used radiomics features from 23 CT obtained before and following initiation of 

treatment by bevacizumab (which is no longer administered), to identify prognostic factors of 

survival ; Durot et al. [32] analysed average radiomics features on multiple lesions of 31 

patients before administering pembrolizumab, and found predictors of OS. Some studies built 

prognostic models: Schraag et al. [33] extracted 7 first order texture parameters from the 

largest lesion in 103 patients prior to immunotherapy and built a multivariable Cox regression 

model with clinical and texture parameters to enable prediction of OS ; Wang et al. [34] 

selected radiomics features from the largest lesion in 50 patients before immunotherapy and 

built a model with a Support Vector Machine (SVM, [35]) able to predict first cycle response 

based on validation of data from 16 patients. 

Feature selection is a key step in building a radiomics model. As some radiomics 

software can extract up to a thousand features [36], dimensionality reduction is crucial to 

prevent overfitting. The most common methods are logistic regression and the Least Absolute 

Shrinkage and Selection Operator (LASSO). From the selected features, a regression or a 

classification model can be built, the most common ones being SVM and Random Forest 

(RF). Some studies used several feature selection methods and classifiers in other pathologies 

[37–39]. Our study is the first to study feature selection and classification methods for 

evaluation of MM prognosis. 

The purpose of this study was to compare feature selection and classification 

methods, from radiomics features taken from contrast-enhanced CT images before initiation 

of treatment, so as to predict OS and treatment response in patients with MM treated by 

pembrolizumab or nivolumab.  



 

2. PATIENTS AND METHODS 

2.1 Study population 

 This monocentric retrospective cohort study was approved by our institutional review 

board (authorization number CRM-1905-008). 

All patients treated with anti PD-1 immunotherapy (pembrolizumab or nivolumab, 

identified from the hospital pharmacy database) between July 2014 and September 2018 for 

MM were included in the study. Exclusion criteria were: no metastasis visible on CT scans, 

no delineable lesion, no baseline CT scan performed within 2.5 months before beginning of 

treatment and a clinical follow-up period lower than one year (unless death occurred during 

the first year). 

Recorded data included age, gender, BRAF mutation status, date of metastatic status, 

start date of immunotherapy treatment, date of pretreatment CT scan, number of metastatic 

sites, presence of hepatic, cerebral and lung metastases, number of segmented lesions, 3 

months follow-up iRECIST conclusion, death, decision for supportive care or change of 

treatment. 

2.2 Follow-up and endpoints 

All patients underwent clinical, biological, and radiological follow-up every 3 

months, in accordance with the hospital protocol. The radiological follow-up comprised 

contrast-enhanced CT scans of the brain, thorax, abdomen and pelvis. In cases of suspected 

progression, an additional CT was performed 6 weeks later to rule out pseudo progression. 

Two endpoints were used for classification. The first endpoint was OS, for which 

patients were allocated to two groups based on the survival period; lower than one year after 

treatment initiation and longer than one year. The second endpoint was treatment response, 

obtained from the first CT scan taken 3 months after treatment initiation using iRECIST. 

Patients were allocated to two groups; favorable prognosis for stable disease or partial 

response and unfavorable prognosis for progression.              



 

2.3 CT examination 

The majority of CT scans (65/71, 92%) were performed on a 64-section contrast-

enhanced CT scanner (Discovery CT 750 HD, GE Healthcare). A volume of 1.5 mL/kg body 

weight of non-ionic contrast material was injected into the peripheral upper limb vein at a 

flow rate of 3 mL.s
-1

. Chest, abdominal and pelvic images were obtained at a portal-venous 

phase (80 s), and cerebral images were obtained at a late phase (5 minutes after injection).  

The acquisition parameters were as follows: 100 kVp tube voltage; helical pitch of 

1.375; image reconstruction thickness of 2.5 mm. The images were reconstructed using 30% 

adaptive statistical reconstruction (ASiR, GE Healthcare). 

Six CTs were performed on other scanners located outside our hospital. Visual 

assessment allowed us to ensure the quality of acquisition. The time of injection was checked 

before inclusion.   

2.4 Data segmentation 

Lesion segmentation was performed manually with the pretreatment CT scanner, 

using LIFEx (version 4.00, www.lifexsoft.org) [40] an ISBI-compliant feature extraction 

platform. Segmentation was performed following consensus by two radiologists: a senior 

radiologist with 8 years experience in radiology (6 years in oncological imaging) and a 

radiology resident with 4 years experience. 

All segmentable lesions (sufficient size and definition) were segmented on the CT. A 

3D ROI corresponded to segmentation of the whole lesion, while the axial slice with the 

largest area of the segmented lesion was saved as the 2D ROI. 

2.5 Feature extraction  

For each segmented ROI (3D and 2D ROIs for each lesion), 46 parameters were 

extracted by LIFEx, (Supplementary Information 1) and divided into 3 categories according 

to shape (volume, sphericity, compacity), histogram of grey level (skewness, kurtosis, 

entropy, energy) and texture parameters.  

http://www.lifexsoft.org/


 

2.6 Quantification of noise of the radiomics features 

To quantify the distribution of noise in the data, we evaluated for each radiomics 

feature separately on 2D and 3D ROIs the coefficient of variation, defined as the ratio 

between standard deviation and absolute value of the  mean value of the feature (
 

    
). 

 

2.7 Data augmentation, feature selection and classification 

methods 

To adjust for imbalanced datasets, data augmentation was used using the Synthetic 

Minority Oversampling TEchnique (SMOTE) [41]. 

A total of 5 different feature selection algorithms were used to select features 

extracted from CT data, namely Sequential Forward Selection (SFS), Boruta, Relief, 

Recursive and RF feature selection algorithms.  

Additional clinical data included age; sex; previous treatment by other 

immunotherapy; BRAF status; presence of lymph node, liver, brain, lung, adrenal, spleen, 

bone or gastrointestinal tract metastasis. 

 The 4 classification methods used to classify the selected features from CT imagery 

and clinical data were SVM (using a linear kernel) [35], RF, K-Nearest Neighbour (KNN), 

and Logistic Regression. 

A total of 40 combinations were tested (with or without data augmentation x 5 feature 

selection x 4 classification methods). 

Classification was firstly performed with radiomics features only, and secondly along 

with clinical data ; the features from 3D and 2D ROIs were processed separately. 

A 5-fold cross validation algorithm was used for each classification task (OS and 

treatment response). For each model, data was split into a training set (80% of the patients) 

and a test data set (the remaining 20% of the patients). The split between different folds was 

done on the patient level. Tumours in the test data set were then classified, resulting in a 

tumour based classification. The split train-test procedure was repeated 5 times and allowed 

calculation of mean values for accuracy, sensitivity and specificity. 

In addition to accuracy, sensitivity and specificity values were used in performance 

analysis.  



 

 

2.8 Influence of feature selection and classification methods on 

performance 

To quantify the influence of feature selection methods, we evaluated the mean 

performance on all combinations (classifiers, with or without data augmentation) of each 

feature selection method.  

The same evaluation was made to quantify the influence of classifiers. 

The Shapiro test rejected the normality of the distribution of accuracy. Hence, non-

parametric tests were used. The Kruskal Wallis test was used to search for significant 

differences of accuracy between the 5 feature selection methods first, and the 4 classifiers 

then. In case of significant differences, a pairwise comparison was made with the Wilcoxon 

test, applying Bonferroni’s correction for multiple comparisons. 

 

2.9 Quantification of fit 

In order to evaluate the models’ fit, we calculated the train and test accuracies for 

each model, and evaluated the train/test accuracy ratio. 

 

2.10 Statistical tests 

We used the Cox proportional hazards regression model to assess the association 

between survival parameters and covariates of interest. The proportional-hazard hypothesis 

was tested using the Schoenfeld test and results were expressed as hazard-ratios and 95% 

confidence intervals (95% CI). All statistical tests were two-sided, with p-values under 0.05 

considered statistically significant.  

Data extraction, feature selection and classification were performed with Python using 

a custom script. 

2.11 Inter-observer reproducibility 

The assessment of intra-observer reproducibility was based on an initial analysis of 

10% of segmentations following random selection, and on a repeat analysis, blinded to the 

first, performed at a six month interval. Assessment included comparison of features from 



 

both segmentations, extracted using LIFEx and an estimation of the Lin concordance 

correlation. The results were analysed according to conventional rules defined in the 

literature [42,43]: 0-0.2 (negligible agreement), 0.2-0.4 (low/weak agreement), 0.4-0.6 

(moderate agreement), 0.6-0.8 (substantial/good agreement) and >0.8 (strong agreement). 

 

 

3. RESULTS 

3.1 Patient characteristics 

Of 79 eligible patients, 8 were excluded (5 with difficult-to-define lesions, 2 without 

metastasis, 1 without pretreatment CT evaluation). A total of 71 patients (41 men, 30 women) 

of median age 66 years, (interquartile range 34-90) were included. 

The main baseline patient clinical and radiological characteristics are given in Table 

1. 

A total of 906 lesions (503 3D lesions and 403 2D lesions; minimum 1 per patient, 

mean 7 and maximum 31) were segmented. 35% (25/71) of patients presented with oligo 

metastatic lesions (less than 3 metastatic lesions), 38% (27/71) had less than 10 lesions and 

27% (19/71) more than 10, 35% (25/71) presented with hepatic lesions, 31% (22/71) with 

cerebral lesions and 55% (39/71) with pulmonary lesions. 

The main follow-up data are given in Table 2, with a mean follow-up of 882 days. 

3.2 Reproducibility  

Lin’s concordance correlation coefficient was >0.8 for 92% of the features while for 

the remaining features, the coefficient was ≤ 0.20, 0.21-0.40, 0.41 -0.60, and 0.61-0.80 for 

2%, 0%, 4%, and 2% of the features, respectively. 

3.3 Overall survival prediction  

The best 3 combinations for 2D and 3D lesions with and without clinical data are 

shown in Table 3. The performance of all combinations are presented in Supplementary 

Information 2.  



 

For 2D radiomics features, the best results were obtained using Recursive feature 

selection combined with logistic regression classification and SMOTE data augmentation 

(Acc 0.86, Sen 0.7, Spe 0.69).  

For 3D radiomics features, the best results were obtained using Boruta feature 

selection and logistic regression classification (Acc 0.91, Sen 0.79, Spe 0.39).  

 

3.4 Treatment response prediction 

The best 3 combinations for 2D and 3D lesions without and with clinical data are 

shown in Table 4.  

The best results were obtained for 2D radiomics features and clinical data integration 

with Random Forest selection and SVM classification (Acc 0.87, Sen 0.44, Spe 0.8). 

For 3D radiomics features, the best combination was obtained using Recursive feature 

selection combined with logistic regression classification and SMOTE, with clinical data 

integration (Acc 0.83, Sen 0.65, Spe 0.6). 

3.5 Overall survival analysis  

Cox proportional hazard models were calculated in 3 ways: as a whole radiomics 

covariate (shape, histogram and texture features), histogram features only and texture features 

only. 

For whole radiomics covariates, significant features were shape sphericity (p=0.012), 

GLZLM-LZE (p=0.041), GLZLM-LZHGE (p=0.037), GLZLM-ZLNU (p=0.003) but CI was 

non-significant. 

Concerning histogram features (Table 5), skewness was significantly correlated with 

OS (p=0.012, CI 95%=1.07-1.7). 

Concerning texture features (Table 5), the p-values were significant for GLRLM-SRE 

(p=0.022), NGLDM-contrast (p=0.032), GLZM-LZE (p=0.037), GLZM-LZHGE (p=0.041) 

and GLZLM-ZLNM (p=0.011, but only NGLDM-contrast (p=0.032, CI 95%=1.9 10
-3

 - 

0.7 10
-1

) had a significant CI. 

 



 

3.6 Quantification of noise of the radiomics features 

The median coefficient of variation was 1.076 for 2D features and 0.634 for 3D 

features. The complete set of values is given in Supplementary Information 3. 

 

3.7  Influence of feature selection and classification methods on 

performance 

The statistics of performance on all classifications with one feature selection method 

or with one classifier are given in Supplementary Information 4 (Tables and Figures 4.1 and 

4.2). 

There was no difference between the mean accuracies of all feature selection methods 

(Kruskal Wallis test, p=0.635). 

There was a statistical difference between the mean accuracies of classifiers (Kruskal 

Wallis test, p=1.3 10
-10

). Pairwise comparison showed that LR and SVM each had a 

significantly higher accuracy than RF and KNN (Supplementary Information 4, Table 4.3). 

 

3.8 Quantification of fit 

The mean training error was 0.18 for the 12 best OS prediction models and for the 12 

best response prediction models (Supplementary Information 5, Tables 5.1 and 5.2) 

The mean ratio of train/test accuracy was 1.01 for the 12 best OS prediction models 

and 1.06 for the 12 best response prediction models (Supplementary Information 5, Tables 

5.1 and 5.2). The mean ratios of train/test accuracy and the values of train and test accuracy 

on all classifications are given in Supplementary Information 5, Table 5.3 and 5.4. 

4. DISCUSSION 

We investigated the performance of different radiomics models as a prognostic tool to 

predict OS and treatment response, in patients with metastatic melanoma treated by anti PD-

1, on pretreatment CT images. We combined 5 feature selection methods with 4 classification 



 

methods with or without SMOTE data augmentation on any segmentable lesion, resulting in a 

tumour based classification. The accuracy of the ten best classification methods for predicting 

OS up to and beyond one year, and treatment response was found to be good (>0.80).  

To date, only 4 studies have reported on the prognosis of patients with MM, based on 

radiomics parameters. Smith et al. [31] used radiomics features from a CT obtained before 

treatment and modifications in the features from a CT taken after the initiation of treatment, 

to identify prognostic factors of survival. This study was however based on a small number of 

patients (23), the use of a treatment which is no longer administered (bevacizumab) and data 

recording at 3 months after initiation of treatment. 

Durot et al. [32] investigated the association of pre-treatment CT scan texture 

parameters with OS and progression-free survival, in patients treated with pembrolizumab. 

The model was built using LASSO penalized Cox regression from 5 histogram features. They 

found that skewness values above −0.55 at coarse texture scale were significantly associated 

with both lower OS and lower PFS. The study however has several limitations. Firstly, the 

low number of patients (31 compared to 71 in our study) and a limited number of lesions per 

patient (5 maximum). They reported on 74 lesions in total compared to 906 in our study. 

Secondly, lesion contours concerned single axial sections only rather than the whole tumour 

in 3D which impedes assessment of tumour heterogeneity and contour replication. Thirdly, 

few texture parameters were extracted (compared to 46 in our study) with reporting of only 

average parameter values and including values from other organs. Fourthly, Durot et al used 

RECIST 1.1 to establish treatment response, without taking into account the pseudo 

progression phenomenon. Hodi et al. [44] noted that RECIST 1.1 may lead to 

underestimating responses in 15% of patients and results in early discontinuation of 

treatment. Finally, the absence of a validation process (validation cohort or cross-validation) 

weakens the strength of the main result, as the threshold of skewness coarse texture scale was 

determined and evaluated on the same population. Yet, the only radiomics feature we found 

to be significantly correlated with OS was skewness, as in the study by Durot et al. [32]. 

Schraag et al. [33] extracted 7 first order texture parameters from the largest lesion in 

103 patients prior to immunotherapy. Their model, built on clinical and texture parameters 

with a multivariable Cox regression, enabled the prediction of OS (C-index 0.716) but texture 

parameters did not allow the prediction of treatment response. 

In a recent publication, Wang et al. [34] extracted 497 radiomics features from the 

largest lesion in 50 patients prior to immunotherapy. On the basis of a selection of features by 



 

T-test and redundancy, their model using SVM was shown to predict first cycle response in a 

validation cohort of 16 patients (accuracy 75%), but without survival predictions. 

The majority of the above-mentioned studies recorded data from one lesion only 

(usually the largest) to predict OS or treatment response, with the exception of Durot et al. 

who reported an average value of various lesions. By performing a tumour-based 

classification, our study enabled us to evaluate the ability to predict OS or treatment response 

from any single lesion of a patient, regardless of its size.  

 

Moreover, all these studies used only one model to assess the prognosis in MM. Other 

studies have compared radiomics model performance regarding prediction of clinical event 

occurrence in several other cancers by using various feature selection and classification 

methods: lung [39,45,46], preoperative differentiation of sacral chordoma and sacral giant 

cell tumour [38], head and neck cancer [47], rectal cancer [37]. Palmar et al. noted that the 

choice of classification method is the major factor driving the performance variation [47]. 

  

The present study compares a total of 160 combinations (5 feature selection methods, 

4 classification methods, Smote Data Augmentation, for 2D and 3D lesions, integration or not 

of clinical data, response therapy and OS), using methods shown in previous studies to 

provide the best performance. This is the first study to investigate texture parameter selection 

and classification methods for predicting MM prognosis with treatment by immunotherapy. 

The highest performance for OS prediction (accuracy 0.95) was found when 

combining Recursive feature selection with a logistic regression classifier, while for 

treatment response (accuracy 0.90) this was found when combining SFS selected features, a 

RF classifier and integration of clinical data.  

For all methods, 3D segmentation provided better results than 2D segmentation (12% 

accuracy increase). This supports evidence reported by Ortiz-Ramon et al. [29] and Ng et al. 

[13]. Clinical data integration led to a greater increase in accuracy for 2D features, than for 

3D features, notably concerning prediction of treatment response.  

No combination of feature selection and classification method emerged clearly as the 

best for the different data (2D vs 3D, with or without clinical data integration, treatment 

response or survival). The reasons for the variability of results depending on the “pipeline” 

(i.e., combination of feature selection, data augmentation and classifier) are difficult to 



 

investigate and rarely fully addressed in the literature. Yet, a few articles try to address the 

point, among which are the articles by Parmar et al. [45,47] which attempt to quantify the 

impact of the methods on the results. They however do not give a detailed explanation about 

the characteristics that may explain the differences between different methods. The other 

articles attempting to address this point simply recall general properties of the methods [38]. 

Generally speaking, the model’s performance can first be explained by a possible 

unusually good or bad model fitting. The repetition of experiments, and the 5-fold cross 

validation make sure the model fitting is not a special lucky or unlucky case. Second, the 

model performance can be explained by the model’s lack of fit. Our data concerning the fit 

on the training data show that the model did not underfit, as the mean train error was 0.18 for 

the 12 best OS prediction model and 0.18 for the 12 best response prediction model 

(Supplementary Information 5, Supplementary Tables 5.1 and 5.2). Lastly, the performance 

can be explained by the model’s expressivity. To assess the model’s expressivity, we 

computed the train/test ratio, which was 1.01 for the 12 best OS prediction model and 1.06 

for the 12 best response prediction model (Supplementary Information 5, Supplementary 

Tables 5.1 and 5.2), showing the model’s ability to generalise and its sufficient expressivity. 

However, the influence of feature selection methods appears to be moderate in our 

models, as the performances of all feature selection methods are similar, without any 

significant difference (Supplementary Information 4, Table and Figure 4.1). It has been 

indeed noted that the influence of feature selection methods can vary depending on the type 

of cancer. Namely, feature selection has high impact in lung cancer and twice less in head 

and neck cancer [47], hence leaving the possibility that feature selection can have little 

impact on some cancer types, including melanoma, as per our findings. 

SMOTE data augmentation had a mixed effect on the results, positive for some 

combinations and negative for others. It is however worth of note that 11 of the 12 best 

results for prediction of treatment response involved SMOTE data augmentation.  

Concerning the classifier, LR and SVM emerged as the two best classifiers: out of the 

24 best results, 12 were performed with LR and 6 with SVM. Moreover, mean performances 

on all classifications of those two classifiers were significantly better than those of the 2 other 

classifiers (Supplementary Information 4, Table and Figure 4.2).  



 

Therefore, in our study, the variability depends mainly on the choice of the classifier, 

the 2 best being LR and SVM. LR is a supervised machine learning classification algorithm 

that does not make any assumptions regarding the distribution of independent variables. It is 

a commonly used classifier, providing average performances in classification tasks [48]. 

SVM is a supervised machine learning algorithm. It aims to find the best hyperplane 

to split a dataset into two classes. It is often reported to be more robust than LR, with a lower 

risk of overfitting. It is one of the most used classifiers, and appears to be one of the best 

classifiers, notably in disease prediction studies [48].  However, its behaviour depends on the 

type of kernel used; a linear kernel was used in our study. It can be said that linear SVM and 

LR have similar behaviours to find a margin between different classes. Moreover, Musa et. 

al. demonstrated that SVM and LR can work similarly for different scenarios such as 

balanced and unbalanced datasets [49].  

It has been shown that LR consistently performs with a higher overall accuracy as 

compared to RF when increasing the variance of the noise data [50]. The median coefficient 

of variation was high (1.076 for 2D features and 0.634 for 3D features), showing noise in our 

data, hence explaining the improved performances of LR compared to RF. The degree of 

noise can also explain why LR outperforms SVM in our data [51]. Concerning the 

performances of KNN, one of the reasons explaining the lack of performances is the fact that 

the data were not normalised or rescaled.  

The limitations of this study include, firstly, that 6 pretreatment CT were performed 

on a different CT scan, requiring, prior to inclusion, visual assessment to ensure scan quality 

and time of injection. Secondly, this study was a retrospective monocentric study that, despite 

the large number of analysed lesions (503 in 2D and 403 in 3D), relied on a relatively small 

number of patients. We were therefore unable to split the population into training and 

validation cohorts, with cross-validation ensured by a 5-fold cross-validation algorithm. Our 

patient number remains however larger than that of most previous studies and reflects the 

relative rareness of the disease. Finally, our model could be improved by including more 

biological or genetic features such as LDH level, which was not possible due to insufficient 

patient data. 



 

Our study involved the use of 5 commonly used feature selection and 4 classifier 

methods with encouraging results. Future research is required to evaluate the performance of 

more complex classification methods such as those built on deep learning. 

5. CONCLUSION 

Our study showed that the combination of CT texture analysis, data selection and 

classification algorithms may accurately predict treatment response and overall survival for 

patients starting anti-PD-1 immunotherapy for metastatic melanoma.  
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TABLES 

Characteristics Results 

 Nivolumab (n (%)) 32 (45) 

 Pembrolizumab (n (%)) 39 (55) 

 Men (n (%)) 41 (58) 

 Women (n (%)) 30 (42) 

 Mean age (mean, (min-max) yr) 66 (34-90) 

 BRAF mutation   

     Yes (n (%)) 23 (32) 

     No (n (%)) 48 (68) 

Time between CT and treatment (mean, (min-max) days) 12.96 (0 - 73) 

Spread of lesions   

     Lymph node (n (%)) 35 (50) 

     Brain (n (%)) 22 (31) 

     Lung (n (%)) 39 (55) 

     Liver (n (%)) 25 (35) 

     Adrenal gland (n (%)) 16 (23) 

     Spleen (n (%)) 6 (8) 

     Bone (n (%)) 11 (15) 

Number of segmented lesions  906 

     3D (n (%)) 503 (56) 

     2D (n (%)) 403 (44) 

2D segmented lesions volumes (mL)   

     2D minimal volume 0.002 

     2D median volume 0.284 

     2D maximal volume 115.817 

3D segmented lesions volumes (mL)   

     3D minimal volume 0.007 

     3D median volume 1.608 

     3D maximal volume 530.73 

Table 1: Patients’ baseline characteristics (n=71)  

 

 



 

 

Characteristics Results 

Clinical follow up  (mean, (min-max) days) 882 (15-42299) 

 Death at the end of follow up   

     Yes (n (%)) 46 (65) 

     No (n (%)) 25 (35) 

 Median survival   

     OS (median (min -max), days) 502 (15-1356) 

< 12 months (n (%)) 27 (38) 

 <6 months  (n (%)) 14 (20) 

  6-12 months (n (%)) 13 (18) 

     >12 months  (n (%)) 44 (62) 

             12-18 months (n (%)) 17 (25) 

             18-24 months (n (%)) 12 (16) 

              >24 months (n (%)) 15 (22) 

     PFS (median (min-max), days) 166 (43-1330) 

< 12 months (n (%)) 50 (70) 

  <6 months (n (%)) 34 (48) 

   6-12 months (n (%)) 16 (22) 

     >12 months (n (%)) 21 (30) 

             12-18 months (n (%)) 13 (18) 

             18-24 months (n (%)) 3 (4) 

             >24 months (n (%)) 5 (8) 

 iRECIST evaluation at 3 months   

     Partial response (n (%)) 17 (24) 

     Stable disease (n (%)) 16 (22) 

     Progression (n (%)) 38 (54) 

Table 2: Follow-up characteristics of the patient (n=71) (PFS: Progression Free 

Survival) 

 

 



 

ROI type 

Combination (Classifier  + Feature 

Selection +/- Smote Data 

Augmentation) 

Acc Sen Spe 

3D 

Logistic Regression + Boruta 0.91 0.79 0.39 

Logistic Regression + Boruta + 

SMOTE 
0.88 0.76 0.4 

Logistic Regression + Random 

Forest 
0.88 0.77 0.36 

3D + 

clinical 

data 

SVM + SFS 0.84 0.95 0.6 

SVM + RF + SMOTE 0.78 0.4 0.85 

Logistic Regression + Recursive + 

SMOTE 
0.7 0.86 0.6 

2D 

Logistic Regression + RF + 

SMOTE 
0.81 0.6 0.75 

RF + Boruta 0.75 0.74 0.48 

Logistic Regression + Boruta + 

SMOTE 
0.74 0.68 0.54 

2D + 

clinical 

data 

Logistic Regression + Recursive + 

SMOTE 
0.86 0.7 0.69 

KNN + Relief + SMOTE 0.87 0.5 0.55 

SVM + Boruta 0.84 0.56 0.62 

Table 3: Best OS predictions (Acc, Sen and Spe are mean values of the 5 fold CV, resulting 

in some cases in Accuracy outside the values of Spe and Sen) 

 

ROI type 

Combination (Classifier + 

Feature Selection +/- 

SMOTE Data Augmentation 

Acc Sen Spe 

3D 

Logistic Regression + 

Boruta + SMOTE 
0.8 0.66 0.88 

SVM + SFS + SMOTE 0.83 0.46 0.81 

Logistic Regression + SFS 

+ SMOTE 
0.81 0.46 0.66 

3D + 

clinical 

data 

KNN + Relief + SMOTE 0.75 0.72 0.6 

Logistic Regression + 

Recursive + SMOTE  
0.83 0.65 0.6 

RF + RF + SMOTE 0.74 0.53 0.66 



 

2D 

Logistic Regression + Relief 

+ SMOTE 
0.81 0.66 0.85 

Logistic Regression + RF + 

SMOTE  
0.81 0.6 0.75 

RF + Recursive + SMOTE 0.76 0.68 0.57 

2D + 

clinical 

data 

SVM + RF 0.87 0.44 0.8 

SVM + Relief + SMOTE 0.78 0.46 0.88 

RF + Recursive + SMOTE 0.76 0.68 0.57 

Table 4: Best treatment response predictions (Acc, Sen and Spe are mean values of the 5 fold 

CV, resulting in some cases in Accuracy outside the values of Spe and Sen) 

 



 

Histogram parameters HR CI 95% p value 

Skewness 1.34 1.07-1.7 0.012* 

Kurtosis 0.99 0.92-1.1 0.684 

Entropy_log10 1.48 0.34-6.3 0.6 

Energy 4.16 0.22-78.4 0.342 

Texture parameters HR CI 95% p value 

GLRLM_SRE 1.5 1.1-2.1 0.022* 

GLRLM_LRE 14 1.3 10
-3

 -1.6 10
-5

 0.578 

GLRLM_HGRE 1.3 0.05-34 0.87 

GLRLM_SRHGE 1 1-1 0.308 

GLRLM_LRHGE 1 1-1 0.839 

GLRLM_GLNU 1 1-1 0.992 

GLRLM_RLNU 1 1-1 0.757 

GLRLM_RP 1 1-1 0.418 

NGLDM_Coarseness 0.99 0.54-1.8 0.974 

NGLDM_Contrast 0.038 0.0019-0.76 0.032* 

GLZLM_SZE 0.00075 6.5 10
-8

-8.7 0.132 

GLZLM_LZE 1 1-1 0.037* 

GLZLM_HGZE 1 1-1 0.381 

GLZLM_SZHGE 1 1-1 0.247 

GLZLM_LZHGE 1 1-1 0.041* 

GLZLM_GLNU 1 1-1 0.807 

GLZLM_ZLNU 1 1-1 0.011* 

GLZLM_ZP 1 1-1 0.181 

Table 5:  Univariate Cox proportional hazard models of histogram and texture parameters for 

survival analysis  

* significant difference (p<0.05) 

 

  



 

Supplementary Information 1 

Supp Table 1.1: 46 radiomic features extracted from LIFEx 

Radiomic features Brief explanation 

First order features: Shape   

Volume (mL) Volume of ROI in mL 

Volume (#vx) Volume of ROI in number of voxels 

Sphericity Sphericity of the volume. 1 for a perfect sphere 

Compacity Compactness of ROI 

First order features: 

Histogram 
  

Conventional_TLG (mL) Total lesion glycolysis inside the ROI 

Skewness Asymmetry of the grey-level distribution in the histogram 

Kurtosis 

Shape of the grey-level distribution (peaked or flat) relative to 

a normal distribution 

Entropy_log10 Randomness of the distribution 

Entropy_log2 Randomness of the distribution 

Energy Uniformity of the distribution 

minValue Minimum pixel value of the ROI 

meanValue Average of pixel values 

stdValue Standard deviation of pixel values 

maxValue Maximum pixel value 

Second order features  

GLCM Arrangements of voxel pairs with same grey-level intensity 

GLCM_Homogeneity Homogeneity of grey-level voxel pairs 

GLCM_Energy (Uniformity) Uniformity of grey-level voxel pairs 

GLCM_Contrast (Variance) Local variations in GLCM 

GLCM_Correlation Linear dependency of grey-level voxel pairs 

GLCM_Entropy_log10 and 

Entropy_log2 Randomness of grey-level voxel pairs 

GLCM_Dissimilarity Variation of grey-level voxel pairs 

GLZLM Size of homogeneous zones for each grey-level intensity 

GLZLM_SZE 

Short-zone emphasis: Distribution of the short homogeneous 

zones 

GLZLM_LZE 

Long-zone emphasis: Distribution of the long homogeneous 

zones 

GLZLM_HGZE 

High grey-level zone emphasis: Distribution of the high grey-

level zones 

GLZLM_LGZE 

Low grey-level zone emphasis: Distribution of the low grey-

level zones 

GLZLM_SZHGE; 

GLZLM_SZLGE 

Distribution of the short homogeneous zones with low or high 

grey-levels  

GLZLM_LZHGE; 

GLZLM_LZLGE 

Distribution of the long homogeneous zones with low or high 

grey-levels  

GLZLM_GLNU 

Grey-level non-uniformity: Nonuniformity of the grey-levels 

of the homogeneous zones 

GLZLM_ZLNU Zone length non-uniformity: Nonuniformity of the length of 



 

the homogeneous zones 

GLZLM_ZP Zone percentage: Homogeneity of the homogeneous zones 

GLRLM Size of homogeneous runs for each grey-level intensity 

GLRLM_SRE 

Short-run emphasis: Distribution of the short homogeneous 

runs  

GLRLM_LRE 

Long-run emphasis: Distribution of the long homogeneous 

runs  

GLRLM_HGRE 

High grey-level run emphasis: Distribution of the high grey-

level runs 

GLRLM_LGRE 

Low grey-level run emphasis: Distribution of the low grel-

level runs 

GLRLM_SRHGE; 

GLRLM_SRLGE 

Distribution of the short homogeneous runs with low or high 

grey-levels 

GLRLM_LRHGE; 

GLRLM_LRLGE 

Distribution of the long homogeneous runs with low or high 

grey-levels 

GLRLM_GLNU 

Grey-level non-uniformity: Nonuniformity of the grey-levels 

of the homogeneous runs 

GLRLM_RP Run percentage: Homogeneity of the homogeneous runs 

GLRLM_RLNU 

Run length non-uniformity: Nonuniformity of the length of 

the homogeneous runs 

NGLDM 

Difference of grey-level between one voxel and its 26 

neighbours in 3 dimensions 

NGLDM_Coarseness Level of spatial rate of change in intensity 

NGLDM_Contrast Intensity difference between neighbouring regions 

NGLDM_Busyness Spatial frequency of changes in intensity 

 

GLCM:  Grey-level co-occurence matrix; NGLDM:  Neighborhood grey-level different 

matrix; GLZLM: Grey-level zone length matrix; GLRLM: Grey-level run length matrix 

 

 

  



 

Supplementary Information 2 

 

 

Supp Table 2.1 :  OS prediction with 2D features without clinical data (Acc, Sen and Spe are 

mean values of the 5 fold CV, resulting in some cases in Accuracy outside the values of Spe 

and Sen) 

SFS= Sequential Forward Selection 

KNN= K nearest Neighbour 

RF= Random Forest 

SVM= Support Vector Machine 

 

ROI AIM Classifier Selection  

SMOTE 

? Acc Sen Spe 

2D OS KNN Boruta SMOTE 0.58 0.5 0.46 

2D OS KNN Boruta   0.58 0.63 0.29 

2D OS KNN 
Random 

Forest 
SMOTE 0.69 0.54 0.61 

2D OS KNN 
Random 

Forest 
  0.68 0.79 0.29 

2D OS KNN Recursive SMOTE 0.53 0.28 0.63 

2D OS KNN Recursive   0.63 0.62 0.4 

2D OS KNN Relief SMOTE 0.63 0.52 0.51 

2D OS KNN Relief   0.64 0.74 0.27 

2D OS KNN SFS SMOTE 0.7 0.62 0.54 

2D OS KNN SFS   0.64 0.75 0.26 

2D OS 
Logistic 

Regression 
Boruta SMOTE 0.74 0.68 0.54 

2D OS 
Logistic 

Regression 
Boruta   0.64 0.95 0.018 

2D OS 
Logistic 

Regression 

Random 

Forest 
SMOTE 0.81 0.6 0.75 

2D OS 
Logistic 

Regression 

Random 

Forest 
  0.7 0.98 0.09 

2D OS 
Logistic 

Regression 
Recursive SMOTE 0.63 0.57 0.49 

2D OS 
Logistic 

Regression 
Recursive   0.62 0.84 0.11 

2D OS 
Logistic 

Regression 
Relief SMOTE 0.63 0.21 0.9 

2D OS 
Logistic 

Regression 
Relief   0.65 0.98 0 

2D OS 
Logistic 

Regression 
SFS SMOTE 0.54 0 1 

2D OS 
Logistic 

Regression 
SFS   0.63 0.21 0.9 

2D OS RF Boruta SMOTE 0.71 0.65 0.52 

2D OS RF Boruta   0.75 0.74 0.48 

2D OS RF Random SMOTE 0.6 0.62 0.35 



 

Forest 

2D OS RF 
Random 

Forest 
  0.68 0.81 0.26 

2D OS RF Recursive SMOTE 0.76 0.68 0.57 

2D OS RF Recursive   0.71 0.75 0.39 

2D OS RF Relief SMOTE 0.65 0.51 0.57 

2D OS RF Relief   0.75 0.84 0.35 

2D OS RF SFS SMOTE 0.69 0.6 0.54 

2D OS RF SFS   0.69 0.8 0.26 

2D OS SVM Boruta SMOTE 0.63 0.78 0.2 

2D OS SVM Boruta   0.62 0.92 0.02 

2D OS SVM 
Random 

Forest 
SMOTE 

0.77 0.59 0.44 

2D OS SVM 
Random 

Forest 
  0.66 1 0 

2D OS SVM Recursive SMOTE 0.64 0.81 0.19 

2D OS SVM Recursive   0.61 0.909 0.01 

2D OS SVM Relief SMOTE 0.63 0.21 0.9 

2D OS SVM Relief   0.66 1 0 

2D OS SVM SFS SMOTE 0.66 1 0 

2D OS SVM SFS   0.61 0.9 0.03 

 

 

Supp Table 2.2: OS prediction with 2D features with clinical data 

 

ROI AIM Classifier Selection  

SMOTE 

? Acc Sen Spe 

2D OS KNN Boruta SMOTE 0.59 0.62 0.65 

2D OS KNN Boruta   0.75 0.7 0.5 

2D OS KNN 
Random 

Forest 
SMOTE 0.45 0.4 0.44 

2D OS KNN 
Random 

Forest 
  0.49 0.41 0.24 

2D OS KNN Recursive SMOTE 0.59 0.6 0.45 

2D OS KNN Recursive   0.72 0.6 0.7 

2D OS KNN Relief SMOTE 0.87 0.5 0.55 

2D OS KNN Relief   0.75 0.86 0.3 

2D OS KNN SFS SMOTE 0.61 0.4 0.6 

2D OS KNN SFS   0.42 0.85 0.12 

2D OS 
Logistic 

Regression 
Boruta SMOTE 0.76 0.83 0.5 

2D OS 
Logistic 

Regression 
Boruta   0.8 0.89 0.1 

2D OS 
Logistic 

Regression 

Random 

Forest 
SMOTE 0.68 0.76 0.72 

2D OS 
Logistic 

Regression 

Random 

Forest 
  0.7 0.5 0.5 



 

2D OS 
Logistic 

Regression 
Recursive SMOTE 

0.75 0.1 0.97 

2D OS 
Logistic 

Regression 
Recursive   0.61 1 0 

2D OS 
Logistic 

Regression 
Relief SMOTE 0.59 0.59 0.59 

2D OS 
Logistic 

Regression 
Relief   0.76 0.75 0.2 

2D OS 
Logistic 

Regression 
SFS SMOTE 

0.8 0.7 0.6 

2D OS 
Logistic 

Regression 
SFS   0.7 0.6 0.4 

2D OS RF Boruta SMOTE 0.56 0.79 0.57 

2D OS RF Boruta   0.38 0.45 0.13 

2D OS RF 
Random 

Forest 
SMOTE 0.44 0.53 0.28 

2D OS RF 
Random 

Forest 
  0.3 0.8 0.03 

2D OS RF Recursive SMOTE 0.47 0.43 0.33 

2D OS RF Recursive   0.57 0.7 0.4 

2D OS RF Relief SMOTE 0.4 0.18 0.83 

2D OS RF Relief   0.42 1 0.22 

2D OS RF SFS SMOTE 0.46 0.8 0.33 

2D OS RF SFS   0.42 0.66 0.2 

2D OS SVM Boruta SMOTE 0.54 0.79 0.12 

2D OS SVM Boruta   0.84 0.56 0.62 

2D OS SVM 
Random 

Forest 
SMOTE 0.71 0.23 0.92 

2D OS SVM 
Random 

Forest 
  0.9 1 0 

2D OS SVM Recursive SMOTE 0.77 0.87 0.2 

2D OS SVM Recursive   0.66 0.75 0.25 

2D OS SVM Relief SMOTE 0.63 0.5 0.5 

2D OS SVM Relief   0.75 0.57 0.4 

2D OS SVM SFS SMOTE 0.48 0.25 0.77 

2D OS SVM SFS   0.77 0.83 0.7 

 

 

Supp Table 2.3: OS prediction with 3D features without clinical data 

ROI AIM Classifier Selection  

SMOTE 

? Acc Sen Spe 

3D OS KNN Boruta SMOTE 0.62 0.43 0.6 

3D OS KNN Boruta   0.65 0.46 0.6 

3D OS KNN 

Random 

Forest SMOTE 0.71 0.52 0.6 

3D OS KNN 

Random 

Forest   0.65 0.44 0.66 



 

3D OS KNN Recursive SMOTE 0.68 0.47 0.66 

3D OS KNN Recursive   0.63 0.46 0.54 

3D OS KNN Relief SMOTE 0.7 0.56 0.45 

3D OS KNN Relief   0.64 0.54 0.33 

3D OS KNN Relief   0.64 0.54 0.33 

3D OS KNN SFS SMOTE 0.4 0.5 0.5 

3D OS KNN SFS   0.56 0.34 0.7 

3D OS 

Logistic 

Regression Boruta SMOTE 0.88 0.76 0.4 

3D OS 

Logistic 

Regression Boruta   0.91 0.79 0.39 

3D OS 

Logistic 

Regression 

Random 

Forest SMOTE 0.72 0.47 0.75 

3D OS 

Logistic 

Regression 

Random 

Forest   0.88 0.77 0.36 

3D OS 

Logistic 

Regression Recursive SMOTE 0.51 0.81 0.5 

3D OS 

Logistic 

Regression Recursive   0.95 0.87 0.3 

3D OS 

Logistic 

Regression Relief SMOTE 0.75 0.8 0.16 

3D OS 

Logistic 

Regression Relief   0.86 0.98 0 

3D OS 

Logistic 

Regression SFS SMOTE 0.43 0.38 0.69 

3D OS 

Logistic 

Regression SFS   0.94 1 0 

3D OS RF Boruta SMOTE 0.64 0.44 0.63 

3D OS RF Boruta   0.73 0.86 0.32 

3D OS RF 

Random 

Forest SMOTE 0.74 0.53 0.66 

3D OS RF 

Random 

Forest   0.7 0.75 0.26 

3D OS RF Recursive SMOTE 0.56 0.28 0.55 

3D OS RF Recursive   0.44 0.75 0.36 

3D OS RF Relief SMOTE 0.54 0.59 0.44 

3D OS RF Relief   0.62 0.75 0.46 

3D OS RF SFS SMOTE 0.66 0.42 0.57 

3D OS RF SFS   0.6 0.62 0.44 

3D OS SVM Boruta SMOTE 0.35 0.03 0.96 

3D OS SVM Boruta   0.73 0.98 0 

3D OS SVM 

Random 

Forest SMOTE 0.5 0.2 0.96 

3D OS SVM 

Random 

Forest   0.71 0.98 0.02 

3D OS SVM Recursive SMOTE 0.35 0.03 0.96 

3D OS SVM Recursive   0.97 0.9 0.24 

3D OS SVM Relief SMOTE 0.89 0.11 0.9 



 

3D OS SVM Relief   0.98 1 0 

3D OS SVM SFS SMOTE 0.98 0.95 0.12 

3D OS SVM SFS   0.98 1 0 

 

 

Supp Table 2.4: OS prediction with 3D features with clinical data 

ROI AIM Classifier Selection  

SMOTE 

? Acc Sen Spe 

3D OS KNN Boruta SMOTE 0.68 0.55 0.55 

3D OS KNN Boruta   0.7 0.79 0.41 

3D OS KNN 
Random 

Forest 
SMOTE 0.82 0.64 0.4 

3D OS KNN 
Random 

Forest 
  0.54 0.84 0.25 

3D OS KNN Recursive SMOTE 0.61 0.6 0.6 

3D OS KNN Recursive   0.8 0.79 0.3 

3D OS KNN Relief SMOTE 0.72 0.62 0.57 

3D OS KNN Relief   0.76 1 0.1 

3D OS KNN Relief   0.61 0.58 0.48 

3D OS KNN SFS SMOTE 0.57 0.74 0.46 

3D OS KNN SFS   0.64 0.8 0.4 

3D OS 
Logistic 

Regression 
Boruta SMOTE 0.73 0.16 0.88 

3D OS 
Logistic 

Regression 
Boruta   0.71 1 0.11 

3D OS 
Logistic 

Regression 

Random 

Forest 
SMOTE 0.77 1 0.03 

3D OS 
Logistic 

Regression 

Random 

Forest 
  

0.83 0.56 0.62 

3D OS 
Logistic 

Regression 
Recursive SMOTE 0.7 0.86 0.6 

3D OS 
Logistic 

Regression 
Recursive   0.71 1 0.11 

3D OS 
Logistic 

Regression 
Relief SMOTE 0.63 0.89 0.05 

3D OS 
Logistic 

Regression 
Relief   0.88 1 0 

3D OS 
Logistic 

Regression 
SFS SMOTE 0.69 0.91 0.66 

3D OS 
Logistic 

Regression 
SFS   0.7 1 0 

3D OS RF Boruta SMOTE 0.56 0.79 0.57 

3D OS RF Boruta   0.38 0.45 0.13 

3D OS RF 
Random 

Forest 
SMOTE 0.44 0.53 0.28 

3D OS RF 
Random 

Forest 
  0.3 0.8 0.03 

3D OS RF Recursive SMOTE 0.47 0.43 0.33 



 

3D OS RF Recursive   0.57 0.7 0.4 

3D OS RF Relief SMOTE 0.4 0.18 0.83 

3D OS RF Relief   0.42 1 0.22 

3D OS RF SFS SMOTE 0.46 0.8 0.33 

3D OS RF SFS   0.42 0.66 0.2 

3D OS SVM Boruta SMOTE 0.65 0.51 0.57 

3D OS SVM Boruta   0.9 0.6 0.5 

3D OS SVM 
Random 

Forest 
SMOTE 0.78 0.4 0.85 

3D OS SVM 
Random 

Forest 
  0.78 0.97 0.15 

3D OS SVM Recursive SMOTE 0.79 0.95 0.01 

3D OS SVM Recursive   0.7 0.2 1 

3D OS SVM Relief SMOTE 0.7 0.2 0.8 

3D OS SVM Relief   0.76 1 0 

3D OS SVM SFS SMOTE 0.37 0.03 0.97 

3D OS SVM SFS   0.84 0.95 0.6 

 

 

Supp Table 2.5: Therapy response prediction with 2D features without clinical data 

ROI AIM Classifier Selection  

SMOTE 

? Acc Sen Spe 

2D Response KNN Boruta SMOTE 0.58 0.42 0.63 

2D Response KNN Boruta   0.85 0.56 0.62 

2D Response KNN 
Random 

Forest 
SMOTE 0.61 0.51 0.45 

2D Response KNN 
Random 

Forest 
  0.51 0.5 0.47 

2D Response KNN Recursive SMOTE 0.62 0.47 0.53 

2D Response KNN Recursive   0.71 0.2 0.9 

2D Response KNN Relief SMOTE 0.68 0.48 0.77 

2D Response KNN Relief   0.65 0.73 0.42 

2D Response KNN SFS SMOTE 0.62 0.47 0.53 

2D Response 
Logistic 

Regression 
Boruta SMOTE 0.8 0.2 0.9 

2D Response 
Logistic 

Regression 
Boruta   0.74 0.17 0.75 

2D Response 
Logistic 

Regression 

Random 

Forest 
SMOTE 0.8 0.23 0.88 

2D Response 
Logistic 

Regression 

Random 

Forest 
  0.73 0.09 0.89 

2D Response 
Logistic 

Regression 
Recursive SMOTE 

0.86 0.8 0.42 

2D Response 
Logistic 

Regression 
Recursive   0.64 0.45 0.77 

2D Response 
Logistic 

Regression 
Relief SMOTE 0.81 0.66 0.85 



 

2D Response 
Logistic 

Regression 
Relief   0.7 0.3 0.83 

2D Response 
Logistic 

Regression 
SFS SMOTE 0.72 0.2 0.7 

2D Response 
Logistic 

Regression 
SFS   

0.7 0.57 0.73 

2D Response RF Boruta SMOTE 0.65 0.43 0.59 

2D Response RF Boruta   0.44 0.142 0.83 

2D Response RF 
Random 

Forest 
SMOTE 0.59 0.25 0.8 

2D Response RF 
Random 

Forest 
  0.34 0.48 0.54 

2D Response RF Recursive SMOTE 0.91 0.89 0.24 

2D Response RF Recursive   0.42 0.29 0.5 

2D Response RF Relief SMOTE 0.52 0.37 0.61 

2D Response RF Relief   0.4 0.32 0.74 

2D Response RF SFS SMOTE 0.62 0.48 0.57 

2D Response RF SFS   0.38 0.125 0.9 

2D Response SVM Boruta SMOTE 0.74 0.54 0.63 

2D Response SVM Boruta   0.64 0.1 1 

2D Response SVM 
Random 

Forest 
SMOTE 0.6 0.33 0.79 

2D Response SVM 
Random 

Forest 
  0.65 0.1 0.9 

2D Response SVM Recursive SMOTE 0.66 0.25 0.82 

2D Response SVM Recursive   0.82 0 1 

2D Response SVM Relief SMOTE 0.77 0.4 0.88 

2D Response SVM Relief   0.69 0 1 

2D Response SVM SFS SMOTE 0.65 0.44 0.72 

2D Response SVM SFS   0.42 0 1 

 

 

Supp Table 2.6: Therapy response prediction with 2D features with clinical data 

ROI AIM Classifier Selection  

SMOTE 

? Acc Sen Spe 

2D Response KNN Boruta SMOTE 0.54 0.47 0.48 

2D Response KNN Boruta   0.59 0.64 0.5 

2D Response KNN 
Random 

Forest 
SMOTE 0.57 0.407 0.57 

2D Response KNN 
Random 

Forest 
  

0.65 1 0 

2D Response KNN Recursive SMOTE 0.83 0.45 0.62 

2D Response KNN Recursive   0.59 0.01 0.85 

2D Response KNN Relief SMOTE 0.5 0.61 0.46 

2D Response KNN Relief   0.5 0.5 0.55 

2D Response KNN SFS SMOTE 0.55 0.42 0.48 

2D Response Logistic Boruta SMOTE 0.59 0.25 0.76 



 

Regression 

2D Response 
Logistic 

Regression 
Boruta   0.71 0.3 0.8 

2D Response 
Logistic 

Regression 

Random 

Forest 
SMOTE 

0.7 1 0 

2D Response 
Logistic 

Regression 

Random 

Forest 
  0.58 0.25 0.81 

2D Response 
Logistic 

Regression 
Recursive SMOTE 0.8 0.1 0.85 

2D Response 
Logistic 

Regression 
Recursive   0.75 0.25 0.82 

2D Response 
Logistic 

Regression 
Relief SMOTE 0.71 0.26 0.81 

2D Response 
Logistic 

Regression 
Relief   0.72 0.3 0.82 

2D Response 
Logistic 

Regression 
SFS SMOTE 

0.77 0.3 0.9 

2D Response 
Logistic 

Regression 
SFS   0.8 0.37 0.84 

2D Response RF Boruta SMOTE 0.71 0.65 0.52 

2D Response RF Boruta   0.75 0.74 0.48 

2D Response RF 
Random 

Forest 
SMOTE 

0.7 0.8 0.5 

2D Response RF 
Random 

Forest 
  0.68 0.81 0.26 

2D Response RF Recursive SMOTE 0.76 0.68 0.57 

2D Response RF Recursive   0.71 0.75 0.39 

2D Response RF Relief SMOTE 0.65 0.51 0.57 

2D Response RF Relief   0.75 0.84 0.35 

2D Response RF SFS SMOTE 0.69 0.6 0.54 

2D Response RF SFS   0.69 0.8 0.26 

2D Response SVM Boruta SMOTE 0.64 0.37 0.85 

2D Response SVM Boruta   0.55 0.01 0.88 

2D Response SVM 
Random 

Forest 
SMOTE 0.88 0.27 0.92 

2D Response SVM 
Random 

Forest 
  0.87 0.44 0.8 

2D Response SVM Recursive SMOTE 0.51 0.3 0.78 

2D Response SVM Recursive   0.54 0.01 0.85 

2D Response SVM Relief SMOTE 0.78 0.46 0.88 

2D Response SVM Relief   0.47 1 0 

2D Response SVM SFS SMOTE 0.75 0 1 

2D Response SVM SFS   0.57 0.2 0.9 

 

Supp Table 2.7: Therapy response prediction with 3D features without clinical data 

ROI AIM Classifier Selection  

SMOTE 

? Acc Sen Spe 

3D Response KNN Boruta SMOTE 0.8 0.45 0.72 



 

3D Response KNN Boruta   0.6 0.375 0.57 

3D Response KNN 
Random 

Forest 
SMOTE 0.57 0.52 0.57 

3D Response KNN 
Random 

Forest 
  0.75 0.2 0.83 

3D Response KNN Recursive SMOTE 0.62 0.57 0.75 

3D Response KNN Recursive   0.7 0.52 0.75 

3D Response KNN Relief SMOTE 0.68 0.45 0.72 

3D Response KNN Relief   0.73 0.38 0.7 

3D Response KNN SFS SMOTE 0.78 0.9 0.5 

3D Response KNN SFS   0.57 0.48 0.54 

3D Response 
Logistic 

Regression 
Boruta SMOTE 0.8 0.66 0.88 

3D Response 
Logistic 

Regression 
Boruta   0.76 0.4 0.83 

3D Response 
Logistic 

Regression 

Random 

Forest 
SMOTE 0.69 0.68 0.65 

3D Response 
Logistic 

Regression 

Random 

Forest 
  0.88 0.2 0.8 

3D Response 
Logistic 

Regression 
Recursive SMOTE 0.55 0.52 0.66 

3D Response 
Logistic 

Regression 
Recursive   0.61 0 1 

3D Response 
Logistic 

Regression 
Relief SMOTE 0.76 0.67 0.32 

3D Response 
Logistic 

Regression 
Relief   

0.74 0.5 0.57 

3D Response 
Logistic 

Regression 
SFS SMOTE 0.81 0.46 0.66 

3D Response 
Logistic 

Regression 
SFS   0.69 0.24 0.92 

3D Response RF Boruta SMOTE 0.71 0.28 0.77 

3D Response RF Boruta   0.69 0.31 0.72 

3D Response RF 
Random 

Forest 
SMOTE 0.47 0.275 0.705 

3D Response RF 
Random 

Forest 
  0.6 0.3 0.58 

3D Response RF Recursive SMOTE 0.31 0.51 0.54 

3D Response RF Recursive   0.42 0.35 0.48 

3D Response RF Relief SMOTE 0.51 0.6 0.66 

3D Response RF Relief   0.94 0.14 0.92 

3D Response RF SFS SMOTE 0.71 0.38 0.62 

3D Response RF SFS   0.79 0.66 0.52 

3D Response SVM Boruta SMOTE 0.72 0.19 0.92 

3D Response SVM Boruta   0.62 0 1 

3D Response SVM 
Random 

Forest 
SMOTE 

0.66 0.78 0.2 

3D Response SVM Random   0.75 0 1 



 

Forest 

3D Response SVM Recursive SMOTE 0.74 0 0.92 

3D Response SVM Recursive   0.52 0 1 

3D Response SVM Relief SMOTE 0.8 0.1 0.82 

3D Response SVM Relief   0.85 0 1 

3D Response SVM SFS SMOTE 0.83 0.46 0.81 

3D Response SVM SFS   0.7 0.12 0.95 

 

Supp Table 2.8: Therapy response prediction with 3D features with clinical data 

ROI AIM Classifier Selection  

SMOTE 

? Acc Sen Spe 

3D Response KNN Boruta SMOTE 0.52 0.33 0.51 

3D Response KNN Boruta   0.51 0.48 0.4 

3D Response KNN 
Random 

Forest 
SMOTE 0.66 0.32 0.7 

3D Response KNN 
Random 

Forest 
  0.78 0.2 0.8 

3D Response KNN Recursive SMOTE 0.62 0.47 0.48 

3D Response KNN Recursive   0.63 0.2 0.69 

3D Response KNN Relief SMOTE 0.75 0.72 0.6 

3D Response KNN Relief   0.78 0.12 0.94 

3D Response KNN SFS SMOTE 0.76 0.41 0.7 

3D Response KNN SFS   0.6 0.2 0.7 

3D Response 
Logistic 

Regression 
Boruta SMOTE 0.75 0.48 0.65 

3D Response 
Logistic 

Regression 
Boruta   0.9 0.3 0.9 

3D Response 
Logistic 

Regression 

Random 

Forest 
SMOTE 0.58 0.44 0.52 

3D Response 
Logistic 

Regression 

Random 

Forest 
  0.53 0.1 0.95 

3D Response 
Logistic 

Regression 
Recursive SMOTE 0.83 0.65 0.6 

3D Response 
Logistic 

Regression 
Recursive   

0.78 0.3 0.8 

3D Response 
Logistic 

Regression 
Relief SMOTE 0.7 0.77 0.3 

3D Response 
Logistic 

Regression 
Relief   0.79 0.12 0.86 

3D Response 
Logistic 

Regression 
SFS SMOTE 0.87 0.33 0.74 

3D Response 
Logistic 

Regression 
SFS   0.68 0.01 0.94 

3D Response RF Boruta SMOTE 0.64 0.44 0.63 

3D Response RF Boruta   0.73 0.86 0.32 

3D Response RF 
Random 

Forest 
SMOTE 0.74 0.53 0.66 

3D Response RF Random   0.7 0.75 0.26 



 

Forest 

3D Response RF Recursive SMOTE 0.74 0.62 0.43 

3D Response RF Recursive   0.44 0.75 0.36 

3D Response RF Relief SMOTE 0.54 0.59 0.44 

3D Response RF Relief   0.62 0.75 0.46 

3D Response RF SFS SMOTE 0.66 0.42 0.57 

3D Response RF SFS   0.6 0.62 0.44 

3D Response SVM Boruta SMOTE 0.57 0.25 0.67 

3D Response SVM Boruta   0.8 0 1 

3D Response SVM 
Random 

Forest 
SMOTE 0.74 0.2 0.9 

3D Response SVM 
Random 

Forest 
  0.7 0 1 

3D Response SVM Recursive SMOTE 0.53 0.98 0.1 

3D Response SVM Recursive   0.69 0.01 0.81 

3D Response SVM Relief SMOTE 0.74 0.59 0.35 

3D Response SVM Relief   0.71 0 1 

3D Response SVM SFS SMOTE 0.89 0.01 0.9 

3D Response SVM SFS   0.88 0.3 0.9 

 

 

 

 

 

  



 

Supplementary Information 3 
 

Table 3.1: Coefficient of variation (
 

   
). of radiomics features 

Radiomics Feature 

2D coefficient of 

variation 

3D coefficient of 

variation 

minValue 21.90 3.75 

meanValue 0.94 1.08 

stdValue 0.88 0.78 

maxValue 0.51 0.54 

HISTO_Skewness 60.41 4.43 

HISTO_Kurtosis 0.28 0.81 

HISTO_Entropy_log10 0.24 0.23 

HISTO_Entropy_log2 0.24 0.23 

HISTO_Energy 0.62 0.61 

GLCM_Homogeneity 0.55 0.38 

GLCM_Energy 1.64 1.63 

GLCM_Contrast 3.58 2.80 

GLCM_Correlation 0.70 0.36 

GLCM_Entropy_log10 0.55 0.61 

GLCM_Entropy_log2 0.55 0.36 

GLCM_Dissimilarity 0.90 0.85 

GLRLM_SRE 0.52 0.31 

GLRLM_LRE 1.08 0.63 

GLRLM_LGRE 2.81 0.40 

GLRLM_HGRE 3.22 0.30 

GLRLM_SRLGE 0.50 0.43 

GLRLM_SRHGE 0.52 0.31 

GLRLM_LRLGE 1.70 0.63 

GLRLM_LRHGE 1.08 0.63 

GLRLM_GLNU 3.73 4.45 

GLRLM_RLNU 4.04 4.26 

GLRLM_RP 0.53 0.31 

NGLDM_Coarseness 1.53 1.33 

NGLDM_Contrast 1.15 1.78 

NGLDM_Busyness 2.59 1.60 

GLZLM_SZE 0.55 0.36 

GLZLM_LZE 4.90 4.43 

GLZLM_LGZE 2.87 0.40 

GLZLM_HGZE 0.50 0.30 

GLZLM_SZLGE 4.34 0.53 

GLZLM_SZHGE 0.56 0.36 

GLZLM_LZLGE 4.86 4.48 

GLZLM_LZHGE 4.94 4.40 

GLZLM_GLNU 1.97 4.47 

GLZLM_ZLNU 2.42 4.42 

GLZLM_ZP 0.79 0.87   



 

Median 1.076 0.634 

 

Table 3.2: Mean and standard value (SD) of radiomic features 

 

Radiomics Feature 

2D 3D 

Mean SD Mean SD 

minValue 3.9309 86.1002 -29.024 108.8098 

 meanValue 62.50549 58.5625 57.4985 61.9848  

 stdValue 22.05224 19.4946 26.7891 20.8367  

 maxValue 120.1881 61.2225 131.7911 70.8837  

 HISTO_Skewness -0.00776 0.4688 -0.1296 0.5747  

 HISTO_Kurtosis 3.04419 0.8395 3.4344 2.7804  

 HISTO_Entropy_log1

0 
0.85633 0.2095 0.925 0.2088  

 HISTO_Entropy_log2 2.84465 0.696 3.0727 0.6937  

 HISTO_Energy 0.18295 0.1131 0.158 0.0956  

 GLCM_Homogeneity 0.42394 0.234 0.4585 0.1733  

 GLCM_Energy 0.03809 0.0625 0.04 0.065  

 GLCM_Contrast 5.60013 20.0311 10.6954 29.8961  

 GLCM_Entropy_log10 0.37249 0.2591 1.5538 0.5623  

 GLCM_Correlation 1.29573 0.7082 0.35 0.2148  

 GLCM_Entropy_log2 4.30432 2.3527 5.1618 1.868  

 GLCM_Dissimilarity 1.32653 1.1922 1.8596 1.5728  

 GLRLM_SRE 0.6668 0.3454 0.8023 0.245  

 GLRLM_LRE 1.93866 2.0868 1.7452 1.0997  

 GLRLM_LGRE 7.94E-05 2.23E-04 8.19E-05 3.24E-05  

 GLRLM_HGRE 6.74E-05 2.17E-04 10594.4566 3182.0921  

 GLRLM_SRLGE 9262.53537 4647.2292 7.15E-05 3.11E-05  

 GLRLM_SRHGE 7697.86466 4025.1031 9209.5776 2898.8417  

 GLRLM_LRLGE 1.79E-04 3.04E-04 1.54E-04 9.76E-05  

 
GLRLM_LRHGE 

22384.5133

4 
24141.3585 20081.1129 12740.7599  

 GLRLM_GLNU 104.41274 389.0792 566.0545 2521.7686  

 GLRLM_RLNU 562.60987 2270.5234 3169.6877 13504.7678  

 GLRLM_RP 0.63276 0.3328 0.7705 0.2405  

 NGLDM_Coarseness 0.06395 0.0976 0.016 0.0213  

 NGLDM_Contrast 0.02827 0.0325 0.0866 0.1543  

 



 

NGLDM_Busyness 1.15815 2.9946 2.6829 4.2944  

 GLZLM_SZE 0.45316 0.2508 0.5249 0.1898  

 GLZLM_LZE 1355.38957 6637.224 8078.6047 35828.3955  

 GLZLM_LGZE 7.97E-05 2.29E-04 8.23E-05 3.30E-05  

 GLZLM_HGZE 9270.86164 4654.5501 10575.6073 3193.705  

 GLZLM_SZLGE 4.86E-05 2.11E-04 4.75E-05 2.54E-05  

 GLZLM_SZHGE 5232.65207 2919.8812 5979.3646 2156.8144  

 GLZLM_LZLGE 0.11794 0.5731 0.6992 3.1326  

 GLZLM_LZHGE 1.56E+07 7.70E+07 9.35E+07 4.11E+08  

 GLZLM_GLNU 17.3782 34.1841 46.0707 206.1363  

 GLZLM_ZLNU 61.54293 149.164 199.1607 879.8972  

 GLZLM_ZP 0.25801 0.2046 0.1627 0.1412  

 
 

  



 

  



 

Supplementary Information 4 

Supp Table 4.1: 

Descriptive statistics of performances by feature selection method. 

  

Feature selection 

method 

Acc Sen Spe 

Mean SD Mean SD Mean SD 

Boruta 0.671 0.123 0.514 0.262 0.563 0.260 

RF 0.662 0.136 0.530 0.280 0.524 0.305 

Recursive 0.650 0.138 0.515 0.302 0.544 0.273 

Relief 0.680 0.130 0.554 0.293 0.521 0.302 

SFS 0.658 0.149 0.517 0.295 0.570 0.285 

  

  

  

Supp Figure 4.1 : Violin plot of performances by feature selection method  

 
  

Supp Table 4.2: Descriptive statistic of performances by classifier  

Classifier 

Acc Sen Spe 

Mean SD Mean SD Mean SD 

KNN 0.643 0.098 0.529 0.191 0.529 0.178 

LR 0.728 0.103 0.545 0.309 0.571 0.317 

RF 0.587 0.146 0.585 0.214 0.468 0.195 

SVM 0.699 0.142 0.446 0.375 0.609 0.381 

 

  



 

Supp Figure 4.2 : Violin plot of performances by classifier

 
 

Supp Table  4.3 : Pair wise comparison of accuracy by classifier (Wilcoxon test, Bonferroni’s 

correction for multiple comparison, *=significant difference) 

 KNN     

LR 
2.86E-

06* LR   

RF 
0.218 

6.54E-

09* RF 

SVM 
0.01* 1 

5.35E-

05* 

 

  



 

Supplementary Information 5 
 

 Supp Table 5.1: Test and train accuracies of the 12 best models in our study for OS 

prediction (mean over the 5-fold cross validation) 

ROI 

type 

Combination 

(Classifier  + 

Feature 

Selection +/- 

Smote Data 

Augmentation) 

Train 

Acc 
Train error 

Test 

Acc 

Train/test 

Acc ratio 

3D 

Logistic 

Regression + 

Boruta 

0.8 0.2 0.91 0.88 

Logistic 

Regression + 

Boruta + 

SMOTE 

0.9 0.1 0.88 1.02 

Logistic 

Regression + 

Random 

Forest 

0.75 0.25 0.88 0.85 

3D + 

clinical 

data 

SVM + SFS 0.9 0.1 0.84 1.07 

SVM + RF + 

SMOTE 
0.8 0.2 0.78 1.03 

Logistic 

Regression + 

Recursive + 

SMOTE 

0.75 0.25 0.7 1.07 

2D 

Logistic 

Regression + 

RF + SMOTE 

0.85 0.15 0.81 1.05 

RF + Boruta 0.8 0.2 0.75 1.07 

Logistic 

Regression + 

Boruta + 

SMOTE 

0.8 0.2 0.74 1.08 

2D + 

clinical 

data 

Logistic 

Regression + 

Recursive + 

SMOTE 

0.9 0.1 0.86 1.05 

KNN + Relief 

+ SMOTE 
0.77 0.23 0.87 0.89 

SVM + Boruta 0.85 0.15 0.84 1.01 

   

Mean Train 

Error 

 

Mean 

Ratio 



 

   

0.18 

 

1.01 

Supp Table 5.2: Test and train accuracies of the 12 best models in our study for response 

prediction (mean over the 5-fold cross validation) 

 
     

ROI type 

Combination 

(Classifier + 

Feature 

Selection +/- 

SMOTE Data 

Augmentation 

Train Acc Train Error Test Acc 
Train/test 

Acc ratio 

3D 

Logistic 

Regression + 

Boruta + 

SMOTE 

0.88 0.12 0.8 1.1 

SVM + SFS + 

SMOTE 
0.8 0.2 0.83 0.96 

Logistic 

Regression + 

SFS + 

SMOTE 

0.85 0.15 0.81 1.05 

3D + 

clinical 

data 

KNN + Relief 

+ SMOTE 
0.83 0.17 0.75 1.11 

Logistic 

Regression + 

Recursive + 

SMOTE  

0.9 0.1 0.83 1.08 

RF + RF + 

SMOTE 
0.8 0.2 0.74 1.08 

2D 

Logistic 

Regression + 

Relief + 

SMOTE 

0.9 0.1 0.81 1.11 

Logistic 

Regression + 

RF + 

SMOTE  

0.8 0.2 0.6 1.33 

RF + 

Recursive + 

SMOTE 

0.75 0.25 0.76 0.99 

2D + 

clinical 

data 

SVM + RF 0.9 0.1 0.87 1.03 

SVM + Relief 

+ SMOTE 
0.7 0.3 0.78 0.9 

RF + 

Recursive + 

SMOTE 

0.7 0.3 0.76 0.92 

   

Mean Train 

 

Mean 



 

Error ratio 

   

0.18 
 

1.06 

  Supp Table 5.3: Mean train/test accuracy ratio on all classifications by each classifier for OS 

prediction 

Classifier 

Mean train/test Acc 

ratio 

KNN 1.04 

LR 1.01 

RF 1.07 

SVM 0.96 

 

 

Supp Table 5.4: Mean train/test accuracy ratio on all classification by each classifier for 

response prediction 

Classifier 

Mean train/test Acc 

ratio 

KNN 1.02 

LR 1.01 

RF 1.05 

SVM 0.95 

 

 


