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ARTICLE INFO ABSTRACT

Keywords: Solar wind forecasting is a core component of Space Weather, a field that has been the target of many novel
Solar wind machine-learning approaches. The continuous monitoring of the Sun has provided an ever-growing ensemble
Solar-terrestrial relations of observations, facilitating the development of forecasting models that predict solar wind properties on Earth

Neural networks
Artificial intelligence
Magnetohydrodynamics
Machine-learning

and other celestial objects within the solar system. This enables us to prepare for and mitigate the effects of
solar wind-related events on Earth and space.

The performance of some simulation-based solar wind models depends heavily on the quality of the initial
guesses used as initial conditions. This work focuses on improving the accuracy of these initial conditions by
employing a Recurrent Neural Network model. The study’s findings confirmed that Recurrent Neural Networks
can generate better initial guesses for the simulations, resulting in faster and more stable simulations. In our
experiments, when we used predicted initial conditions, simulations ran an average of 1.08 times faster, with a
statistically significant improvement and reduced amplitude transients. These results suggest that the improved
initial conditions enhance the numerical robustness of the model and enable a more moderate integration time
step.

Despite the modest improvement in simulation convergence time, the Recurrent Neural Networks model’s
reusability without retraining remains valuable. With simulations lasting up to 12 h, an 8% gain equals
one hour saved per simulation. Moreover, the generated profiles closely match the simulator’s, making them
suitable for applications with less demanding physical accuracy.

1. Introduction the entire heliosphere - is a time-varying, non-homogeneous flow with
the potential to cause a variety of disturbances throughout the whole

Space Weather forecasting is a topic in rapid development that has solar system, some of which have the potentia] to impact planetary
been the target of numerous new machine-learning (ML) applications atmospheres significantly. Therefore, forecasting the solar wind accu-
(Camporeale, 2019). It aims to understand the physical conditions of rately and with sufficient lead time is extremely important, but doing it

Earth’s and other solar system bodies’ spatial environments and deter-
mine and predict the impacts of primarily solar-driven disturbances on
infrastructure and biological systems (Lilensten and Belehaki, 2009).
Complex chains of events in different regions between the Sun and
Earth are frequently responsible for space weather phenomena, requir-
ing the development of models that observe causality ties between a
varied collection of events across a wide variety of physical regimes.
In particular, the solar wind — a flow of charged particles that
originates in the inner solar corona layers and spreads outward, filling

accurately across the entire Sun-to-Earth path and with ample enough
lead time is a daunting task.

The development of solar wind forecasting models currently faces a
number of obstacles of great importance. To create solar wind models,
practitioners depend on spacecraft observations — both remote near-
Sun and in-situ near-Earth — having a significant gap in between.
Furthermore, the solar wind transits between several physical regimes
as it propagates from the former to the latter, being affected by a chain
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of different physical processes in its evolution across the interplanetary
space (Rouillard et al., 2021). The heliophysics community has been
devoting great efforts to addressing this knowledge gap by the launch
of space missions such as Solar Orbiter (Miiller et al., 2020) and by
the development of models that let us establish connections through all
these layers of the solar atmosphere (Rouillard et al., 2020). In practical
terms, the solar wind modelling problem is usually split into parts, with
specialized models focusing on specific sub-regions or sub-processes.
Most notably, the magnetically-dominated solar corona (up to about
10% of the Sun-Earth distance) and, just above, the heliosphere (on
which thermal pressure and global rotation take over). Maps of the
magnetic field at the surface of the Sun (magnetograms) usually consti-
tute the main input data of these models. Modelling the coronal part of
the solar wind is usually a much more complex task than that of its he-
liospheric counterpart. For this reason, practitioners have traditionally
used empirical (or semi-empirical) models to circumvent the coronal
complexity and provide direct estimations of the solar wind speed at the
heliospheric boundary (Arge et al., 2003). The standard alternative has
historically been to use complex numerical magnetohydrodynamical
(MHD) models of the solar corona that bring invaluable insight into
solar wind propagation (Priest, 2014; Solanki et al., 2006; Lionello
et al., 2008), but at a very high computational cost. A new approach
that bridges these two methods took shape recently by developing and
implementing the MULTI-VP solar wind model (Pinto and Rouillard,
2017). MULTI-VP has been shown to produce good quality predictions
of the solar wind at a much smaller computational cost in comparison
to standard 3D MHD models (Samara et al., 2021; Poirier et al., 2020).
Computational performance is paramount in space weather forecasting,
so as to allow for the longest possible lead time and also to make
ensemble forecasting possible.

MULTI-VP computes vast collections of individual (or elemental)
solar wind streams that flow along open magnetic field lines across
the solar corona and up to about 15% of the Sun-Earth distance.
These elemental flows sample the whole three-dimensional solar at-
mosphere or any specific region of interest. Each solar wind solution
is constrained by the geometry of the magnetic flux tubes it crosses,
namely by the amplitude of the surface field and by its expansion factor
and inclination profiles (provided as a function of distance to the Sun
measured along its curvilinear coordinate). The code then solves for
a one-fluid flow taking into account a coronal heating model, heat
conduction, and radiative cooling.

These MULTI-VP’s elemental solutions can, in principle, be com-
puted ab initio, but at an unnecessarily high computational cost (one full
3D run consists of several thousands of elemental solutions). Instead,
we provide pre-computed initial conditions — initial guesses that consist
of full solar wind profiles - that the code then drives towards a
final (relaxed) solution. Currently, this relaxation process consumes
a significant fraction of the computational load required to obtain a
solar wind solution. Consequently, improving the quality of the initial
guesses should lead to invaluable gains in total computing time as well
as smoother initial relaxation transients.

This manuscript investigates whether and how we can use machine-
learning to enhance the initial guesses used in MULTI-VP to improve its
computational performance and serve as a potential basis for a future
surrogate model. In particular, this paper addresses whether “Elemental
solutions predicted by a Recurrent Neural Network (RNN) are good
enough to be used as initial guesses for MULTI-VP thus decreasing the
average time needed to perform a simulation”.

2. Previous ML applications

ML has been applied to various space weather phenomena like solar
wind forecasting, solar flare detection, and understanding the solar
activity cycle.

Numerous works have leveraged ML to enhance the initial data
of simulations. Notable examples include the work of Kochkov et al.
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(2021) where fluid dynamics simulations are accelerated and improved
by the use of deep learning, as well as Lattimer et al. (2020)’s and Wat-
son (2019)’s. In the latter two works, artificial neural networks (ANNs)
are combined with physically derived models to predict the chaotic
Lorenz’96 system.

ML has evidently established itself as a valuable tool in space
weather and physics simulations. ML’s power lies in its ability to
analyse vast datasets, unveiling hidden patterns that elude traditional
methods. In recent years, specific ML techniques have gained attention,
notably Recurrent Neural Networks (RNNs).

A significant breakthrough in this context is Sexton et al. (2019)
which developed an RNN capable of forecasting the planetary Kp-index
for up to 24 h, surpassing existing models. Leveraging three decades
of historical data from NASA’s Omni Virtual Observatory, this RNN
incorporated various solar wind parameters, including Bz, n, V, |B|,
rB, and rBz, along with Kp values. The RNN excelled in predicting
the Kp-index, demonstrating strong correlations ranging from 0.8189
for short-term forecasts to 0.8211 for nine-month predictions, with the
lowest Root Mean Square Error (RMSE). This highlighted the RNN’s
reliability and predictive prowess in solar weather analysis.

Several other works in the field emphasize the critical role of initial
conditions in physical simulations and models.

For instance, in cosmological zoom-in simulations (Hahn and Abel,
2011), multiscale initial conditions are generated with multiple levels
of refinement. In this case, a hybrid Poisson solver, which achieves sig-
nificantly higher accuracy than previous methods, makes it applicable
to simulations involving two-component baryons and dark matter. This
solver accurately reproduces correlation functions, density profiles,
fundamental halo properties, and sub-halo abundances.

Crocce et al. (2006) delve into the impact of using initial condi-
tions in numerical cosmology simulations. Their research highlights
the superiority of second-order Lagrangian perturbation theory (2LPT)
over Zel’dovich approximation (ZA) initial conditions, as 2LPT substan-
tially reduces nonlinearities and enhances the precision of cosmological
simulations.

Prunet et al. (2008) describe a software package used to produce
initial conditions in large-scale cosmological simulations. The codes
were validated up to resolutions of 4096 initial resolution elements
and used to generate the initial conditions of large hydro-dynamical
and dark matter simulations, proving to be more versatile than previous
solutions.

In another work, Brown and Gnedin (2021) propose an approach
of customization to the root grid zoom-in initial conditions utilized
for simulations of galaxy formation, achieving a twofold CPU runtime
improvement due to dimensionality reduction.

Jasche and Wandelt (2013) describe a probabilistic physical model
of a nonlinearity evolved density field. The researchers reconstruct the
current density and velocity fields from large-scale structure surveys
using Bayesian exploration, along with an entire propagation of the
observational uncertainties in the initial conditions. The statistical
consistency of the reconstructed initial conditions with the inputs of the
Gaussian simulation is demonstrated by tests. This demonstrates that
statistical approaches based on physical models of large-scale structure
distribution are now becoming feasible for realistic current and future
surveys.

In summary, incorporating ML, especially RNNs, to improve ini-
tial conditions for solar wind simulations holds the potential for a
significant advancement in the efficiency of these simulations. There
is optimism that, owing to their robust and memory-based architec-
ture, as well as their probable capability to identify intricate patterns
and correlations among solar wind parameters, RNNs could empower
the scientific community to extract valuable insights from extensive
datasets, establishing them as indispensable tools in space weather
research.
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Fig. 1. Three steps of the experimental setup: (a) We generated the dataset by running MULTI-VP for a large set of partial flows, (b) we trained a model capable of predicting
better initial guesses, and (c) we used that model and checked if the results of the simulation were similar to the original results, and if the predicted guesses were closer to the

simulation output.
3. Data and methodology

MULTI-VP takes in magnetogram data (maps of the magnetic field
at the surface of the Sun) from which the global three-dimensional
topology of the solar coronal magnetic field is deduced. It then selects
and traces an ensemble of open magnetic field lines (those rooted at the
Sun’s surface but extending outwards into the interplanetary medium).
Each line will host an elemental solar wind solution (or wind stream).
Each elemental wind stream is fully constrained by the geometry of its
driving field line (i.e., the profiles of magnetic field amplitude (B) and
inclination (a) in respect to the vertical direction as a function of the
distance to the Sun (R)) and by a chosen thermal model derived from
previous theoretical work that takes into account coronal heating, heat
conduction, and radiative cooling. The outputs of the simulator consist
of a profile of plasma density (n), velocity (v), and temperature (7)
given as a function of the distance to the Sun along each single one of
the field lines traced (up to about 30 solar radii).

Table 1 summarizes these input and output parameters. The first
column is the line index, and the following three represent the ge-
ometry of open magnetic flux tubes derived from reconstructions of
the coronal magnetic field based on magnetograms: R represents the
radial coordinate radius, B stands for the magnetic field intensity, and
a denotes the inclination angle of the flux-tube in respect to the vertical
direction. The last three correspond to the physical quantities computed
by the MULTI-VP simulation (or equivalently to their corresponding
initial conditions): n, the number of protons per unit volume (number
of ionized H protons), v, the speed-oriented along the line, and T, the
temperature at that point in space. For simplicity’s sake, we will refer
to the first three of these values (R, B, and «) as the input and the last
three (n, v, and T) as the output.

Although theoretically not needed, for performance reasons, MULTI-
VP receives not only the simulation input but also initial guesses for the
output values. The closer these initial guesses are to the final output,
the faster the simulation will relax into its final state. Currently, these
initial guesses are provided by a solar wind expert.

Table 1
Magnetic flux-tubes geometry and physical quantities calculated by MULTI-VP for a
single solar wind profile over its 640 abscissas (and their respective units).

index R [R,.] B [G] a [deg| n [em=| v [km/s| T [MK]
1 R, B, a ny v, T,
640 Rexo By X640 M640 Us40 T

Since the used data is a many-to-many sequence of multiple spa-
tiotemporal steps as input mapped to a sequence with multiple steps
as output and there are intricate patterns between the provided inputs,
an RNN model, in detriment to a simple ANN model, has been chosen
to deal with such connections. Even-though RNNs are known to have
vanishing and exploding gradient limitations, Weerakody et al. (2021),
these are mostly due to long-term dependencies, Lin et al. (1996),
which our data does not possess.

As such, we hypothesize that a RNN model, trained with sev-
eral MULTI-VP simulation results, should be able to infer good initial
guesses for n, v, and T from the values of R, B, and a.

To test this hypothesis, we randomly selected five different dates
from a large pool of simulations, each date containing several distinct
instances of solar wind profiles, with each of these corresponding to
a single independent simulation of an elementary solar wind stream
(driven along a given magnetic flux-tube) in the format depicted in
Table 1.

The whole process can be seen in Fig. 1. The top section (a) depicts
the dataset generation. MULTI-VP receives a partial flow as input (1),
as well as an initial guess hand-crafted by an expert (O,). By running
MULTI-VP for each one of these pairs ({(I,0,)), we will generate a
new dataset of paired input and output files ((I,0,)). The middle
section (b) shows how this dataset ((I,0,)) can be used to train an
RNN model capable of predicting initial guesses for each partial data
flow. The bottom section (c) depicts the testing and validation process
of the work, where the output of the model, coupled with the partial
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Fig. 2. Training Process and model validation: Creating the dataset from simulation runs, normalizing that dataset, and splitting into training, testing and validation. Keras Tuner

was used to generate the RNN model.

flow ((I, Os)), is used by the MULTI-VP simulator to generate the final
outputs (Oy).

In the end, we compared the outputs of the initial simulation (0,)
and the outputs of the new simulation (0,) to check if the simulation
results were congruent; the final results of the simulation (0,) were
also compared with the predicted initial guesses (O3) to check if the
predictions were closer than the expert initial guesses. The speed-
up between running the simulation using expert or predicted initial
guesses was also measured.

The training process is detailed in Fig. 2. We started by gener-
ating a dataset from (I,0,) and splitting it (90%/10%) into training
and validation datasets. We normalized the data using SciKit’s Quan-
tileTransformer. We then used Keras’s RandomSearch Tuner (with a
70%/30% split between training and testing data) to find the Recurrent
Neural Network that minimized our loss, in this case, the minimum
squared error (MSE).

To employ the RandomSearch tuner, we supplied it with a hyper
model and specified various hyperparameters for the search. We set
500 training epochs and a maximum of 100 trials, representing the
combinations of hyperparameters to be tested. Each trial involved
two executions to assess the performance of a particular combina-
tion on the objective. The range for the number of layers was set
between 5 and 100, the number of hidden units ranged from 16 to
128, and the activation functions included relu/tanh (rectified linear
unit/hyperbolic tangent) and sigmoid. For model training, we utilized
the ADAM optimizer, as outlined in Kingma and Ba (2014). The choice
of this optimizer was driven by its computational efficiency, minimal
memory requirements, resilience in the face of diagonal gradient rescal-
ing, and suitability for handling large datasets with intricate parameter
configurations.

4. Results

A dataset of 12,980 simulated wind profiles over five non-
consecutive days was collected, with each day containing 2,596 unique
profiles that had already been processed by MULTI-VP (see Fig. 1a).
After removing 1,760 profiles due to corruption or missing data,
there were 11,220 profiles left for further analysis. To validate the
performance of our model, we set aside 10% of the profiles (1,122)
and used the remaining data to generate and train the RNN model (see
Fig. 1b).!

The final trained RNN model found by Keras RandomSearch tuner
had 92 layers, with the hidden units ranging between 16 and 124 and
the activation functions varying between the three mentioned before.
The training MSE of the best model was 8.52 x 1072. For each of

! There were around 2 GB of training data, and around 0.2 GB of validation
data. The model was trained on an Intel® Core™ i5-10300H CPU @ 2.50 GHz
processor with 16 GB of RAM. It took around 36 h to train the RNN for 500
epochs.

the 1,122 wind profiles set aside for validation, we employed this
RNN model to generate initial guesses (03), which were then used
to rerun the simulations (see Fig. 1c). The final validation MSE on
these results was the same as the training one. RMSE was also used
to measure the loss of the predicted profiles. The validation RMSE was
of approximately 0.29. According to Moriasi et al. (2007), these MSE
and RMSE values are considered low.

To ensure the reliability of our results, we performed a sanity check
by comparing the simulation outputs using expert initial guesses (02)
with those generated by the ML model (O3). Our analysis revealed that
the differences between the simulation outcomes were well within the
simulator’s precision margin, thus providing further evidence of the
accuracy of the results.

Fig. 3 displays the results of running the simulation for the 1,122
validation profiles using the expert initial guesses (02) and the pre-
dicted initial guesses (O3). Although the model is less discerning than
the simulation, the predicted values for n, v, and T are overall consis-
tent with the simulation outputs. Notice that the figure shows at least
one instance - in orange — where the simulator has misbehaved. Albeit
rare, this situation can occur whenever the initial guess provided to the
system is inappropriate and leads to transients that are to strong for the
numerical scheme to handle. The model, however, seems to not have
learnt that erroneous behaviour and, in consequence, to have predicted
a regular solar wind profile.

4.1. Simulator experiments

To gain insight into the simulation process, we analysed the results
of running simulations using both expert initial guesses and predicted
initial guesses. Fig. 4 illustrates the difference between the two runs
for a specific profile. The lines represent the values of the variables (n,
v, and T) at each of the 640 data points, with the red line indicating
the initial guesses and the green line indicating the final output of the
simulator.

The analysis revealed that the simulation converged correctly in
both cases, consistent with our earlier findings. Furthermore, we ob-
served that the difference between the red and green lines was gen-
erally smaller using the predicted values for most profiles, indicating
that the predicted initial guesses were closer to the final solution. Addi-
tionally, the convergence process seemed smoother and more straight-
forward for most cases, with a smoother initial transient. Notably, the
density profile tended to be closer to the final solution than the stan-
dard profiles. We arrived at these observations by analysing multiple
graphs of other profiles as well.

4.2. Temporal evolution

We then analysed the temporal evolution of the relative varia-
tions of each quantity between two consecutive data outputs for each
run. Specifically, we calculated the ratio (X; — X,_;) /X,_; for a given
quantity X at a fixed position in the upper part of the numerical
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Fig. 3. Comparison of the n [em~], v [km/s], and T [MK] (top to bottom) outputs from the original simulation dataset (on the left, (02)) and the predicted ones from the RNN
model (on the right, (03)) using a logarithmic scale. The x-axis corresponds to the grid-point number and y-axis to the variables’ values for each of those points.

domain. Fig. 5 shows the evolution of this ratio for a specific profile.
By examining the evolution for this and other profiles, we observed
that using the predicted values resulted in a faster convergence of the
simulation compared to using standard profiles.

The simulations using predicted initial guesses generally seem to
generate lower amplitude transients, which is twofold beneficial from
a numerical point of view because it makes the calculation more robust
(less likely to produce transients excessively stiff for the solver), and
because it allows for the code to keep a more moderate integration time
step.

We also noted a series of oscillations at well-defined frequencies that
follow the initial impulse. These do not represent numerical noise: it is
a well-defined oscillatory mode — which corresponds to an acoustic-type
compressible mode or, more precisely, to the slow MHD mode - that is
excited as a secondary response to perturbations in the structure of the
transition region between the chromosphere and the solar corona (i.e.,
between the colder and denser, and the hotter and rarefied parts of the
atmosphere, see Pinto et al. (2009), Griton et al. (2020)).

4.3. Performance

The simulations exhibit different initial transients, with smoother
transients observed when using predicted input flows. Additionally,

the integration time step automatically adapts to the complexity of
the simulated flow, causing it to vary between the two realizations.
Consequently, the number of total iterations required for the code
to converge also differs. As such, to measure performance, we used
the number of iterations rather than the elapsed time. The speed-up
factor (sf) was calculated using the formula sf = nis/nip, where nis
represents the number of iterations using standard profiles and nip
represents the number of iterations using predicted profiles. The mean
speed-up was obtained and found to be 1.0796.

A box plot of the natural logarithm of the speed-up per file is shown
in Fig. 6. The median value is slightly above 0, and most of the Q1-Q3
values are positive, indicating a small positive improvement in the time
needed to run the simulations. However, further analysis was required
to understand whether there were statistical differences between the
speed-up using standard and predicted profiles. A significant number
of outliers were observed on both sides of the result.

The Shapiro-Wilk test was used to check for normality of the mea-
sured effect, and a p-value of 0.0 was obtained, indicating that the
distribution was not normal. A quantile-quantile plot confirmed that
the distribution was heavy-tailed. Further analysis revealed that the
number of iterations from both groups had the same shape and scale,
enabling a Wilcoxon signed-rank test to be performed. The p-value score
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Fig. 4. Illustrative example of comparison of standard and predicted profiles performance using one of the tested predicted profiles. The standard profile can be seen on the left
panels, while the new profile can be seen on the right. Red lines represent the initial condition, green lines represent the final solutions, and black lines represent some intermediate
instants, set with the same time-cadence (4r) on both sides. The abscissa represents the grid-point number of the simulation, like in Fig. 3.

obtained was 6.7335~%°, allowing us to reject the null hypothesis, as the
result is significant at p < 0.05. This supports the hypothesis that using
the predicted profiles has a statistically significant positive effect on the
performance of the simulation.

4.4. Error analysis

To validate our hypothesis that the improved performance of the
simulation was due to the better initial guesses generated by our RNN
model, we conducted an additional analysis to compare the accuracy
of the expert and predicted initial guesses. Specifically, we calculated
the average difference between the simulation output and each initial
guess for every abscissa. Fig. 7 displays the results, which indicate
that the average error was consistently smaller for the predicted initial
guesses compared to the expert guesses. For clarity, the plots exclude
the lowest layers of the solar atmosphere (below gridpoint 100) that
consists of very low temperature, very dense plasma, and with very
low velocities, that is, with no wind flow yet developed (cf. Fig. 4).
Furthermore, this dense layer spontaneously develops small amplitude
oscillations that have no impact on the state of the computed solar wind
flow, but could be misidentified as an error in the predicted profiles.
This finding provides further evidence that the RNN model can generate
more accurate initial guesses, supporting our hypothesis.

4.5. Validation threats

We identify the following threats to the validity of our results
(Campbell and Cook, 1979; Campbell and Stanley, 2015):

Data integrity, representativeness and bias (external). because MULTI-VP
uses massive volumes of data, the number of the dimensions of the
ML modelling features makes it difficult to ensure data’s integrity and
representativeness. Because our data is manually selected by humans,
there is also a tendency for it to be biased. Another important matter
is that the data comes pre-processed, which might imply some noise or
over processing.

Explainability challenges (internal). ML models (primarily neural
network-based ones) are not easy to comprehend and are frequently
perceived as black boxes. The complexity and architecture of neural
networks make it challenging to evaluate the varying selection process
and explainability of driving factors. Even if these models outperform
traditional ones, the lack of explainability may cause ML models to be
restricted in use by specialized data scientists. Since the model would
be used by astronomers and astrophysicists, a GUI of some sort could
be presented as a solution to this threat.

Parameter and method selection (internal). ML models involve scaling,
normalization, parameter optimization, randomization, activation func-
tions. How these parameters and hyperparameters are selected when
developing models can impact test error estimation — in our case, the
MSE - and the absolute error.

5. Discussion and conclusion

Machine-learning has become a popular approach for addressing
space weather problems, and in this work, our aim was to investigate
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the potential of ML techniques to enhance the performance of MULTI-
VP’s simulator. To this end, we utilized a neural network approach to
formulate our central hypothesis.

Specifically, we designed and tested a novel neural network model
comprising 92 hidden layers, which uses flow data as inputs to predict
n, v, and T values for each flow. We obtained results that closely
matched the expected ones, thereby confirming the applicability of
these predicted values in MULTI-VP simulations.

Next, we used our RNN model to predict 1,122 randomly chosen
profiles, and used them as initial guesses in the MULTI-VP simulator,
comparing their performance against simulations using expert initial
guesses. Our analysis indicated that in most cases, there was a small
but statistically significant improvement in the convergence time of
simulations. To validate our results, we employed the Wilcoxon signed-
rank test, achieving a high level of statistical significance with a p-value
of 6.73357%.

Since the RNN can be trained with years of simulations that en-
compass several solar cycles, the evolving solar wind patterns can be
captured in a single training. Even though the simulation convergence
time improvement was modest, since the RNN model does not need
to be retrained to be used, it still has valuable applications. With a
range of up to 12 h per simulation, an improvement of 8% is a gain of
1 h per simulation. Furthermore, since the generated profiles are very
close to the ones produced by the simulator, these can be used as a first
instantaneous result for applications that can tolerate lower physically
accuracy. Moreover, the same model typology and approach can be
used for different applications where initial conditions are required by
physical simulators.

In addition to improving simulation time, the study revealed that
the predicted initial guesses were closer to the actual final solutions on
average. This closer proximity to the simulated solution resulted in a
more stable and efficient convergence process. Overall, using our ML
technique for generating initial conditions resulted in a twofold benefit:
faster simulation times and improved simulation accuracy.

5.1. Future work

The RNN model developed in this study has shown promising re-
sults in predicting initial guesses for MULTI-VP simulations. While our
statistical analysis supports our main hypothesis that the RNN model
provides better guesses than current expert guesses on average, we also
observed that in some cases, the model performed worse than expected.
We have identified several potential reasons for this:

Corrupted profiles: We identified several corrupted profiles during
our work, which may have influenced the training process and
resulted in a suboptimal RNN model. To address this issue, we
suggest using Generative Adversarial Networks (GAN) or Vari-
ational Autoencoders (VAE) to identify outliers and corrupted
profiles and remove them from the training process.

Different types of solar wind: There are different types of solar
winds, and it may be challenging for an RNN model to distin-
guish between them. Fig. 3 showed that the model struggled
to predict values for different types of profiles. To address
this issue, we suggest using clustering techniques to identify
different types of profiles and train separate models for each
type of solar wind.

Error estimation: The mean squared error (MSE) metric may not be
the best metric for training these types of models, since a low
error does not always guarantee a physically realistic result. We
suggest exploring the use of Physics-informed Neural Networks
(PINN) in a future work.

Engineering Applications of Artificial Intelligence 133 (2024) 108266

In conclusion, our work has room for improvement not only in val-
idation but also in optimization and enrichment. We are confident that
future research will yield even better results, potentially leading to the
development of a physically-informed surrogate ML model capable of
approximating the output of MULTI-VP without running the simulation.
This would be especially useful in cases where a quick approximation
of the simulation output is needed.
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