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Abstract. We consider U -statistics on row-column exchangeable matrices. We present a new decom-
position based on orthogonal projections onto probability spaces generated by sets of Aldous-Hoover-
Kallenberg variables. These sets are indexed by bipartite graphs, enabling the application of graph-
theoretic concepts to describe the decomposition. This framework provides new insights into the charac-
terization of U -statistics on row-column exchangeable matrices, particularly their asymptotic behavior,
including in degenerate cases. Notably, the limit distribution depends only on specific terms in the de-
composition, corresponding to non-zero components indexed by the smallest graphs, namely the principal
support graphs. We show that the asymptotic behavior of a U -statistic is characterized by the properties
of its principal support graphs. The number of nodes in these graphs dictates the convergence rate to
the limit distribution, with degeneracy occurring if and only if this number is strictly greater than 1.
Furthermore, when the principal support graphs are connected, the limit distribution is Gaussian, even
in degenerate cases. Applications to network analysis illustrate these findings.

Keywords. degenerate U -statistics, row-column exchangeability, Hoeffding decomposition, asymptotic
distribution, network statistics.

Introduction
U -statistics generalize the empirical mean to functions of many variables. Given a sample of n observa-
tions (X1, ...,Xn), a U -statistic is defined as

Un = (
n

k
)
−1

∑
1≤i1<...<ik≤n

h(Xi1 , ...,Xik),

where the kernel h ∶ Rk → R is a measurable symmetric function. U -statistics are a broad class of
statistics encompassing many well-known examples such as the empirical variance, the Wilcoxon one-
sample statistic, or Kendall’s τ . When the observations (X1, ...,Xn) are independent and identically
distributed (i.i.d.), the properties of U -statistics are well understood. For general kernels, the central
limit theorem (CLT) for U -statistics (Hoeffding, 1948) ensures that the distribution of

√
n(Un − θ)

converges to a Gaussian distribution with variance V . This result becomes trivial in degenerate cases
where V = 0. However, Rubin and Vitale (1980) showed that there exists an integer 2 ≤ d ≤ k such that
the distribution of nd/2(Un − θ) converges to a non-trivial limit, which can be explicitly identified. A key
tool in this analysis is the Hoeffding decomposition (Hoeffding, 1961), an orthogonal decomposition of
Un.

U-statistics on row-column exchangeable matrices. In this paper, we address the asymptotic
behavior of U -statistics on row-column exchangeable (RCE) matrices. An infinite matrix Y is said to
be RCE if its probability distribution remains invariant under separate permutations of its rows and
columns (Aldous, 1981), that is, for any pair of permutations (σ1, σ2) of N,

(Yσ1(i)σ2(j))i,j
D= Y.

For n > 0, let JnK ∶= {1, . . . , n} and Sn denote the group of permutations of JnK. The kernels h ∶Mp,q(R)→
R considered are functions of a p × q submatrix of Y that satisfy the following symmetry property: for
all (σ1, σ2) ∈ Sp × Sq,

h(Y(iσ1(1)
,...,iσ1(p)

;jσ2(1)
,...,jσ2(q)

)) = h(Y(i1,i2,...,ip;j1,j2,...,jq)),

where Y(i1,...,ip;j1,...,jq) denotes the p × q submatrix of Y corresponding to rows i1, ..., ip and columns
j1, ..., jq. For such symmetric kernels, the order of the indices in the submatrix is irrelevant. Hence, we
use the simplified notation

h(Y{i1,...,ip};{j1,...,jq}) ∶= h(Y(i1,i2,...,ip;j1,j2,...,jq)).
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The associated U -statistic Um,n computed on the first m rows and n columns of an infinite matrix
Y , is defined as

Um,n = (
m

p
)
−1
(n
q
)
−1

∑
i∈Pp(JmK)
j∈Pq(JnK)

h(Yi,j), (1)

where for a set A and an integer k, Pk(A) denotes the set of all the subsets of A with cardinality
k, JℓK = {1, . . . , ℓ}, and Yi,j represents the submatrix of Y defined by the row indices in i and column
indices in j. A Hoeffding-type decomposition for these U -statistics has been introduced in Le Minh et al.
(2023). This decomposition has been applied to derive a CLT and to construct a general estimator for
the asymptotic variance of such U -statistics. However, this decomposition cannot identify the limiting
distribution in degenerate cases.

Motivation and applications. The study of RCE matrices is motivated by their relevance in net-
work analysis. Many real-world datasets consist of relational data that are naturally represented as
networks. In such representations, entities correspond to nodes, while their connections are depicted as
links. A common structure is a bipartite network, where two distinct sets of nodes exist, and links exclu-
sively connect nodes from different sets. Typical examples of bipartite network-structured data include
recommender systems (Zhou et al., 2007), scientific authorship networks (Newman, 2001) or ecological
pollination networks (Dormann et al., 2009). The adjacency matrix of a bipartite network is typically
rectangular, with rows and columns representing the two distinct node sets. In an adjacency matrix Y ,
each matrix entry Yij encodes the relationship between the i-th row node i and the j-th column node.
For binary networks, Yij = 1 if there is a link between nodes i and j, and Yij = 0 otherwise. For weighted
networks, Yij denotes the weight of the link.

Exchangeability of nodes is a standard assumption in probabilistic network analysis. Many random
network models satisfy node exchangeability, including the stochastic block models (Snijders and Now-
icki, 1997), the expected degree distribution models (Picard et al., 2008), the graphon model (Lovász
and Szegedy, 2006), and their bipartite extensions (Govaert and Nadif, 2003; Ouadah et al., 2022; Dia-
conis and Janson, 2008). For bipartite networks, exchangeability implies that the distribution remains
invariant under independent permutations of the two node sets. Therefore, the adjacency matrix of an
exchangeable bipartite network corresponds to the leading rows and columns of an infinite RCE matrix.
U -statistics on RCE matrices provide a general framework for defining network statistics. Among these,
motif (or subgraph) counts are particularly well-studied and serve as key descriptors of network topol-
ogy (Stark, 2001; Picard et al., 2008; Reinert and Röllin, 2010; Bickel et al., 2011; Bhattacharyya and
Bickel, 2015; Coulson et al., 2016; Gao and Lafferty, 2017; Levin and Levina, 2019; Maugis et al., 2020;
Naulet et al., 2021; Ouadah et al., 2022). Motif counts have been widely used to analyze networks across
diverse domains, including biology (Shen-Orr et al., 2002; Pržulj et al., 2004; Przytycka, 2006), ecology
(Bascompte and Melián, 2005; Stouffer et al., 2007; Baker et al., 2015; Lanuza et al., 2023) and sociology
(Bearman et al., 2004; Faust, 2006; Duma and Topirceanu, 2014; Choobdar et al., 2012).

Contribution. This paper aims to define a new orthogonal decomposition for U -statistics on RCE
matrices. The foundation of this decomposition lies in the Aldous-Hoover-Kallenberg (AHK) represen-
tation of RCE matrices (Hoover, 1979; Aldous, 1981; Kallenberg, 2005), which establishes a connection
between this decomposition and the theory of bipartite exchangeable networks. In this respect, this new
decomposition is somewhat related to the one proposed in Le Minh et al. (2023), which is too coarse to
accurately capture the higher-order fluctuations of degenerate U -statistics. The key advantage of the new
decomposition is its finer granularity, enabling the identification of distinct contributions to the asymp-
totic behavior of U -statistics by each term of the decomposition. Another novelty lies in the fact each
term in the decomposition is indexed by bipartite graphs, introducing a novel framework for analyzing
U -statistics through graph theory operations, such as graph intersection, inclusion, connectedness, and
isomorphism.

This new framework shares similarities with the generalized U -statistics studied by Janson and Now-
icki (1991), recently used in the works of Kaur and Röllin (2021) and Bhattacharya et al. (2023). However,
these works primarily address motif counts in unipartite binary exchangeable networks. More precisely,
Kaur and Röllin (2021) investigated the asymptotic distribution of "centered" motif counts, which are
not proper U -statistics directly computed as defined in (1). They obtained a normal approximation
theorem through Stein’s method, but they did not consider degenerate cases. In contrast, Bhattacharya
et al. (2023) examined the limit distribution of traditional motif counts in degenerate cases, depending
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on the properties of the network model. However, many other interesting statistics can also be expressed
as network U -statistics, notably when the networks are weighted (Le Minh, 2023; Le Minh et al., 2023).
Furthermore, the dependence structure induced by the AHK representation for bipartite networks dif-
fers from the unipartite setting, making the extension of results from unipartite to bipartite networks
nontrivial, as shown in this paper.

Summary and outline. The principal contribution of this paper is the development of a graph-based
framework to characterize network U -statistics on bipartite exchangeable models. This framework is asso-
ciated with an orthogonal decomposition of these U -statistics, offering a comprehensive characterization
of their asymptotic properties. These properties are illustrated with some examples from statistical net-
work analysis. Section 1.1 introduces the AHK representation of RCE matrices and Section 1.2 presents
the concept of graph sets of AHK variables, a key tool in this framework. These graph sets are used
in Section 2.1, which establishes the probability spaces that form the basis for the orthogonal decom-
position of U -statistics on RCE matrices. Section 2.2 formally defines the orthogonal decomposition.
Section 2.3 derives a variance decomposition for U -statistics on RCE matrices. Sections 3.1 and 3.2 link
the decomposition to the limit distribution of U -statistics via the concept of principal support graphs,
which will be defined there. These sections demonstrate that the limit distribution is determined by the
leading terms of the decomposition associated with these graphs. Section 3.3 provides a sufficient condi-
tion on principal support graphs for obtaining a Gaussian limit. Finally, Section 3.4 explores alternative
asymptotic regimes and their implications for principal support graphs.

1 Sets of Aldous-Hoover-Kallenberg variables

1.1 Aldous-Hoover-Kallenberg representation of RCE matrices
We use the Aldous-Hoover-Kallenberg (AHK) representation for dissociated RCE matrices (Hoover,
1979; Aldous, 1981; Kallenberg, 2005). An RCE matrix is dissociated if, for any (m,n), (Yij)i≤m,j≤n is
independent of (Yij)i<m,j<n. According to the AHK representation theorem, if Y is a dissociated RCE
matrix, then there exist arrays of i.i.d. variables (ξi)i≥1, (ηj)j≥1 and (ζij)i,j≥1 with uniform distribution
over [0,1], and a real measurable function ϕ such that for all 1 ≤ i, j <∞,

Yij
a.s.= ϕ(ξi, ηj , ζij).

A function of entries of Y can then be written using these AHK variables. In particular, the kernel
h(Yi,j), where i ∈ Pp(N) and j ∈ Pq(N), can be written as

h(Yi,j) = h((ϕ(ξi, ηj , ζij))i∈i,j∈j) =∶ hϕ((ξi)i∈i, (ηj)j∈j, (ζij)i∈i,j∈j),

and hϕ ∶ [0,1]p+q+pq → R is a function, with the symmetry property

hϕ((ξσ1(i))i∈i, (ησ2(j))j∈j, (ζσ1(i)σ2(j))i∈i,j∈j) = hϕ((ξi)i∈i, (ηj)j∈j, (ζij)i∈i,j∈j),

for all permutations σ1 and σ2 of i and j respectively. The U -statistic with kernel h defined by (1) can
be rewritten with hϕ as follows

Um,n = [(
m

p
)(n

q
)]
−1

∑
i∈Pp(JmK)
j∈Pq(JnK)

hϕ((ξi)i∈i, (ηj)j∈j, (ζij)i∈i,j∈j).

With this formula, it becomes apparent that Um,n shares some similarities with the generalized U -
statistics defined by Janson and Nowicki (1991). Their generalized U -statistics are averages of random
variables of the form f((ξi)i∈i; (ζij)(i,j)∈i2,i≠j). Thus, although generalized U -statistics are adapted to
unipartite random graphs, our bipartite setup changes the structure of the variables averaged in the
U -statistics, which will lead to a different characterization.

For simplification, we will now write hi,j ∶= hϕ((ξi)i∈i, (ηj)j∈j, (ζij)i∈i,j∈j), so that

Um,n = [(
m

p
)(n

q
)]
−1

∑
i∈Pp(JmK)
j∈Pq(JnK)

hi,j.
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1.2 Graph sets of Aldous-Hoover-Kallenberg variables
The idea behind the new decomposition of a U -statistic is to find orthogonal projections first for hi,j,
for all i and j, and then use the previous expression to derive the decomposition for Um,n. To define
the projections for hi,j, we have to define the relevant subspaces for these projections. These subspaces,
defined in the next section, are generated by subsets of AHK variables. To denote these subsets, we will
be using a notation involving bipartite graphs. These graphs have no direct link with the network data,
they are just a formalism to define subsets of AHK variables.

1.2.1 Notations for bipartite graphs

A bipartite graph G is denoted G = (V1(G), V2(G),E(G)), where V1(G) and V2(G) are the two sets
of vertices and E(G) ⊆ V1(G) × V2(G) is the set of edges of G. We denote v1(G) = Card(V1(G))
and v2(G) = Card(V2(G)). A subgraph F ⊆ G is such that V1(F ) ⊆ V1(G), V2(F ) ⊆ V2(G) and
E(F ) ⊆ (V1(F ) × V2(F )) ∩E(G). We write F ⊂ G if we have both F ⊆ G and F ≠ G.

Let A = {ai ∶ i ∈ I} be a countable set indexed by I and σ some mapping σ ∶ I → I. We denote the
action of σ on A by σA = {aσ(i) ∶ i ∈ I}. Let G be a bipartite graph. Suppose that V1(G) is indexed by
the set I and V2(G) by the set J . The action of a pair of mappings Φ = (σ1, σ2) on G, where σ1 ∶ I → I
and σ1 ∶ J → J , is denoted

ΦG ∶= (σ1V1(G), σ2V2(G),ΦE(G)), (2)

where ΦE(G) = {(xσ1(i), yσ2(j)) ∶ (xi, yj) ∈ E(G), (i, j) ∈ I × J}. Among these mappings, the bijective
ones are called permutations.

For two bipartite graphs G1 and G2 with same number of row nodes r = v1(G1) = v1(G2) and
column nodes c = v2(G1) = v2(G2), we say that they are isomorphic if and only if there exists a pair of
permutations Φ = (σ1, σ2) ∈ Sr × Sc such that ΦG1 = G2. In this case, we write G1 ∼ G2. The number of
elements Φ of Sr × Sc such that ΦG = G is the number of automorphisms of G, denoted ∣Aut(G)∣.

We define Ki,j = (i, j, i × j) the fully connected bipartite graph with row node set i and column node
set j. For p ≥ 0 and q ≥ 0, we denote Kp,q =KJpK,JqK.

For r ≥ 0 and c ≥ 0, we can define a minimal set Γr,c of all subgraphs of Kr,c with r row nodes and
c column nodes, such that every graph G with the same numbers of nodes is isomorphic to exactly one
element of Γr,c. Denote Γ−p,q = ⋃(0,0)<(r,c)≤(p,q) Γr,c. The notation (0,0) < (r, c) ≤ (p, q) means 0 ≤ r ≤ p,
0 ≤ c ≤ q and (r, c) ≠ (0,0). Every non-empty graph G with v1(G) ≤ p and v2(G) ≤ q is isomorphic to
exactly one element of Γ−p,q.

1.2.2 Definition of graph sets

Let G be a bipartite graph. We can define the set H(G) of AHK variables associated to G as

H(G) = ((ξi)i∈V1(G), (ηj)j∈V2(G), (ζij)(i,j)∈E(G)).

H(G) is composed of the variables (ξi) indexed by the vertices in V1(G), (ηj) indexed by the vertices in
V2(G), and (ζij) indexed by the edges in E(G). Figure 1 right illustrates this construction. We see that
hi,j = hϕ((ξi)i∈i, (ηj)j∈j, (ζij)i∈i,j∈j) = hϕ(H(Ki,j)). In other words, hi,j belongs to some functional prob-
ability space generated by the AHK variables H(Ki,j). The subspaces on which hi,j will be decomposed
are generated by subsets of H(Ki,j), which are of the form H(G), where G ⊂Ki,j, as shown in Figure 1.

In the following section, we define rigorously these subspaces and we exhibit some of their properties.
This enables us to define a decomposition for U -statistics on RCE matrices.

2 Orthogonal decomposition of U-statistics on RCE matrices

2.1 Decomposition of the probability space
Let G be a bipartite graph and denote L2(G) the space of all square-integrable random variables mea-
surable with respect to σ(H(G)). L2(G) is an Hilbert space with inner product ⟨X,Y ⟩ = E[XY ]. We
investigate the following decomposition for X ∈ L2(G)

X = ∑
F⊆G

pF (X), (3)
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Figure 1: A bipartite graph and one subgraph. For each graph, the row nodes are on the right and the
column nodes are on the left. Left: the graph K3,2. Right: a subgraph G extracted from the row nodes
{2,3} and the column nodes {1,2} of K3,2. Here, G only keeps one edge among the four allowed between
the row nodes {2,3} and the column nodes {1,2}. G defines the subset H(G) = ({ξ2, ξ3},{η1, η2},{ζ13}).

where the pF (X) are defined by recursion with p∅(X) = E[X] and for all F ,

pF (X) = E[X ∣H(F )] − ∑
F ′⊂F

pF
′

(X).

Now, we define L∗2(G) ⊂ L2(G) as follows

L∗2(G) = {X ∈ L2(G) ∶ E[X ∣H(F )] = 0,∀F ⊂ G} . (4)

These subspaces are linked to the decomposition (3). First, we show that each term of the decomposition
belongs to one of these spaces, which shows that the decomposition is a decomposition on these subspaces.
The following proposition can be shown by induction, as indicated in Appendix A.

Proposition 2.1. For two bipartite graphs F ⊆ G and X ∈ L2(G), pF (X) ∈ L∗2(F ).

Now, we prove the most important property of this decomposition. An Hoeffding-type decomposition
is an orthogonal decomposition. The following proposition shows that this is the case.

Proposition 2.2. For all bipartite graphs G, L2(G) is the orthogonal direct sum of the spaces L∗2(F ),
for all F ⊆ G. This is denoted by L2(G)⊕⊥F⊆GL∗2(F ).

Proof. Equation (3) and Proposition 2.1 already show that L2(G)⊕F⊆GL∗2(F ). We only have to show
that for any two distinct bipartite graphs G1 and G2, we have L∗2(G1) ⊥ L∗2(G2). Let X1 ∈ L∗2(G1) and
X2 ∈ L∗2(G2). Let G = G1 ∩ G2. Since G1 and G2 are distinct, then at least one of the affirmations
G ⊂ G1 and G ⊂ G2 is true. Assume that G ⊂ G1, then E[X1X2] = E[E[X1X2 ∣ H(G1)]] = E[X1E[X2 ∣
H(G)]] = 0, so L∗2(G1) ⊥ L∗2(G2).

Remark 1. From this proof, we can see that L∗2(G) can also be characterized by the expression L∗2(G) =
L2(G) ∩ (∪F⊂GL2(F )⊥).

2.2 Decomposition of U-statistics
For all (0,0) ≤ (p, q) ≤ (m,n), (i, j) ∈ Pp(JmK) × Pq(JnK), G ⊆ Ki,j, we can apply the decomposition (3)
on hi,j ∈ L2(Ki,j).

pG(hi,j) = E[hi,j ∣H(G)] − ∑
F⊂G

pF (hi,j),

where p∅(hi,j) = E[hi,j] = E[hJpK,JqK].
For all G ⊆Ki,j, we remind that V1(G) ⊆ i and V2(G) ⊆ j. Define V1(G) and V2(G) the complements

of respectively V1(G) and V2(G) in respectively i and j. In fact, the term pG(hi,j) does not depend on
the elements of V1(G) and V2(G), i.e. even if (i1, j1) ≠ (i2, j2), as long as G ⊂ Ki1,j1 ∩Ki2,j2 , we have
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pG(hi1,j1) = pG(hi2,j2). Therefore, we use the notation pG ∶= pG(hi,j), for all G ∈Ki,j. From Equation (3),
we can write

hi,j = ∑
G⊆Ki,j

pG,

and the U -statistic Um,n can be rewritten

Um,n = (
m

p
)
−1
(n
q
)
−1

∑
i∈Pp(JmK)
j∈Pq(JnK)

∑
G⊆Ki,j

pG

= (m
p
)
−1
(n
q
)
−1

∑
i∈Pp(JmK)
j∈Pq(JnK)

∑
(0,0)≤(r,c)≤(p,q)

∑
G⊆Ki,j

(v1(G),v2(G))=(r,c)

pG

= ∑
(0,0)≤(r,c)≤(p,q)

P r,c
m,n,

where P r,c
m,n = (

m
p
)−1(n

q
)−1∑i∈Pp(JmK)

j∈Pq(JnK)
∑ G⊆Ki,j

(v1(G),v2(G))=(r,c)
pG.

Note that in general, for G ⊆Ki,j, pG is not symmetric, that means pG(hσ1i,σ2j) ≠ pG(hi,j) for a pair
of permutations (σ1, σ2) ∈ Sp × Sq. We define p̄G the symmetrized version of pG as

p̄G = ∑
(σ1,σ2)∈Sp×Sq

pG(hσ1i,σ2j) = ∑
Φ∈Sp×Sq

pΦG = ∑
G′⊆Ki,j

G′∼G

pG
′

.

For two isomorphic subgraphs G1 and G2 of Ki,j, we have p̄G1 = p̄G2 by symmetry. There is exactly
one element G ∈ Γr,c, where r = v1(G1) = v1(G2) and c = v2(G1) = v2(G2), which is isomorphic to both
G1 and G2. Therefore, for all (i, j) ∈ Pp(JmK) × Pq(JnK), we can index these quantities with the graph
G ∈ Γr,c instead of G ∈Ki,j. Then, we denote

p̃Gi,j ∶= p̄G
′

,

where G ∈ Γr,c and G′ is any subgraph of Ki,j which is isomorphic to G. We can also denote p̃G the
function p̃G ∶ (i, j)z→ p̃Gi,j.

Because there are r!(p
r
)c!(q

c
)∣Aut(G)∣−1 distinct subgraphs of Ki,j that are isomorphic to G ∈ Γr,c, we

obtain the following alternative decomposition

hi,j = (p!q!)−1 ∑
G⊆Ki,j

p̄G = ∑
0≤(r,c)≤(p,q)

∑
G∈Γr,c

1

(p − r)!(q − c)!∣Aut(G)∣
p̃Gi,j

and
P r,c
m,n = ∑

G∈Γr,c

1

(p − r)!(q − c)!∣Aut(G)∣
P̃G
m,n,

where for all G ∈ Γr,c, P̃G
m,n = (

m
p
)−1(n

q
)−1∑i∈Pp(JmK)

j∈Pq(JnK)
p̃Gi,j is the U -statistic of kernel p̃G. Finally, the Um,n

can be rewritten as
Um,n = ∑

0≤(r,c)≤(p,q)
∑

G∈Γr,c

1

(p − r)!(q − c)!∣Aut(G)∣
P̃G
m,n. (5)

Remark 2. This decomposition is related to the one defined by Le Minh et al. (2023). The latter consists
of an orthogonal projection of hi,j ∈ L2(Ki,j) on the subspaces (L2(Ki′,j′))i′⊆i,j′⊆j, where

L2(Ki,j) = {X ∈ L2(Ki,j) ∶ E[X ∣H(Ki′,j′)] = 0,∀i′ ⊆ i, j′ ⊆ j}. (6)

Comparing this with the subspaces (4), we see that the decomposition on the subspaces of the form (6)
is coarser, as they only consist in subspaces generated by graphs of the form Ki,j. For this reason, it
does not capture the subtleties determining the limit distribution of degenerate U -statistics. We will see
that the decomposition given by equation (5) can fill this gap, at the cost of being more complex.
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2.3 Decomposition of the variance of U-statistics
Just like the classic Hoeffding decomposition of U -statistics of i.i.d. observations (Hoeffding, 1961), the
decomposition (5) is convenient to decompose the variance of U -statistics on row-column exchangeable
matrices. The following two results come from the orthogonality of the projections. For a random
variable X, V[X] denotes its variance.

The first expression links V[Um,n] to the variance of the projections V[pG] = E[(pG)2]. It is obtained
by direct calculation, as shown in Appendix B.

Proposition 2.3.

V[Um,n] = ∑
(0,0)<(r,c)≤(p,q)

(m − r)!
m!

(n − c)!
n!

V (r,c),

where for all (0,0) < (r, c) ≤ (p, q),

V (r,c) = p!2q!2

(p − r)!2(q − c)!2 ∑
G∈Γr,c

∣Aut(G)∣−1E[(pG)2].

The second expression links V[Um,n] to the variance of the U -statistics P̃G
m,n associated to the sym-

metrized projections p̃G.

Corollary 2.4.

V[Um,n] = ∑
0<(r,c)≤(p,q)

∑
G∈Γr,c

( 1

(p − r)!(q − c)!∣Aut(G)∣
)
2

V[P̃G
m,n]

It can be naturally obtained from Proposition 2.3 using the following lemma.

Lemma 2.5.
V[P̃G

m,n] =
(m − r)!

m!

(n − c)!
n!

p!2q!2∣Aut(G)∣E[(pG)2].

The proof of this lemma requires to handle the symmetrized projections, which can be tricky. In this
regard, the next lemma is particularly helpful. For this reason, it will also be used several times later.
The proofs of both lemmas are given in Appendix B.

Lemma 2.6. Let G subgraph of Kp,q. Let (G1
i,j)i∈Pp(JmK)

j∈Pq(JnK)
and (G2

i,j)i∈Pp(JmK)
j∈Pq(JnK)

two families of graphs such

that for all (i, j) ∈ Pp(JmK) ×Pq(JnK), both G1
i,j,G

2
i,j ⊆Ki,j and are isomorphic to G. We have

∑
i1,i2∈Pp(JmK)
j1,j2∈Pq(JnK)

∑
Φ1,Φ2∈Sp×Sq

1(Φ1G
1
i1,j1 = Φ2G

2
i2,j2) =

m!(m − r)!
(m − p)!2

n!(n − c)!
(n − q)!2

∣Aut(G)∣.

3 Asymptotic behavior

3.1 Principal part and support graphs
Let us define a sequence for network sizes (mN , nN) such that mN + nN = N and mN /N ÐÐÐ→

N→∞
ρ, for

some ρ ∈]0,1[. We denote UN ∶= UmN ,nN
, P r,c

N ∶= P r,c
mN ,nN

and P̃G
N ∶= P̃G

mN ,nN
. The kernel h is still a

symmetric function of a matrix of size p×q. Other regimes for mN and nN are considered in Section 3.4.
In this asymptotic framework, we give the following definitions.

Definition 3.1. Let
p(k) ∶= ∑

G∈Kp,q

v1(G)+v2(G)=k

pG,

for 1 ≤ k ≤ p + q. Let d be the smallest integer such that p(d) ≠ 0. Then, we have P r,c
N = 0 for all (r, c)

such that r + c < d.
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• We call d − 1 the order of degeneracy of UN .

• By analogy with the theory of generalized U -statistics (Janson and Nowicki, 1991), we call

∑
(0,0)≤(r,c)≤(p,q)

r+c=d

P r,c
N

the principal part of UN and the pairs (r, c) such that r + c = d are the principal degrees of UN .

• We call the principal support graphs of UN the graphs G ⊆Km,n such that both

– v1(G) + v2(G) = d,
– pG ≠ 0.

In the following examples, we identify the order of degeneracy and the principal support graphs of
several U -statistics on row-column exchangeable matrices.

Example 1 (Weighted bipartite Erdös-Rényi graph). The Erdös-Rényi graph model is a binary random
graph model where each edge has a fixed probability of being present, independently of the other edges
(Erdös and Rényi, 1959; Gilbert, 1959). It can easily be generalized to weighted graphs by defining a
distribution from which the edge weights are sampled at i.i.d.

Let Y be a random matrix such that Yij
i.i.d.∼ N (0,1). Let h1 and h2 be the kernel functions defined

by h1(Y{1},{1,2}) = Y11Y12 and h2(Y{1,2},{1,2}) = (Y11Y22+Y12Y21)/2, and Uh1

N and Uh2

N are the U -statistics
associated to these kernels.
Y admits a natural AHK representation, which is Yij

a.s.= ϕ(ξi, ηj , ζij) = Φ−1(ζij), where Φ−1 is the inverse
c.d.f. of the standard Gaussian distribution. Remarkably, Yij does not depend on the AHK variables ξi
and ηj . We have E[Yij] = E[Yij ∣ ξi] = E[Yij ∣ ηj] = E[Yij ∣ ξi, ηj] = 0 and E[Yij ∣ ξi, ηj , ζij] = Yij .

• For Uh1

N , E[h1(Y{1},{1,2}) ∣H(G)] ≠ 0 if and only if

H(K1,2) = (ξ1, η1, η2, ζ11, ζ12) ⊆H(G).

Indeed, we have for all G ⊂ K1,2, E[h1(Y{1},{1,2}) ∣ H(G)] = 0 and E[h1(Y{1},{1,2}) ∣ H(K1,2)] =
Y11Y12. Therefore, the only graph G ⊆K1,2 such that pG ≠ 0 is G =K1,2. Thus, Uh1

N is degenerate
of order 2 and the family of principal support graphs of Uh1

N is (Ki,j)i∈P1(JmN K),j∈P2(JnN K) (Fig. 2).

• For Uh2

N , E[h2(Y{1,2},{1,2}) ∣H(G)] ≠ 0 if and only if

(ξ1, ξ2, η1, η2, ζ11, ζ22) ⊆H(G) or (ξ1, ξ2, η1, η2, ζ12, ζ21) ⊆H(G).

Therefore, if E[h2(Y{1,2},{1,2}) ∣ H(G)] ≠ 0, then v1(G) = 2 or v2(G) = 2, so Uh2

N is degenerate of
order 3. The principal support graphs are the graphs that are isomorphic to one graph G ⊆ Γ2,2

such that E[h2(Y{1,2},{1,2}) ∣H(G)] ≠ 0 (Fig. 2).

Example 2 (Row heterogeneity). Let Y be a random matrix sampled from the following RCE dissociated
model: for λ > 0,

ξi
i.i.d.∼ U[0,1], ∀1 ≤ i ≤m,

ηj
i.i.d.∼ U[0,1], ∀1 ≤ j ≤ n, (7)

Yij ∣ ξi, ηj ∼ P(λf(ξi)g(ηj)), ∀1 ≤ i ≤m,1 ≤ j ≤ n.

This describes the Poisson Bipartite Expected Degree Distribution (Poisson-BEDD) model (Ouadah
et al., 2022; Le Minh, 2023). This model is a type of weighted bipartite graphon model (Diaconis and
Janson, 2008), where the graphon function has a product form. It is defined by a density parameter λ
and functions f ∶ [0,1] → R and g ∶ [0,1] → R representing the expected degree distributions of the rows
and the columns respectively. We assume that ∫ f = ∫ g = 1, so that the mean intensity of the network
is E[Yij] = λ ∫ f ∫ g = λ. The expected degree of the i-th row node is E[∑n

j=1 Yij ∣ ξi] = nλf(ξi) and the
expected degree of the j-th column node is E[∑m

i=1 Yij ∣ ηj] =mλg(ηj).
Suppose that we are interested in testing if the row degrees are homogeneous, i.e. f ≡ 1. For that, let

us define the null hypothesis H0 ∶ f ≡ 1 and confront it to H1 ∶ f /≡ 1. The quantity F2 ∶= ∫ f2 is related
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to the variance of the row expected degree distribution. We may use its estimate to test this hypothesis.
Indeed, under H0, we have F2 = 1 and otherwise, F2 > 1. Consider the kernels h1 and h2 defined in
Example 1. Now, in the Poisson-BEDD model, they have expectations E[h1(Y{1},{1,2})] = λ2F2 and
E[h2(Y{1,2},{1,2})] = λ2. Therefore,

Uh3

N ∶= U
h1

N −U
h2

N

is also a U -statistic, associated to the kernel h defined by

h3(Y{1,2},{1,2}) =
1

2
[h1(Y{1},{1,2}) + h1(Y{2},{1,2})] − h2(Y{1,2},{1,2}),

centered around
E[Uh3

N ] = λ
2(F2 − 1)

which is equal to 0 under H0 only.
We remark that

E[h3(Y{1,2},{1,2}) ∣ ξ1] =
1

2
E[Y11Y12 + Y21Y22 − Y11Y22 − Y21Y12 ∣ ξ1]

= λ2

2
(f(ξ1)2 + F2 − 2f(ξ1)),

and

E[h3(Y{1,2},{1,2}) ∣ η1] =
1

2
E[Y11Y12 + Y21Y22 − Y11Y22 − Y21Y12 ∣ η1]

= λ2(F2 − 1)g(η1).

Since E[h3(Y{1,2},{1,2}) ∣ ξ1] = E[h3(Y{1,2},{1,2}) ∣ η1] = 0 when f ≡ 1, this means that Uh3

N is degenerate
of order at least 1 under H0.

In order to find the principal support graphs of Uh3

N , we can check if E[h3(Y{1,2},{1,2}) ∣ H(G)] ≠ 0,
first for graphs G ∈ ∪r+c=2Γr,c. In fact, there are only four graphs in ∪r+c=2Γr,c. Their corresponding
conditional expectations E[h3(Y{1,2},{1,2}) ∣H(G)] are calculated in Lemmas F.1 to F.4. Under H0, they
become

• E[h3(Y{1,2},{1,2}) ∣ ξ1, ξ2] = 0,

• E[h3(Y{1,2},{1,2}) ∣ η1, η2] = 0,

• E[h3(Y{1,2},{1,2}) ∣ ξ1, η1] = 0,

• E[h3(Y{1,2},{1,2}) ∣ ξ1, η1, ζ11] = 0.

Since there are no graph of ∪r+c=2Γr,c such that E[h3(Y{1,2},{1,2}) ∣ H(G)] ≠ 0, that means that Uh3

N is
degenerate of order at least 2.

Next, we check if E[h3(Y{1,2},{1,2}) ∣ H(G)] ≠ 0, for graphs G ∈ ∪r+c=3Γr,c. There are six graphs in
∪r+c=3Γr,c. According to Lemmas F.5 to F.10, we have under H0,

• E[h3(Y{1,2},{1,2}) ∣ ξ1, ξ2, η1] = 0,

• E[h3(Y{1,2},{1,2}) ∣ ξ1, ξ2, η1, ζ11] = 0,

• E[h3(Y{1,2},{1,2}) ∣ ξ1, ξ2, η1, ζ11, ζ21] = 0,

• E[h3(Y{1,2},{1,2}) ∣ ξ1, η1, η2] = 0,

• E[h3(Y{1,2},{1,2}) ∣ ξ1, η1, η2, ζ11] = 0,

• E[h3(Y{1,2},{1,2}) ∣ ξ1, η1, η2, ζ11, ζ12] = (Y11Y12 + λ2g(η1)g(η2) − λg(V2)Y11 − λg(V1)Y12)/2 ≠ 0.

Therefore, there is one (and only one) graph G satisfying this condition, so we can conclude that the
order of degeneracy of UN is 2. This graph is the one such that H(G) = (ξ1, η1, η2, ζ11, ζ12), which means
that G =K1,2. Thus, the principal support graphs of Uh3

N are the graphs (Ki,j)i∈P1(JmN K),j∈P2(JnN K).
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Figure 2: Examples of principal support graphs for Uh1

N (left) and Uh2

N (right) when Yij
i.i.d.∼ N (0,1), as

depicted in Example 1. The principal support graphs of Uh1

N are the 1 × 2 graphs that are isomorphic
to the left one. The principal support graphs of Uh2

N are the 2 × 2 graphs containing graphs that are
isomorphic to the right one.

Example 3 (Model goodness-of-fit). Although the Poisson distribution is often used to model count data,
it comes with the limitation that the mean and variance of the counts are equal. For this reason, the
Poisson distribution is not an appropriate choice to represent count data when it shows an overly large
dispersion. Therefore, for some given dataset, it is interesting to assess whether the Poisson distribution
fits the count data, i.e. whether the counts exhibit too much dispersion. However, for network count
data, apparent overdispersion can arise from the row and column heterogeneity. A Poisson-graphon
model such as the Poisson-BEDD model depicted in the previous example by (7) would be able to
capture this effect. Indeed, in the Poisson-BEDD model, we have

V[Yij] = E[Y 2
ij] −E[Yij]2 = E[λ2f(ξi)2g(ηj)2] + λ − λ2 = λ2(F2G2 − 1) + λ > E[Yij], (8)

where F2 = ∫ f2 and G2 = ∫ g2. Now, in the following example, we build a test for this type of model to
decide whether there is an overdispersion effect beyond the effect of the rows and columns, e.g. whether
the conditional counts Yij ∣ ξi, ηj show overdispersion.

Typically, overdispersed count data (Zi)1≤i≤n are better represented by families of distributions in-
cluding a parameter controlling the variance separately from the mean, such as a negative binomial
distribution, rather than a classic Poisson distribution. For example, the negative binomial representa-
tion Zi

i.i.d.∼ NB(λ,α) can be parameterized such that the mean is λ and the variance is λ + λ2α. The
parameter α is then called the dispersion parameter. In fact, the negative binomial distribution can be
viewed as a Gamma-Poisson mixture, that is for 1 ≤ i ≤ n, Zi ∣ Wi ∼ P(λWi), where W1, . . . ,Wn are
independently drawn random variables from the Gamma distribution with mean 1 and variance α.

Here, we use a more generic approach to represent overdispersed data with Poisson mixtures where,
contrasting with the negative binomial case, the distribution of the latent variables (Wi)i≥1 is not neces-
sarily Gamma, but some distribution L(α) on the nonnegative real numbers with mean 1 and variance
α. This is sufficient to obtain E[Zi] = λ and V[Zi] = λ + λ2α.

As for network count data, the Overdispersed-Poisson-BEDD model can be defined to capture a
dispersion effect, separately from the row and column effects, for λ > 0, α ≥ 0,

ξi
i.i.d.∼ U[0,1], ∀1 ≤ i ≤m,

ηj
i.i.d.∼ U[0,1], ∀1 ≤ j ≤ n,

Wij
i.i.d.∼ L(α), ∀1 ≤ i ≤m,1 ≤ j ≤ n,

Yij ∣ ξi, ηj ,Wij ∼ P(λf(ξi)g(ηj)Wij), ∀1 ≤ i ≤m,1 ≤ j ≤ n,

where (L(α))α≥0 is a family of probability distributions on the nonnegative real numbers with mean
1 and parameterized by their variances, i.e. for all 1 ≤ i ≤ m,1 ≤ j ≤ n, E[Wij] = 1 and V[Wij] = α.
Like the Poisson-BEDD model, the Overdispersed-Poisson-BEDD model is row-column exchangeable
and admits a similar AHK representation, the only difference being the addition of the latent variables
(Wij)1≤i≤m,1≤j≤n, each of which is measurable by the σ-field generated by the corresponding AHK variable
ζij . We see that

V[Yij] = E[Y 2
ij] −E[Yij]2 = E[λ2f(ξi)2g(ηj)2W 2

ij] + λ − λ2 = λ2(F2G2(α + 1) − 1) + λ,

which is larger than the variance under the Poisson-BEDD model derived in (8) by an additive term
λ2F2G2α. The Overdispersed-Poisson-BEDD model is simplified into the Poisson-BEDD model (7)
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when the dispersion parameter α = 0. Therefore, we can use this network model to test the hypothesis
H0 ∶ α = 0, which allows us to assess whether the Poisson-BEDD model is appropriate to represent the
data concerning its dispersion.

Let h4 and h5 be kernels functions defined by

h4(Y{1,2},{1,2}) =
1

4
(Y11(Y11 − 1)Y22 + Y12(Y12 − 1)Y21 + Y21(Y21 − 1)Y12 + Y22(Y22 − 1)Y11)

and
h5(Y{1,2},{1,2}) =

1

4
(Y11Y12Y22 + Y12Y22Y21 + Y22Y21Y11 + Y21Y11Y12) .

We have E[h4(Y{1,2},{1,2})] = λ3F2G2(1 + α) and E[h5(Y{1,2},{1,2})] = λ3F2G2, therefore, the kernel
function h6 ∶= h4 − h5 has expectation

E[h6(Y{1,2},{1,2})] = λ3F2G2α,

which is zero under H0 only. Thus, we can use the associated U -statistic Uh6

N to test H0.
The first-order projection terms are given by Lemmas G.2 and G.3. Under H0, we notice that

• E[h6(Y{1,2},{1,2}) ∣ ξ1] = 0,

• E[h6(Y{1,2},{1,2}) ∣ η1] = 0.

Therefore, we can deduce that Uh6

N is a degenerate U -statistic. Like in the previous example, we determine
its order of degeneracy by finding the principal support graphs. This is done by searching for the graphs
of ∪r+c=dΓr,c such that E[h6(Y{1,2},{1,2}) ∣H(G)] ≠ 0 under H0, for increasing values of d until some are
found.

The projection terms corresponding to d = 2 are given by Lemmas G.4 to G.7. Here, we see that
under H0,

• E[h6(Y{1,2},{1,2}) ∣ ξ1, ξ2] = 0,

• E[h6(Y{1,2},{1,2}) ∣ η1, η2] = 0,

• E[h6(Y{1,2},{1,2}) ∣ ξ1, η1] = 0,

• E[h6(Y{1,2},{1,2}) ∣ ξ1, η1, ζ12] ≠ 0.

This means that we have found one (and only one) graph G of ∪r+c=2Γr,c such that E[h6(Y{1,2},{1,2}) ∣
H(G)] ≠ 0. This graph is the one such that H(G) = σ(ξ1, η1, ζ12). Thus, the order of degeneracy of Uh6

N

is 1 and its principal support graphs are the graphs (K{i},{j})1≤i≤n,1≤j≤m.

3.2 Convergence of degenerate U-statistics
Now, having defined the principal part of a U -statistic, we see how it is directly related to the limit
distribution of the U -statistic. From Proposition 2.3, we have

V[UN ] = ∑
(0,0)<(r,c)≤(p,q)

(mN − r)!
mN !

(nN − c)!
nN !

V (r,c)

We see that V[UN ] is the sum of the p×q terms of the form (mN−r)!
mN !

(nN−c)!
nN !

V (r,c). Each term behaves like
(mN−r)!

mN !
(nN−c)!

nN !
V (r,c) ≍ N−r−c. If for some (r, c), ∑ G∈Kp,q

(v1(G),v2(G))=(r,c)
pG = 0, then V (r,c) = 0. Therefore,

V[UN ] = N−d ∑
(0,0)<(r,c)≤(p,q)

r+c=d

ρ−r(1 − ρ)−cV (r,c) + o(N−d)

= N−d
d

∑
r=0

ρ−r(1 − ρ)−d−rV (r,d−r) + o(N−d)

This is a hint that the right normalization for the convergence in distribution of UN is given by its
principal degrees. The following theorem, proven in Appendix C, confirms it.
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Theorem 3.2. There is a random variable W such that Nd/2(UN − p∅)
DÐ→W if and only if

Nd/2 ∑
(0,0)<(r,c)≤(p,q)

r+c=d

P r,c
N

DÐ→W.

This theorem says that the limit distribution of UN − p∅ renormalized by Nd/2 is the same as that
of its principal part ∑(0,0)≤(r,c)≤(p,q)

r+c=d
P r,c
N , renormalized by the same quantity. Therefore, the principal

support graphs of UN characterize the limit distribution of UN . More specifically, the limit distribution
depends on the form of the principal support graphs of UN .

3.3 Asymptotic Gaussian distribution
Now, we identify a sufficient condition for the principal support graphs to have a Gaussian limit distri-
bution for Nd/2(UN − p∅), using the properties of the principal part of UN .

Theorem 3.3. If all principal support graphs of UN are connected, then

Nd/2(UN − p∅)
DÐÐÐ→

N→∞
N (0, σ2),

where
σ2 = ∑

(0,0)<(r,c)≤(p,q)
r+c=d

ρ−r(1 − ρ)−cV (r,c).

The proof of this theorem uses the fact that from Theorem 3.2, Nd/2(UN − p∅) has the same limit as

Nd/2 ∑
(0,0)<(r,c)≤(p,q)

r+c=d

P r,c
N ,

where
P r,c
N = ∑

G∈Γr,c

1

(p − r)!(q − c)!∣Aut(G)∣
P̃G
N .

Two lemmas are further needed. The convergence of the terms Nd/2P̃G
N is proved by the methods of

moments (Lem. 3.5). The calculation of the moments involves sums of terms of the form E[∏K
k=1 p

Gk], the
values of which depend on the configuration of the sequence of graphs G1, ...,Gk (Lem. 3.4). Therefore,
the moments are obtained by counting the frequency of the relevant configurations in these sums.

Below, Lemmas 3.4 and 3.5 are given before the full proof of Theorem 3.3. The proofs for these
lemmas can be found in Appendix D.

Lemma 3.4. Let G1, ...,GK be subgraphs of KmN ,nN
. If E[∏K

k=1 p
Gk] ≠ 0, then for all Gk, 1 ≤ k ≤ K,

each vertex of V1(Gk) or V2(Gk) or edge of E(Gk) must also appear in another Gℓ, ℓ ≠ k.
Furthermore, if G1, ...,GK are connected and non-empty, then one and only one of the following

propositions is true:

• K is even and G1, ...,GK coincide in K/2 pairs (i.e. the indices JKK can be grouped into K/2 pairs
and within each pair, the corresponding bipartite graphs are equal),

• some vertex belongs to at least three of these graphs.

Lemma 3.5. Let (Gk)1≤k≤K be a sequence of distinct connected graphs of Γ−p,q, with v1(Gk) = rk and
v2(Gk) = ck for 1 ≤ k ≤K. We have that

(mrk/2
N n

ck/2
N P̃Gk

N )1≤k≤K
DÐ→ (Wk)1≤k≤K , (9)

where Wk are independent variables with respective distribution N (0, p!2q!2∣Aut(Gk)∣E[(pGk)2]).
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Proof of Theorem 3.3. Theorem 3.2 states that Nd/2(UN − p∅) has the same limit as

Nd/2 ∑
(0,0)<(r,c)≤(p,q)

r+c=d

P r,c
N .

For all (0,0) < (r, c) ≤ (p, q),

P r,c
N = ∑

G∈Γr,c

1

(p − r)!(q − c)!∣Aut(G)∣
P̃G
N .

So

Nd/2 ∑
(0,0)<(r,c)≤(p,q)

r+c=d

P r,c
N = ∑

(0,0)<(r,c)≤(p,q)
r+c=d

Nd/2m
−r/2
N n

−c/2
N ∑

G∈Γr,c

m
r/2
N n

c/2
N P̃G

N

(p − r)!(q − c)!∣Aut(G)∣
.

By construction, Nd/2m
−r/2
N n

−c/2
N ÐÐÐ→

N→∞
ρ−r/2(1 − ρ)−c/2. Therefore, by Lemma 3.5,

Nd/2 ∑
(0,0)<(r,c)≤(p,q)

r+c=d

P r,c
N

converges in distribution to

Z = ∑
(0,0)<(r,c)≤(p,q)

r+c=d

ρ−r/2(1 − ρ)−c/2 ∑
G∈Γr,c

WG,

where for all (r, c), G ∈ Γr,c, WG are independent Gaussian variables with mean 0 and variance

p!2q!2

(p − r)!2(q − c)!2∣Aut(G)∣
E[(pG)2].

Finally, it follows that Z is a Gaussian variable with mean 0 and variance

∑
(0,0)<(r,c)≤(p,q)

r+c=d

ρ−r(1 − ρ)−cV (r,c),

where

V (r,c) = p!2q!2

(p − r)!2(q − c)!2 ∑
G∈Γr,c

∣Aut(G)∣−1E[(pG)2].

Remark 3. If Y and h are such that the principal support graphs of UN include K1,0 and K0,1, then the
principal degree of UN is 1, and the limit distribution is Gaussian. In this case, Theorem 3.3 directly yields
the non-degenerate Central Limit Theorem for U -statistics on RCE matrices, as established by Le Minh
(2023) and Le Minh et al. (2023):

√
N(UN − p∅)

DÐÐÐ→
N→∞

N (0, σ2),

where σ2 = ρ−1V (1,0) + (1 − ρ)−1V (0,1), with Proposition 2.3 giving V (1,0) = p2V[E[h(YJpK,JqK) ∣ ξ1]] and
V (0,0) = q2V[E[h(YJpK,JqK) ∣ η1]].
This also characterizes the degeneracy of UN . UN is degenerate if and only if V = 0, which means both
E[h(YJpK,JqK) ∣ ξ1] = 0 and E[h(YJpK,JqK) ∣ η1] = 0. This also only happens when neither K1,0 nor K0,1 are
principal support graphs, i.e. when the order of degeneracy of UN is larger than 1.
We deduce that there is no hope to obtain a faster rate of convergence than

√
N in non-degenerate cases

and that it is always greater in degenerate cases. This is in accordance with the discussion of Le Minh
(2023), but it shows how the principal support graphs and the order of degeneracy of UN characterize
the degeneracy of UN .
This characterization also shows that the coarser decomposition proposed by Le Minh (2023) is inade-
quate for identifying the precise distribution of degenerate U -statistics. The terms in the decomposition
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of Le Minh (2023) are indexed by pairs (r, c), where r ∈ JpK and c ∈ JqK. Each term (r, c) of that de-
composition aggregates the contributions of the finer decomposition presented in this paper, specifically
summing over all bipartite graphs with r row nodes and c column nodes. However, the topology of these
bipartite graphs determines the contribution of each term to the asymptotic distribution. In the decom-
position of Le Minh (2023), terms associated with graphs of distinct topologies are indistinguishable.
Because of that, a result such as Lemma 3.5 cannot be obtained for any term of that decomposition,
except for those of the first-order (because the graphs with (r, c) = (0,1) or (1,0) are trivial), which only
solves the non-degenerate case.

Example 1 (Weighted bipartite Erdös-Rényi graph, continued). Let Y be a random matrix such that
Yij

i.i.d.∼ N (0,1). Let h1 be the kernel function defined by h1(Y{1},{1,2}) = Y11Y12 and Uh1

N the U -statistic
associated to this kernel. In Section 3.1, we have seen that Uh1

N is degenerate of order 2 and the family
of principal support graphs of Uh1

N is (Ki,j)i∈P1(JmN K),j∈P2(JnN K), which are all connected.
Therefore, Theorem 3.3 implies

N3/2Uh1

N

DÐÐÐ→
N→∞

N (0, σ2
1),

where σ2
1 = V (1,2) = 4

ρ(1−ρ)2 ∣Aut(K1,2)∣−1E[(pK1,2)2] = 4
ρ(1−ρ)2

1
2
E[Y 2

11Y
2
12] = 2

ρ(1−ρ)2 .

Example 2 (Row heterogeneity, continued). We have previously seen that under the Poisson-BEDD model
with f ≡ 1, the principal support graphs of Uh3

N = U
h1

N − U
h2

N are the graphs (Ki,j)i∈P1(JmN K),j∈P2(JnN K),
which are connected graphs. Therefore, we can apply Theorem 3.3, implying that

N3/2Uh3

N

DÐÐÐ→
N→∞

N (0, σ2
3),

where σ2
3 = V (1,2) = 16

ρ(1−ρ)2 ∣Aut(K1,2)∣−1E[(pK1,2)2] = 2λ2

ρ(1−ρ)2 , applying Lemma F.11 with F2 = F3 = F4 =
1 under H0 ∶ f ≡ 1. Thus, Uh3

N has a known asymptotic distribution and can be used to build a statistical
test for H0. Simulations illustrating this convergence result can be found in Appendix H.

Example 3 (Model goodness-of-fit, continued). Like for Example 2, we can derive the asymptotic dis-
tribution of the U -statistic used in Example 3. Under the Overdispersed-Poisson-BEDD model with
α = 0, the principal support graphs of Uh6

N = U
h4

N − U
h5

N are the graphs (K{i},{j})1≤i≤n,1≤j≤m, which are
connected graphs. According to Theorem 3.3, we have

NUh6

N

DÐÐÐ→
N→∞

N (0, σ2
6),

where σ2
6 = V (1,1) = 16

ρ(1−ρ) ∣Aut(K1,1)∣−1E[(pK1,1)2] = 16
ρ(1−ρ)E[E[h6(Y{1,2},{1,2}) ∣ ξ1, η1, ζ11]2] and can be

calculated using Lemma G.7 and setting α = 0. Thus, a statistical test can be built from Uh6

N to test H0.
Simulations illustrating this convergence result can be found in Appendix H.

3.4 Other asymptotic frameworks
In previous sections, we have assumed that mN +nN = N and mN /N → ρ ∈]0,1[. It is in fact possible to
extend all our results to any asymptotic behavior. In this section, let us only assume that mN ÐÐÐ→

N→∞
∞

and nN ÐÐÐ→
N→∞

∞ and see how it affects the limit distribution of UN .
The principal part of UN should be the dominant part of the variance. Remember that Proposition 2.3

states that
V[UN ] = ∑

(0,0)<(r,c)≤(p,q)

(mN − r)!
mN !

(nN − c)!
nN !

V (r,c).

We see that V[UN ] is the sum of the p×q terms of the form (mN−r)!
mN !

(nN−c)!
nN !

V (r,c). Each term behaves like
(mN−r)!

mN !
(nN−c)!

nN !
V (r,c) ≍ m−rN n−cN . The dominant part of V[UN ] is consist of the terms m−rN n−cN decreasing

the slowest such that V (r,c) ≠ 0.
There is no equivalent to the previously defined order of degeneracy, but we can redefine principal de-

grees. Let the family of pairs ((rℓ, cℓ))1≤ℓ≤L be such that mr1
Nnc1

N ≍ ... ≍m
rL
N ncL

N and V[UN ] ≍ ∑L
ℓ=1

V (rℓ,cℓ)

m
rℓ
N

n
cℓ
N

.
We can call these pairs the principal degrees of UN , by analogy with the previous case. The quantity
∑L

ℓ=1 P
rℓ,cℓ
N is called the principal part of UN . We call the principal support graphs of UN the graphs G

such that
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• (v1(G), v2(G)) ∈ {(rℓ, cℓ) ∶ 1 ≤ ℓ ≤ L},

• pG ≠ 0.

Example 4. Suppose (mN , nN) = (N,
√
N) and V (0,1) = 0 but V (0,2) ≠ 0 and V (1,0) ≠ 0, then the principal

degrees are (1,0) and (0,2) because mN = n2
N = N and V[UN ] = N−1(V (1,0) + V (0,2)). In this case, one

valid choice of γ(N) is γ(N) = N .

Example 5. Suppose again that (mN , nN) = (N,
√
N), but this time V (0,1) = V (0,2) = V (1,0) = 0. If

V (1,1) ≠ 0 and V (0,3) ≠ 0, then the principal degrees are (1,1) and (0,3) because mNnN = n3
N = N3/2. In

this case, one valid choice of γ(N) is γ(N) = N3/2.

In this asymptotic framework, there is no reason that Nd/2 is the right normalization for the weak
convergence of U -statistics. If the elements of ((rℓ, cℓ))1≤ℓ≤L are the principal degrees of UN , then there
is a function γ such that m−rℓN n−cℓN γ(N) ÐÐÐ→

N→∞
αℓ, where αℓ > 0 for all 1 ≤ ℓ ≤ L and γ(N)V[UN ] =

∑1≤ℓ≤L αℓV
(rℓ,cℓ) +o(1). Next, we state the equivalent result to Theorem 3.2 in the new framework. The

proof for this theorem is given in E.1.

Theorem 3.6. There is a random variable W such that
√
γ(N)∑L

ℓ=1 P
rℓ,cℓ
N

DÐ→ W if and only if
√
γ(N)(UN − p∅)

DÐ→W .

This theorem says that the limit distribution of UN − p∅ renormalized by
√
γ(N) is the same as that

of its principal part ∑L
ℓ=1 P

rℓ,cℓ
N , renormalized by the same quantity. Therefore, similar to the initial

framework, we shall investigate the asymptotic behavior of UN by studying its principal part.
In practice, one has to identify the principal part by finding the principal degrees of UN . The

principal degrees depend both on the kernel h and the asymptotic behavior of (mN , nN). After finding
the principal degrees, then a function γ(N) can be found. With γ(N) and the principal degrees, the
coefficients αℓ can be calculated to yield an expression for the variance.

Now, we derive the equivalent to Theorem 3.3, i.e. the convergence result when the principal support
graphs of UN are connected. The proof of this theorem is given in Appendix E.2.

Theorem 3.7. If all principal support graphs of UN are connected, then

√
γ(N)(UN − p∅)

DÐÐÐ→
N→∞

N (0, σ2),

where

σ2 =
L

∑
ℓ=1

αℓV
(rℓ,cℓ).

Unsurprisingly, this theorem states that the limit distribution for
√
γ(N)(UN −p∅) is still a Gaussian

like in Theorem 3.3, but with a different expression for the variance. The new variance consists of terms
associated of the principal degrees of UN , depending on the behavior of mN and nN .

4 Conclusion
In this paper, we have introduced a new orthogonal decomposition for U -statistics on RCE matrices,
providing a framework to characterize their asymptotic behavior. This decomposition relies on parti-
tioning the probability space into orthogonal subspaces generated by specific sets, termed graph sets, of
AHK variables. The asymptotic behavior of a U -statistic is determined by its principal part, which is
composed of the leading non-zero terms of the decomposition. The graphs corresponding to these terms
are referred to as the principal support graphs.

Principal support graphs play a central role in determining the asymptotic behavior of U -statistics.
We have shown that all principal support graphs of a given U -statistic have the same number of nodes,
which defines the principal degree. The principal degree corresponds to the order of degeneracy in
traditional U -statistics of i.i.d. variables, determining the rate of convergence to the limit distribution.
For that reason, degeneracy seems to be a desirable property of U -statistics for statistical applications,
where a faster rate of convergence improves the precision of estimators, leading to tighter confidence
intervals and more powerful hypothesis tests.
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Nevertheless, identifying limit distributions in degenerate cases remains a challenging task, even for U -
statistics of i.i.d. variables. For RCE matrices, we have shown that a simple assumption on the topology of
principal support graphs, namely connectedness, ensures that the limit distribution is Gaussian. When
this assumption holds, we obtain a simple limit distribution, but also, in degenerate cases, a rate of
convergence exceeding

√
N . While a similar result has been discussed in Janson and Nowicki (1991), this

highlights a significant difference with U -statistics of i.i.d. variables, for which degenerate cases yield more
complex limit distributions, expressed as higher-degree polynomials of Gaussians with no straightforward
expressions (Rubin and Vitale, 1980; Lee, 1990). Future research could focus on characterizing the
limit distributions of U -statistics on RCE matrices under different assumptions. In particular, the case
where principal support graphs exhibit multiple connected components presents an intriguing avenue for
exploration, though we anticipate that the resulting limit distributions would be more complex.
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A Proofs for Section 2.1
Proof of Proposition 2.1. We show that for all F and F ′ such that F ′ ⊂ F , we have that E[pF (X) ∣
H(F ′)] = 0 by induction on F . First, notice that p∅(X) = E[X] ∈ L∗2(∅) being the space of constant
variables. Next, fix F and suppose that the induction hypothesis is true for all F ⊂ F , i.e. for all F and
F ′ such that F ′ ⊆ F ⊂ F , we have that E[pF (X) ∣H(F ′)] = 0. Now we can calculate for all F ′ ⊂ F ,

E[pF (X) ∣H(F ′)] = E[E[X ∣H(F )] ∣H(F ′)] − ∑
F⊂F

E[pF (X) ∣H(F ′)]

= E[X ∣H(F ′)] − pF
′

(X) − ∑
F⊂F
F≠F ′

E[pF (X) ∣H(F ′)]

= ∑
F⊂F ′

E[pF (X) ∣H(F ′)] − ∑
F⊂F
F≠F ′

E[pF (X) ∣H(F ′)]

= − ∑
F⊂F
F /⊂F ′

E[pF (X) ∣H(F ′)]

= − ∑
F⊂F
F /⊂F ′

E[pF (X) ∣H(F ′ ∩ F )].

By the induction hypothesis, all the terms of this sum are equal to 0, which concludes the proof by
induction.

B Proofs for Section 2.3
Proof of Proposition 2.3.

V[Um,n] = ∑
(0,0)<(r,c)≤(p,q)

V[P r,c
m,n]

= ∑
(0,0)<(r,c)≤(p,q)

(m
p
)
−2
(n
q
)
−2

∑
i,i′∈Pp(JmK)
j,j′∈Pq(JnK)

∑
G⊆Ki,j,G

′⊆Ki′,j′

(v1(G),v2(G))=(r,c)
(v1(G′),v2(G′))=(r,c)

Cov(pG, pG
′

)

= ∑
(0,0)<(r,c)≤(p,q)

(m
p
)
−1
(n
q
)
−1
(m − r
p − r

)(n − c
q − c
)r!(p

r
)c!(q

c
) ∑
G∈Γr,c

∣Aut(G)∣−1V[pG]

= ∑
(0,0)<(r,c)≤(p,q)

(m
r
)
−1
(n
c
)
−1
r!(p

r
)
2

c!(q
c
)
2

∑
G∈Γr,c

∣Aut(G)∣−1E[(pG)2]

= ∑
(0,0)<(r,c)≤(p,q)

(m − r)!
m!

(n − c)!
n!

V (r,c)

Proof of Lemma 2.5. Let G ∈ Γr,c.

V[P̃G
m,n] = (

m

p
)
−2
(n
q
)
−2

∑
i,i′∈Pp(JmK)
j,j′∈Pq(JnK)

Cov(p̃Gi,j, p̃Gi′,j′)

= (m
p
)
−2
(n
q
)
−2

∑
i,i′∈Pp(JmK)
j,j′∈Pq(JnK)

∑
Φ,Φ′∈Sp×Sq

Cov(pΦGi,j , pΦ
′Gi′,j′ )

where for all (i, j) ∈ Pp(JmK) ×Pq(JnK), Gi,j is any graph of Ki,j which is isomorphic to G.
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Now see that if ΦGi,j ≠ Φ′Gi′,j′ , then Cov(pΦGi,j , pΦ
′Gi′,j′ ) = 0. Otherwise ΦGi,j = Φ′Gi′,j′ , then

Cov(pΦGi,j , pΦ
′Gi′,j′ ) = V[pG] = E[(pG)2]. So, it follows that

V[P̃G
m,n] = (

m

p
)
−2
(n
q
)
−2

∑
i,i′∈Pp(JmK)
j,j′∈Pq(JnK)

∑
Φ,Φ′∈Sp×Sq

1(ΦGi,j = Φ′Gi′,j′)E[(pG)2].

Finally, applying Lemma 2.6, we have

V[P̃G
m,n] = (

m

p
)
−2
(n
q
)
−2m!(m − r)!
(m − p)!2

n!(n − c)!
(n − q)!2

∣Aut(G)∣E[(pG)2]

= (m − r)!
m!

(n − c)!
n!

p!2q!2∣Aut(G)∣E[(pG)2].

Proof of Lemma 2.6. First, fix i1, j1,Φ1. Write G1 ∶= Φ1G
1
i1,j1

. We count the number of picks for i2, j2,Φ2

such that Φ2G
2
i2,j2
= G1.

i2 and j2 must contain the r row nodes and the c column nodes of G1 and Φ2 must place these nodes
in the same order than in G1, or belong to its automorphism group. This happens for (m−r

p−r )(
n−c
q−c) picks

for (i2, j2) and for each, there are (p − r)!(q − c)!∣Aut(G)∣ valid picks for Φ2.
This happens for all (m

p
)(n

q
) picks of (i1, j1) and p!q! picks of Φ1. Therefore,

∑
i1,i2∈Pp(JmK)
j1,j2∈Pq(JnK)

∑
Φ1,Φ2∈Sp×Sq

1(Φ1G
1
i1,j1 = Φ2G

2
i2,j2)

= (m
p
)(n

q
)(m − r

p − r
)(n − c

q − c
)p!q!(p − r)!(q − c)!∣Aut(G)∣,

which develops into the form given by this lemma.

C Proofs for Section 3.2
Proof of Theorem 3.2. Since, d − 1 is the order of degeneracy, we have P r,c

N = 0 for all (r, c) such that
r + c < d. Therefore, we have UN − p∅ −∑(0,0)≤(r,c)≤(p,q)

r+c=d
P r,c
N = ∑(0,0)≤(r,c)≤(p,q)

r+c>d
P r,c
N . So

V

⎡⎢⎢⎢⎢⎢⎢⎣

Nd/2
⎛
⎜⎜
⎝
UN − p∅ − ∑

(0,0)≤(r,c)≤(p,q)
r+c=d

P r,c
N

⎞
⎟⎟
⎠

⎤⎥⎥⎥⎥⎥⎥⎦

= Nd ∑
(0,0)≤(r,c)≤(p,q)

r+c>d

V[P r,c
N ]

= Nd ∑
(0,0)≤(r,c)≤(p,q)

r+c>d

(mN − r)!
mN !

(nN − c)!
nN !

V (r,c).

But for all (r, c), we have (mN−r)!
mN !

(nN−c)!
nN !

= O(N−r−c), therefore

V

⎡⎢⎢⎢⎢⎢⎢⎣

Nd/2
⎛
⎜⎜
⎝
UN − p∅ − ∑

(0,0)≤(r,c)≤(p,q)
r+c=d

P r,c
N

⎞
⎟⎟
⎠

⎤⎥⎥⎥⎥⎥⎥⎦

= Nd ×O
⎛
⎜⎜
⎝

∑
(0,0)≤(r,c)≤(p,q)

r+c>d

N−r−c
⎞
⎟⎟
⎠

= Nd × o(N−d)
= o(1).

Finally, this implies that Nd/2(UN−p∅) = Nd/2∑(0,0)≤(r,c)≤(p,q)
r+c=d

P r,c
N +oP (1), which proves the theorem.
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D Proofs for Section 3.3
Proof of Lemma 3.4. For some ℓ ∈ JKK, denote G

(−ℓ)
1∶k = ∪

k
i=1
i≠ℓ

Gi. We have

E[
K

∏
k=1

pGk] = E[E[
K

∏
k=1

pGk ∣H(G(−ℓ)1∶K )]]

=
K

∏
k=1
k≠ℓ

pGkE[E[pGℓ ∣H(G(−ℓ)1∶K )]]

=
K

∏
k=1
k≠ℓ

pGkE[E[pGℓ ∣H(Gℓ ∩G(−ℓ)1∶K )]].

Suppose there is a vertex or edge of a Gℓ that does not belong to any other Gk, k ≠ ℓ. In this case,
Gℓ ∩G(−ℓ)1∶K ⊂ Gℓ, so E[pGℓ ∣H(Gℓ ∩G(−ℓ)1∶K )] = 0, which proves the first result.

From that result, if E[∏K
k=1 p

Gk] ≠ 0 and no vertex belongs to more than two of G1, ...,GK , then
each vertex and edge belongs to exactly two of them. This also means that every connected component
must belong to exactly two of them. Therefore, if all graphs are connected, then these graphs coincide
in pairs.

Proof of Lemma 3.5. Let ak be nonnegative integers. For all (i, j) ∈ Pp(JmN K) ×Pq(JnN K), let Gk,i,j be
a graph of Ki,j which is isomorphic to Gk. Then

E[
K

∏
k=1
(mrk/2

N n
ck/2
N P̃Gk

N )
ak]

=m∑
K
k=1 akrk/2

N (mN

p
)
−∑K

k=1 ak

n∑
K
k=1 akck/2

N (nN

q
)
−∑K

k=1 ak

E

⎡⎢⎢⎢⎢⎢⎢⎢⎣

K

∏
k=1

⎛
⎜⎜⎜
⎝

∑
ik∈Pp(JmN K)
jk∈Pq(JnN K)

p̃Gk

ik,jk

⎞
⎟⎟⎟
⎠

ak⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

where we can develop

E

⎡⎢⎢⎢⎢⎢⎢⎢⎣

K

∏
k=1

⎛
⎜⎜⎜
⎝

∑
ik∈Pp(JmN K)
jk∈Pq(JnN K)

p̃Gk

ik,jk

⎞
⎟⎟⎟
⎠

ak⎤⎥⎥⎥⎥⎥⎥⎥⎦

= ∑
iℓk∈Pp(JmN K)
jℓk∈Pq(JnN K)

E [
K

∏
k=1

ak

∏
ℓ=1

p̃Gk

iℓ
k
,jℓ

k

]

= ∑
iℓk∈Pp(JmN K)
jℓk∈Pq(JnN K)

∑
Φk

ℓ
∈Sp×Sq

E [
K

∏
k=1

ak

∏
ℓ=1

p
Φℓ

kGk,iℓ
k
,jℓ
k ] .

Lemma 3.4 states that E[∏K
k=1∏

ak

ℓ=1 p
Φℓ

kGk,iℓ
k
,jℓ
k ] ≠ 0 if and only if either all the Φℓ

kGk,iℓ
k
,jℓ

k
coincide in

pairs (and only in pairs), or no vertex appears in exactly one of these graphs and at least one vertex
appears in at least three.

In the second case, assume without loss of generality that a row node appears in three graphs.
Then G∗(iℓ

k
),(jℓ

k
) ∶= ∪

K
k=1 ∪

ak

j=1 Φℓ
kGk,iℓ

k
,jℓ

k
has v1(G∗(iℓ

k
),(jℓ

k
)) row nodes and v2(G∗(iℓ

k
),(jℓ

k
)) column nodes,

where max rk ≤ v1(G∗(iℓ
k
),(jℓ

k
)) ≤ ∑

K
k=1 akrk/2 − 1 and max ck ≤ v2(G∗(iℓ

k
),(jℓ

k
)) ≤ ∑

K
k=1 akck/2 − 1 (we have

max rk ≤ ∑K
k=1 akrk/2 − 1 and max ck ≤ ∑K

k=1 akck/2 − 1, else E[∏K
k=1∏

ak

ℓ=1 p
Φℓ

kGk,iℓ
k
,jℓ
k ] = 0).

Let (max rk,max ck) ≤ (r∗, c∗) ≤ (p, q). Let us count the number of terms of the sum such that
v1(G∗(iℓ

k
),(jℓ

k
)) = r

∗ and v2(G∗(iℓ
k
),(jℓ

k
)) = c

∗. There are exactly (mN

r∗
)(nN

c∗
) ways to pick r∗ row nodes and

c∗ nodes for G∗(iℓ
k
),(jℓ

k
). Now, for a specific set of r∗ row nodes and c∗ column nodes, for each 1 ≤ k ≤K,

1 ≤ ℓ ≤ ak, there are (r
∗

rk
)(c

∗

ck
)(mN−r∗

p−rk )(
nN−c∗
q−ck ) ways to pick (iℓk, jℓk) such that the nodes of Gk,iℓ

k
,jℓ

k
are

contained in the r∗ specific row nodes and c∗ specific column nodes. Therefore, there are at most
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p!q!(r
∗

rk
)(c

∗

ck
)(mN−r∗

p−rk )(
nN−c∗
q−ck ) picks for (iℓk, jℓk) and Φℓ

k. Finally, the number of terms is smaller than

Br∗,c∗

N ∶= (mN

r∗
)(nN

c∗
)

K

∏
k=1

ak

∏
ℓ=1

p!q!(r
∗

rk
)(mN − r∗

p − rk
)(nN − c∗

q − ck
)

= (mN

r∗
)(nN

c∗
)

K

∏
k=1
[p!q!(r

∗

rk
)(mN − r∗

p − rk
)(nN − c∗

q − ck
)]

ak

= O (mr∗

N nc∗

N

K

∏
k=1
[mp−rk

N nq−ck
N ]ak)

= O (mr∗+∑K
k=1 ak(p−rk)

N n
c∗+∑K

k=1 ak(q−ck)
N ) .

The total number of these terms is

BN ≤ ∑
(max rk,max ck)≤(r∗,c∗)≤(∑K

k=1 akrk/2−1,∑K
k=1 akck/2)

Br∗,c∗

N

= O(B∑
K
k=1 akrk/2−1,∑K

k=1 akck/2
N )

= O (m∑
K
k=1 ak(p−rk/2)−1

N n∑
K
k=1 ak(q−ck/2)

N )

= o(m∑
K
k=1 ak(p−rk/2)

N n∑
K
k=1 ak(q−ck/2)

N ) .

We notice that the contribution of these terms is o(1) in equation (D).
Now, there remains the terms of the first case, where the Φℓ

kGk,iℓ
k
,jℓ

k
coincide in pairs. Note that

since the Gk are non-isomorphic, only graphs arising for the permutations of the same graph Gk can
coincide. Therefore, the ak are necessarily even. Furthermore, for each k, there are ak/2 different pairs of
coinciding graphs Φℓ

kGk,iℓ
k
,jℓ

k
. There are ak!

2ak/2(ak/2)!
ways to partition a set of ak graphs into ak/2 pairs.

Fix k, ℓ1, ℓ2. The number of picks for iℓ1k , jℓ1k , iℓ2k , jℓ2k ,Φℓ1 ,Φℓ2 such that Φℓ1
k G

k,i
ℓ1
k

,j
ℓ1
k

= Φℓ2
k G

k,i
ℓ2
k

,j
ℓ2
k

is
given by Lemma 2.6. Accounting for all ak/2 pairs of the type (ℓ1, ℓ2), there are

mN !(mN − rk)!
(mN − p)!2

nN !(nN − ck)!
(nN − q)!2

∣Aut(G)∣.

Therefore, taking into account the number of possible pairings and the picks for all 1 ≤ k ≤ K,
1 ≤ ℓ ≤ ak, there are

AN =
K

∏
k=1

ak!

2ak/2(ak/2)!
(mN !(mN − rk)!
(mN − p)!2

nN !(nN − ck)!
(nN − q)!2

∣Aut(Gk)∣)
ak/2

=m∑
K
k=1 ak(rk/2−p)

N n∑
K
k=1 ak(ck/2−q)

N

K

∏
k=1

ak!

2ak/2(ak/2)!
∣Aut(Gk)∣ak/2

+ o(m∑
K
k=1 ak(rk/2−p)

N n∑
K
k=1 ak(ck/2−q)

N ) .

Each of these AN terms is equal to E [∏K
k=1∏

ak

ℓ=1 p
Φℓ

kGk,iℓ
k
,jℓ
k ] =∏K

k=1E[(pGk)2]ak/2.

In conclusion, if all the ak are even, then

E [
K

∏
k=1
(mrk/2

N n
ck/2
N P̃Gk

N )
ak] =m∑

K
k=1 akrk/2

N (mN

p
)
−∑K

k=1 ak

n∑
K
k=1 akck/2

N (nN

q
)
−∑K

k=1 ak

×AN

K

∏
k=1

E[(pGk)2]ak/2

= (p!q!)∑
K
k=1 ak

K

∏
k=1

ak!

2ak/2(ak/2)!
∣Aut(Gk)∣ak/2E[(pGk)2]ak/2

=
K

∏
k=1

ak!

2ak/2(ak/2)!
(p!2q!2∣Aut(Gk)∣E[(pGk)2])ak/2

,
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and in the general case,

E[
K

∏
k=1
(mrk/2

N n
ck/2
N P̃Gk

N )
ak]

=
⎧⎪⎪⎨⎪⎪⎩

∏K
k=1

ak!
2ak/2(ak/2)!

(p!2q!2∣Aut(Gk)∣E[(pGk)2])ak/2 if all ak are even,

0 if at least one ak is odd.

(10)

Else, if there is at least one odd ak, we have E[∏K
k=1(m

rk/2
N n

ck/2
N P̃Gk

N )
ak] = 0.

We remind that the moment of order a of a Gaussian variable X with mean 0 and variance σ2 is

E[Xa] =
⎧⎪⎪⎨⎪⎪⎩

a!
2a/2(a/2)!σ

a if a is even,
0 if a is odd.

So the application of the methods of moments to equation (10) concludes the proof of this lemma.

E Proofs for Section 3.4

E.1 Proof of Theorem 3.6
In order to prove Theorem 3.6, define S = {(rℓ, cℓ) ∶ 1 ≤ ℓ ≤ L} the set of principal degrees of h. We may
define S0 the set of pairs (0,0) < (r0, c0) ≤ (p, q) such that γ(N)−1 = o(m−r0N n−c0N ), for any (r, c) ∈ S. We
may also define S+, the set of pairs (0,0) < (r+, c+) ≤ (p, q) such that m−r+N n−c+N = o(γ(N)−1), for any
(r, c) ∈ S. We need the following lemma.

Lemma E.1. For all (r, c) ∈ S0, for all graphs G such that (v1(G), v2(G)) = (r, c), we have pG = 0.

Proof. We have

V[UN ] = ∑
(0,0)<(r,c)≤(p,q)

(mN − r)!
mN !

(nN − c)!
nN !

V (r,c)

= ∑
(r,c)∈S0

(mN − r)!
mN !

(nN − c)!
nN !

V (r,c) + ∑
(r,c)∈S

(mN − r)!
mN !

(nN − c)!
nN !

V (r,c)

+ ∑
(r,c)∈S+

(mN − r)!
mN !

(nN − c)!
nN !

V (r,c).

By definition, (r, c) ∈ S+, m−rN n−cN = o(γ(N)−1) and

V[UN ] = γ(N)−1 ∑
1≤ℓ≤L

αℓV
(rℓ,cℓ) + o(γ(N)−1).

Therefore,

∑
(r,c)∈S0

(mN − r)!
mN !

(nN − c)!
nN !

V (r,c) =
L

∑
l=1
( αℓ

γ(N)
− (mN − rℓ)!

mN !

(nN − cℓ)!
nN !

)V (rℓ,cℓ) + o(γ(N)−1).

Again, by definition, we have for all 1 ≤ ℓ ≤ L, γ(N) (mN−rℓ)!
mN !

(nN−cℓ)!
nN !

ÐÐÐ→
N→∞

αℓ. Therefore, the
previous equation yields

γ(N) ∑
(r,c)∈S0

(mN − r)!
mN !

(nN − c)!
nN !

V (r,c) = o(1).

But for all (r, c) ∈ S0, γ(N) (mN−r)!
mN !

(nN−c)!
nN !

ÐÐÐ→
N→∞

∞. Since V (r,c) ≥ 0 for all (0,0) ≤ (r, c) ≤ (p, q),

this means that for all (r, c) ∈ S0, we have V (r,c) = 0. Thus,

V (r,c) = p!

(p − r)!
q!

(q − r)! ∑G∈Γr,c

∣Aut(G)∣−1V[pG],
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this means V[pG] = 0 for all G ∈ Γr,c.
Finally, let G be any graph such that (v1(G), v2(G)) = (r, c). Then there exists a graph G∗ ∈ Γr,c

such that V[pG] = V[pG
∗

]. We have already shown that V[pG
∗

] = 0 for all (r, c) ∈ S0, so adding the fact
that E[pG] = 0 for all graphs G ≠ ∅, it means that pG = 0, for all graphs G such that (v1(G), v2(G)) =
(r, c) ∈ S0.

Proof of Theorem 3.6.

√
γ(N) [UN − p∅ −

L

∑
ℓ=1

P rℓ,cℓ
N ] =

√
γ(N)

⎡⎢⎢⎢⎢⎣
∑

(r,c)∈S0

P r,c
N + ∑

(r,c)∈S+
P r,c
N

⎤⎥⎥⎥⎥⎦
.

By Lemma E.1, P r,c
N = 0 for all (r, c) ∈ S0.

V
⎡⎢⎢⎢⎢⎣

√
γ(N) ∑

(r,c)∈S+
P r,c
N

⎤⎥⎥⎥⎥⎦
= γ(N) ∑

(r,c)∈S+

(m − r)!
m!

(n − c)!
n!

V (r,c)

= o(1).

That means
√
γ(N)(UN − p∅) =

√
γ(N)∑L

ℓ=1 P
rℓ,cℓ
N + oP (1), which concludes the proof.

E.2 Proof of Theorem 3.7
Proof. Theorem 3.6 states that

√
γ(N)(UN − p∅) has the same limit as

√
γ(N)∑L

ℓ=1 P
rℓ,cℓ
N .

For all (0,0) < (r, c) ≤ (p, q),

P r,c
N = ∑

G∈Γr,c

1

(p − r)!(q − c)!∣Aut(G)∣
P̃G
N .

So
√
γ(N)

L

∑
ℓ=1

P rℓ,cℓ
N =

L

∑
ℓ=1

√
γ(N)m−rℓ/2N n

−cℓ/2
N ∑

G∈Γrℓ,cℓ

m
rℓ/2
N n

cℓ/2
N P̃G

N

(p − rℓ)!(q − cℓ)!∣Aut(G)∣
.

By definition, γ(N)m−rℓN n−cℓN ÐÐÐ→
N→∞

αℓ. Therefore, by Lemma 3.5,
√
γ(N)∑L

ℓ=1 P
rℓ,cℓ
N converges in

distribution to Z = ∑L
ℓ=1
√
αℓ∑G∈Γrℓ,cℓ

WG, where all WG are independent Gaussian variables with mean

0 and variance (p!)2(q!)2
((p−rℓ)!)2((q−cℓ)!)2∣Aut(G)∣V[p

G].
Finally, it follows that Z is a Gaussian variable with mean 0 and variance ∑L

ℓ=1
√
αℓV

(rℓ,cℓ) where

V (rℓ,cℓ) = ∑
G∈Γrℓ,cℓ

(p!)2(q!)2

((p − rℓ)!)2((q − cℓ)!)2∣Aut(G)∣
V[pG]

F Derivation of the variances of Example 2
In this section, we calculate the conditional expectations and the variances of Example 2, investigated
in Sections 3.1 and 3.3. Let the distribution of Y be defined by

ξi
i.i.d.∼ U[0,1], ∀1 ≤ i ≤m,

ηj
i.i.d.∼ U[0,1], ∀1 ≤ j ≤ n,

Yij ∣ ξi, ηj ∼ P(λf(ξi)g(ηj)), ∀1 ≤ i ≤m,1 ≤ j ≤ n.

Let UN be the U -statistic with kernel h3 = h1 − h2 where

h1(Y{i1,i2},{j1,j2}) =
1

2
(Yi1j1Yi1j2 + Yi2j1Yi2j2),

and
h2(Y{i1,i2},{j1,j2}) =

1

2
(Yi1j1Yi2j2 + Yi2j1Yi1j2).
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Lemma F.1. We have E[h3(Y{1,2},{1,2}) ∣ ξ1, ξ2] = λ2

2
(f(ξ1) − f(ξ2))2.

Proof. We have

E[h1(Y{1,2},{1,2}) ∣ ξ1, ξ2] =
1

2
E[Y11Y12 + Y21Y22 ∣ ξ1, ξ2]

= 1

2
E[E[Y11Y12 + Y21Y22 ∣ ξ,η] ∣ ξ1, ξ2]

= 1

2
E[λ2f(ξ1)2g(η1)g(η2) + λ2f(ξ2)2g(η1)g(η2) ∣ ξ1, ξ2]

= λ2

2
(f(ξ1)2 + f(ξ2)2),

and

E[h2(Y{1,2},{1,2}) ∣ ξ1, ξ2] =
1

2
E[Y11Y22 + Y12Y21 ∣ ξ1, ξ2]

= 1

2
E[E[Y11Y22 + Y12Y21 ∣ ξ,η] ∣ ξ1, ξ2]

= 1

2
E[2λ2f(ξ1)f(ξ2)g(η1)g(η2) ∣ ξ1, ξ2]

= λ2f(ξ1)f(ξ2).

This proves the result.

Lemma F.2. We have E[h3(Y{1,2},{1,2}) ∣ η1, η2] = λ2(F2 − 1)g(η1)g(η2).

Proof. We have

E[h1(Y{1,2},{1,2}) ∣ η1, η2] =
1

2
E[Y11Y12 + Y21Y22 ∣ η1, η2]

= 1

2
E[E[Y11Y12 + Y21Y22 ∣ ξ,η] ∣ η1, η2]

= 1

2
E[λ2f(ξ1)2g(η1)g(η2) + λ2f(ξ2)2g(η1)g(η2) ∣ η1, η2]

= λ2F2g(η1)g(η2),

and

E[h2(Y{1,2},{1,2}) ∣ η1, η2] =
1

2
E[Y11Y22 + Y12Y21 ∣ η1, η2]

= 1

2
E[E[Y11Y22 + Y12Y21 ∣ ξ,η] ∣ η1, η2]

= 1

2
E[2λ2f(ξ1)f(ξ2)g(η1)g(η2) ∣ η1, η2]

= λ2g(η1)g(η2).

This proves the result.

Lemma F.3. We have E[h3(Y{1,2},{1,2}) ∣ ξ1, η1] = λ2

2
(f(ξ1)2 − 2f(ξ1) + F2)g(η1).

Proof. We have

E[h1(Y{1,2},{1,2}) ∣ ξ1, η1] =
1

2
E[Y11Y12 + Y21Y22 ∣ ξ1, η1]

= 1

2
E[E[Y11Y12 + Y21Y22 ∣ ξ,η] ∣ ξ1, η1]

= 1

2
E[λ2f(ξ1)2g(η1)g(η2) + λ2f(ξ2)2g(η1)g(η2) ∣ ξ1, η1]

= λ2

2
(f(ξ1)2 + F2)g(η1),
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and

E[h2(Y{1,2},{1,2}) ∣ ξ1, η1] =
1

2
E[Y11Y22 + Y12Y21 ∣ ξ1, η1]

= 1

2
E[E[Y11Y22 + Y12Y21 ∣ ξ,η] ∣ ξ1, η1]

= 1

2
E[2λ2f(ξ1)f(ξ2)g(η1)g(η2) ∣ ξ1, η1]

= λ2f(ξ1)g(η1).

This proves the result.

Lemma F.4. We have E[h3(Y{1,2},{1,2}) ∣ ξ1, η1, ζ11] = λ
2
(f(ξ1) − 1)Y11 + λ2

2
(F2 − f(ξ1))g(η1).

Proof. We have

E[h1(Y{1,2},{1,2}) ∣ ξ1, η1, ζ11] =
1

2
E[Y11Y12 + Y21Y22 ∣ ξ1, η1, ζ11]

= 1

2
E[E[Y11Y12 + Y21Y22 ∣ ξ,η, Y11] ∣ ξ1, η1, ζ11]

= 1

2
E[λf(ξ1)g(η2)Y11 + λ2f(ξ2)2g(η1)g(η2) ∣ ξ1, η1, ζ11]

= λ

2
f(ξ1)Y11 +

λ2

2
F2g(η1),

and

E[h2(Y{1,2},{1,2}) ∣ ξ1, ξ2, ζ11] =
1

2
E[Y11Y22 + Y12Y21 ∣ ξ1, η1, ζ11]

= 1

2
E[E[Y11Y22 + Y12Y21 ∣ ξ,η, Y11] ∣ ξ1, η1, ζ11]

= 1

2
E[λY11f(ξ2)g(η2) + λ2f(ξ1)f(ξ2)g(η1)g(η2) ∣ ξ1, η1, ζ11]

= λ

2
Y11 +

λ2

2
f(ξ1)g(η1).

This proves the result.

Lemma F.5. We have E[h3(Y{1,2},{1,2}) ∣ ξ1, ξ2, η1] = λ2

2
(f(ξ1) − f(ξ2))2g(η1).

Proof. We have

E[h1(Y{1,2},{1,2}) ∣ ξ1, ξ2, η1] =
1

2
E[Y11Y12 + Y21Y22 ∣ ξ1, ξ2, η1]

= 1

2
E[E[Y11Y12 + Y21Y22 ∣ ξ,η] ∣ ξ1, ξ2, η1]

= 1

2
E[λ2f(ξ1)2g(η1)g(η2) + λ2f(ξ2)2g(η1)g(η2) ∣ ξ1, ξ2, η1]

= λ2

2
(f(ξ1)2 + f(ξ2)2)g(η1),

and

E[h2(Y{1,2},{1,2}) ∣ ξ1, ξ2, η1] =
1

2
E[Y11Y22 + Y12Y21 ∣ ξ1, ξ2, η1]

= 1

2
E[E[Y11Y22 + Y12Y21 ∣ ξ,η] ∣ ξ1, ξ2, η1]

= 1

2
E[2λ2f(ξ1)f(ξ2)g(η1)g(η2) ∣ ξ1, ξ2, η1]

= λ2f(ξ1)f(ξ2)g(η1).

This proves the result.

24



Lemma F.6. We have E[h3(Y{1,2},{1,2}) ∣ ξ1, ξ2, η1, ζ11] = λ
2
(f(ξ1)−f(ξ2))Y11+λ2

2
(f(ξ2)−f(ξ1))f(ξ2)g(η1).

Proof. We have

E[h1(Y{1,2},{1,2}) ∣ ξ1, ξ2, η1, ζ11] =
1

2
E[Y11Y12 + Y21Y22 ∣ ξ1, ξ2, η1, ζ11]

= 1

2
E[E[Y11Y12 + Y21Y22 ∣ ξ,η, Y11] ∣ ξ1, ξ2, η1, ζ11]

= 1

2
E[λf(ξ1)g(η2)Y11 + λ2f(ξ2)2g(η1)g(η2) ∣ ξ1, ξ2, η1, ζ11]

= λ

2
f(ξ1)Y11 +

λ2

2
f(ξ2)2g(η1),

and

E[h2(Y{1,2},{1,2}) ∣ ξ1, ξ2, η1, ζ11] =
1

2
E[Y11Y22 + Y12Y21 ∣ ξ1, ξ2, η1, ζ11]

= 1

2
E[E[Y11Y22 + Y12Y21 ∣ ξ,η, Y11] ∣ ξ1, ξ2, η1, ζ11]

= 1

2
E[λf(ξ2)g(η2)Y11 + λ2f(ξ1)f(ξ2)g(η1)g(η2) ∣ ξ1, ξ2, η1, ζ11]

= λ

2
f(ξ2)Y11 +

λ2

2
f(ξ1)f(ξ2)g(η1).

This proves the result.

Lemma F.7. We have E[h3(Y{1,2},{1,2}) ∣ ξ1, ξ2, η1, ζ11, ζ21] = λ
2
(f(ξ1) − f(ξ2))(Y11 − Y21).

Proof. We have

E[h1(Y{1,2},{1,2}) ∣ ξ1, ξ2, η1, ζ11, ζ21] =
1

2
E[Y11Y12 + Y21Y22 ∣ ξ1, ξ2, η1, ζ11, ζ21]

= 1

2
E[E[Y11Y12 + Y21Y22 ∣ ξ,η, Y11, Y21] ∣ ξ1, ξ2, η1, ζ11, ζ21]

= 1

2
E[λf(ξ1)g(η2)Y11 + λ2f(ξ2)g(η2)Y21 ∣ ξ1, ξ2, η1, ζ11, ζ21]

= λ

2
(f(ξ1)Y11 + f(ξ2)Y21),

and

E[h2(Y{1,2},{1,2}) ∣ ξ1, ξ2, η1, ζ11, ζ21] =
1

2
E[Y11Y22 + Y12Y21 ∣ ξ1, ξ2, η1, ζ11, ζ21]

= 1

2
E[E[Y11Y22 + Y12Y21 ∣ ξ,η, Y11, Y21] ∣ ξ1, ξ2, η1, ζ11, ζ21]

= 1

2
E[λf(ξ2)g(η2)Y11 + λf(ξ1)g(η2)Y21 ∣ ξ1, ξ2, η1, ζ11, ζ21]

= λ

2
(f(ξ2)Y11 + f(ξ1)Y21).

This proves the result.

Lemma F.8. We have E[h3(Y{1,2},{1,2}) ∣ ξ1, η1, η2] = λ2

2
(f(ξ1)2 − 2f(ξ1) + F2)g(η1)g(η2).

Proof. We have

E[h1(Y{1,2},{1,2}) ∣ ξ1, η1, η2] =
1

2
E[Y11Y12 + Y21Y22 ∣ ξ1, η1, η2]

= 1

2
E[E[Y11Y12 + Y21Y22 ∣ ξ,η] ∣ ξ1, η1, η2]

= 1

2
E[λ2f(ξ1)2g(η1)g(η2) + λ2f(ξ2)2g(η1)g(η2) ∣ ξ1, η1, η2]

= λ2

2
(f(ξ1)2 + F2)g(η1)g(η2),
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and

E[h2(Y{1,2},{1,2}) ∣ ξ1, η1, η2] =
1

2
E[Y11Y22 + Y12Y21 ∣ ξ1, η1, η2]

= 1

2
E[E[Y11Y22 + Y12Y21 ∣ ξ,η] ∣ ξ1, η1, η2]

= 1

2
E[2λ2f(ξ1)f(ξ2)g(η1)g(η2) ∣ ξ1, η1, η2]

= λ2f(ξ1)g(η1)g(η2).

This proves the result.

Lemma F.9. We have E[h3(Y{1,2},{1,2}) ∣ ξ1, η1, η2, ζ11] = λ
2
(f(ξ1)−1)g(η2)Y11+λ2

2
(F2−f(ξ1))g(η1)g(η2).

Proof. We have

E[h1(Y{1,2},{1,2}) ∣ ξ1, η1, η2, ζ11] =
1

2
E[Y11Y12 + Y21Y22 ∣ ξ1, η1, η2, ζ11]

= 1

2
E[E[Y11Y12 + Y21Y22 ∣ ξ,η, Y11] ∣ ξ1, η1, η2, ζ11]

= 1

2
E[λf(ξ1)g(η2)Y11 + λ2f(ξ2)2g(η1)g(η2) ∣ ξ1, η1, η2, ζ11]

= λ

2
f(ξ1)g(η2)Y11 +

λ2

2
F2g(η1)g(η2),

and

E[h2(Y{1,2},{1,2}) ∣ ξ1, η1, η2, ζ11] =
1

2
E[Y11Y22 + Y12Y21 ∣ ξ1, η1, η2, ζ11]

= 1

2
E[E[Y11Y22 + Y12Y21 ∣ ξ,η, Y11] ∣ ξ1, η1, η2, ζ11]

= 1

2
E[λf(ξ2)g(η2)Y11 + λ2f(ξ1)f(ξ2)g(η1)g(η2) ∣ ξ1, η1, η2, ζ11]

= λ

2
g(η2)Y11 +

λ2

2
f(ξ1)g(η1)g(η2).

This proves the result.

Lemma F.10. We have E[h3(Y{1,2},{1,2}) ∣ ξ1, η1, η2, ζ11, ζ12] = 1
2
Y11Y12 − λ

2
(g(η2)Y11 + g(η1)Y12) +

λ2

2
F2g(η1)g(η2).

Proof. We have

E[h1(Y{1,2},{1,2}) ∣ ξ1, η1, η2, ζ11, ζ12] =
1

2
E[Y11Y12 + Y21Y22 ∣ ξ1, η1, η2, ζ11, ζ12]

= 1

2
E[E[Y11Y12 + Y21Y22 ∣ ξ,η, Y11, Y12] ∣ ξ1, η1, η2, ζ11, ζ12]

= 1

2
E[Y11Y12 + λ2f(ξ2)2g(η1)g(η2) ∣ ξ1, η1, η2, ζ11, ζ12]

= 1

2
Y11Y12 +

λ2

2
F2g(η1)g(η2),

and

E[h2(Y{1,2},{1,2}) ∣ ξ1, η1, η2, ζ11, ζ12] =
1

2
E[Y11Y22 + Y12Y21 ∣ ξ1, η1, η2, ζ11, ζ12]

= 1

2
E[E[Y11Y22 + Y12Y21 ∣ ξ,η, Y11, Y12] ∣ ξ1, η1, η2, ζ11, ζ12]

= 1

2
E[λf(ξ2)g(η2)Y11 + λf(ξ2)g(η1)Y12 ∣ ξ1, η1, η2, ζ11, ζ12]

= λ

2
(g(η2)Y11 + g(η1)Y12).

This proves the result.
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Lemma F.11. We have E[E[h3(Y{1,2},{1,2}) ∣ ξ1, η1, η2, ζ11, ζ12]2] = λ2

4
F2 + λ3

2
(F3 − 2F2 + 1)G2 + λ4

4
(F4 −

4F3 + 3F 2
2 )G2

2.

Proof. We have

E[h3(Y{1,2},{1,2}) ∣ ξ1, η1, η2, ζ11, ζ12]2

= (1
2
Y11Y12 −

λ

2
(g(η2)Y11 + g(η1)Y12) +

λ2

2
F2g(η1)g(η2))

2

= 1

4
Y 2
11Y

2
12 +

λ2

4
g(η2)2Y 2

11 +
λ2

4
g(η1)2Y 2

12 +
λ2

2
g(η1)g(η2)Y11Y12

+ λ4

4
F 2
2 g(η1)2g(η2)2 −

λ

2
g(η2)Y 2

11Y12 −
λ

2
g(η1)Y11Y

2
12

+ λ2

2
F2g(η1)g(η2)Y11Y12 −

λ3

2
F2g(η1)g(η2)2Y11 −

λ3

2
F2g(η1)2g(η2)Y12.

Taking the expectation of this random variable and using the row-column exchangeability of Y , it becomes

E[E[h3(Y{1,2},{1,2}) ∣ ξ1, η1, η2, ζ11, ζ12]2]

= 1

4
E[Y 2

11Y
2
12] +

λ2

2
E[g(η2)2Y 2

11] +
λ2

2
(F2 + 1)E[g(η1)g(η2)Y11Y12]

+ λ4

4
F 2
2E[g(η1)2g(η2)2] − λE[g(η2)Y 2

11Y12] − λ3F2E[g(η1)g(η2)2Y11].

We calculate each term of this expression separately, obtaining

1

4
E[Y 2

11Y
2
12] = E[E[Y 2

11Y
2
12 ∣ ξ,η]]

= 1

4
E[(λf(ξ1)g(η1) + λ2f(ξ1)2g(η1)2)

× (λf(ξ1)g(η2) + λ2f(ξ1)2g(η2)2)]

= λ2

4
E[f(ξ1)2g(η1)g(η2)] +

λ3

2
E[f(ξ1)3g(η1)2g(η2)]

+ λ4

4
E[f(ξ1)4g(η1)2g(η2)2]

= λ2

4
F2 +

λ3

2
F3G2 +

λ4

4
F4G

2
2,

λ2

2
E[g(η2)2Y 2

11] =
λ2

2
E[E[g(η2)2Y 2

11 ∣ ξ,η]]

= λ2

2
E[g(η2)2(λf(ξ1)g(η1) + λ2f(ξ1)2g(η1)2)]

= λ3

2
G2 +

λ4

2
F2G

2
2,

λ2

2
(F2 + 1)E[g(η1)g(η2)Y11Y12] =

λ2

2
(F2 + 1)E[E[g(η1)g(η2)Y11Y12 ∣ ξ,η]]

= λ2

2
(F2 + 1)E[λ2f(ξ1)2g(η1)2g(η2)2]

= λ4

2
(F2 + 1)F2G

2
2,

λE[g(η2)Y 2
11Y12] = λE[E[g(η2)Y 2

11Y12 ∣ ξ,η]]
= λE[g(η2)(λf(ξ1)g(η1) + λ2f(ξ1)2g(η1)2)λf(ξ1)g(η2)]
= λ3F2G2 + λ4F3G

2
2,

λ3F2E[g(η1)g(η2)2Y11] = λ3F2E[E[g(η1)g(η2)2Y11 ∣ ξ,η]]
= λ3F2E[λf(ξ1)g(η1)2g(η2)2]
= λ4F2G

2
2.
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Therefore,

E[E[h3(Y{1,2},{1,2}) ∣ ξ1, η1, η2, ζ11, ζ12]2]

= λ2

4
F2 +

λ3

2
F3G2 +

λ4

4
F4G

2
2 +

λ3

2
G2 +

λ4

2
F2G

2
2

+ λ4

2
(F2 + 1)F2G

2
2 +

λ4

4
F 2
2G

2
2 − λ3F2G2 − λ4F3G

2
2 − λ4F2G

2
2

= λ2

4
F2 +

λ3

2
(F3 − 2F2 + 1)G2 +

λ4

4
(F4 − 4F3 + 3F 2

2 )G2
2,

which is the expression given by the lemma.

G Derivation of the variances of Example 3
In this section, we calculate the conditional expectations and the variances of Example 3, investigated
in Sections 3.1 and 3.3. Let the distribution of Y be defined by

ξi
i.i.d.∼ U[0,1], ∀1 ≤ i ≤m,

ηj
i.i.d.∼ U[0,1], ∀1 ≤ j ≤ n,

Wij
i.i.d.∼ L(α), ∀1 ≤ i ≤m,1 ≤ j ≤ n,

Yij ∣ ξi, ηj ,Wij ∼ P(λf(ξi)g(ηj)Wij), ∀1 ≤ i ≤m,1 ≤ j ≤ n.

Let UN be the U -statistic with kernel h6 = h4 − h5 where

h4(Y{i1,i2},{j1,j2}) =
1

4
(Yi1j1(Yi1j1 − 1)Yi2j2 + Yi1j2(Yi1j2 − 1)Yi2j1 + Yi2j1(Yi2j1 − 1)Yi1j2 + Yi2j2(Yi2j2 − 1)Yi1j1)

and

h5(Y{i1,j2},{i1,j2}) =
1

4
(Yi1j1Yi1j2Yi2j2 + Yi1j2Yi2j2Yi2j1 + Yi2j2Yi2j1Yi1j1 + Yi2j1Yi1j1Yi1j2) .

Lemma G.1. We have E[h6(Y{1,2},{1,2})] = λ3F2G2α.

Proof. We have

E[h4(Y{1,2},{1,2})]

= 1

4
E[Y11(Y11 − 1)Y22 + Y12(Y12 − 1)Y21 + Y21(Y21 − 1)Y12 + Y22(Y22 − 1)Y11]

= 1

4
E[E[Y11(Y11 − 1)Y22 + Y12(Y12 − 1)Y21 + Y21(Y21 − 1)Y12 + Y22(Y22 − 1)Y11 ∣ ξ,η,W ]]

= 1

4
E[λ3f(ξ1)2f(ξ2)g(η1)2g(η2)W 2

11W22 + λ3f(ξ1)2f(ξ2)g(η2)2g(η1)W 2
12W21

+ λ3f(ξ2)2f(ξ1)g(η1)2g(η2)W 2
21W12 + λ3f(ξ2)2f(ξ1)g(η2)2g(η1)W 2

22W11]
= λ3F2G2(α + 1),

and

E[h5(Y{1,2},{1,2})]

= 1

4
E[Y11Y12Y22 + Y12Y22Y21 + Y22Y21Y11 + Y21Y11Y12]

= 1

4
E[E[Y11Y12Y22 + Y12Y22Y21 + Y22Y21Y11 + Y21Y11Y12 ∣ ξ,η,W ]]

= 1

4
E[λ3f(ξ1)2f(ξ2)g(η2)2g(η1)W11W12W22 + λ3f(ξ2)2f(ξ1)g(η2)2g(η1)W12W22W21

+ λ3f(ξ2)2f(ξ1)g(η1)2g(η2)W22W21W11 + λ3f(ξ1)2f(ξ2)g(η1)2g(η2)W21W11W12]
= λ3F2G2.

This proves the result.
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Lemma G.2. We have E[h6(Y{1,2},{1,2}) ∣ ξ1] = λ3

2
f(ξ1)(f(ξ1) + F2)G2α.

Proof. We have

E[h4(Y{1,2},{1,2}) ∣ ξ1]

= 1

4
E[Y11(Y11 − 1)Y22 + Y12(Y12 − 1)Y21 + Y21(Y21 − 1)Y12 + Y22(Y22 − 1)Y11 ∣ ξ1]

= 1

4
E[E[Y11(Y11 − 1)Y22 + Y12(Y12 − 1)Y21 + Y21(Y21 − 1)Y12 + Y22(Y22 − 1)Y11 ∣ ξ,η,W ] ∣ ξ1]

= 1

4
E[λ3f(ξ1)2f(ξ2)g(η1)2g(η2)W 2

11W22 + λ3f(ξ1)2f(ξ2)g(η2)2g(η1)W 2
12W21

+ λ3f(ξ2)2f(ξ1)g(η1)2g(η2)W 2
21W12 + λ3f(ξ2)2f(ξ1)g(η2)2g(η1)W 2

22W11 ∣ ξ1]

= λ3

2
f(ξ1)(f(ξ1) + F2)G2(α + 1),

and

E[h5(Y{1,2},{1,2}) ∣ ξ1]

= 1

4
E[Y11Y12Y22 + Y12Y22Y21 + Y22Y21Y11 + Y21Y11Y12 ∣ ξ1]

= 1

4
E[E[Y11Y12Y22 + Y12Y22Y21 + Y22Y21Y11 + Y21Y11Y12 ∣ ξ,η,W ] ∣ ξ1]

= 1

4
E[λ3f(ξ1)2f(ξ2)g(η2)2g(η1)W11W12W22 + λ3f(ξ2)2f(ξ1)g(η2)2g(η1)W12W22W21

+ λ3f(ξ2)2f(ξ1)g(η1)2g(η2)W22W21W11 + λ3f(ξ1)2f(ξ2)g(η1)2g(η2)W21W11W12 ∣ ξ1]

= λ3

2
f(ξ1)(f(ξ1) + F2)G2.

This proves the result.

Lemma G.3. We have E[h6(Y{1,2},{1,2}) ∣ η1] = λ3

2
F2g(η1)(g(η1) +G2)α.

Proof. We have

E[h4(Y{1,2},{1,2}) ∣ η1]

= 1

4
E[Y11(Y11 − 1)Y22 + Y12(Y12 − 1)Y21 + Y21(Y21 − 1)Y12 + Y22(Y22 − 1)Y11 ∣ η1]

= 1

4
E[E[Y11(Y11 − 1)Y22 + Y12(Y12 − 1)Y21 + Y21(Y21 − 1)Y12 + Y22(Y22 − 1)Y11 ∣ ξ,η,W ] ∣ η1]

= 1

4
E[λ3f(ξ1)2f(ξ2)g(η1)2g(η2)W 2

11W22 + λ3f(ξ1)2f(ξ2)g(η2)2g(η1)W 2
12W21

+ λ3f(ξ2)2f(ξ1)g(η1)2g(η2)W 2
21W12 + λ3f(ξ2)2f(ξ1)g(η2)2g(η1)W 2

22W11 ∣ η1]

= λ3

2
F2g(η1)(g(η1) +G2)(α + 1),

and

E[h5(Y{1,2},{1,2}) ∣ η1]

= 1

4
E[Y11Y12Y22 + Y12Y22Y21 + Y22Y21Y11 + Y21Y11Y12 ∣ η1]

= 1

4
E[E[Y11Y12Y22 + Y12Y22Y21 + Y22Y21Y11 + Y21Y11Y12 ∣ ξ,η,W ] ∣ η1]

= 1

4
E[λ3f(ξ1)2f(ξ2)g(η2)2g(η1)W11W12W22 + λ3f(ξ2)2f(ξ1)g(η2)2g(η1)W12W22W21

+ λ3f(ξ2)2f(ξ1)g(η1)2g(η2)W22W21W11 + λ3f(ξ1)2f(ξ2)g(η1)2g(η2)W21W11W12 ∣ η1]

= λ3

2
F2g(η1)(g(η1) +G2).

This proves the result.
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Lemma G.4. We have E[h6(Y{1,2},{1,2}) ∣ ξ1, ξ2] = λ3

2
(f(ξ1)2f(ξ2) + f(ξ2)2f(ξ1))G2α.

Proof. We have

E[h4(Y{1,2},{1,2}) ∣ ξ1, ξ2]

= 1

4
E[Y11(Y11 − 1)Y22 + Y12(Y12 − 1)Y21 + Y21(Y21 − 1)Y12 + Y22(Y22 − 1)Y11 ∣ ξ1, ξ2]

= 1

4
E[E[Y11(Y11 − 1)Y22 + Y12(Y12 − 1)Y21 + Y21(Y21 − 1)Y12 + Y22(Y22 − 1)Y11 ∣ ξ,η,W ] ∣ ξ1, ξ2]

= 1

4
E[λ3f(ξ1)2f(ξ2)g(η1)2g(η2)W 2

11W22 + λ3f(ξ1)2f(ξ2)g(η2)2g(η1)W 2
12W21

+ λ3f(ξ2)2f(ξ1)g(η1)2g(η2)W 2
21W12 + λ3f(ξ2)2f(ξ1)g(η2)2g(η1)W 2

22W11 ∣ ξ1, ξ2]

= λ3

2
(f(ξ1)2f(ξ2) + f(ξ2)2f(ξ1))G2(α + 1),

and

E[h5(Y{1,2},{1,2}) ∣ ξ1, ξ2]

= 1

4
E[Y11Y12Y22 + Y12Y22Y21 + Y22Y21Y11 + Y21Y11Y12 ∣ ξ1, ξ2]

= 1

4
E[E[Y11Y12Y22 + Y12Y22Y21 + Y22Y21Y11 + Y21Y11Y12 ∣ ξ,η,W ] ∣ ξ1, ξ2]

= 1

4
E[λ3f(ξ1)2f(ξ2)g(η2)2g(η1)W11W12W22 + λ3f(ξ2)2f(ξ1)g(η2)2g(η1)W12W22W21

+ λ3f(ξ2)2f(ξ1)g(η1)2g(η2)W22W21W11 + λ3f(ξ1)2f(ξ2)g(η1)2g(η2)W21W11W12 ∣ ξ1, ξ2]

= λ3

2
(f(ξ1)2f(ξ2) + f(ξ2)2f(ξ1))G2.

This proves the result.

Lemma G.5. We have E[h6(Y{1,2},{1,2}) ∣ η1, η2] = λ3

2
F2(g(η1)2g(η2) + g(η2)2g(η1))α.

Proof. We have

E[h4(Y{1,2},{1,2}) ∣ η1, η2]

= 1

4
E[Y11(Y11 − 1)Y22 + Y12(Y12 − 1)Y21 + Y21(Y21 − 1)Y12 + Y22(Y22 − 1)Y11 ∣ η1, η2]

= 1

4
E[E[Y11(Y11 − 1)Y22 + Y12(Y12 − 1)Y21 + Y21(Y21 − 1)Y12 + Y22(Y22 − 1)Y11 ∣ ξ,η,W ] ∣ η1, η2]

= 1

4
E[λ3f(ξ1)2f(ξ2)g(η1)2g(η2)W 2

11W22 + λ3f(ξ1)2f(ξ2)g(η2)2g(η1)W 2
12W21

+ λ3f(ξ2)2f(ξ1)g(η1)2g(η2)W 2
21W12 + λ3f(ξ2)2f(ξ1)g(η2)2g(η1)W 2

22W11 ∣ η1, η2]

= λ3

2
F2(g(η1)2g(η2) + g(η2)2g(η1))(α + 1),

and

E[h5(Y{1,2},{1,2}) ∣ η1, η2]

= 1

4
E[Y11Y12Y22 + Y12Y22Y21 + Y22Y21Y11 + Y21Y11Y12 ∣ η1, η2]

= 1

4
E[E[Y11Y12Y22 + Y12Y22Y21 + Y22Y21Y11 + Y21Y11Y12 ∣ ξ,η,W ] ∣ η1, η2]

= 1

4
E[λ3f(ξ1)2f(ξ2)g(η2)2g(η1)W11W12W22 + λ3f(ξ2)2f(ξ1)g(η2)2g(η1)W12W22W21

+ λ3f(ξ2)2f(ξ1)g(η1)2g(η2)W22W21W11 + λ3f(ξ1)2f(ξ2)g(η1)2g(η2)W21W11W12 ∣ η1, η2]

= λ3

2
F2(g(η1)2g(η2) + g(η2)2g(η1)).

This proves the result.
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Lemma G.6. We have E[h6(Y{1,2},{1,2}) ∣ ξ1, η1] = λ3

4
f(ξ1)g(η1)(f(ξ1)g(η1) + f(ξ1)G2 + F2g(η1) +

F2G2)α.

Proof. We have

E[h4(Y{1,2},{1,2}) ∣ ξ1, η1]

= 1

4
E[Y11(Y11 − 1)Y22 + Y12(Y12 − 1)Y21 + Y21(Y21 − 1)Y12 + Y22(Y22 − 1)Y11 ∣ ξ1, η1]

= 1

4
E[E[Y11(Y11 − 1)Y22 + Y12(Y12 − 1)Y21 + Y21(Y21 − 1)Y12 + Y22(Y22 − 1)Y11 ∣ ξ,η,W ] ∣ ξ1, η1]

= 1

4
E[λ3f(ξ1)2f(ξ2)g(η1)2g(η2)W 2

11W22 + λ3f(ξ1)2f(ξ2)g(η2)2g(η1)W 2
12W21

+ λ3f(ξ2)2f(ξ1)g(η1)2g(η2)W 2
21W12 + λ3f(ξ2)2f(ξ1)g(η2)2g(η1)W 2

22W11 ∣ ξ1, η1]

= λ3

4
(f(ξ1)2g(η1)2 + f(ξ1)2G2g(η1) + F2f(ξ1)g(η1)2 + F2f(ξ1)G2g(η1))(α + 1),

and

E[h5(Y{1,2},{1,2}) ∣ ξ1, η1]

= 1

4
E[Y11Y12Y22 + Y12Y22Y21 + Y22Y21Y11 + Y21Y11Y12 ∣ ξ1, η1]

= 1

4
E[E[Y11Y12Y22 + Y12Y22Y21 + Y22Y21Y11 + Y21Y11Y12 ∣ ξ,η,W ] ∣ ξ1, η1]

= 1

4
E[λ3f(ξ1)2f(ξ2)g(η2)2g(η1)W11W12W22 + λ3f(ξ2)2f(ξ1)g(η2)2g(η1)W12W22W21

+ λ3f(ξ2)2f(ξ1)g(η1)2g(η2)W22W21W11 + λ3f(ξ1)2f(ξ2)g(η1)2g(η2)W21W11W12 ∣ ξ1, η1]

= λ3

4
(f(ξ1)2G2g(η1) + F2f(ξ1)G2g(η1) + F2f(ξ1)g(η1)2 + f(ξ1)2g(η1)2).

This proves the result.

Lemma G.7. We have

E[h6(Y{1,2},{1,2}) ∣ ξ1, η1, ζ11] =
λ3

4
f(ξ1)g(η1)(f(ξ1)G2(α + 1) + F2g(η1)(α + 1) − F2G2)

+ λ2

4
Y11(F2G2(α + 1) − f(ξ1)G2 − F2g(η1) − f(ξ1)g(η1))

+ λ

4
Y11(Y11 − 1).

Proof. We have

E[h4(Y{1,2},{1,2}) ∣ ξ1, η1, ζ11]

= 1

4
E[Y11(Y11 − 1)Y22 + Y12(Y12 − 1)Y21 + Y21(Y21 − 1)Y12 + Y22(Y22 − 1)Y11 ∣ ξ1, η1, ζ11]

= 1

4
E[E[Y11(Y11 − 1)Y22 + Y12(Y12 − 1)Y21 + Y21(Y21 − 1)Y12 + Y22(Y22 − 1)Y11 ∣ ξ,η,W , Y11] ∣ ξ1, η1, ζ11]

= 1

4
E[λY11(Y11 − 1)f(ξ2)g(η2)W22 + λ3f(ξ1)2f(ξ2)g(η2)2g(η1)W 2

12W21

+ λ3f(ξ2)2f(ξ1)g(η1)2g(η2)W 2
21W12 + λ2Y11f(ξ2)2g(η2)2W 2

22 ∣ ξ1, η1, ζ11]

= λ3

4
(f(ξ1)2G2g(η1) + F2f(ξ1)g(η1)2)(α + 1) +

λ2

4
Y11F2G2(α + 1) +

λ

4
Y11(Y11 − 1),
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and

E[h5(Y{1,2},{1,2}) ∣ ξ1, η1, ζ11]

= 1

4
E[Y11Y12Y22 + Y12Y22Y21 + Y22Y21Y11 + Y21Y11Y12 ∣ ξ1, η1, ζ11]

= 1

4
E[E[Y11Y12Y22 + Y12Y22Y21 + Y22Y21Y11 + Y21Y11Y12 ∣ ξ,η,W , Y11] ∣ ξ1, η1, ζ11]

= 1

4
E[λ2Y11f(ξ1)f(ξ2)g(η2)2W12W22 + λ3f(ξ2)2f(ξ1)g(η2)2g(η1)W12W22W21

+ λ2Y11f(ξ2)2g(η1)g(η2)W22W21 + λ2Y11f(ξ1)f(ξ2)g(η1)g(η2)W21W12 ∣ ξ1, η1, ζ11]

= λ3

4
f(ξ1)F2g(η1)G2 +

λ2

4
Y11(f(ξ1)G2 + F2g(η1) + f(ξ1)g(η1)).

This proves the result.

H Simulations
In this section, we illustrate the asymptotic behavior of degenerate U -statistics through simulation results.
Specifically, we consider the U -statistics used in Examples 2 and 3, which are relevant to network analysis
by investigating row heterogeneity and Poisson overdispersion, respectively. We examine their empirical
distribution as N goes to +∞.

Row heterogeneity. We consider the Poisson-BEDD network model defined in Example 2, with λ = 1,
f(u) = 1 and g(v) = (αg + 1)vαg , where αg = 1 +

√
2. Under these settings, we have F2 = 1 and G2 = 2.

The asymptotically normal U -statistic Uh3

N can be used to investigate the row heterogeneity of ob-
served networks. Its asymptotic variance σ2

3 = 2λ2/(ρ(1 − ρ)2) can be estimated using the U -statistic
Uh2

N , which correspond to the kernel h2 defined in Example 1. Notably, Uh2

N is an unbiased and consistent
estimator for λ2. According to Slutsky’s theorem, the statistic

Z3
N = N3/2(Uh2

N )
−1/2Uh3

N

converges to a standard normal distribution.
For N ∈ {N i ∶ i ∈ J3,8K}, we simulated K = 500 adjacency matrices under the Poisson-BEDD model

with the specified parameters, and ρ = 1/2. Figure 3 displays the Q-Q plots of Z3
N , illustrating its quick

convergence to a standard normal distribution.

Poisson overdispersion. We consider the Overdispersed-Poisson-BEDD network model defined in
Example 3, with λ = 1, f(u) = 2u, g(v) = 2v and α = 0. In this case, we have F2 = G2 = 4/3.

The asymptotically normal U -statistic Uh6

N can be used to investigate the overdispersion of the count
data represented by the networks. The asymptotic variance σ2

6 is estimated using a Monte Carlo approx-
imation of the expression given by Lemma G.7, yielding an estimate σ̂2

6 = 14. The statistic

Z6
N = Nσ̂−16 Uh6

N

converges to a normal distribution with variance σ2
6/σ̂2

6 ≈ 1.
For N ∈ {N i ∶ i ∈ J3,8K}, we simulated K = 500 adjacency matrices under the Overdispersed-Poisson-

BEDD model with the specified parameters, and ρ = 1/2. Figure 4 displays the Q-Q plots of Z6
N ,

illustrating its quick convergence to a normal distribution with variance close to 1.
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Figure 3: These Q-Q plots show convergence of Z3
N to a standard normal distribution. The red lines

represent the 99%-confidence envelope.
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Figure 4: These Q-Q plots show convergence of Z6
N to a normal distribution with variance close to 1.

The red lines represent the 99%-confidence envelope.
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