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Abstract. This paper introduces a projection-based estimator for the diffusion coefficient in a stochastic

differential equation (SDE) using high-frequency observations of a single trajectory. The method extends
existing approaches to noncompact estimation domains, allowing the use of projection spaces spanned by

noncompactly supported functions such as Hermite and Laguerre bases. The improvement partly relies on a

different decomposition of the squared increments of the processes, which define the approximate regression
equation. We propose a data-driven model selection procedure and prove that it enables the estimator to

automatically balance squared bias and variance. Numerical experiments confirm its effectiveness across

various SDE settings.

1. Introduction

Consider the diffusion process defined by the stochastic differential equation (SDE)

dXt = b(Xt) dt + σ(Xt) dWt, t ≥ 0, X0 ∼ µ,(1)

where (Wt)t≥0 is a standard Wiener process and µ is a probability measure independent of (Wt). The
functions b and σ, referred to respectively as the drift and diffusion coefficients, are assumed to be Lipschitz
continuous. Given high-frequency observations

(
Xk∆n

)
0≤k≤n

with sampling intervals ∆n → 0 as n → ∞,

our goal is to construct a nonparametric estimator of the unknown squared diffusion coefficient σ(·)2.
In the literature, two primary methods have been proposed for non-parametric estimation of the coefficients
of a diffusion process. The first method relies on kernel-based estimators (see, for instance, Florens-Zmirou
[12, 11] for estimating σ2, and Jiang and Knight [19], Bandi and Phillips [2] for both b and σ2). These
works analyze point-wise consistency and also derive the asymptotic distribution of the proposed estimators.
In addition, Jacod [18] surveys the results on convergence rates, addressing both point-wise and integrated
convergence for kernel-type estimators.

The second method constructs projection estimators on a chosen finite-dimensional space of basis functions,
complemented by a data-driven procedure that determines the dimension adaptively. This strategy has been
widely explored for diffusion processes. It was introduced by Genon-Catalot et al. [13], expanded by Hoffmann
[15, 16] using wavelet bases, and further simplified by Comte et al. [8] with projection-least-square estimators.
However, these projection-based estimators typically only reconstruct the restricted function σ2

A := σ2
1A

on a compact set A ⊂ R. To address non-compact domains, Ella-Mintsa [10] extended the least squares
estimator to the entire real line by using N independent copies of the diffusion and letting N → ∞ along
with the sample size n. This estimator is essentially a compact supported one, but on expanding intervals
[− log(N), log(N)]. The author establishes risk bounds for both N = 1 and N ∝ n, although adaptivity is
only pursued in the latter scenario.

A crucial difference between estimating b and σ2 is whether the observation horizon T = n∆ remains fixed
or increases with n. When ∆ = 1/n so that T = 1 is fixed, a consistent estimation of b from a single path
is impossible, while σ2 can still be estimated consistently in that setting. Approaches to estimate b assume
multiple independent copies of the diffusion (with T fixed, e.g., Denis et al. [9], Comte and Genon-Catalot
[4]) or let T → ∞ (e.g., Comte and Genon-Catalot [7]), in which case an additional ergodicity condition is
imposed. The present paper focuses on σ2 in a noncompact domain and builds on Comte and Genon-Catalot
[7], which treated the noncompact case for b but did not address σ2.
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In this paper, a general family of projection spaces {Sm : m ∈ Mn} is considered, where Mn is a model
collection. The proposed estimator is given by

σ̂2
m = arg min

t∈Sm

1

n

n∑
k=1

[(
X(k+1)∆ −Xk∆

)2
∆

− t
(
Xk∆

)]2
.

The truncation of σ̂2
m is introduced for stability, following a strategy similar to Comte and Genon-Catalot

[7]. This truncated projection estimator is shown to be consistent on R without requiring a compact domain
A. In particular, it achieves the nonparametric rate n−s/(s+1) if σ2 resides in a Sobolev space W s(A). This
is in line with established results in heteroscedastic regression (Comte and Genon-Catalot [6]). Moreover,
an automatic, data-driven selection of m is proposed via a suitable penalty function that optimally balances
bias and variance. In summary, the three principal novelties are as follows:

• A construction of estimators that employ non-compactly supported bases on R, such as Hermite or
Laguerre polynomials, broadening applicability to wide intervals.

• A mechanism that accommodates a broad class of bases (rather than just several fixed bases), im-
posing only light conditions typically satisfied in many statistical settings.

• An adaptive procedure in the single-trajectory regime (N = 1) without restricting itself to a compact
domain, improving on Ella-Mintsa [10], which demands N ∝ n to achieve adaptivity.

Organization of the paper. Section 2 details the assumptions that ensure the existence and uniqueness
of the stationary, ergodic, β-mixing solution to (1). Section 3 presents both nonadaptive and adaptive
risk bounds with a discussion of the resulting convergence rates. Section 4 provides numerical experiments
illustrating the theoretical claims. Finally, Section 5 contains the proofs of the main results.

Notations. The SDE (1) is assumed to admit a stationary solution (Xt)t≥0 with invariant density π. The
π-norm on L2(R, π(x) dx) is denoted ∥ · ∥π. Given observations {Xk∆ : 1 ≤ k ≤ n}, the empirical norm is

∥t∥2n =
1

n

n∑
k=1

t
(
Xk∆

)2
,

with the associated empirical inner product

⟨s, t⟩n :=
1

n

n∑
k=1

s
(
Xk∆

)
t
(
Xk∆

)
.

When taking the expectation of ∥t∥2n, it reduces to the π-norm ∥t∥2π. On any subset A ⊂ R, L2(A, dx) is
endowed with the usual norm ∥ · ∥, and the orthogonal projection onto Sm ⊂ L2(A, dx) is denoted by fm if
f ∈ L2(A, dx). For m ∈ N+, the Euclidean norm on Rm is ∥ · ∥2,m. For a symmetric matrix M ∈ Mm×m,
the operator norm ∥M∥op is defined by

∥M∥op = sup
x∈Rm

∥x∥2,m=1

∥Mx∥2,m = sup
x∈Rm

∥x∥2,m=1

∣∣x⊤Mx
∣∣.

Equivalently, ∥M∥op is the largest absolute value among the eigenvalues of M .

2. Framework and assumptions

This section specifies the assumptions about the diffusion model and on the projection spaces used to
estimate the diffusion coefficient. It also describes the asymptotic sampling framework. The definitions and
properties of the relevant function spaces (Besov, Sobolev-Laguerre, and Sobolev-Hermite) are provided.

2.1. Model assumptions.
To guarantee the existence and uniqueness of the diffusion process solution as well as the stationarity and
ergodic properties of the process, we impose the following standard assumptions on the model.

Assumption 1. (i) The drift function b lies in C1(R), and there exist constants c1, c2 ≥ 0 such that∣∣b′(x)∣∣ ≤ c1
(
1 + |x|c2

)
for all x ∈ R.

(ii) There is a constant c3 such that∣∣b(x)∣∣ ≤ c3
(
1 + |x|

)
for all x ∈ R.

(iii) (Dissipativity) There exist constants d ≥ 0, r > 0, and R > 0 such that for all x ∈ R with |x| ≥ R,

sgn(x) b(x) ≤ − r |x|d.
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Assumption 2. (i) The diffusion coefficient σ is in C2(R), and there exist constants c4, c5 ≥ 0 such
that ∣∣σ′(x)

∣∣ +
∣∣σ′′(x)

∣∣ ≤ c4
(
1 + |x|c5

)
for all x ∈ R.

(ii) There is a constant L > 0 such that for all x, y ∈ R,∣∣σ(x)− σ(y)
∣∣ ≤ L

∣∣x− y
∣∣1/2.

(iii) (Non-degeneracy) There is a constant c6 > 0 such that∣∣σ(x)∣∣ > c6 > 0 for all x ∈ R.

Under Assumptions 1(i,ii) and 2(i,ii), SDE (1) admits a unique strong solution for any initial distribution
µ. Additionally, using 1(iii) (dissipativity) and 2(iii) (non-degeneracy),

V (x) =

∫ x

0

exp
(
− 2

∫ y

0

b(z)

σ(z)2
dz
)
dy −→ ±∞ as x→ ±∞,

and

G =

∫ +∞

−∞

1

σ(x)2
exp
(
2

∫ x

0

b(z)

σ(z)2
dz
)
dx < ∞.

A standard argument (see Kutoyants [21], Theorem 1.16) shows that there is a unique invariant measure
µ(dx) = π(x) dx for (1), where

π(x) =
1

Gσ2(x)
exp
(
2

∫ x

0

b(z)

σ(z)2
dz
)
.

Assumption 3. The initial condition satisfies X0 ∼ µ.

Under Assumptions 1, 2, and 3, the process (Xt)t≥0 is strictly stationary and ergodic. Moreover, by
Proposition 1 in Pardoux and Veretennikov [22], there exist constants K > 0, ν > 0, and θ > 0 such that

(2) E
[
exp
(
ν |X0|

)]
< +∞ and βX(t) ≤ K exp

(
−θ t

)
,

where βX(t) is the β-mixing coefficient at lag t. By the first part of (2), X0 has finite moments of all orders.

From Gloter [14], Proposition A, for f = b or f = σ and any t > 0, k > 0, h > 0, there exist C = C(k) > 0
and γ > 0 such that

E
[

sup
s∈[t, t+h]

∣∣f(Xs)− f(Xt)
∣∣k ∣∣∣ Ft

]
≤ C hk/2

(
1 + |Xt|γ

)
,

where (Ft)t≥0 is the filtration generated by W . In particular, there is a constant C ′ > 0 for which

(3) E
[

sup
s∈[t, t+h]

∣∣f(Xs)− f(Xt)
∣∣k] ≤ C ′ hk/2.

Assumption 4. The stationary density π is bounded: ∥π∥∞ <∞.

2.2. Approximation spaces.
The primary goal is to estimate σ2

A := σ2
1A for a domain A ⊂ R, which may be a compact interval, R+, or

the entire real line. For this, a family of finite-dimensional subspaces {Sm ; m ∈ N+} ⊂ L2(A) is considered,
each Sm spanned by the orthonormal family (φ0, . . . , φm−1). Specifically,

Sm = span {φ0, . . . , φm−1}.

To control the growth of {φj}, the following holds.

Assumption 5. For each m ∈ N+, there is a constant cφ > 0 such that

L(m) ≤ c2φm with L(m) = sup
x∈A

m−1∑
j=0

φj(x)
2.

Examples of valid bases. The following standard bases, each satisfying Assumption 5, will be important in
our analysis. In addition, we recall classical function spaces (Besov, Sobolev-Laguerre, and Sobolev-Hermite)
and their associated approximation properties.

1. Trigonometric Basis [TB].
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On [0, 1], define

t0(x) = 1[0,1](x), t2j−1(x) =
√
2 cos

(
2πj x

)
1[0,1](x), t2j(x) =

√
2 sin

(
2πj x

)
1[0,1](x),

for j ≥ 1. Since |tj | ≤
√
2, it follows that L(m) ≤ 2m, implying Assumption 5 holds with c2φ = 2. In many

references, these are called the (discrete) Fourier basis functions on [0, 1].

Besov-space approximation: If σ2
[0,1] is in the Besov space Bs

2,∞([0, 1]) with s > 0, then by Barron et al. [3],

Lemma 12, ∥∥σ2
[0,1] − σ2

[0,1],m

∥∥2 ≤ C(s)m−2s,

where C(s) > 0 depends on s. Recall that Bs
2,∞([0, 1]) is the set of f ∈ L2([0, 1]) with a finite Besov norm

∥f∥Bs
2,∞

:= sup
y>0

[
y−α ωr(f, y)2

]
< ∞, where r = ⌊s⌋+ 1.

Here, ωr(f, y)2 is the r-th modulus of smoothness of f in L2. Thus, for σ2
[0,1] ∈ Bs

2,∞([0, 1]), them-dimensional

trigonometric basis approximates σ2
[0,1] at rate m

−s in the L2-norm.

2. Laguerre Basis [LB].

On R+, the Laguerre functions are

ℓj(x) =
√
2Lj(2x) e

−x 1{x≥0}, Lj(u) =

j∑
k=0

(−1)k
(
j

k

)
uk

k!
.

Since |ℓj | ≤
√
2, Assumption 5 holds with c2φ = 2. Smoothness on R+ is often measured using the Sobolev–

Laguerre space (see Thangavelu [25], Chapter 1, and Szegő [24], Chapter 6):

W s
ℓ (R+, R) =

{
f ∈ L2(R+) :

∞∑
j=0

js
∣∣⟨f, ℓj⟩∣∣2 ≤ R

}
.

If σ2
R+ ∈W s

ℓ (R+, R), then

∥∥σ2
R+ − σ2

R+,m

∥∥2 =

∞∑
j=m

∣∣⟨σ2
R+ , ℓj⟩

∣∣2 ≤ m−s
∞∑

j=m

js
∣∣⟨σ2

R+ , ℓj⟩
∣∣2 ≤ Rm−s.(4)

Hence, the Laguerre basis yields an approximation rate m−s/2 in L2(R+).

3. Hermite Basis [HB].

On R, define

hj(x) =
1√

2j j!
√
π
Hj(x) e

− x2/2, Hj(x) = (−1)j ex
2 dj

dxj
(
e−x2)

.

From Indritz [17], one has |hj | ≤ π−1/4, implying Assumption 5 with c2φ = π−1/2. The Sobolev-Hermite
space is introduced by

W s
h(R, R) =

{
f ∈ L2(R) :

∞∑
j=0

js |⟨f, hj⟩|2 ≤ R
}
.

See Thangavelu [25], Chapters 4 and 5, and Szegő [24], Chapter 5, for more details. If σ2 ∈ W s
h(R, R), then∥∥σ2 − σ2

m

∥∥2 ≤ Rm−s, where σ2
m is the orthogonal projection of σ2 onto span{h0, . . . , hm−1}.

2.3. Asymptotic framework.
Throughout the paper, the sampling interval is denoted ∆ = ∆n, and obeys the following constraints:

Assumption 6.

∆n → 0, ∆n n
3/5 → +∞, and ∆2

n = o
(
1/n

)
as n→ ∞.
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Hence, while ∆n → 0, the total observation horizon Tn = n∆n grows unbounded, ensuring sufficient
ergodicity-based averaging for consistent nonparametric estimation. For simplicity, ∆ = ∆n is often written
without subscript.

Observation setup. Let (Xt)t≥0 be a solution of (1) satisfying Assumptions 1–4, and let

Xk∆, k = 0, . . . , n,

be n + 1 observations recorded in time steps of length ∆. The subsequent sections construct a projection-
based estimator for the function σ2, potentially modified by a small truncation for numerical stability, using
the data (X0, X∆, . . . , Xn∆).

3. Estimation of the diffusion coefficient

In this section, we propose new estimators for the diffusion coefficient σ2 in a fixed model space Sm,
introduce a corresponding model selection procedure, and establish risk bounds for these estimators. The
approach builds on the projection ideas in Section 4 of Comte et al. [8], with particular attention to non-
compact domains and the use of truncation to stabilize empirical matrices.

3.1. Projection estimator on a fixed space Sm.
Fix k ∈ {1, . . . , n} and define

Uk∆ =

(
X(k+1)∆ −Xk∆

)2
∆

.

From (1), a regression-type relation holds:

(5) Uk∆ = σ(Xk∆)
2 + V

(1)
k∆ + V k∆ + Rk∆,

where

V
(1)
k∆ := σ2

(
Xk∆

)( (W(k+1)∆−Wk∆)2

∆ − 1
)

is the principal noise term, while V k∆ and Rk∆ (defined later in the proof of Proposition 1) are additional
noise-like and residual terms, respectively, both being negligible.

Projection setup. Let A ⊂ R be the domain of interest, and let {φj}j≥0 ⊂ L2(A, dx) be an orthogonal
basis of functions supported on A. For each m ∈ N+, recall that Sm = span {φ0, . . . , φm−1}. A preliminary
estimator σ̂2

m of σ2 on A is defined by solving

(6) σ̂2
m = arg min

t∈Sm

γn(t), where γn(t) =
1

n

n∑
k=1

(
Uk∆ − t

(
Xk∆

))2
.

Introduce the matrices

Φ̂m =
[
φj

(
Xi∆

)]
1≤i≤n, 0≤j≤m−1

∈ Rn×m, Ψ̂m =
[
⟨φj , φk⟩n

]
0≤j,k≤m−1

=
1

n
Φ̂T

m Φ̂m,

and

Ψm = E
[
Ψ̂m

]
=
[∫

A

φj(x)φk(x)π(x) dx
]
0≤j,k≤m−1

.

If U = (U∆, . . . , Un∆)
T and Ψ̂m is invertible, then

(7) σ̂2
m =

m−1∑
j=0

â
(m)
j φj , with â(m) =

(
Φ̂T

m Φ̂m

)−1
Φ̂T

m U =
1

n
Ψ̂−1

m Φ̂T
m U.

Truncation for non-compact A. In order to invert the matrix Ψ̂m effectively, we need to ensure that its
smallest eigenvalue is sufficiently large. When A is compact, this is typically guaranteed by having a density
π that is bounded away from zero. By Proposition 7 in Comte et al. [6], we have ∥Ψ−1

m ∥op ≤ 1
π0
, where

π0 > 0 is the lower bound of the density, which implies that the smallest eigenvalue of Ψ̂m is bounded below

by a deterministic constant with high probability, since we can show that Ψ̂m and Ψm are close in terms
of operator norm (see Proposition 6.1 in Comte et al. [7]). In contrast, for noncompact A, we consider a
truncated version of σ̂2

m:

(8) σ̃2
m = σ̂2

m 1Λm
,
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where

(9) Λm :=
{
L(m)

(
∥Ψ̂−1

m ∥op ∨ 1
)

≤ c
n∆

log2(n∆)

}
, c =

θ
(
3 log

(
3
2

)
− 1
)

C0
,

with C0 ≥ 82 a numerical constant and θ from (2). Lemma 5.1 pinpoints c, chosen slightly larger than in
Comte et al. [7] to accommodate higher precision in estimating σ2. On Λm, the eigenvalues {λi}1≤i≤m of

Ψ̂m satisfy

inf
1≤i≤m

λi ≥ L(m) log2(n∆)

cn∆
> 0.

3.2. Risk bounds for the diffusion coefficient estimator.
The next proposition decomposes the risk of σ̃2

m into bias and variance terms, assuming a suitable stability
condition on m:

Assumption 7. The integer m ≥ 1 satisfies

(10) L(m)
(
∥Ψ−1

m ∥op ∨ 1
)

≤ cn∆

2 log2(n∆)
and m ≤ n∆,

with c as in (9).

Assumption 7 ensures stability, which is automatically satisfied when A is bounded away from zero (see
Proposition 4.1 in Comte et al. [5]). In noncompact settings, additional precautions are required (see
Propositions 3.4 and 3.5 of Comte et al. [5]). However, it follows from Lemma 5.1 that Λm holds with high
probability.

Proposition 1. Under Assumptions 1–7, there are positive constants C,C ′ (independent of n,m) such that

E
[
∥σ̃2

m − σ2
A∥2n

]
≤ 7 inf

t∈Sm

∥t− σ2
A∥2π + 64

Tr
[
Ψ

−1/2
m Ψm,σ4 Ψ

−1/2
m

]
n

+ C∆2 + C ′ 1

n
,

where

Ψm,σ4 :=
[
E
[
φj(X0)φk(X0)σ

4(X0)
]]

0≤j,k≤m−1
.

When Sm are nested subspaces (i.e. Sm1
⊂ Sm2

for m1 ≤ m2), Lemma 2 in Comte et al. [5] implies

inft∈Sm
∥t − σ2

A∥2π → 0 as m → ∞. The terms C∆2 + C′

n go to zero under Assumption 6, so the main

challenge is controlling Tr
[
Ψ

−1/2
m Ψm,σ4 Ψ

−1/2
m

]
, which is the variance term. If σ is bounded, then

Tr
[
Ψ−1/2

m Ψm,σ4 Ψ−1/2
m

]
≤ ∥σ4∥∞m

by Proposition 3.2 in Comte et al. [7]. In particular, if σ(x) ≡ σ is constant, then Ψ
−1/2
m Ψm,σ4 Ψ

−1/2
m = σ4 Idm

and the variance term equals σ4m.

3.2.1. Rates in the compact case.
Suppose A is compact, say A = [0, 1]. Hoffmann [15], providing a reference for scalar diffusions, uses wavelet
bases and achieves an L2-risk rate of n−2s/(2s+1) if σ2

A lies in a Besov space Bs
2,∞([0, 1]). Our approach

recovers the same rate with trigonometric bases:

Trigonometric Basis. Take Sm spanned by {
√
2 cos(2πjx),

√
2 sin(2πjx)} plus a constant function.

By Proposition 1,

E
[
∥σ̃2

m − σ2
[0,1]∥

2
n

]
≤ 7 inf

t∈Sm

∥σ2
[0,1] − t∥2π + 64

Tr
[
Ψ

−1/2
m Ψm,σ4 Ψ

−1/2
m

]
n

+ C∆2 + C ′ 1

n
.

Since [0, 1] is compact, π(x) is bounded below and above: 0 < π0 ≤ π(x) ≤ π1 <∞. Hence

inf
t∈Sm

∥σ2
[0,1] − t∥2π ≤ π1 inf

t∈Sm

∥σ2
[0,1] − t∥2.

If σ is bounded on [0, 1], Proposition 3.2(i) in Comte et al. [7] (adapted with σ2 7→ σ4) shows

Tr
[
Ψ−1/2

m Ψm,σ4 Ψ−1/2
m

]
≤ ∥σ[0,1]∥4∞m.

Finally, if σ2
[0,1] ∈ Bs

2,∞([0, 1]), Lemma 12 in Barron et al. [3] yields

inf
t∈Sm

∥σ2
[0,1] − t∥2 ≲ m−2s.
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Hence,

E
[
∥σ̃2

m − σ2
[0,1]∥

2
n

]
≲ m−2s +

m

n
+ ∆2 +

1

n
.

By Assumption 6, ∆2 is negligible compared to 1/n. Under the compactness of A, Assumption 7 reduces to

m ≲
n∆

log2(n∆)
.

For functions with regularity s > 3/4, then under n3/5∆ → ∞ (Assumption 6), we can choose mopt ≈

n1/(2s+1), that satisfies Assumption 7 and balances m−2s and m/n, resulting in the rate n
− 2s

2s+1 . This
matches the result in Hoffmann [15].

3.2.2. Rates in the non compact case.
When A is noncompact, for instance A = R+ or A = R, we estimate σ2

A using [LB] in the first case and
[HB] in the second. We evaluate the risk of the estimator by adapting the same approach as previously.
For example, when A = R+, we can bound the bias term using Assumption 4:

inf
t∈Sm

∥∥σ2
R+ − t

∥∥2
π
≤ ∥π∥∞ inf

t∈Sm

∥∥σ2
R+ − t

∥∥2 .(11)

We also assume that σ2 is bounded (which is trivially true for processes such as the Ornstein-Uhlenbeck
process). This allows us to recover the bound for the variance term from the previous section:

Tr
[
Ψ−1/2

m Ψm,σ4Ψ−1/2
m

]
≤ ∥σR+∥4∞m.(12)

Finally, if we assume that σ2
R+ belongs to a Sobolev-Laguerre space ball W s

ℓ (R+, R), we can use (4) to bound
the bias term:

inf
t∈Sm

∥∥σ2
R+ − t

∥∥2 = ∥σ2
R+ − σ2

R+,m∥2 ≤ Cm−s.(13)

For functions with regularity s > 3/2, then under n3/5∆ → ∞ (Assumption 6), we can choose mopt ≈
n1/(s+1), that satisfies Assumption 7 and achieves the rate n−s/(s+1).

Comparison to standard heteroscedastic regression.

The regression model

Yk = f(Xk) + g(Xk) εk, E[εk] = 0, Var[εk] = 1,

is studied in Comte et al. [6], where g(·) is a nuisance function that describes the level of noise. On the surface,
our model (5) is similar: Uk∆ acts as a response Yk, σ

2(·) parallels f(·), and additional terms (V k∆, Rk∆)
are reminiscent of extra noise.

However, two significant differences arise:

• Process-driven residuals V k∆ and Rk∆ do not simply vanish under expectation but are only of
smaller order (often on the scale of ∆). This is typically enough to remain negligible for large n
under Assumption 6, yet they complicate the analysis by adding correlated noise-like components.

• The function σ2 to be estimated is not just the mean structure but also explicitly determines the
variance part of the model. That is, Uk∆ depends on σ2(Xk∆) in a multiplicative way, so there is no
separation of the “variance function” g(·) from the “mean function” f(·).

In Comte et al. [6], the notion of regularity involves an L2(R+, π(x) dx)-based Sobolev space W
s

π(R+, R),
where the “bias” term is controlled via the orthogonal projection in that weighted norm.

W s
π(R+, R) =

{
h ∈ L2(R, π(x) dx) : ∀ℓ ≥ 1, ∥h− hπℓ ∥

2
π ≤ Rℓ−s

}
,

with hπℓ the L2(A, π(x) dx) orthogonal projection of h on Sℓ, and π is the stationary density of X.

By the boundedness of π, if σ2
R+ ∈W s

ℓ (R+, R) (Laguerre space in the unweighted sense), then

∥σ2
R+ − t∥2π ≤ ∥π∥∞∥σ2

R+ − t∥2,
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so σ2
R+ also belongs to the ∥ ·∥π-Sobolev-type class W

s

π(R+, ∥π∥∞R). Consequently, the n−s/(s+1) rate found
here aligns the rates for heteroskedastic regression in Comte et al. [6].

3.3. Model selection.
Throughout this section, assume also that:

Assumption 8. For m1,m2 ∈ N+ with m1 ≤ m2, we have Sm1
⊂ Sm2

.

Constrained Model Collection. Define

(14) Mn∆ :=
{
m ∈ N+ : c2φm

(
∥Ψ−1

m ∥2op ∨ 1
)

≤ d

4

n∆

log2(n∆)

}
, d =

θ

8C0

(
∥π∥∞ ∨ (1 + 1

3 )
) ,

where θ is from (2), C0 ≥ 84 is the same constant as in c of (9), and the factor of 4 ensures a stricter
constraint than (9). To enable an automatic selection of m, we introduce an empirical version of Mn∆:

(15) M̂n∆ :=
{
m ∈ N+ : c2φm

(
∥Ψ̂−1

m ∥2op ∨ 1
)

≤ d
n∆

log2(n∆)

}
.

Given that m
(
∥Ψ−1

m ∥op ∨ 1
)
≤ m

(
∥Ψ−1

m ∥2op ∨ 1
)
, it follows that σ̂2

m = σ̃2
m. Then the data-driven choice of

m is

(16) m̂ = arg min
m∈M̂n∆

{
−∥σ̂2

m∥2n + κ c2φ s
2 m ∥Ψ̂−1

m ∥op
n

}
, s4 = E

[
σ4(X0)

]
,

where κ is a numerical constant. Intuitively, −∥σ̂2
m∥2n approximates the squared bias, and the second term

controls the variance (cf. the proof of Proposition 3.2(iii) in [7]). Note that m̂ is chosen only among the

indices m ∈ M̂n∆, so that σ̂2
m̂ = σ̃2

m̂ for those m.

Theorem 3.1. Under Assumptions 1–8, there is a numerical constant κ0 > 0 such that for all κ ≥ κ0,

E
[
∥σ̂2

m̂ − σ2
A∥2n

]
≤ C inf

m∈Mn∆

(
inf

t∈Sm

∥t− σ2
A∥2π + pen(m)

)
+ C ′ ∆2 + C ′′ 1

n
,

where

pen(m) = κ c2φ E
[
σ4(X0)

] m ∥Ψ−1
m ∥op
n

.

Hence, the adaptive estimator σ̂2
m̂ automatically balances bias and variance, up to small remainder terms. A

practical implementation requires estimating E[σ4(X0)] (see the next section).

4. Simulation study

This section evaluates the performance of the proposed estimation methods in various diffusion processes.
In Examples 1, 3, and 4, the processes are mean-reverting to ensure stationarity. Concretely, the drift function
in (1) is

b(x) = −λ (x− µ),

where λ > 0 is the mean reversion rate and µ is the long-term mean. In Example 2, stationarity is inherited
from the setting in Example 3. Our primary objective is to estimate σ, or equivalently σ2.
Example 1: Ornstein–Uhlenbeck (OU) Process.
Parameters: λ = 1, µ = 0, γ = 2.

dXt = −λ (Xt − µ) dt+ σ(Xt) dWt, where σ(x) = γ.

Example 2: Nonlinear Diffusion Process.
Parameters: λ = 1, µ = 0, γ = 2.

dYt = (1− Y 2
t )
[
λ
(
µ− tanh−1(Yt)

)
− γ2 Yt

]
dt+ σ(Yt) dWt, where σ(y) = γ

(
1− y2

)
.

Example 3: Hyperbolic-Like Diffusion Process.
Parameters: λ = 2, µ = 0, γ = 1√

2
.

dUt = −λ (Ut − µ) dt+ σ(Ut) dWt, where σ(u) = γ
√
1 + u2.

Example 4: CIR Process.
Parameters: λ = 2, µ = 3

8 , γ = 1, with γ ≤ 2λµ.

dVt = −λ (Vt − µ) dt+ σ(Vt) dWt, where σ(v) = γ
√

(v)+.
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Examples 1 and 3 adhere to Assumptions 1–4, thus allowing the full theoretical framework to apply.
Example 1, an Ornstein–Uhlenbeck (OU) process, is a classical mean-reverting diffusion widely used in
finance, physics, and econometrics. Because it is linear with a closed-form solution, exact simulation is
straightforward:

Xk∆ = X(k−1)∆ e−2∆ +
√
2
(
1− e−2∆

)
εk,

Where {εk} are i.i.d. standard normal random variables. From the sample {Xt}, we construct a nonlinear
diffusion by defining Yt = tanh(Xt). By Itô’s lemma, the process {Yt} then satisfies the model in Exam-
ple 2. We use a trigonometric basis supported on [aX, bX] for Examples 1 and 2, where aX and bX are
the 2% and 98% quantiles of the observations, respectively. This approach is a slight modification of [TB]
with an adjusted period. Although not all assumptions of Example 2 are strictly satisfied, the process is
stationary and exhibits geometric β-mixing. The same behavior is observed in Example 4.

Example 3 is a hyperbolic-like diffusion whose diffusion coefficient grows similarly to a hyperbolic func-
tion for large |x|. It can be checked that Ut meets Assumptions 1–4. Simulation uses the Euler–Maruyama
scheme:

U(k+1)∆ = Uk∆ − ∆Uk∆ +
√

1 + U2
k∆

√
∆ εk.

Here,
√
1 + ·2 is approximated with an R-supported basis [HB]. Example 4 uses the restricted CIR process

so that Vt stays positive, making the Laguerre basis [LB] suitable. For simulation, the Euler–Maruyama
method is replaced by the implicit Euler scheme from Alfonsi [1]:

V(k+1)∆ =

( γ
2

√
∆ εk +

√
Vk∆ +

√(
γ
2

√
∆ εk +

√
Vk∆

)2
+ 4

(
1 + λ∆

2

) λµ− γ2

4

2
∆

2
(
1 + λ∆

2

) )2

,

which remains well-defined for large n whenever γ2 ≤ 2λµ.

Parameter Tuning and Implementation.
The constant κ for the selection procedure (see (16)) is chosen via standard calibration: κ = 5×10−2 for [TB],
and κ = 2× 10−4 for [LB] and [HB]. The constant d is set to 1012. To handle the quantity s4 = E[σ4(X0)],
we replace it with the estimator

ŝ4 =
1

2n

n∑
k=1

[
Uk∆ − σ̂2

m̂max
(Xk∆)

]2
,

where m̂max is the maximal dimension in M̂n∆. This choice follows from the relation E
[
(V

(1)
k∆ )2

]
= 2E

[
σ4(X0)

]
,

where V
(1)
k∆ is defined in (5). In Table 1, we compare ŝ4 to

s̃4 =
1

n

n∑
k=1

σ4
(
Xk∆

)
.
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(a) Example 1 (b) Example 2

(c) Example 3 (d) Example 4

Figure 1. Estimated diffusion coefficient curves for the four examples. Green lines: es-
timated coefficients; red lines: true coefficients. The bases used are (a) [TB], (b) [TB],
(c) [HB], and (d) [LB]. Parameters: n = 100,000, ∆ = 0.004.

Example 3 Example 4

ŝ4 s̃4 ŝ4 s̃4

n = 25,000, ∆ = 0.01 0.34 (0.15) 0.34 (0.14) 1.66 (0.24) 1.67 (0.19)
n = 100,000, ∆ = 0.004 0.34 (0.01) 0.34 (0.01) 1.57 (0.01) 1.64 (0.01)

Table 1. Mean values (and standard deviations in parentheses) of 100 samples for the

pseudo-estimators ŝ4 and s̃4, with different n and ∆. All entries are rounded to two decimal
places.

Numerical Results.

The tables below (Table 2 and Table 3) summarize the estimates of σ2 under varying n and ∆ for Ex-
amples 3 and 4. Each table shows the mean integrated squared error (MISE), the selected dimension m̂, and
the maximal dimension m̂max, all averaged over 100 replications (standard deviations in parentheses).

In both cases, the product n∆ (ranging roughly between 250 and 1000) plays a crucial role. When n∆ is
moderate, the estimation of σ2 remains stable and accurate, consistent with the fact that, in general, the
diffusion coefficients σ2 can be reliably estimated from the observed data over relatively short time intervals.
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For instance, in the first table, n = 100,000 and ∆ = 0.004 yield n∆ = 400, with MISE around 0.02.
Moreover, the chosen dimension remains within a reasonable range.

As n grows large, the MISE becomes less sensitive to ∆. Once n is large enough, reducing ∆ further makes
little difference in the accuracy of the estimation. In Table 2, for n = 250,000, the MISE is extremely low and
remains nearly constant in all tested ∆ (roughly 0.0122 to 0.0133). Thus, for large samples, the estimator
performance is essentially ∆-invariant, in line with the theoretical risk bounds that are primarily dependent
on n.

n
∆

0.04 0.01 0.004

10,000 MISE = 0.22 (0.17) MISE = 0.34 (0.41) MISE = 4.15 (2.44)

m̂ = 5.33(0.85) m̂ = 3.00(0.00) m̂ = 1.99(0.10)

m̂max = 8.45(0.56) m̂max = 3.00(0.00) m̂max = 2.00(0.00)

25,000 MISE = 0.12 (0.04) MISE = 0.06 (0.05) MISE = 0.29 (0.31)

m̂ = 5.81(0.98) m̂ = 5.27(0.66) m̂ = 3.00(0.00)

m̂max = 9.51(0.92) m̂max = 7.00(0.00) m̂max = 3.00(0.00)

100,000 MISE = 0.08 (0.02) MISE = 0.02 (0.03) MISE = 0.02 (0.02)

m̂ = 6.65(1.06) m̂ = 6.11(1.00) m̂ = 5.72(0.93)

m̂max = 10.66(0.92) m̂max = 9.52(0.78) m̂max = 8.51(0.56)

250,000 MISE = 0.01 (0.01) MISE = 0.01 (0.01) MISE = 0.01 (0.01)

m̂ = 7.23(0.98) m̂ = 6.91(0.93) m̂ = 6.38(1.12)

m̂max = 10.77(0.95) m̂max = 10.33(1.02) m̂max = 9.47(0.90)

Table 2. Results for Example 3 (hyperbolic-like diffusion). MISE (×100), m̂, and m̂max, av-
eraged over 100 replications with standard deviations in parentheses. All entries are rounded
to two decimal places.

n
∆

0.04 0.01 0.004

10,000 MISE = 0.31 (0.31) MISE = 0.25 (0.36) MISE = 3.78 (3.76)

m̂ = 4.02(0.28) m̂ = 3.00(0.00) m̂ = 2.00(0.00)

m̂max = 5.21(0.41) m̂max = 3.00(0.00) m̂max = 2.00(0.00)

25,000 MISE = 0.22 (0.11) MISE = 0.07 (0.07) MISE = 0.24 (0.40)

m̂ = 4.03(0.17) m̂ = 4.00(0.20) m̂ = 3.00(0.00)

m̂max = 5.63(0.49) m̂max = 5.16(0.37) m̂max = 3.00(0.00)

100,000 MISE = 0.05 (0.02) MISE = 0.03 (0.02) MISE = 0.02 (0.02)

m̂ = 4.02(0.19) m̂ = 4.11(0.31) m̂ = 4.11(0.31)

m̂max = 5.73(0.25) m̂max = 5.36(0.48) m̂max = 5.36(0.48)

250,000 MISE = 0.02 (0.01) MISE = 0.02 (0.01) MISE = 0.01 (0.01)

m̂ = 4.33(0.13) m̂ = 4.17(0.38) m̂ = 4.17(0.38)

m̂max = 6.07(0.40) m̂max = 5.96(0.20) m̂max = 5.57(0.50)

Table 3. Results for Example 4 (CIR process). MISE, m̂, and m̂max, averaged over 100
replications (standard deviations in parentheses). All entries are rounded to two decimal
places.
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5. Proofs

This section presents the proofs of the main results from Section 3. In what follows, let C and c represent
constants that do not depend on n, ∆, or m. These constants may change from line to line. The notation
x ≲ y indicates that x ≤ c y for some universal constant c.

5.1. Proof of Proposition 1.
The approach aligns with the proof of Proposition 3.1 in [7]. Define the random event

Ωm :=
{∣∣∥t∥2

n

∥t∥2
π
− 1
∣∣ ≤ 1

2 , ∀ t ∈ Sm

}
.(17)

On Ωm, for functions in Sm, the empirical norm ∥ · ∥n and the π-norm ∥ · ∥π are equivalent, since

1
2 ∥t∥π ≤ ∥t∥n ≤ 2 ∥t∥π for all t ∈ Sm.

The error decomposition is given by

∥σ̃2
m − σ2

A∥2n ≤ ∥σ2
A∥2n 1(Λm)c + ∥σ̂2

m − σ2
A∥2n 1Λm∩(Ωm)c + ∥σ̂2

m − σ2
A∥2n 1Λm∩Ωm

,

since σ̃2
m is defined as zero on (Λm)c. The expectation of each of these three terms is bounded in turn. The

following lemma is used repeatedly.

Lemma 5.1. Under the assumptions of Proposition 1, if m satisfies the stability condition (10), then

P
(
(Λm)c

)
≤ P

(
(Ωm)c

)
≲

1

(n∆)6
.

The proof of Lemma 5.1 follows from Proposition 6.1(i) and Lemma 6.1 in [7]. The difference in order n∆
is due to the setting qn∆ = 7 log(n∆) (rather than 6 log(n∆) as in [7]), reflecting a higher precision in the
estimation of the diffusion coefficient. Consequently, a larger constant c appears in (10).

Step 1. Bound on E
[
∥σ2

A∥2n 1(Λm)c
]
.

E
[
∥σ2

A∥2n 1(Λm)c
]
≤ C E

[
σ8(X0)

] 1
2 P
(
(Λm)c

) 1
2 ≤ C ′ 1

(n∆)3
≲

1

n
,

where Cauchy–Schwarz, Lemma 5.1, and the condition ∆n5/3 → +∞ are applied in turn.

Step 2. Bound on E
[
∥σ̂2

m − σ2
A∥2n 1Λm∩Ωm

]
.

The proof requires a precise expression for noise terms and negligible residuals in the regression relation (5)
used to estimate σ2. By (1) and Fubini’s theorem,

Uk∆ = σ(Xk∆)
2 + Vk∆ +Rk∆,

where

Vk∆ = V
(1)
k∆ + V

(2)
k∆ + V

(3)
k∆ + V

(4)
k∆ ,

with

V
(1)
k∆ := σ2(Xk∆)

(
(W(k+1)∆−Wk∆)2

∆ − 1
)
,

V
(2)
k∆ := 2

∆ σ
(
Xk∆

)[
(W(k+1)∆ −Wk∆)

∫ (k+1)∆

k∆

(
σ(Xs)− σ(Xk∆)

)
dWs

−
∫ (k+1)∆

k∆

(
σ(Xs)− σ(Xk∆)

)
ds
]
,

V
(3)
k∆ := 2

∆ σ
(
Xk∆

)[∫ (k+1)∆

k∆

(
(k + 1)∆− s

)
σ′(Xu)σ(Xu) dWs

]
,

V
(4)
k∆ := 2 b

(
Xk∆

)
σ
(
Xk∆

) (
W(k+1)∆ −Wk∆

)
.
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The remainder terms are

R
(1)
k∆ := 1

∆

(∫ (k+1)∆

k∆

b(Xs) ds
)2
, R

(2)
k∆ := 1

∆

(∫ (k+1)∆

k∆

(
σ(Xs)− σ(Xk∆)

)
dWs

)2
,

R
(3)
k∆ := 2

∆

(∫ (k+1)∆

k∆

(
b(Xs)− b(Xk∆)

)
ds
) ∫ (k+1)∆

k∆

σ(Xs) dWs,

R
(4)
k∆ := 2 b

(
Xk∆

) ∫ (k+1)∆

k∆

(
σ(Xs)− σ(Xk∆)

)
dWs,

R
(5)
k∆ := 2

∆ σ
(
Xk∆

) ∫ (k+1)∆

k∆

(
(k + 1)∆− s

)
ψ(Xs) ds,

where

ψ := σ′ b + 1
2 σ

′′ σ2.(18)

In the arguments that follow, let

V k∆ := V
(2)
k∆ + V

(3)
k∆ + V

(4)
k∆ ,

contain all the secondary variance terms, while V
(1)
k∆ is considered the principal variance term.

Define the vectors
V := (V∆, . . . , Vn∆)

T , R := (R∆, . . . , Rn∆)
T ,

and the empirical processes
vn(t) := ⟨t, V ⟩n, Rn(t) := ⟨t, R⟩n.

Then, for every s, t ∈ Sm, the identity

γ̃n(t) − γ̃n(s) = ∥t− σ2
A∥2n − ∥s− σ2

A∥2n − 2 vn
(
t− s

)
− 2Rn

(
t− s

)
holds. Consequently,

∥σ̂2
m − σ2

A∥2n ≤ ∥t− σ2
A∥2n + 2 vn

(
σ̂2
m − t

)
+ 2Rn

(
σ̂2
m − t

)
.(19)

Separate the noise into two groups with distinct behaviors:

v(1)n (t) := ⟨t, V (1)⟩n, vn(t) := ⟨t, V (2)⟩n + ⟨t, V (3)⟩n + ⟨t, V (4)⟩n,
so that

vn
(
σ̂2
m − t

)
= v(1)n

(
σ̂2
m − t

)
+ vn

(
σ̂2
m − t

)
.

Then

vn
(
σ̂2
m − t

)
≤ sup

t∈Sm

∥t∥π=1

(
v(1)n (t)

)2∥σ̂2
m − t∥2π + sup

t∈Sm

∥t∥π=1

(
vn(t)

)2∥σ̂2
m − t∥2π.(20)

For the residual terms, write:

Rn

(
σ̂2
m − t

)
= ⟨σ̂2

m − t, R⟩n ≤ ∥σ̂2
m − t∥n ∥R∥n.(21)

Substitute (20) and (21) into (19), and apply 2 ab ≤ 1
C a2 + C b2 with C = 8, leading to

∥σ̂2
m − σ2

A∥2n ≤ ∥t− σ2
A∥2n + 8 sup

t∈Sm

∥t∥π=1

(
v(1)n (t)

)2
+ 1

8 ∥σ̂
2
m − t∥2π + 1

8 ∥σ̂
2
m − t∥2n(22)

+ 8 sup
t∈Sm

∥t∥π=1

(
vn(t)

)2
+ 8 ∥R∥2n.

Inequality ∥x+ y∥2n ≤ 2 ∥x∥2n + 2 ∥y∥2n implies

∥σ̂m − t∥2n ≤ 2 ∥t− σ2
A∥2n + 2 ∥σ̂2

m − σ2
A∥2n.

On Ωm, for functions in Sm, there is also ∥ · ∥π ≤ 2 ∥ · ∥n. Thus,
1
8 ∥σ̂

2
m − t∥2π + 1

8 ∥σ̂
2
m − t∥2n ≤

(
1
4 + 1

8

)
∥σ̂2

m − t∥2n ≤ 3
4 ∥t− σ2

A∥2n + 3
4 ∥σ̂

2
m − σ2

A∥2n.

Hence, for any t ∈ Sm,

∥σ̂2
m − σ2

A∥2n ≤ 7
4 ∥t− σ2

A∥2n + 3
4 ∥σ̂

2
m − σ2

A∥2n + 8 sup
t∈Sm

∥t∥π=1

(
v(1)n (t)

)2
+ 8 sup

t∈Sm

∥t∥π=1

(
vn(t)

)2
+ 8

n ∥R∥22,n.
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Rearranging the last term on the left-hand side yields, on Λm ∩ Ωm,

∥σ̂2
m − σ2

A∥2n ≤ 7 ∥t− σ2
A∥2n + 32 sup

t∈Sm

∥t∥π=1

(
v(1)n (t)

)2
+ 32 sup

t∈Sm

∥t∥π=1

(
vn(t)

)2
+ 64

n ∥R∥22,n.(23)

Lemmas for bounding the noise and remainder terms.

Lemma 5.2. Under the assumptions of Proposition 1, for every k ∈ N,

E
[(
V

(i)
k∆

)2]
≲ ∆, E

[(
V

(i)
k∆

)4]
≲ ∆2, i ∈ {2, 3, 4},(24)

E
[(
R

(i)
k∆

)2]
≲ ∆2, E

[(
R

(i)
k∆

)4]
≲ ∆4, i ∈ {1, 2, 3, 4, 5}.(25)

Lemma 5.3. Under the assumptions of Proposition 1,

E
[

sup
t∈Sm

∥t∥π=1

(
v(1)n (t)

)2]
= 2

Tr
[
Ψ

−1/2
m Ψm,σ4 Ψ

−1/2
m

]
n

,(26)

E
[

sup
t∈Sm

∥t∥π=1

(
vn(t)

)2]
≲ ∆2.(27)

Combining (26), (27), (25), and (23), and enforcing (10) for m, leads to

E
[
∥σ̂2

m − σ2
A∥2n 1Λm∩Ωm

]
≤ 7E

[
∥t− σ2

A∥2n
]
+ 64

Tr
[
Ψ

−1/2
m Ψm,σ4 Ψ

−1/2
m

]
n

+ c∆2.

This completes the second step of the proof for E
[
∥σ̂2

m − σ2
A∥2n 1Λm∩Ωm

]
.

Step 3. Bound on E
[
∥σ̂2

m − σ2
A∥2n 1Λm∩(Ωm)c

]
.

Let Πm denote the orthogonal projection onto the subspace Sm. Similarly to (7), define

Πmσ
2
A =

m−1∑
j=0

c̃
(m)
j φj , where c̃(m) = 1

n Ψ̂−1
m Φ̂T

m σ2,

and σ2 := (σ(X∆)
2, . . . , σ(Xn∆)

2)T . Hence,

σ̂2
m − Πmσ

2
A =

m−1∑
j=0

˜̃c
(m)
j φj , where ˜̃c(m) = 1

n Ψ̂−1
m Φ̂T

mE,

and E := (V∆ +R∆, . . . , Vn∆ +Rn∆)
T . Thus,

∥σ̂2
m −Πmσ

2
A∥2n =

1

n

n∑
i=1

(m−1∑
j=0

˜̃c
(m)
j φj(Xi∆)

)2
=
(
˜̃c(m)

)T
Ψ̂m

˜̃c(m).

Consequently,

∥σ̂2
m −Πmσ

2
A∥2n = 1

n2 E
T Φ̂m Ψ̂−1

m Φ̂T
mE ≤ ∥Ψ̂−1

m ∥op
∥∥∥ 1
n Φ̂T

mE
∥∥∥2
2,m

.(28)

The following lemma provides a useful bound.

Lemma 5.4. Under the assumptions of Proposition 1, there is a constant C such that

E
[∥∥∥ 1

n (Φ̂m)T (V +R)
∥∥∥4
2,m

]
≤ CmL(m)2

(
1
n2 + ∆4

)
.

Applying Lemma 5.4 and the definition of Λm in (28) leads to

E
[
∥σ̂2

m −Πmσ
2
A∥2n 1Λm∩(Ωm)c

]
≲

n∆

L(m) log2(n∆)
E1/2

[∥∥∥ 1
n (Φ̂m)T E

∥∥∥4
2,m

]
P
(
(Ωm)c

)1/2
≲

n∆

log2(n∆)
(n∆)1/2

√
1
n2 +∆4 1

(n∆)3 ≲
1

n
+ ∆2.(29)

Combining the last display with a simple decomposition yields

E
[
∥σ̂2

m − σ2
A∥2n 1Λm∩(Ωm)c

]
≤ E

[
∥σ̂2

m −Πmσ
2
A∥2n 1Λm∩(Ωm)c

]
+ E

[
∥Πmσ

2
A − σ2

A∥2n 1Λm∩(Ωm)c

]
.
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Note that

E
[
∥Πmσ

2
A − σ2

A∥2n 1Λm∩(Ωm)c

]
≤ E

[
∥σ2

A∥2n 1(Ωm)c

]
.

Hence,

E
[
∥σ̂2

m − σ2
A∥2n 1Λm∩(Ωm)c

]
≲

1

n
+ ∆2.

This completes the derivation of the desired bound for the third term.

5.2. Proof of Lemma 5.2.
Use standard inequalities, in particular the Cauchy–Schwarz (C–S) and Burkholder–Davis–Gundy (BDG)
inequalities. Only the bounds for the fourth-order moments are shown, because the bounds for the second-
order moments follow from these results via C–S: for any random variable X, it holds that E[X2] ≤ E[X4]1/2.

For simplicity, set

G =

∫ (k+1)∆

k∆

b(Xs) ds, H =

∫ (k+1)∆

k∆

σ(Xs) dWs,

I =

∫ (k+1)∆

k∆

(
σ(Xs)− σ(Xk∆)

)
dWs, J =

∫ (k+1)∆

k∆

(
σ(Xs)− σ(Xk∆)

)
ds,

K =

∫ (k+1)∆

k∆

(
(k + 1)∆− s

)
σ′(Xs)σ(Xs) dWs, L =

∫ (k+1)∆

k∆

(
(k + 1)∆− s

)
ψ(Xs) ds,

M =

∫ (k+1)∆

k∆

(
b(Xs)− b(Xk∆)

)
ds, N =W(k+1)∆ −Wk∆.

Step 1: Bounding the eighth-order moments of G,H, I, J,K,L,M,N .

Bound for E[G8].

E[G8] = E
[(∫ (k+1)∆

k∆

b(Xs) ds
)8]

≤ ∆4 E
[(∫ (k+1)∆

k∆

b2(Xs) ds
)4]

≤ ∆6 E
[(∫ (k+1)∆

k∆

b4(Xs) ds
)2]

≤ ∆7 E
[∫ (k+1)∆

k∆

b8(Xs) ds

]
= ∆7

∫ (k+1)∆

k∆

E[b8(X0)] ds ≲ ∆8.

The estimate uses three successive applications of C–S, stationarity of (Xt)t≥0, Assumption 1(i), and the
first part of (2).

Bound for E[H8].

E[H8] = E
[(∫ (k+1)∆

k∆

σ(Xs) dWs

)8]
≲ E

[(∫ (k+1)∆

k∆

σ2(Xs) ds
)4]

≲ ∆3 E
[∫ (k+1)∆

k∆

σ8(Xs) ds
]

= ∆3

∫ (k+1)∆

k∆

E[σ8(X0)] ds ≲ ∆4.

The initial step applies the BDG inequality, followed by C–S and arguments similar to those used for G.

Bound for E[I8].

E[I8] ≲ E
[(∫ (k+1)∆

k∆

(
σ(Xs)− σ(Xk∆)

)2
ds
)4]

≲ ∆3 E
[∫ (k+1)∆

k∆

(
σ(Xs)− σ(Xk∆)

)8
ds
]

≲ ∆3

∫ (k+1)∆

k∆

E
[

sup
k∆≤t≤(k+1)∆

∣∣σ(Xt)− σ(Xk∆)
∣∣8] ds ≲ ∆3

∫ (k+1)∆

k∆

∆4 ds ≲ ∆8.

The BDG and C–S inequalities are used, along with (3).



16 Yichuan Huang, Laboratoire Modal’X, Université Paris Nanterre

Bound for E[J8].

E[J8] ≲ ∆7 E
[∫ (k+1)∆

k∆

(
σ(Xs)− σ(Xk∆)

)8
ds
]
≲ ∆12.

The same arguments as for I are employed, except that the BDG inequality is not needed.

Bound for E[K8].

E[K8] ≲ E
[(∫ (k+1)∆

k∆

(
(k + 1)∆− s

)2
σ′(Xs)

2 σ(Xs)
2 ds

)4]
≲ ∆3 E

[∫ (k+1)∆

k∆

(
(k + 1)∆− s

)8
σ′(Xs)

8 σ(Xs)
8 ds

]
≲ ∆3

∫ (k+1)∆

k∆

∆8 E
[
σ′(X0)

8 σ(X0)
8
]
ds ≲ ∆12.

The BDG and C–S inequalities are used again, along with stationarity, Assumption 2(i), and the first part
of (2).

Bound for E[L8].

E[L8] ≲ ∆7 E
[∫ (k+1)∆

k∆

∆8 ψ(Xs) ds
]
≲ ∆16.

The same arguments as for J apply, together with Assumption 1(ii) to bound the function ψ.

Bound for E[M8].

E[M8] ≲ ∆12,

which follows the same reasoning as for J .

Bound for E[N8]. It is well known that E[N8] = 105∆4 because N is a Gaussian increment of the Brownian
motion over an interval of length ∆.

Step 2: Combining the estimates to bound the terms in the lemma.

• E
[
(V

(2)
k∆ )4

]
=

16

∆4
E
[
(NI − J)4

]
≲

1

∆4
E[σ8(Xk∆)]

1
2 E[(NI − J)8]

1
2 ≲

1

∆4

(
E[N8]E[I8] + E[J8]

) 1
2
≲

∆2.

• E
[
(V

(3)
k∆ )4

]
≲

1

∆
E[σ8(Xk∆)]

1
2 E[K8]

1
2 ≲ ∆2.

• E
[
(V

(4)
k∆ )4

]
≤ E[b8(Xk∆)σ

8(Xk∆)]
1
2 E[N8]

1
2 .

• E
[
(R

(1)
k∆)

4
]
=

1

∆4
E[G8] ≲ ∆4.

• E
[
(R

(2)
k∆)

4
]
=

1

∆4
E[I8] ≲ ∆4.

• E
[
(R

(3)
k∆)

4
]
=

16

∆4
E[M4H4] ≲

1

∆4
E[M8]

1
2 E[H8]

1
2 ≲ ∆4.

• E
[
(R

(4)
k∆)

4
]
= 16E

[
b4(Xk∆) I

4
]
≤ 16E[b8(Xk∆)]

1
2 E[I8]

1
2 ≲ ∆4.

• E
[
(R

(5)
k∆)

4
]
≲

1

∆4
E[L8]

1
2 ≲ ∆4.

Each estimate follows directly from the established eighth-moment bounds of the variables G, H, I, J , K,

L, M , and N presented above. In particular, the estimate for E
[(
V

(2)
k∆

)4]
uses the independent increments

property of the Brownian motion, which allows us to separate the terms involving N and I. Consequently,
all required bounds are satisfied, thus completing the proof of the lemma 5.2.

5.3. Proof of Lemma 5.3.
Recall from (5) that

Uk∆ = σ
(
Xk∆

)2
+ V

(1)
k∆ + V k∆ + Rk∆,

where

V
(1)
k∆ = σ2

(
Xk∆

) ( (W(k+1)∆−Wk∆)2

∆ − 1
)
, V k∆ = V

(2)
k∆ + V

(3)
k∆ + V

(4)
k∆ .

In particular,

E
[
V

(1)
u∆ | Fu∆

]
= σ2

(
Xu∆

)
· 0 = 0.
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Define the vectors

V (1) :=
(
V

(1)
∆ , . . . , V

(1)
n∆

)T
, V :=

(
V ∆, . . . , V n∆

)T
.

Then for any function t,

v(1)n (t) = ⟨t, V (1)⟩n =
1

n

n∑
k=1

t
(
Xk∆

)
V

(1)
k∆ .

Proof of (26). We begin by introducing

Vm := sup
t∈Sm

∥t∥π=1

(
v(1)n (t)

)2
.

Our aim is to compute E
[
Vm
]
. Since any t ∈ Sm can be written as t(x) =

∑m−1
j=0 aj φj(x) and ∥t∥2π =∑

j,k aj ak [Ψm]j,k, it follows that

∥t∥π = 1 ⇐⇒ ∥Ψ1/2
m a∥2,m = 1.

Hence

Vm = sup
∥a∥2,m=1

〈
V (1),

m−1∑
j=0

[
Ψ−1/2

m

]
j,· φj

〉2
n

=

m−1∑
k=0

〈
V (1),

m−1∑
j=0

[
Ψ−1/2

m

]
j,k
φj

〉2
n
,

by a standard Cauchy–Schwarz argument (there is indeed a maximizing t). Denote

fk(x) =

m−1∑
j=0

[Ψ−1/2
m ]j,k φj(x).

Then 〈
V (1),

m−1∑
j=0

[
Ψ−1/2

m

]
j,k
φj

〉
n

=
1

n

n∑
u=1

V
(1)
u∆ fk

(
Xu∆

)
.

Taking expectation and exploiting the fact that E[V (1)
u∆ | Fu∆] = 0, the cross-terms u ̸= v vanish:

E
[〈
V (1),

m−1∑
j=0

[
Ψ−1/2

m

]
j,k
φj

〉2
n

]
=

1

n2

n∑
u=1

E
[(
V

(1)
u∆

)2
fk(Xu∆)

2
]
=

1

n
E
[
σ4(X0) fk(X0)

2
]
× 2,

since Var[(W(u+1)∆ −Wu∆)
2/∆− 1] = 2. Next, expand fk(X0)

2:

fk(X0)
2 =

m−1∑
j,ℓ=0

[Ψ−1/2
m ]j,k [Ψ

−1/2
m ]ℓ,k φj(X0)φℓ(X0).

Thus,

E
[
fk(X0)

2 σ4(X0)
]
=

m−1∑
j,ℓ=0

[Ψ−1/2
m ]j,k [Ψ

−1/2
m ]ℓ,k E

[
φj(X0)φℓ(X0)σ

4(X0)
]
=

m−1∑
j,ℓ=0

[Ψ−1/2
m ]j,k [Ψ

−1/2
m ]ℓ,k [Ψm,σ4 ]j,ℓ,

where Ψm,σ4 is the matrix whose (j, ℓ)-th entry is E[φj(X0)φℓ(X0)σ
4(X0)]. Finally, summing over k =

0, . . . ,m− 1 gives

Tr
[
Ψ−1/2

m Ψm,σ4 Ψ−1/2
m

]
.

Hence

E[Vm] = 2
Tr
[
Ψ

−1/2
m Ψm,σ4 Ψ

−1/2
m

]
n

,

which is precisely (26).



18 Yichuan Huang, Laboratoire Modal’X, Université Paris Nanterre

Proof of (27). We now prove

E
[

sup
t∈Sm

∥t∥π=1

(
vn(t)

)2]
≲ ∆2.

Recall vn(t) = ⟨t, V ⟩n. By definition,

V k∆ = V
(2)
k∆ + V

(3)
k∆ + V

(4)
k∆ ,

where each V
(i)
k∆ has zero conditional mean given Fk∆. Let

vn(t) =
1

n

n∑
k=1

t(Xk∆)V k∆.

We decompose

E
[〈
V ,

m−1∑
j=0

[Ψ−1/2
m ]j,k φj

〉2
n

]
=

1

n2

n∑
u,v=1

E
[
V u∆ V v∆ fk(Xu∆) fk(Xv∆)

]
.

As in the proof of (26), the cross terms u ̸= v vanish under expectation (due to the martingale property and

mixing), so only the diagonal remains. Also, using ∥Ψ̂−1
m ∥op and L(m) := supx∈A

∑m−1
j=0 φj(x)

2, we obtain

m−1∑
k=0

m−1∑
j,ℓ=0

[Ψ−1/2
m ]j,k [Ψ

−1/2
m ]ℓ,k ≤ ∥Ψ−1

m ∥opm and max
0≤j≤m−1

∥φj∥2∞ ≤ L(m).

By Lemma 5.2 (or a direct calculation), E[V 2

k∆] ≲ ∆. Hence,

E
[

sup
∥t∥π=1

vn(t)
2
]

≲
m ∥Ψ−1

m ∥op ∆

n
≤

c2φm ∥Ψ−1
m ∥op

n
∆ ≲ ∆2,

as soon as m ∥Ψ−1
m ∥op ≲ (n∆)/ log2(n∆). This proves (27).

5.4. Proof of Lemma 5.4.
Recall that E := V +R. A Cauchy–Schwarz argument yields∥∥∥ 1

n Φ̂T
mE

∥∥∥4
2,m

= 1
n4

(m−1∑
j=0

( n∑
i=1

φj(Xi∆)Ei∆

)2)2
≤ m

n4

m−1∑
j=0

( n∑
i=1

φj(Xi∆)Ei∆

)4
.

Next, apply (a+ b)4 ≤ 8 (a4 + b4) to separate the summation into two parts:∥∥∥ 1
n Φ̂T

mE
∥∥∥4
2,m

≲ m
n4

m−1∑
j=0

[( n∑
i=1

φj(Xi∆)Vi∆

)4
+
( n∑
i=1

φj(Xi∆)Ri∆

)4]
.

Define

TV := m
n4

m−1∑
j=0

( n∑
i=1

φj(Xi∆)Vi∆

)4
and TR := m

n4

m−1∑
j=0

( n∑
i=1

φj(Xi∆)Ri∆

)4
,

so ∥∥∥ 1
n Φ̂T

mE
∥∥∥4
2,m

≲ TV + TR.

Term involving R. A double Cauchy–Schwarz argument implies( n∑
i=1

φj(Xi∆)Ri∆

)4
≤
(
n

n∑
i=1

φj(Xi∆)
2R2

i∆

)2
≤ n3

n∑
i=1

φj(Xi∆)
4R4

i∆.

By Lemma 5.2, E[R4
0] ≲ ∆4. Also, supx

∑m−1
j=0 φj(x)

4 ≤ L(m)2. Hence, taking expectation gives

E[TR] = E
[
m
n4

m−1∑
j=0

( n∑
i=1

φj(Xi∆)Ri∆

)4]
≲ mL(m)2 ∆4.
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Term involving V . Since {φj(Xi∆)Vi∆}i are uncorrelated and have mean zero,

E
[( n∑

i=1

φj(Xi∆)Vi∆

)4]
≲ nE

[
φj(X0)

4 V 4
0

]
+ n2

(
E[φj(X0)

2 V 2
0 ]
)2
.

It is straightforward to check that V0 has bounded moments and supx
∑m−1

j=0 φj(x)
4 ≤ L(m)2. Hence,

E[TV ] = E
[
m
n4

m−1∑
j=0

( n∑
i=1

φj(Xi∆)Vi∆

)4]
≲

mL(m)2

n2
.

Combining the above bounds completes the argument:

E
[∥∥∥ 1

n Φ̂T
m (V +R)

∥∥∥4
2,m

]
≲ mL(m)2

(
1
n2 +∆4

)
,

which proves Lemma 5.4.

5.5. Proof of Theorem 3.1.
The strategy follows that of Theorem 3.1 in [7], requiring that Xt possesses finite high-order moments. This
requirement does not impose stricter conditions on Model 1, thanks to the geometric β-mixing condition
stated in (2).

Definitions. Let M̂n∆ be the maximal element of M̂n∆ (see (15)). Let Mn∆ be the maximal element of
Mn∆, and let M+

n∆ be the maximal element of the set

M+
n∆ :=

{
m ∈ N : c2φm

(
∥Ψ−1

m ∥2op ∨ 1
)
≤ 4 d

n∆

log2(n∆)

}
.

Here, d is a positive constant defined in (14). Define

Ξn∆ :=
{
Mn∆ ⊂ M̂n∆ ⊂ M+

n∆

}
, Ωn∆ :=

⋂
m∈M+

n∆

Ωm

and

p(m,m′) := κ0 c
2
φ E
[
σ4(X0)

] (m ∨m′) ∥Ψ−1
m∨m′∥op

n
.

p̂en(m) = κ c2φ E
[
σ4(X0)

] m ∥Ψ̂−1
m ∥op
n

.

Lemma 5.5 below ensures that Ξn∆ and Ωn∆ each occur with high probability.

Lemma 5.5. Under the assumptions of Theorem 3.1, there exist positive constants c, c′ (independent of n
and ∆) such that

P
(
Ωc

n∆

)
≤ c

(n∆)5
, P

(
Ξc
n∆

)
≤ c′

(n∆)5
.

The proof of Lemma 5.5 is analogous to that of Lemma 6.4 in [7], except for a larger constant C0 in the
definition of M+

n∆, which modifies the probability rate to (n∆)−5.

We write

E
[
∥σ̂2

m̂ − σ2
A∥2n

]
= E

[
∥σ̂2

m̂ − σ2
A∥2n 1Ξn∆∩Ωn∆

]
+ E

[
∥σ̂2

m̂ − σ2
A∥2n 1(Ξn∆∩Ωn∆)c

]
.

The proof thus splits into bounding these two terms on the right-hand side.

1. Bound on E
[
∥σ̂2

m̂ − σ2
A∥2n 1(Ξn∆∩Ωn∆)c

]
.

Decompose this expectation in two parts:

E
[
∥σ̂2

m̂ − σ2
A∥2n 1(Ξn∆∩Ωn∆)c

]
≤ 2E

[
∥σ̂2

m̂ −Πm̂σ
2
A∥2n 1(Ξn∆∩Ωn∆)c

]
+ 2E

[
∥σ2

A∥2n 1(Ξn∆∩Ωn∆)c

]
.

First, note that

∥σ̂2
m̂ − σ2

A∥2n ≤ 2 ∥σ̂2
m̂ −Πm̂σ

2
A∥2n + 2 ∥σ2

A∥2n,
since Idm̂ −Πm̂ is a projector of norm at most 1.

(i) Bounding ∥σ̂2
m̂ −Πm̂σ

2
A∥2n.
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An argument similar to (28) shows

∥σ̂2
m̂ −Πm̂σ

2
A∥2n =

1

n2
(R+ V )T Φ̂m̂ Ψ̂−1

m̂ Φ̂T
m̂ (R+ V ) ≤ 1

n2
∥Ψ̂−1

m̂ ∥op
∥∥∥ 1
n Φ̂T

m̂ (R+ V )
∥∥∥2
2,m̂

.

Since m̂ ∈ M̂n∆, the operator norm ∥Ψ̂−1
m̂ ∥op is of order

√
n∆. In addition, the map m 7→ ∥ 1

n Φ̂T
m(R+V )∥22,m

is non-decreasing in m, so

∥σ̂2
m̂ −Πm̂σ

2
A∥2n ≤

√
⌊n∆⌋

∥∥∥ 1
n Φ̂T

⌊n∆⌋ (R+ V )
∥∥∥2
2,⌊n∆⌋

.

By Lemma 5.4,

E
[
∥σ̂2

m̂ −Πm̂σ
2
A∥4n

]
≲ (n∆)E

[∥∥∥ 1
n Φ̂T

n∆(R+ V )
∥∥∥4
2,n∆

]
≲ n∆(n∆) (n∆)2

(
1
n2 +∆4

)
.

Lemma 5.5 bounds P((Ξn∆)
c ∪ (Ωn∆)

c) by (n∆)−5, hence

E
[
∥σ̂2

m̂ −Πm̂σ
2
A∥2n 1(Ξn∆)c∪(Ωn∆)c

]
≲

1

(n∆)5/2
(n∆)2

√
1
n2 +∆4 ≲

1

n
+∆2.

(ii) Bounding ∥σ2
A∥2n.

Apply Cauchy–Schwarz:

E
[
∥σ2

A∥2n 1(Ξn∆)c∪(Ωn∆)c

]
≤ C E

[
σ8(X0)

] 1
2 P
(
(Ξn∆)

c ∪ (Ωn∆)
c
) 1
2 ≲

1

(n∆)5/2
≲

1

n
.

Combining the above two parts,

E
[
∥σ̂2

m̂ − σ2
A∥2n 1(Ξn∆∩Ωn∆)c

]
≲

1

n
+∆2.

2. Bound on E
[
∥σ̂2

m̂ − σ2
A∥2n 1Ξn∆∩Ωn∆

]
.

On Ξn∆ ∩ Ωn∆, for any m ∈ Mn∆ and t ∈ Sm,

γ̃n(σ̂
2
m̂) + p̂en(m̂) ≤ γ̃n(t) + p̂en(m).

Arguing as in (19), for every t ∈ Sm,

∥σ̂2
m̂ − σ2

A∥2n ≤ ∥t− σ2
A∥2n + 2 vn

(
σ̂2
m̂ − t

)
+ 2 ⟨R, σ̂2

m̂ − t⟩n + p̂en(m) − p̂en(m̂).

Decompose vn(t) = ⟨t, V ⟩n with V = (V∆, . . . , Vn∆) and R = (R∆, . . . , Rn∆). Group the principal term V (1)

and secondary terms V (2) + V (3) + V (4). Using 2 a b ≤ 1
8 a

2 + 8 b2 one obtains

∥σ̂2
m̂ − σ2

A∥2n ≤ 7
4 ∥t− σ2

A∥2n + 3
4 ∥σ̂

2
m̂ − σ2

A∥2n + 8
(

sup
t∈Bπ

m,m̂

(v(1)n (t))2 − p(m, m̂)
)
+

+ 8 sup
t∈Bπ

m,m̂

vn(t)
2 +

8

n

n∑
k=1

R2
k∆ + p̂en(m) + 24 p(m, m̂) − p̂en(m̂).

(i) Bounding sup
t∈Bπ

m,m̂

(v(1)n (t))2 − p(m, m̂).

This term is bounded using Lemma 5.6 whose proof uses a version of Talagrand’s inequality under the Berbee
coupling argument to control the dependence in (Xk∆)k.

Lemma 5.6. Under the assumptions of Theorem 3.1, define

p(m,m′) := κ0 c
2
φ E
[
σ4(X0)

] (m ∨m′) ∥Ψ−1
m∨m′∥op

n
.

Then there is κ0 > 0 such that

E
[(

sup
t∈Bπ

m,m̂

(v(1)n (t))2 − p(m, m̂)
)
+
1Ξn∆∩Ωn∆

]
≲

1

n
.
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(ii) Bounding supt∈Bπ
m,m̂

vn(t)
2.

Since m̂ is bounded by M+
n∆ deterministically on Ξn∆, Lemma 5.3 with m =M+

n∆ implies

E
[

sup
t∈Sm+Sm̂

vn(t)
2
1Ξn∆

]
≤ E

[
sup

t∈S
M

+
n∆

vn(t)
2
]

≲ ∆2.

(iii) Bounding
∑n

k=1R
2
k∆/n.

By Lemma 5.2, E[R2
0] ≲ ∆2, so

E
[
1
n

n∑
k=1

R2
k∆

]
≲ ∆2.

(iv) Bounding the penalty terms.

pen(m) := κ c2φ E
[
σ4(X0)

] m ∥Ψ−1
m ∥op
n

, p(m,m′) ≤ pen(m) + pen(m′),

provided κ ≥ κ0. The lemma 5.7 below ensures that one can interchange p̂en with pen up to a small error.

Lemma 5.7. According to the assumptions of Theorem 3.1, there exist positive constants c1, c2 > 0 such

that for all m ∈ Mn∆ and m̂ ∈ M̂n∆,

E
[
p̂en(m)1Ξn∆∩Ωn∆

]
≤ c1 pen(m) + c2

n , E
[(
pen(m̂)− p̂en(m̂)

)
+
1Ξn∆∩Ωn∆

]
≤ c2

n .

Lemma 5.7 is essentially the same as Lemma 6.7 in [7], where n∆ is replaced by n in the notation and σ2 is
replaced by σ4. The proof relies on similar concentration arguments and is omitted.

Putting all these parts together controls every term on Ξn∆ ∩ Ωn∆. Hence

E
[
∥σ̂2

m̂ − σ2
A∥2n 1Ξn∆∩Ωn∆

]
≲

1

n
+∆2,

and combining with the bound on E[∥σ̂2
m̂ − σ2

A∥2n 1(Ξn∆∩Ωn∆)c ] yields the final risk estimate

E
[
∥σ̂2

m̂ − σ2
A∥2n

]
≲

1

n
+∆2.

This completes the proof of Theorem 3.1.

5.6. Proof of Lemma 5.6.

Lemma 5.8 (Talagrand’s Deviation Inequality). Let n be a positive integer and let F be a countable collection
of measurable functions. Suppose X1, . . . , Xn are independent real-valued random variables and for each
f ∈ F define

vn(f) =
1

n

n∑
i=1

(
f(Xi) − E[ f(Xi) ]

)
.

Assume there exist positive constants M , H, and v such that:

(1) sup
f∈F

∥f∥∞ ≤ M ,

(2) E
[
sup
f∈F

∣∣vn(f)∣∣] ≤ H,

(3) sup
f∈F

1

n

n∑
i=1

Var
(
f(Xi)

)
≤ v.

Define C(α) := (
√
1 + α− 1) ∧ 1 for each α > 0, and set b := 1

6 . Then, for all α > 0,

E
[(

sup
f∈F

∣∣vn(f)∣∣2 − 2
(
1+2α

)
H2
)
+

]
≤ 4

b

(
v

n
exp
(
− b α

nH2

v

)
+

49M2

6C(α)2 n2
exp
(
−

√
2 bC(α)

√
α

7

nH

M

))
.

This result is given in [20]. To prove Lemma 5.6, we apply Lemma 5.8 together with the Berbee coupling
approximation (see, for example, Chapter 5 of [23]). Throughout this proof, let

Uk := W(k+1)∆ − Wk∆, χk :=
U2
k

∆
− 1.
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To implement the uniform bound required by Talagrand’s inequality, introduce truncated versions of χk and
σ(Xk∆). For suitably chosen integers kn, ln (specified later), define

χ c
k :=

(u2
k

∆ − 1
)
1∣∣u2

k
∆ −1

∣∣ ≤ kn

− E
[(u2

k

∆ − 1
)
1∣∣u2

k
∆ −1

∣∣ ≤ kn

]
,

σ2,c(x) := σ2(x)1{|σ2(x)|≤ln}, χ e
k := χk − χ c

k , σ2,e(x) := σ2(x)− σ2,c(x).

Set
v(1)n (t) = v

(1)
n,1(t) + v

(1)
n,2(t) + v

(1)
n,3(t),

where
v
(1)
n,1(t) :=

〈
t, [σ2,c(Xk∆)χ

c
k ]

n
k=1

〉
n
, v

(1)
n,2(t) :=

〈
t, [σ2,e(Xk∆)χ

c
k ]

n
k=1

〉
n
,

v
(1)
n,3(t) :=

〈
t, [σ2(Xk∆)χ

e
k ]

n
k=1

〉
n
.

A standard application of Young’s inequality shows(
sup

t∈Bπ
m,m̂

(
v(1)n (t)

)2 − p(m, m̂)
)
+

≤
(
3 sup

t∈Bπ
m,m̂

(
v
(1)
n,1(t)

)2 − p(m, m̂)
)
+
+ 3 sup

t∈Bπ
m,m̂

(
v
(1)
n,2(t)

)2
+ 3 sup

t∈Bπ
m,m̂

(
v
(1)
n,3(t)

)2
.

Bounding the terms v
(1)
n,2 and v

(1)
n,3 and choosing ln and kn.

It can be shown that

E
[

sup
t∈Bπ

m,m̂

(
v
(1)
n,2(t)

)2
1Ξn

]
≲

1

log2(n∆) l25n
.

Indeed, with the same argument as in Lemma 5.3(ii), we can show

E
[

sup
t∈Bπ

m,m̂

(
v
(1)
n,2(t)

)2
1Ξn

]
≤

c2φ M+
n∆ ∥Ψ−1

M
+
n∆

∥op

n E[(χ c
1 )

2]E[σ2,e(X0)],

then, noting that E[(χ c
1 )

2] ≤ 2 and ∥Ψ−1

M+
n∆

∥op ≤ n∆
log2(n∆)

. Then

E
[

sup
t∈Bπ

m,m̂

(
v
(1)
n,2(t)

)2
1Ξn

]
≲

1

log2(n∆)
E
[
σ4(X0)1{|σ2(X0)|≥ln}

]
.

Since 1|σ2(x)|≥ln ≤ |σ(x)|50/l25n ,

E
[

sup
t∈Bπ

m,m̂

(
v
(1)
n,2(t)

)2
1Ξn

]
≲

E[|σ(X0)|54]
log2(n∆) l25n

.

An analogous argument shows

E
[

sup
t∈Bπ

m,m̂

(
v
(1)
n,3(t)

)2
1Ξn

]
≲

1

log2(n∆) k25n
.

Choose ln = kn ≈ (n∆)1/10

log2/25(n∆)
so that

1

log2(n∆) l25n
≲

1

(n∆)5/2
≲

1

n
, and similarly for

1

k25n
.

Thus,

E
[

sup
t∈Bπ

m,m̂

(
v
(1)
n,2(t)

)2
1Ξn

]
≲

1

n
, E

[
sup

t∈Bπ
m,m̂

(
v
(1)
n,3(t)

)2
1Ξn

]
≲

1

n
.

Bounding the term with v
(1)
n,1(t).

It remains to bound
(
3 supt∈Bπ

m,m̂
(v

(1)
n,1(t))

2 − p(m, m̂)
)
+

by invoking Talagrand’s inequality together with

Berbee’s coupling.

Berbee’s coupling. Now, we employ the coupling method (Lemma 5.1 in [23]) to construct associated variables
(V ∗

i∆), where each Vk = (χk, Xk∆) for k = 1, . . . , n. For simplicity, assume that n = 2pnqn for some integers
pn and qn. Then, there exist random variables V ∗

i∆ = (χ∗
k, X

∗
k∆), for i = 1, . . . , n, satisfying the following

properties:

- For each ℓ = 0, . . . , pn − 1, the random vectors
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V⃗ℓ,1 =
(
V(2ℓqn+1)∆, . . . , V(2ℓ+1)qn∆

)T
and V⃗ ∗

ℓ,1 =
(
V ∗
(2ℓqn+1)∆, . . . , V

∗
(2ℓ+1)qn∆

)T
are identically distributed. Similarly, random vectors

V⃗ℓ,2 =
(
V⌊(2ℓ+1)qn+1⌋∆, . . . , V(2ℓ+2)qn∆

)T
and V⃗ ∗

ℓ,2 =
(
V ∗
⌊(2ℓ+1)qn+1⌋∆, . . . , V

∗
(2ℓ+2)qn∆

)T
also share the same distribution.

- For each ℓ = 0, . . . , pn − 1,

P
[
V⃗ℓ,1 ̸= V⃗ ∗

ℓ,1

]
≤ βV (qn∆) = βX (qn∆) and P

[
V⃗ℓ,2 ̸= V⃗ ∗

ℓ,2

]
≤ βV (qn∆) = βX (qn∆) .

Application of Talagrand. On the event Ω∗, replace (uk, Xk∆) by (u∗k, X
∗
k∆) and split the indices into odd

and even blocks. For instance, the term

E
[(

sup
t∈Bπ

m,m̂

(
v∗,1n,1(t)

)2 − 1
6 p(m,m

′)
)
+

]
appears, with

v∗,1n,1(t) :=
1

pn

pn−1∑
ℓ=0

(
1

2 qn ∆

qn∑
r=1

χ c,∗
2 ℓ qn+r σ

2,c
(
X∗

(2 ℓ qn+r)∆

)
t
(
X∗

(2 ℓ qn+r)∆

))
,

where {χc,∗
k := χ∗

k 1
∣∣{χ∗

k| ≤ kn
}. This is a sum of pn independent blocks. Define

f (t) : (z, x) 7→ 1
2 qn

qn∑
r=1

[
zr 1|zr|≤kn

− E
(
zr 1|zr|≤kn

)]
t(xr)σ

2(xr)1|σ2(xr)|≤ln .

Hence

v∗,1n,1(t) =
1

pn

pn−1∑
ℓ=0

(
f (t)(Yℓ)− E[f (t)(Yℓ)]

)
,

where

Yℓ =
(
χc,∗
2 ℓ qn+r, X

∗
(2 ℓ qn+r)∆

)
r=1,...,qn

.

Apply Talagrand’s inequality with F = {f (t) : t ∈ Bπ
m,m′} and vn(f) = v∗,1n,1(t). As in Lemma 6.6 of [7], it

holds that:

sup
f∈F

∥f∥∞ ≤ M := cφ kn ln

√
(m ∨m′) ∥Ψ−1

m∨m′∥op,

E
[
sup
f∈F

|vn(f)|2
]
≤ H2 :=

2E[σ4(X0)] c
2
φ (m ∨m′) ∥Ψ−1

m∨m′∥op
n

,

sup
f∈F

1

n

pn∑
ℓ=1

Var
(
f(Yℓ)

)
≤ v :=

2 cφ
qn

E[σ8(X0)]
1/2
√
(m ∨m′) ∥Ψ−1

m∨m′∥op.

Denote by C a universal constant. Then Talagrand’s inequality (Lemma 5.8) implies

E
[(

sup
t∈Bπ

m,m′

(v∗,1n,1(t))
2 − 6H2

)
+

]
≤ C1

( v
pn

exp
(
−C2

pn H2

v

)
+

M2

p2n
exp
(
−C3

pn H
M

))
.

Since 2 pn qn = n, pn ≈ n∆
log(n∆) , and max{m,m′} ∥Ψ−1

m∨m′∥op ≲ n∆
log2(n∆)

, it follows that

E
[(

sup
t∈Bπ

m,m′

(v∗,1n,1(t))
2 − 6H2

)
+

]
≤ C ′

1

( √
Z

pn qn
exp(−C ′

2

√
Z) +

(kn ln)
2 Z

p2n
exp
(
−C ′

3
pn√

nkn ln

))
:= A+B,

where Z := (m ∨m′) ∥Ψ−1
m∨m′∥op. Moreover,

pn qn = n
2 ,

n∆

log(n∆)
√
nkn ln

≥ D1 n
1/50 ≥ D2 log(n),
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so the second exponential is at most exp(−3 log(n)) = n−3. A brief calculation then shows the series∑
m′

√
Z exp(−c

√
Z) converges then A ≲ 1/n, while B is also O(1/n). Summing over m′ ∈ M+

n yields∑
m′

E
[(

sup
t∈Bπ

m,m′

(v∗,1n,1(t))
2 − 1

6 p(m,m
′)
)
+

]
≲

1

n
.

Lastly, it suffices to control

E
[(

sup
t∈Bπ

m,m̂

v(1)n (t)2 − p(m, m̂)
)
+
1{Ξn∩Ωn∩(Ω∗)c}

]
,

which is straightforward using P((Ω∗)c) ≲ 1/(n∆)5 and arguments in Lemma 5.3.

This completes the proof of Lemma 5.6.
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