
HAL Id: hal-04902059
https://hal.science/hal-04902059v1

Submitted on 21 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Growth strategies for arbitrary DAG neural
architectures

Stella Douka, Manon Verbockhaven, Théo Rudkiewicz, Stéphane Rivaud,
François P. Landes, Sylvain Chevallier, Guillaume Charpiat

To cite this version:
Stella Douka, Manon Verbockhaven, Théo Rudkiewicz, Stéphane Rivaud, François P. Landes, et al..
Growth strategies for arbitrary DAG neural architectures. ESANN 2025 - 33th European Symposium
on Artificial Neural Networks, Apr 2025, Bruges, Belgium. �hal-04902059�

https://hal.science/hal-04902059v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Growth strategies for arbitrary DAG neural
architectures

Stella Douka, Manon Verbockhaven, Théo Rudkiewicz, Stéphane Rivaud,
François P. Landes, Sylvain Chevallier, Guillaume Charpiat

TAU team, LISN, Université Paris-Saclay, CNRS, Inria, 91405 Orsay, France

Abstract. Deep learning has shown impressive results obtained at the
cost of training huge neural networks. However, the larger the architecture,
the higher the computational, financial, and environmental costs during
training and inference. We aim at reducing both training and inference
durations. We focus on Neural Architecture Growth, which can increase
the size of a small model when needed, directly during training using in-
formation from the backpropagation. We expand existing work and freely
grow neural networks in the form of any Directed Acyclic Graph by re-
ducing expressivity bottlenecks in the architecture. We explore strategies
to reduce excessive computations and steer network growth toward more
parameter-efficient architectures.

1 Introduction

Method GPU days kWh
Firefly 1.5 9
NORTH 0.4 2.4
ENAS 0.45 2.7
DARTS 1.5 9

Table 1: GPU power consump-
tion estimation on CIFAR-10,
assuming 250W power draw.

A common practice to train a deep architec-
ture on a novel problem is to rely on over-
parametrization – meaning overly large and
deep networks – as it facilitates optimization
and yields better results. While it is possible
to start with small models that are faster to
train, they often lack expressivity, preventing
them from accurately fitting the data. Hence,
most literature focuses on training large neu-
ral networks, and then using pruning, distil-
lation, or compression to reduce energy con-
sumption in the inference phase. This includes training the large models and fine-
tuning them, requiring a tremendous amount of computational power and train-
ing time. On the contrary, Neural Architecture Search methods (NAS) usually
train multiple architectures from a finite set and choose the one that performs the
best, occasionally with a cost trade-off. This is extremely resource-consuming
and even Differential Architecture Search requires 1.5 GPU days to train on
CIFAR-10 (Liu et al., 2019). This is where Neural Architecture Growth comes
at hand. The idea is to start with the simplest possible neural network and
grow it by adding neurons in existing layers or adding entirely new layers, ac-
cording to the information brought by the backpropagation. Such information
can indeed be used to go beyond the usual limitations in small network training,



to tackle potential optimization and expressivity issues. Evci et al. (2022) pro-
pose GradMax, an approach that initializes all new output weights to maximize
the gradient, and all new input weights to zero, thus preserving the function’s
output. Maile et al. (2022) introduce NORTH, which measures the redundancy
of the network as the orthogonality between post-activations. The authors of
Firefly (Wu et al., 2020) choose every time to split existing neurons or create
new ones, which also includes adding new layers. They keep all changes local
and decide where to grow by solving the steepest-descent optimization problem.
Verbockhaven et al. (2024) introduce the notion of expressivity bottleneck to
solve optimization issues in a sequential architecture by increasing its layers’
width during training. In this paper, we extend the work of Verbockhaven et al.
by adding new layers on the fly, thus being able, for the first time, to grow neural
networks in the form of any Directed Acyclic Graph. We test different strategies
to grow the network efficiently and reduce energy costs.

2 Methodology

expressivity
bottleneck

TA
fθ v∗ = ProjTA

(v∇)

FA

v∇

Fig. 1: Expressivity Bottleneck

Expressivity bottleneck. In Figure 1 we
present the concept of expressivity bottleneck
(Verbockhaven et al., 2024). We define the
manifold FA := {fθ | θ ∈ ΘA} as the func-
tional space parameterized by a neural net-
work, that is, the set of all possible functions
one can represent by instantiating parameters
of a fixed architecture A. The tangent space

at fθ, namely TA :=
{

∂fθ
∂θ δθ | s.t. δθ ∈ ΘA

}
,

consists of all the possible functions one can
reach on the current manifold FA using small parameter updates, e.g. by gra-
dient descent. Now, let us denote by v∇ the desired update for the function fθ
when we are not constrained by the current architecture:

v∇(x) := −∇fθ(x)L(fθ(x), y(x)) := −∇aL(a, y(x))
∣∣
a=fθ(x)

. (1)

This is the functional gradient, i.e., the gradient of the loss w.r.t. the output of
the network. The best update we can perform with the current architecture A is
the projection v∗ of that desired update onto the tangent space TA. As a result,
the residual that should be completed by extending the network is:

v⊥ := v∇ − v∗ (2)

where v∗ := ProjTA
(v∇) := argmin

v∈TA

E
(x,y)∼P

[
∥v∇(x)− v(x)∥2F

]
(3)

and its norm Ψ := ∥v⊥∥ is named the expressivity bottleneck of the architecture.
One can add more neurons to a hidden state to mitigate the expressivity

bottleneck at a given layer, thus growing the network. After the addition of
neurons we multiply their output with an amplitude factor γ found by line-
search. For further details, we refer the reader to the original paper.



1

B1

2

B2

3

B3

1

hidden
state i

hidden
state i − 1

hidden
state i + 1

A
x

α ω

W2

W3

Fig. 2: Example of DAG Network.
We assume a new node added in
color red with new weights α and
ω. We define pre-activities as A and
post-activities as B or x.

Growing an arbitrary DAG. The
contribution of this paper consists in the
extension of the work by Verbockhaven
et al. (2024) to non-sequential networks in
the form of any Directed Acyclic Graph
(DAG) of fully connected layers. The
graph in Figure 2 shows an example of a
non-sequential network where every edge
represents a fully connected layer and
each node represents a hidden state (or an
addition thereof). We optimize the new
weights α and ω to decrease the expres-
sivity bottleneck as follows:

α∗, ω∗ = argmin
α, ω

∥ω σ(α · x)− v⊥∥ (4)

With the current setting, we can create a network starting from an empty graph,
rather than needing a starting point. To achieve this, we consider a single
constant layer that always outputs zero. At each growth step, we have the
option to add a direct edge (1 layer), add a new node (with 2 edges, i.e. 2 new
layers), or increase the size of an existing node by adding new neurons to its
input and output layers (increase width). Expanding a node or adding a new
one is the same process, as we only need to specify the input and output edges
of the new neurons to be added. The peculiarity of this case lies in the fact
that the best possible updates v∗(x) of a specific node should take into account
at least all the parameters contributing directly to this node. For reference, in
Figure 2, when calculating v∗(x) at the hidden state i+1, we take into account
the pre-existing weights W2 and W3.

We split our training dataset into 3 equal parts named train-opt , train-ls,
and train-gr . At each growth step, first, for all potential network expansions, we
optimize the potential new neurons’ directions using train-opt , then we perform
line-search to optimize their amplitude factor using train-ls, and finally, we select
the best expansion using the estimation of the loss on train-gr . We then train
this newly expanded architecture using the concatenation of train-opt and train-
ls which we refer to as inter-train .

Strategies for Growth. The whole search space is a greedy strategy,
where we let the network grow freely based on the train-gr loss. It is an ex-
haustive search, and the search space inflates very fast with every growth step,
together with the associated GPU energy consumption. The bottleneck re-
stricted space strategy attempts to reduce this space by restricting the avail-
able network expansions. In this strategy, we find the node with maximum
expressivity bottleneck A∗ = argmaxA ΨA and evaluate only the expansions
that contribute to this pre-activity, that is, expanding or adding new layers that
output to A∗ or expanding the node A∗ itself. This way we greatly reduce the



0 2000 4000 6000 8000 10000

epochs

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

ac
cu

ra
cy

0.93

0.94

0.95

0.96

0.97

0.98

0.2

0.4

0.6

0.8

1.0

1.2

nu
m

be
r 

of
 p

ar
am

et
er

s 
10

5

1e5

inter-train

train-gr

test

parameters

Fig. 3: Neural
Architecture
Growth results
on MNIST
using arbitrary
DAG networks.
We grow the ar-
chitecture every
500 epochs.

search space, and thus the search time and GPU energy consumption. In a third
strategy, we aim at a trade-off between performance and complexity, within the
bottleneck restricted search space. We use the Bayesian Information Criterion
as BIC = k log(n) − 2 log(L), where k is the number of parameters and n is
the sample size. This strategy is named BIC + restricted space . To com-
pare these strategies, we consider an ideal situation where we already know the
perfect architecture for the task, that is the Teacher’s, thought of as an oracle.

3 Experiments and Results

104 105 106

number of parameters

88

90

92

94

96

98

te
st

 a
cc

ur
ac

y

DAG growth

NORTH-pre median

NORTH-select

2-layer NN, 300 HU

2-layer NN, 300 HU, distortions

2-layer NN, 1000 HU

2-layer NN, 1000 HU, distortions

3-layer NN, 300+100 HU

Fig. 4: Baselines on MNIST for
test accuracy and number of pa-
rameters.

Proof of concept. In Verbockhaven et al.
(2024), we evaluated growing networks on
CIFAR-100 with sequential architectures.
This study considers further experiments with
DAG networks. As we have implemented only
fully-connected layers so far, we are conduct-
ing a first evaluation on MNIST. To the best
of our knowledge, there are no official re-
sults of NAS methods on MNIST except for
Maile et al. (2022). For this reason, we use
the results of Lecun et al. (1998) with fully-
connected layers as our baselines. We use
the whole search space strategy and at each
growth step, we increase the size of the architecture by 10 neurons. We perform
intermediate training between growth steps for 500 epochs and evaluate on the
test set. We see the results of our approach in Figure 3. We notice that this
intermediate training pushes parameters towards overfitting, but immediately
after growing the architecture, the overfitting gap between the inter-train and
the train-gr sets is reduced and the network finds itself in a more advantageous
position, so it can continue learning. In general, by growing we manage to es-
cape potential local minima that force the training accuracy to converge and we
gain significantly more accuracy on train-gr. The test accuracy sits just below,



0 100 200 300 400 500 600
epochs

10 2

2 × 10 2

3 × 10 2

4 × 10 2
lo

ss
whole space search
bottleneck restricted space
BIC + restricted space

inter-train
test

0 1 2 3 4 5 6
growth step

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

cu
m

ul
ati

ve
 g

pu
 en

er
gy

 co
ns

um
pt

io
n 

(W
h) oracle

whole search space
bottleneck restricted space
BIC + restricted space

total
search phase
train phase

Fig. 5: (a) Teacher-Student loss performance. The highlighted area represents
the standard deviation over 6 runs. (b) Teacher-Student cumulative GPU en-
ergy consumption in Wh. Oracle: cost to train an architecture identical to the
Teacher for the same number of epochs. The highlighted area represents the
85% IQR over 6 runs.

since we also overfit on train-gr after a few steps, as it is used for the expan-
sion selection. Nevertheless, the gain in test performance is slow but significant.
The experiment was run for 20 growth steps, requiring a little less than 7 GPU
hours (0.29 GPU days). The final architecture achieves an inter-train accuracy
of 99.7% and a test accuracy of 96.2%. We could keep growing the architecture
for more steps but the improvement in accuracy is not significant and the drain
on power consumption and additional complexity are not worth the added effi-
ciency. In Figure 4 we see that we do not achieve state-of-the-art test accuracy
but our method is extremely competitive in terms of model complexity and is
thus cost-efficient.

Growth Strategies. To compare strategies in a general framework, we con-
struct a Teacher-Student experiment. We randomly initialize a Teacher network
for a regression task, with an input size of 20, two hidden states of size 50, a
direct connection from the input to the second hidden state, and selu activa-
tions, for a total of 4701 parameters. We can then generate input samples from
a uniform distribution and ask this Teacher for labels, to create our train and
test datasets. Predicting this output is non-trivial as the intrinsic dimension is
the same as the embedding dimension. Indeed, the random initialization of the
Teacher parameters and the independent sampling of the input features create
many degrees of freedom. We want to compare how our three strategies per-
form at growing a Student with arbitrary DAG, from scratch, to imitate the
Teacher. At each growth step, we can add 10 neurons and we perform interme-
diate training for 100 epochs. The experiments are shown in Figure 5. We notice
a temporary slight drop in performance when we restrict the search space, but
it is not a significant one and it disappears after a certain number of epochs.
However, GPU energy consumption is decreased by 23% when restricting the
search space, for the same loss. We note also that with this strategy, we con-
sume only 70% energy more than the oracle, which is the ideal scenario where
the original Teacher architecture is known and trained, while we in plus search



for the architecture (cf. Eq. (4)).
Based on these results we estimate that with a grid-search NAS technique

instead, we would need to train 7 different architectural structures for 100 epochs
to roughly evaluate all the possible DAGs we can achieve for a network of 5
layers. Assuming they would all have the same number of neurons, chosen
among a grid of 5, we would have to train and test at least 35 architectures,
plus the best architecture fully once, for a total of ≈ 51 Wh. We achieve a more
granular result with only 25% of the energy when restricting the search space. In
retrospect, reducing the search space based on the bottleneck seems to perform
very well in terms of efficiency and cost.

The use of BIC reduces the size of the resulting architecture, with an average
of 723 parameters compared to 1479 for the bottleneck restricted space and 1454
for the whole search space, but consumes more energy during the search phase
than just reducing the space, although with a smaller variance. This is because
it tends to choose architectures that create more options for the next search
phases. More studies on variations over BIC have to be performed to make it
achieve an effective trade-off between performance and architectural complexity.

4 Conclusion and Future work

In this work, we grow neural architectures in the form of any DAG by adding
new layers and direct connections on the fly during training. Our work is based
on Verbockhaven et al. (2024) that introduced the notion of expressivity bottle-
neck to increase the width of layers in a pre-defined architecture structure. Our
contribution is to create arbitrary non-sequential fully connected architectures
starting from an empty graph without any predefined structure. We show that
our method is competitive in terms of number of parameters, thus reducing in-
ference time. We compare various strategies to grow an architecture and achieve
lower complexity. We manage to reduce the overall training time and thus the
GPU energy consumption compared to a grid search among architectures. The
next line of research is to further improve our strategy to fulfill an efficient trade-
off between performance and complexity. We intend to further extend our work
to introduce growable modules for convolutional layers.

References
Evci, U., van Merrienboer, B., Unterthiner, T., Pedregosa, F., and Vladymyrov, M. (2022). Gradmax:

Growing neural networks using gradient information. In ICLR.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324.

Liu, H., Simonyan, K., and Yang, Y. (2019). DARTS: Differentiable architecture search. In ICLR.

Maile, K., Rachelson, E., Luga, H., and Wilson, D. G. (2022). When, where, and how to add new
neurons to ANNs. In First Conference on Automated Machine Learning (Main Track).

Verbockhaven, M., Rudkiewicz, T., Chevallier, S., and Charpiat, G. (2024). Growing tiny networks:
Spotting expressivity bottlenecks and fixing them optimally. TMLR.

Wu, L., Liu, B., Stone, P., and Liu, Q. (2020). Firefly neural architecture descent: a general approach
for growing neural networks. In NeurIPS.


