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MODEL SELECTION FOR DIFFUSION COEFFICIENT ESTIMATION IN SDE
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LABORATOIRE MODAL’X, UNIVERSITE PARIS NANTERRE, NANTERRE, FRANCE
LABORATOIRE MAPS5, UNIVERSITE PARIS CITE, PARIS, FRANCE
YHUANG@PARISNANTERRE.FR

ABSTRACT. This paper introduces a projection-based estimator for the diffusion coefficient in a stochastic
differential equation (SDE) using high-frequency observations of a single trajectory. The method extends
existing approaches to noncompact estimation domains, allowing the use of projection spaces spanned by
noncompactly supported functions such as Hermite and Laguerre bases. The improvement partly relies on a
different decomposition of the squared increments of the processes, which define the approximate regression
equation. We propose a data-driven model selection procedure and prove that it enables the estimator to
automatically balance squared bias and variance. Numerical experiments confirm its effectiveness across
various SDE settings.

1. INTRODUCTION

Consider the diffusion process defined by the stochastic differential equation (SDE)
1) dX, = b(X,)dt + o(X,)dW;, t>0, X~ p,

where (W;)i>0 is a standard Wiener process and p is a probability measure independent of (W;). The
functions b and o, referred to respectively as the drift and diffusion coefficients, are assumed to be Lipschitz
continuous. Given high-frequency observations (X kAn)O <p<n With sampling intervals A, — 0asn — oo,
our goal is to construct a nonparametric estimator of the unknown squared diffusion coefficient o (-)2.

In the literature, two primary methods have been proposed for non-parametric estimation of the coefficients
of a diffusion process. The first method relies on kernel-based estimators (see, for instance, Florens-Zmirou
[12, 11] for estimating o2, and Jiang and Knight [19], Bandi and Phillips [2] for both b and o2). These
works analyze point-wise consistency and also derive the asymptotic distribution of the proposed estimators.
In addition, Jacod [18] surveys the results on convergence rates, addressing both point-wise and integrated
convergence for kernel-type estimators.

The second method constructs projection estimators on a chosen finite-dimensional space of basis functions,
complemented by a data-driven procedure that determines the dimension adaptively. This strategy has been
widely explored for diffusion processes. It was introduced by Genon-Catalot et al. [13], expanded by Hoffmann
[15, 16] using wavelet bases, and further simplified by Comte et al. [8] with projection-least-square estimators.
However, these projection-based estimators typically only reconstruct the restricted function 0% = 02 14
on a compact set A C R. To address non-compact domains, Ella-Mintsa [10] extended the least squares
estimator to the entire real line by using N independent copies of the diffusion and letting N — oo along
with the sample size n. This estimator is essentially a compact supported one, but on expanding intervals
[—log(N),log(N)]. The author establishes risk bounds for both N = 1 and N « n, although adaptivity is

only pursued in the latter scenario.

A crucial difference between estimating b and o2 is whether the observation horizon T = nA remains fixed
or increases with n. When A = 1/n so that T'= 1 is fixed, a consistent estimation of b from a single path
is impossible, while o2 can still be estimated consistently in that setting. Approaches to estimate b assume
multiple independent copies of the diffusion (with T fixed, e.g., Denis et al. [9], Comte and Genon-Catalot
[4]) or let T — oo (e.g., Comte and Genon-Catalot [7]), in which case an additional ergodicity condition is
imposed. The present paper focuses on 2 in a noncompact domain and builds on Comte and Genon-Catalot

[7], which treated the noncompact case for b but did not address o2.
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In this paper, a general family of projection spaces {S,, : m € M,} is considered, where M, is a model
collection. The proposed estimator is given by

n 2 2
o .1 (X(et1a — Xka) B
O = el ) A t(Xea)

The truncation of 2, is introduced for stability, following a strategy similar to Comte and Genon-Catalot
[7]. This truncated projection estimator is shown to be consistent on R without requiring a compact domain
A. In particular, it achieves the nonparametric rate n=*/(**1) if 52 resides in a Sobolev space W*(A). This
is in line with established results in heteroscedastic regression (Comte and Genon-Catalot [6]). Moreover,
an automatic, data-driven selection of m is proposed via a suitable penalty function that optimally balances
bias and variance. In summary, the three principal novelties are as follows:

e A construction of estimators that employ non-compactly supported bases on R, such as Hermite or
Laguerre polynomials, broadening applicability to wide intervals.

e A mechanism that accommodates a broad class of bases (rather than just several fixed bases), im-
posing only light conditions typically satisfied in many statistical settings.

e An adaptive procedure in the single-trajectory regime (N = 1) without restricting itself to a compact
domain, improving on Ella-Mintsa [10], which demands N « n to achieve adaptivity.

Organization of the paper. Section 2 details the assumptions that ensure the existence and uniqueness
of the stationary, ergodic, S-mixing solution to (1). Section 3 presents both nonadaptive and adaptive
risk bounds with a discussion of the resulting convergence rates. Section 4 provides numerical experiments
illustrating the theoretical claims. Finally, Section 5 contains the proofs of the main results.

Notations. The SDE (1) is assumed to admit a stationary solution (X;);>o with invariant density =. The

m-norm on L?(R,7(x)dz) is denoted || - || . Given observations {Xza : 1 < k < n}, the empirical norm is
1 n 5
17 = - > H(Xka)”,
k=1

with the associated empirical inner product

(s, t)n =

kzi: 5(Xpa) t(Xka)-

When taking the expectation of ||t||?, it reduces to the m-norm ||¢||2. On any subset A C R, L?(A,dxz) is

n?

3=

endowed with the usual norm || - ||, and the orthogonal projection onto S,, C L?(A,dzx) is denoted by f,, if
f € L*(A,dz). For m € N*, the Euclidean norm on R™ is || - ||2.,. For a symmetric matrix M € M, xm,
the operator norm || M ||op is defined by
|Mllop = sup |[[Mz|2m = sup ’xTMx’
z€R™ z€R™
lzll2,m=1 llzll2,m=1

Equivalently, | M]|op is the largest absolute value among the eigenvalues of M.

2. FRAMEWORK AND ASSUMPTIONS

This section specifies the assumptions about the diffusion model and on the projection spaces used to
estimate the diffusion coefficient. It also describes the asymptotic sampling framework. The definitions and
properties of the relevant function spaces (Besov, Sobolev-Laguerre, and Sobolev-Hermite) are provided.

2.1. Model assumptions.
To guarantee the existence and uniqueness of the diffusion process solution as well as the stationarity and
ergodic properties of the process, we impose the following standard assumptions on the model.

Assumption 1. (i) The drift function b lies in C1(R), and there exist constants c1,ca > 0 such that
V(z)| < cr(1+[2]?) forallz € R.
(ii) There is a constant cz such that
|b(z)| < es(1+|z]) forallzw €R.
(iii) (Dissipativity) There exist constants d > 0, r > 0, and R > 0 such that for all x € R with |z| > R,
sgn(z)b(z) < —rlz|h
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Assumption 2. (i) The diffusion coefficient o is in C*(R), and there ewist constants cq,cs > 0 such
that

|0’ ()] + |o”"(@)|] < ca(L+]x]|®) forallz€R.
(ii) There is a constant L > 0 such that for all x,y € R,
1/2
lo(z) —o(y)| < Lz -y 2,
(iii) (Non-degeneracy) There is a constant cg > 0 such that
‘a(ac)‘ > ¢ > 0 foralzeR

Under Assumptions 1(i,ii) and 2(i,ii), SDE (1) admits a unique strong solution for any initial distribution
w. Additionally, using 1(iii) (dissipativity) and 2(iii) (non-degeneracy),

V(z) = /Or eXp(—Q /Oy Jb((zz))z dz) dy — +oo as x — oo,

+o0 T P
G = / 0(1)2 eXp(Q/O Jb((z))Q dz) dr < oo.

—00

and

A standard argument (see Kutoyants [21], Theorem 1.16) shows that there is a unique invariant measure

w(dz) = w(x) dx for (1), where
_ 1 T ob(z)
@) = G o2 S s)

Assumption 3. The initial condition satisfies Xo ~ p.

Under Assumptions 1, 2, and 3, the process (X;):>o is strictly stationary and ergodic. Moreover, by
Proposition 1 in Pardoux and Veretennikov [22], there exist constants K > 0, v > 0, and 6 > 0 such that

(2) Elexp(v |Xo|)] < 400 and Bx(t) < K exp(—6t),
where Sx(t) is the S-mixing coefficient at lag ¢. By the first part of (2), X, has finite moments of all orders.

From Gloter [14], Proposition A, for f =bor f =oc and any ¢t > 0, kK > 0, h > 0, there exist C = C(k) > 0
and v > 0 such that

]E[ sup |f(XS)—f(Xt)}k‘]-}} < R (14 X)),
SE[t, t+h]

where (F;);>0 is the filtration generated by W. In particular, there is a constant C’ > 0 for which

(3) E| sw [f(X) - f(X)[] < ¢/t
SE[t, t+h]

Assumption 4. The stationary density m is bounded: |7l < 00.

2.2. Approximation spaces.

The primary goal is to estimate 0% := 0% 14 for a domain A C R, which may be a compact interval, RT, or
the entire real line. For this, a family of finite-dimensional subspaces {S,, ; m € N*} C L?(A) is considered,
each S,, spanned by the orthonormal family (¢, ..., om—1). Specifically,

Sm = span{®g, ..., Pm—1}
To control the growth of {¢,}, the following holds.

Assumption 5. For each m € NT, there is a constant ¢, > 0 such that

m—1
L(m) < ¢&m with L(m) = SUPZ%’(%)Q-
€A =0

Examples of valid bases. The following standard bases, each satisfying Assumption 5, will be important in
our analysis. In addition, we recall classical function spaces (Besov, Sobolev-Laguerre, and Sobolev-Hermite)
and their associated approximation properties.

1. Trigonometric Basis [TB].
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On [0, 1], define
to(w) = Lpqy(x), t2j-1(x) = \/icos(Zﬂ'jm) lio,(z), tai(x) = \@sin(ija:) 1j0,1)(2),

for j > 1. Since |t;| < /2, it follows that L(m) < 2m, implying Assumption 5 holds with ci = 2. In many
references, these are called the (discrete) Fourier basis functions on [0, 1].

Besov-space approzimation: If 0[2071] is in the Besov space B3 ([0, 1]) with s > 0, then by Barron et al. [3],
Lemma 12,

HO[QO,l] _0-[20,1]717'7,“2 < CO(s)m™%,

where C(s) > 0 depends on s. Recall that B3 ([0,1]) is the set of f € L?([0,1]) with a finite Besov norm

Ifllss . = sug[y’awr(f,y)z] < 00, wherer = [s]+1.
: =

Here, w,.(f,y)2 is the 7-th modulus of smoothness of f in L2. Thus, for 0[20,1] € B3 ([0,1]), the m-dimensional
trigonometric basis approximates Uﬁu] at rate m~* in the L2-norm.

2. Laguerre Basis [LB].

On RT, the Laguerre functions are

k

li(x) = V2Lj(2z)e " 10y, Lj(u) = Z(—l)k (i) %
k=0 :

Since [¢;| < V2, Assumption 5 holds with ci = 2. Smoothness on RT is often measured using the Sobolev—
Laguerre space (see Thangavelu [25], Chapter 1, and Szeg6 [24], Chapter 6):

Wi R, R) = {f € 2®): Y5 [(£.0)]" < R},
=0
If 02, € W;(RT, R), then
2 = 2 > 2
(4) ogs = o mll” = D [ome )" < m™* Y 5 [(oRe, £5)]” < Rm™*.
Jj=m j=m

Hence, the Laguerre basis yields an approximation rate m~=5/2 in L?(R™).
3. Hermite Basis [HB].

On R, define
1 712 . :E2 dJ 7932
hj(x) = WHJ'(I)G 2, Hj) = (=1)e W(e )
From Indritz [17], one has |h;| < 7~/4, implying Assumption 5 with 2 = 7~1/2. The Sobolev-Hermite
space is introduced by

WiRR) = {f € L2®): 3_i*|(f.h)P < R}.
7=0

See Thangavelu [25], Chapters 4 and 5, and Szeg6 [24], Chapter 5, for more details. If 0% € W; (R, R), then
[|o? — aanQ < Rm™%, where o2, is the orthogonal projection of o2 onto span{hq, ..., hm_1}.

2.3. Asymptotic framework.
Throughout the paper, the sampling interval is denoted A = A,,, and obeys the following constraints:

Assumption 6.
A, — 0, A, n’% 400, and Aizo(l/n) as n — oo.
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Hence, while A,, — 0, the total observation horizon T,, = n A, grows unbounded, ensuring sufficient
ergodicity-based averaging for consistent nonparametric estimation. For simplicity, A = A,, is often written
without subscript.

Observation setup. Let (X;);>0 be a solution of (1) satisfying Assumptions 1-4, and let
XkA7 k;:O,...,n

be n + 1 observations recorded in time steps of length A. The subsequent sections construct a projection-
based estimator for the function o2, potentially modified by a small truncation for numerical stability, using
the data (Xo, XA, ..., Xna).

3. ESTIMATION OF THE DIFFUSION COEFFICIENT

In this section, we propose new estimators for the diffusion coefficient o2 in a fixed model space S,,,
introduce a corresponding model selection procedure, and establish risk bounds for these estimators. The
approach builds on the projection ideas in Section 4 of Comte et al. [8], with particular attention to non-
compact domains and the use of truncation to stabilize empirical matrices.

3.1. Projection estimator on a fixed space S,
Fix k € {1,...,n} and define

(X2 — XkA)2

Uka = A
From (1), a regression-type relation holds:
(5) Upn = U(XkA) V() + VkA + Ria,

where .
v = GQ(XM)(M _ 1)
is the principal noise term, while VA and Rpa (defined later in the proof of Proposition 1) are additional

noise-like and residual terms, respectively, both being negligible.

Projection setup. Let A C R be the domain of interest, and let {¢;};>0 C L*(A,dz) be an orthogonal
basis of functions supported on A. For each m € NT recall that S,, = span{pg,...,¥m_1}- A preliminary
estimator 52, of 02 on A is defined by solving

zn:(UkA—t XkA)>2.

k=1

S|

(6) o2 = argtm;n T (t), where ,(t) =
€Sm

m

Introduce the matrices

N N 1 s
b = [p5(Xia)] R™™, B = (95,0800 = 3L 3,
?i(Xia) 1<i<n, 0<j<m—1 < (3> ok 0<j,k<m—1 n ™
and
v, = E[U,,] = { < d } .
9] = [[ ei@a@ @]
If U= (Un,...,Uya)T and \Tlm is invertible, then
m—1
m o 1 1,
(7) 52, = Y @™y, with a™ = (853,) 9L U = ~ U, 13T U.
n
=0

Truncation for non-compact A. In order to invert the matrix @m effectively, we need to ensure that its
smallest eigenvalue is sufficiently large. When A is compact, this is typically guaranteed by having a density
7 that is bounded away from zero. By Proposition 7 in Comte et al. [6], we have | ¥, op < ﬂo, where
7o > 0 is the lower bound of the density, which implies that the smallest eigenvalue of \f/m is bounded below
by a deterministic constant with high probability, since we can show that \flm and V¥, are close in terms
of operator norm (see Proposition 6.1 in Comte et al. [7]). In contrast, for noncompact A, we consider a
truncated version of 2,

(®) T = T Ln,.



6 Yichuan Huang, Laboratoire Modal’X, Université Paris Nanterre

~ A 0(3log(2) —1

(9) A, = {L(m) <H\11;11||0p\/1) < c27}7 = %’
log®(nA) Co
with Cp > 82 a numerical constant and 6 from (2). Lemma 5.1 pinpoints ¢, chosen slightly larger than in
Comte et al. [7] to accommodate higher precision in estimating 02. On A,,, the eigenvalues {\;}1<i<m of
U, satisfy
L(m) log?(nA
mf oy, > Lm)logT(nd)

1<i<m cnA
3.2. Risk bounds for the diffusion coefficient estimator.
The next proposition decomposes the risk of 2, into bias and variance terms, assuming a suitable stability
condition on m:

Assumption 7. The integer m > 1 satisfies

(10) Lim) ([0 op V1) < — 22

< —5——= and m < nA,
2 log®(n A)

with ¢ as in (9).

Assumption 7 ensures stability, which is automatically satisfied when A is bounded away from zero (see
Proposition 4.1 in Comte et al. [5]). In noncompact settings, additional precautions are required (see
Propositions 3.4 and 3.5 of Comte et al. [5]). However, it follows from Lemma 5.1 that A,, holds with high
probability.

Proposition 1. Under Assumptions 1-7, there are positive constants C,C" (independent of n,m) such that

e[, 2 0, 0 U2
n

~ 1
B[ — oAI2] < 7 inf 1o} + 6 N

where
Vot = [Efps (Xo) pu(Xo) o* (X0)]

0<j k<m—1
When S, are nested subspaces (i.e. Sy, C S, for m; < my), Lemma 2 in Comte et al. [5] implies
infies, ||t — 0%4]|2 — 0 as m — oo. The terms CA? + %/ go to zero under Assumption 6, so the main

challenge is controlling Tr[\IJ;ll/ 2 | \I/;Ll/ 2], which is the variance term. If o is bounded, then
Te[0, 20, 50 U, 2] < [0 sm

by Proposition 3.2 in Comte et al. [7]. In particular, if o(z) = o is constant, then vt | P
and the variance term equals o m.

3.2.1. Rates in the compact case.

Suppose A is compact, say A = [0, 1]. Hoffmann [15], providing a reference for scalar diffusions, uses wavelet

bases and achieves an L2-risk rate of n=2*/(2s*1 if o2 lies in a Besov space Bj ([0,1]). Our approach
recovers the same rate with trigonometric bases:

Trigonometric Basis. Take S,, spanned by {v/2 cos(27jx), v/2sin(27jz)} plus a constant function.

By Proposition 1,

T [0, 2 W, g 057
n

~ . 1
]E[”C’gn *‘7[20,1]H72J <7 té%fm ||‘7[20,1] — )% + 64 + CA? + Clﬁ~
Since [0, 1] is compact, 7(z) is bounded below and above: 0 < 7y < 7(z) < 7 < co. Hence

té%fm ||‘7[20,1] - tlli = m tgé{n H‘7[20,1] — %
If o is bounded on [0, 1], Proposition 3.2(i) in Comte et al. [7] (adapted with o2 ~ o) shows
Tr[W5 2 W o0 WE12] < oo 1[5 m-
Finally, if 0[20,1] € B3 ([0,1]), Lemma 12 in Barron et al. [3] yields

2 —2s

inf |lo2 ; —t* <
tg}gm ||U[0,1] © < m
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Hence,
~ _ m 1
E[llo7, - ‘7[20,1]|\72J < mT o+ Y + A% + o
By Assumption 6, A? is negligible compared to 1/n. Under the compactness of A, Assumption 7 reduces to

m < "B
~ log?(nA)

For functions with regularity s > 3/4, then under n®°A — oo (Assumption 6), we can choose mep; A

—2s

2s
nt/(2s+1) " that satisfies Assumption 7 and balances m and m/n, resulting in the rate n~ 2s+1. This

matches the result in Hoffmann [15].

3.2.2. Rates in the non compact case.

When A is noncompact, for instance A = RT or A = R, we estimate 02 using [LB] in the first case and
[HB] in the second. We evaluate the risk of the estimator by adapting the same approach as previously.
For example, when A = R*, we can bound the bias term using Assumption 4:

(11) tgéf o+ — t”i < H7r||ootg}9f o2, — tH2~

We also assume that o2 is bounded (which is trivially true for processes such as the Ornstein-Uhlenbeck
process). This allows us to recover the bound for the variance term from the previous section:

(12) Tr [\1/,;1/2\1/,,1,04\1/,;1/2} < llows |4 m.

Finally, if we assume that o2, belongs to a Sobolev-Laguerre space ball Wi (R, R), we can use (4) to bound

the bias term:
(13) inf o2 —t]* = lloZs - i 7 < Om*.
€Sm ’

For functions with regularity s > 3/2, then under n%/°A — oo (Assumption 6), we can choose mop; =
n'/(s+1) that satisfies Assumption 7 and achieves the rate n~=5/(s+1),

Comparison to standard heteroscedastic regression.

The regression model
Vi = f(Xk) + 9(Xk)er, Elex] =0, Varleg] =1,

is studied in Comte et al. [6], where g(+) is a nuisance function that describes the level of noise. On the surface,
our model (5) is similar: Uga acts as a response Yy, o2(-) parallels f(-), and additional terms (Va, Rka)
are reminiscent of extra noise.

However, two significant differences arise:

e Process-driven residuals Va and Rpa do not simply vanish under expectation but are only of
smaller order (often on the scale of A). This is typically enough to remain negligible for large n
under Assumption 6, yet they complicate the analysis by adding correlated noise-like components.

e The function o2 to be estimated is not just the mean structure but also explicitly determines the
variance part of the model. That is, Uya depends on 02(X kA ) in a multiplicative way, so there is no
separation of the “variance function” g(-) from the “mean function” f(-).

In Comte et al. [6], the notion of regularity involves an L2(R*, 7 (z) dx)-based Sobolev space W..(R*t, R),
where the “bias” term is controlled via the orthogonal projection in that weighted norm.

WE®*,R) = {h € L*(R,m(z) dr) : V¢ = 1, |h — 2 < RE}
with A7 the L?(A, 7 () dz) orthogonal projection of h on Sy, and = is the stationary density of X.

By the boundedness of 7, if UI%M € W;(R™, R) (Laguerre space in the unweighted sense), then

loge =tz < lImllssllogs — ¢,
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so o3 also belongs to the || || z-Sobolev-type class W (RT, ||7]|oc R). Consequently, the n=%/(+1) rate found
here aligns the rates for heteroskedastic regression in Comte et al. [6].

3.3. Model selection.
Throughout this section, assume also that:

Assumption 8. For mi,my € NT with my < ma, we have Sy, C Sp,-

Constrained Model Collection. Define

14) Mpa = {m€N+:02m o2 vl) € - ——— = ,
( o (1 l5p v 1) 4 log?(nA) 8Co (7l V (14 3))

where 6 is from (2), Cy > 84 is the same constant as in ¢ of (9), and the factor of 4 ensures a stricter
constraint than (9). To enable an automatic selection of m, we introduce an empirical version of Mya:

. ~ nA

15 Mpn = {m6N+:62m volI2 v <07}.

( ) nA © (” Hop ) — logz(nA)

Given that m ([ lop V1) < m ([[¥1|2, V 1), it follows that 62, = 2. Then the data-driven choice of
m is

0 nA }’ 0

~ - ~2 12 2 o[ T lop 4 4

(16) m = arg min {—||am||n + ke, s 77”}, s :E[O' (Xo)},
meMpa n

where x is a numerical constant. Intuitively, —||52,||2 approximates the squared bias, and the second term

controls the variance (cf. the proof of Proposition 3.2(iii) in [7]). Note that m is chosen only among the

indices m € My, so that ’0\% = 5371 for those m.

Theorem 3.1. Under Assumptions 1-8, there is a numerical constant kg > 0 such that for all k > ko,
~ . . 1
E[l62 —o%I2] < € it (inf le—o3I2 + pen(m)) + €A + €7
where

\11_1
pen(m) = rc, E[o*(Xo)] M_

Hence, the adaptive estimator 372% automatically balances bias and variance, up to small remainder terms. A
practical implementation requires estimating E[o*(X()] (see the next section).

4. SIMULATION STUDY

This section evaluates the performance of the proposed estimation methods in various diffusion processes.
In Examples 1, 3, and 4, the processes are mean-reverting to ensure stationarity. Concretely, the drift function
in (1) is

b(.’L’) = —/\(37 - :U/)7

where A > 0 is the mean reversion rate and p is the long-term mean. In Example 2, stationarity is inherited
from the setting in Example 3. Our primary objective is to estimate o, or equivalently o2.
Example 1: Ornstein—Uhlenbeck (OU) Process.
Parameters: A =1, p =0, v=2.

dX; = - AN Xy — p)dt + o(Xy) dWy, where o(x) = 7.

Example 2: Nonlinear Diffusion Process.
Parameters: A=1, u=0,~v=2.

dY; = (1 -Y2) [)\(u - tanhfl(Y})) — 92 Y}} dt +o(Yy) dWy, where o(y) = v(1—y?).

Example 3: Hyperbolic-Like Diffusion Process.
Y _ _ 1
Parameters: A=2, u =0, v = 75
AU = =AUy — p) dt + o(Uy) dWy, where o(u) = vV 1+ u?.
Example 4: CIR Process.
Parameters: A =2, yu = %, v =1, with v <2Ap.

AV ==XV —p)dt + o(Vy) dWs, where o(v) = v/ (v)+.
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Examples 1 and 3 adhere to Assumptions 1-4, thus allowing the full theoretical framework to apply.
Example 1, an Ornstein—Uhlenbeck (OU) process, is a classical mean-reverting diffusion widely used in
finance, physics, and econometrics. Because it is linear with a closed-form solution, exact simulation is
straightforward:

Xpa = X(kfl)A 672A + 2 (1 —e_ZA) €k,

Where {e;} are i.i.d. standard normal random variables. From the sample {X;}, we construct a nonlinear
diffusion by defining ¥; = tanh(X};). By It6’s lemma, the process {Y;} then satisfies the model in Exam-
ple 2. We use a trigonometric basis supported on [aX,bX] for Examples 1 and 2, where aX and bX are
the 2% and 98% quantiles of the observations, respectively. This approach is a slight modification of [TB]
with an adjusted period. Although not all assumptions of Example 2 are strictly satisfied, the process is
stationary and exhibits geometric 8-mixing. The same behavior is observed in Example 4.

Example 3 is a hyperbolic-like diffusion whose diffusion coefficient grows similarly to a hyperbolic func-
tion for large |z|. It can be checked that U; meets Assumptions 1-4. Simulation uses the Euler-Maruyama
scheme:

U(k+1)A = Uga — AUpa + \/1+U]?A\/E5k-

Here, V1 + -2 is approximated with an R-supported basis [HB]. Example 4 uses the restricted CIR process
so that V; stays positive, making the Laguerre basis [LB] suitable. For simulation, the Euler-Maruyama
method is replaced by the implicit Euler scheme from Alfonsi [1]:

VA + VVia + \/(g\/&:k + m)2 + 4<1+’\2A)24A>2

Vikrya = < 2(14_%)

which remains well-defined for large n whenever v2 < 2 A p.

Parameter Tuning and Implementation.

The constant  for the selection procedure (see (16)) is chosen via standard calibration: k = 5x 1072 for [TB],
and x = 2 x 107* for [LB] and [HB]. The constant d is set to 10'2. To handle the quantity s* = E[o*(X,)],
we replace it with the estimator

1
= — Upn — 0%
2n P [ kA Titima

st

=

where My is the maximal dimension in M,, . This choice follows from the relation E [(Vk(i) )?] =2E[0*(Xo)],

where Vk(i) is defined in (5). In Table 1, we compare 5* to

:94 = %204(XkA)-
k=1
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(A) Example 1 (B) Example 2

0.95

09

085

081

0.75

0.7 F

0.65

061

0.55

0.5

0.45 ‘ : : -0.2

(¢) Example 3 (D) Example 4

FiGurE 1. Estimated diffusion coefficient curves for the four examples. Green lines: es-
timated coefficients; red lines: true coefficients. The bases used are (a) [TB], (b) [TB],
(c) [HB], and (d) [LB]. Parameters: n = 100,000, A = 0.004.

Example 3 Example 4
st st st 5t

n = 25,000, A =0.01 |0.34(0.15) 0.34(0.14) | 1.66(0.24) 1.67(0.19)
n = 100,000, A = 0.004 | 0.34(0.01) 0.34(0.01) | 1.57(0.01) 1.64(0.01)

TABLE 1. Mean values (and standard deviations in parentheses) of 100 samples for the

pseudo-estimators 54 and ;1, with different n and A. All entries are rounded to two decimal
places.

Numerical Results.

The tables below (Table 2 and Table 3) summarize the estimates of o2 under varying n and A for Ex-
amples 3 and 4. Each table shows the mean integrated squared error (MISE), the selected dimension m, and
the maximal dimension Mmayx, all averaged over 100 replications (standard deviations in parentheses).

In both cases, the product nA (ranging roughly between 250 and 1000) plays a crucial role. When nA is
moderate, the estimation of o2 remains stable and accurate, consistent with the fact that, in general, the
diffusion coefficients o2 can be reliably estimated from the observed data over relatively short time intervals.



For instance, in the first table, n = 100,000 and A = 0.004 yield nA = 400, with MISE around 0.02.

Model selection for diffusion coefficient estimation in SDE

Moreover, the chosen dimension remains within a reasonable range.

As n grows large, the MISE becomes less sensitive to A. Once n is large enough, reducing A further makes
little difference in the accuracy of the estimation. In Table 2, for n = 250,000, the MISE is extremely low and
remains nearly constant in all tested A (roughly 0.0122 to 0.0133). Thus, for large samples, the estimator
performance is essentially A-invariant, in line with the theoretical risk bounds that are primarily dependent

on n.

A
" 0.04 0.01 0.004
10,000 | MISE = 0.22 (0.17) | MISE = 0.34 (0.41) | MISE = 4.15 (2.44)
= 5.33(0.85) = 3.00(0.00) m = 1.99(0.10)
Mmax = 8.45(0.56) |  Mmax = 3.00(0.00) |  max = 2.00(0.00)
25,000 | MISE = 0.12 (0.04) | MISE = 0.06 (0.05) | MISE = 0.29 (0.31)
= 5.81(0.98) = 5.27(0.66) i = 3.00(0.00)
Mimax = 9.51(0.92) | Mmax = 7.00(0.00) | imax = 3.00(0.00)
100,000 | MISE = 0.08 (0.02) | MISE = 0.02 (0.03) | MISE = 0.02 (0.02)
= 6.65(1.06) = 6.11(1.00) = 5.72(0.93)
Mimax = 10.66(0.92) |  Mimax = 9.52(0.78) |  imax = 8.51(0.56)
250,000 | MISE = 0.01 (0.01) | MISE = 0.01 (0.01) | MISE = 0.01 (0.01)
= 7.23(0.98) M = 6.91(0.93) = 6.38(1.12)
Mmax = 10.77(0.95) | Mmax = 10.33(1.02) |  fmax = 9.47(0.90)

TABLE 2. Results for Example 3 (hyperbolic-like diffusion). MISE (x100), m, and Mmax, av-
eraged over 100 replications with standard deviations in parentheses. All entries are rounded

to two decimal places.

A
" 0.04 0.01 0.004
10,000 | MISE = 0.31 (0.31) | MISE = 0.25 (0.36) | MISE = 3.78 (3.76)
= 4.02(0.28) = 3.00(0.00) i = 2.00(0.00)
Mmax = 5.21(0.41) | fmax = 3.00(0.00) |  max = 2.00(0.00)
25,000 | MISE = 0.22 (0.11) | MISE = 0.07 (0.07) | MISE = 0.24 (0.40)
M = 4.03(0.17) = 4.00(0.20) i = 3.00(0.00)
Mmax = 5.63(0.49) | Mmax = 5.16(0.37) |  fmax = 3.00(0.00)
100,000 | MISE = 0.05 (0.02) | MISE = 0.03 (0.02) | MISE = 0.02 (0.02)
= 4.02(0.19) M = 4.11(0.31) = 4.11(0.31)
Mmax = 5.73(0.25) |  Mmax = 5.36(0.48) |  fmax = 5.36(0.48)
250,000 | MISE = 0.02 (0.01) | MISE = 0.02 (0.01) | MISE = 0.01 (0.01)
= 4.33(0.13) = 4.17(0.38) = 4.17(0.38)
Mmax = 6.07(0.40) |  Mmax = 5.96(0.20) |  Mmax = 5.57(0.50)

TABLE 3. Results for Example 4 (CIR process). MISE, m, and Mmpax, averaged over 100
replications (standard deviations in parentheses). All entries are rounded to two decimal

places.
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5. PROOFS

This section presents the proofs of the main results from Section 3. In what follows, let C' and ¢ represent
constants that do not depend on n, A, or m. These constants may change from line to line. The notation
z < y indicates that x < cy for some universal constant c.

5.1. Proof of Proposition 1.
The approach aligns with the proof of Proposition 3.1 in [7]. Define the random event

a7 2= { ]

S

—1] <, Vtesm}.

S

On Q,,, for functions in S,,, the empirical norm || - ||, and the m-norm || - || are equivalent, since

Llthe < [Ithn < 2|t|lx forall t € S,,.

The error decomposition is given by
7 = ol < NoAl7 La,e + 1157, — oAlln La,n@ae + 1155, = o4l7 La,.nq,.,

since 72, is defined as zero on (A,,)¢. The expectation of each of these three terms is bounded in turn. The
following lemma is used repeatedly.

Lemma 5.1. Under the assumptions of Proposition 1, if m satisfies the stability condition (10), then

1
(nA)6

P((Am)°) < P((Qm)) <

The proof of Lemma 5.1 follows from Proposition 6.1(i) and Lemma 6.1 in [7]. The difference in order nA
is due to the setting ¢, A = Tlog(nA) (rather than 6log(nA) as in [7]), reflecting a higher precision in the
estimation of the diffusion coefficient. Consequently, a larger constant ¢ appears in (10).

Step 1. Bound on E[|[c%[2 1(a,, ]

1
P((Am)c)i S C/ 1 < 1

N[

E[[l04]2 1ia,.)] < CE[0®*(Xo)] AP ~ n

where Cauchy-Schwarz, Lemma 5.1, and the condition An®/3 — 400 are applied in turn.

Step 2. Bound on E[|[52, — %2 14,.n0,.]-

The proof requires a precise expression for noise terms and negligible residuals in the regression relation (5)
used to estimate 0. By (1) and Fubini’s theorem,

Ura = 0(Xga)® + Via + Ria,
where
Via = VA + V2 + v + v,
with
A UQ(XkA)((W(k+1)AA_WkA)2 _ 1)7
(k+1)A

Vk(i) = % O'(XkA) I:(W(k+1)A — Wia) /kA (O’(Xs) — O’(Xk-A)) dWy

(k+1)A
_ / (o(X,) = o(Xpa)) ds),
kA

@) (k+1)A
V= 2o ()| [
k

Vi = 26(Xia) 0 (Xea) (Wiasns — Waa).

((k+1)A = 5) ' (Xu) o(X,) dWs},
A
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The remainder terms are

= ()’ w2 = g ([ o0 ot an)’
& (k+1)A (k+1)A
R :Z(/m (b(Xs) ~ b(Xxa)) ds) /M o(X,) AW,
(k+1)A
R = 2b(Xya) /m (0(X5) — 0(Xpa)) dWs,
(k+1)A
RR=%o(a) [ (1A -8 0(X.)ds
where
(18) Y= d'b+ Ld"0%

In the arguments that follow, let

V — V(Q) V(3) V(4)

kA = VX + Vi + VA
contain all the secondary variance terms, while Vk(i) is considered the principal variance term.
Define the vectors
Vi=Va,...,Vaa)t, R:=(Ra,...,Run)%,
and the empirical processes
Up(t) = (&, V), Rp(t) := (t, R)n.
Then, for every s,t € S,,, the identity
Fn(t) = Anls) = It —oaly — s —0iln — 2va(t —s) — 2Ra(t—5)

holds. Consequently,
(19) 165 = oalln < It = oAl + 2va (G5, —t) + 2Ra (57, —1).
Separate the noise into two groups with distinct behaviors:

o) = &, VD), Tat) = VO, + &, VO, + (5, VW),

so that
v, (62, —t) = (M (62, — t) +Tn (2, — t).
Then
(20) (@ —1) £ s (0 ())?(152, - tl|2 + sup (T (1)) *[152, — t]|2.
cSm €Sm
It ==1 It]]==1

For the residual terms, write:
(21) Ry (7 —t) = (07 —t, R)u < |55, — tlln | Bl|n-
Substitute (20) and (21) into (19), and apply 2ab < L a? + C b? with C = 8, leading to
c
~ 2 ~ ~
(22) o5 —oalls < llt—oal + 8 Sup (@) + gllom —tl: + gllon ¢l
|\tgﬂ21
+ 8 sup (T.(1)" + 8|R|>.
t€Sm
llt]lx=1
Inequality ||z 4+ y[|2 < 2]|z||2 + 2||y||? implies
7 —tl7 < 201t =o%l7 + 2055, — ol
On Q,,, for functions in S,,, there is also || - ||z < 2] - ||ln. Thus,
Loz — 2 + 3182 42 < (3+3) 155 2 < Fhe—oil2 + 3155 - ohl2.
Hence, for any t € S,,,
~ ~ 2 N2
57, — oAl < Tlit =04l + 3155, —dalln + 8 sup (vP()” + 8 sup (T(t))” + IRl

tES, tE€Sm
[l ~=1 lltll~=1
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Rearranging the last term on the left-hand side yields, on A, N Q,,,
~ 2 N2
(23) 57, = oalls < 7lIt = oalls + 32 sup (oV(1)” + 32 sup (Wa(1))” + LR|3,..
tESm teSy,
lltll==1 |t ==1
Lemmas for bounding the noise and remainder terms.

Lemma 5.2. Under the assumptions of Proposition 1, for every k € N,

(24) E[(ViR)] 4, E[(VA)']54% ie{234)},
(25) E[(RA)] $A% E[(RQA)] $A% ie{L2345).

Lemma 5.3. Under the assumptions of Proposition 1,

Tr [\11;1/ 2y, awY 2}

(26) E| s (u00)°] =2 - ,
ll=1
(27) IE[ sup (W(t))z} S A%

lIt]l==1
Combining (26), (27), (25), and (23), and enforcing (10) for m, leads to
T, * 0, 0 U,

n

E[82, - o412 1a,nn,] < 7TE[lE-o412] + 64 L4 ene.

This completes the second step of the proof for E[[|52, — 022 14,,n0,.]-

Step 3. Bound on E[|[52, — 022 14, n(0,.)c]-
Let IL,, denote the orthogonal projection onto the subspace S,,. Similarly to (7), define

m—1

Z G ¢j, where am = %\/I\/;ll ZI:Z% o2,
and 02 := (0(Xa)%, ..., 0(Xna)?)T. Hence,
m—1
oz, — 0% = Z égm) ©;, where ™ = %\Tl;l @ﬁE,
Jj=0
and F = (VA + Ra,...,Von + RHA)T. Thus,
~2 212 1 ¢ — =(m) 2 mN\T g  Z(m)
162 —Maoh 2 = ~ 3 (3 &M ei(Xia)) = (@) T, 8.
=1 j=0
Consequently,
-~~~ ~ ~ 2
(28) 152~ o3 2 = 3 BT &, 0,0 85 B < |8,y |1 8, B
2,

The following lemma provides a useful bound.

Lemma 5.4. Under the assumptions of Proposition 1, there is a constant C such that

el @0 v+ R ] < ompm?(E + aY).

2,m

Applying Lemma 5.4 and the definition of A,, in (28) leads to

1/2{ 1/2

E o &) ], }P«w)

nA 1/2 /1 4 2
(29) S o2 (nd) ~ log®(nA) nz + A (nA)3 S tAn

Combining the last display with a simple decomposition yields

E[I52, — Tnoill2 a0 ] S oy

E| 162, = 0412 Lanene] < E[I5% = Lol Lann@ue| + E[ITnod = o412 1a,n,0)-
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Note that
E|ILno} = o412 L, @] < E[Io4IE Lo,

Hence,

~ 1
B[ = o412 La,n@n] S -+ + A%

This completes the derivation of the desired bound for the third term.

5.2. Proof of Lemma 5.2.

Use standard inequalities, in particular the Cauchy—Schwarz (C-S) and Burkholder-Davis—Gundy (BDG)
inequalities. Only the bounds for the fourth-order moments are shown, because the bounds for the second-
order moments follow from these results via C-S: for any random variable X it holds that E[X?] < E[X4]'/2.

For simplicity, set

(E+1)A (k+1)A
G = / b(X,)ds, H= o(X,) dWs,
kA kA

(k+1)A (k+1)A
. / (0(X,) — o(Xpa)) dWs, J = / (0(X.) — o(Xpa)) ds,
k kA

A
(k+1)A (k+1)A
K= ((k+ 1A — 5)0' (X)o(Xs) dW,, L= / ((k +1)A — 8)p(X.,) ds,
kA kA
(k+1)A
M= (0(Xs) = b(Xya))ds, N =Wgyna — Wia.
kA

Step 1: Bounding the eighth-order moments of G, H,I,J K,L, M, N.
Bound for E[G¥].

(k+1)A (k+1)A

E[Gs]E[(/m b(XS)ds>8} < A‘*]’E{(/}cA bZ(Xs)dSﬂ

< AGEK/]C(kJrDAbZl(Xs)ds)?] < NE[/]:M)A bS(Xs)ds]

A A
(k+1)A
=A" Eb®(Xo)] ds < A8,
kA
The estimate uses three successive applications of C-S, stationarity of (X;):>0, Assumption 1(i), and the
first part of (2).

Bound for E[HS].

E[H?] E[</k(:+1)A a(Xs)dWS)S] < ]E{(/k(:H)A az(Xs)ds)Aj
5A3E[/(k+l)A US(Xs)ds} - A3/(k+1)AE[as(Xo)] ds < AL
kA kA

The initial step applies the BDG inequality, followed by C—S and arguments similar to those used for G.
Bound for E[I8).

sy sB[( 000 ot i) |
(k+1)A

< A3E[/,€A (o(Xs) — O'(XkA))8 ds}

(k+1)A 8 (k+1)A
< A3/ E[ sup |0 (Xy) — o(Xpa)] }ds < A3/ Alds < AP
kA EA<t<(k+1)A kA

The BDG and C-S inequalities are used, along with (3).
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Bound for E[J®].
(k+1)A s
E[J] < NE[/ (0(Xs) — o(Xpa)) ds} < A2,
kA

The same arguments as for I are employed, except that the BDG inequality is not needed.

Bound for E[KY].
k+1)A 4
E[K®| < E[(/k(; ) ((k+ 1A = 5)° 0/ (X,)2 0(X,)? ds) }

< ASE[/(k+1) ((k+ 1A = 8)"0'(X,)* o(X,)" ds|
kA

(k+1)A
< A3/ APE[0'(X0)® 0(X0)®] ds S A'2
kA

The BDG and C-S inequalities are used again, along with stationarity, Assumption 2(i), and the first part
of (2).

Bound for E[L8].
(k+1)A
E[L¥] < Nu«:[/ AS (X)) ds} < AS,

kA
The same arguments as for J apply, together with Assumption 1(ii) to bound the function .
Bound for E[M?].

E[M®] < A",
which follows the same reasoning as for J.

Bound for E[N®]. Tt is well known that E[N®] = 105 A* because N is a Gaussian increment of the Brownian
motion over an interval of length A.

Step 2: Combining the estimates to bound the terms in the lemma.

o B[] = 2 Bvr - 0] 5 LBt BRIV - 201 € L (e + B <
A2
o E[(V2)"] £ 5 Blo®(Xea)]2 E[KY < A2
o E[(;)!] < B[ (Xpa) 0 (Xpa))2 EIN®]2
o E[(RQ)] = 57 EIGY) S A
e E[(RZ)Y] = éE[IS] < A*
e E[(R))Y] = %E[M“ HY < ALE[MS]% E[H®)Z < A%,
. E[(R,g ] = 16E[H (X1a) IY] < 6B (Xa)]2 E[I5)2 < A%,
E[(RE)'] S 57 BILYZ S AL

Each estimate follows directly from the established eighth-moment bounds of the variables G, H, I, J, K,
L, M, and N presented above. In particular, the estimate for E {(V,C(A)) ] uses the independent increments

property of the Brownian motion, which allows us to separate the terms involving N and I. Consequently,
all required bounds are satisfied, thus completing the proof of the lemma 5.2.

5.3. Proof of Lemma 5.3.
Recall from (5) that
Ukn = U<XkA)2 + Vk(i) + Via + Rpa,
where )
V) = o () (Wsns sl 1) Ty Ly v,
In particular,
[ vy |-7:uA] = JQ(XuA) -0 = 0.
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Define the vectors
T = = \T
v = (v, V) Vo= (VA Vaa)
Then for any function ¢,
- M
> H(Xka) Vin-
k=1

Proof of (26). We begin by introducing

2
Vi == sup (vﬁll)(t)) .
tESm
lltll==1
Our aim is to compute E[V;,]. Since any ¢ € S,, can be written as t(z) = Z;’:OI ajp;(z) and [|t]]2 =
>k @ @k [Yin]jk, it follows that

Il =1 < [0 2allom = L.
Hence
m—1 2 m—1 m—1 2
Vi = sup <V(17 [ ml/2 ij> = <V(1)7 Z 1/2 jk<pj> )
llall2,m=1 j=0 " k=0 =0 "

by a standard Cauchy—Schwarz argument (there is indeed a maximizing ¢). Denote

m—1
fel@) = Y [0 (@),
7=0
Then
m—1 1
(VO ), = 5 Z
Jj=0 " u=1
Taking expectation and exploiting the fact that ]E[Vu(i) | Fua] = 0, the cross-terms u # v vanish:
m—1
1
1
[<V(l)’ Z 1/2 k(P]> } _ 2 ZE ( ) X )2] _ EE[UZL(XO) fk(X0)2] x 2,
7=0

since Var[(W,4+1)a — Wua)?/A — 1] = 2. Next, expand fi(Xo)?:

m—1
fe(X0)® = D102k (95,2 ler 05 (Xo) pe(Xo).
4.6=0
Thus,
m—1 m—1
E[fu(X0)*0*(X0)] = D [,k [0, *1en B (Xo) pe(Xo) 0 = > WPk 19k [Won ot
J,£=0 §,0=0

where ¥, ,4 is the matrix whose (j,¢)-th entry is E[p;(Xo) ¢¢(Xo) 0*(Xo)]. Finally, summing over k =
0,...,m—1 gives

Tr [0, /20, 54 O,

m

1/2]_
Hence
Tr[ W2 W, 057

which is precisely (26).
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Proof of (27). We now prove
E[ sup (W(t))ﬂ < A2
tES
lltll~=1
Recall o, (t) = (t, V),,. By definition,
Via = VR +vR +v{,

where each Vk(iA) has zero conditional mean given Fia. Let

Ta(t) = %Zt(xm)vm.
k=1
We decompose
m—1 n
{ V, > Wk es) } = Z { uts Vor fe(Xua) fe(Xoa)|-
Jj=0 v=1

As in the proof of (26), the cross terms u # v vanish under expectation (due to the martingale property and
mixing), so only the diagonal remains. Also, using ||V} ||op and L(m) := SqueAZ " <pJ( x)?, we obtain

m—1 m—1
A O < 10 oy and | s gyl < Dm).
k=0 j,E:O RVAS
By Lemma 5.2 (or a direct calculation), E[Vi Al S A. Hence,
W_l A C m W7”1
E|: sup ﬁ(t)2:| 5 mH m ”Op S H HOP A < AQ
n n

lltll~=1
as soon as m ||V op S (nA)/log?(nA). This proves (27).

5.4. Proof of Lemma 5.4.
Recall that £ :=V + R. A Cauchy—-Schwarz argument yields

sine]), - (S (Detwes)) s # (St es)"
’ j=0 i=1

7=0 =1

Next, apply (a + b)* < 8 (a* + b*) to separate the summation into two parts:

N 4 m—1 n 4 n 4
%q’ﬁEHZ sz [(§ :sﬁj(XiA)ViA) + (§ @j(XiA)Rm) }
,m 3 3 N
=0 =1 =1

Define

m—1 n m—1 n 4
= i (Z% in) ZA) and Tg = % (Z <Pj(XiA)RiA) ;
j=0 i=1 j=0 i=1
SO

S Ty + Tk

2,m

1<I>TE‘

Term involving R. A double Cauchy—Schwarz argument implies

(Z%(XM)RM)4 < (n Zsﬁj(XiA)QRfA)Q < n® Y 9;(Xin)' Ria.
=1 =1 3

By Lemma 5.2, E[R§] < A%, Also, sup, Z;-'ZOI pj(x)* < L(m)2. Hence, taking expectation gives

ElTr] = E[% Z(ij(XiA)RZ-A)4} < mL(m)* A
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Term involving V. Since {¢;(X;a) Via}; are uncorrelated and have mean zero,
" 4 2
E[(Ywi(Xia)Via) | S nE[pi(X0)* V'] + n? (Elpi(X0)2 V) -
i=1

It is straightforward to check that Vj has bounded moments and sup, Z;";Ol @j(x)* < L(m)?. Hence,

w2 4 m L(m)?
B = B[z > (e via) | 5 B0
§j=0 =1
Combining the above bounds completes the argument:

E[ ! } < mL(m)Z(#—l—A‘l),

1oL (v R)|

2,m
which proves Lemma 5.4.

5.5. Proof of Theorem 3.1.

The strategy follows that of Theorem 3.1 in [7], requiring that X; possesses finite high-order moments. This

requirement does not impose stricter conditions on Model 1, thanks to the geometric S-mixing condition
stated in (2).

Definitions. Let M\nA be the maximal element of M\nA (see (15)). Let M,a be the maximal element of
M., and let M; A be the maximal element of the set
nA
M= {mEN: cm \I/;l 2 v1) < 407}.
nA © (” v ||op ) = logz(nA)
Here, 0 is a positive constant defined in (14). Define
EnA = {MnA C M\nA C M:'L_A}’ QnA = m Qm
mGM::A

and

[0’4(X0)} (m v m/) H\I/:nlv"ﬂ ||0p .

p(m,m’) := koL E m

— {I\I_l o
pen(m) = mciE[a‘l(Xo)] 7m|| m |l L.

Lemma 5.5 below ensures that =,A and €, each occur with high probability.

Lemma 5.5. Under the assumptions of Theorem 8.1, there exist positive constants ¢,c (independent of n
and A) such that

c X c

P(QS < ——, P(=7 < —.
(¥a) = (nA)5’ (Bha) < (nA)5
The proof of Lemma 5.5 is analogous to that of Lemma 6.4 in [7], except for a larger constant Cy in the

definition of M, which modifies the probability rate to (nA)=>.

We write
E[I5% - oAI2] = E[I5% - 03112 1z,am0,s] + E[I55 - 0312 Lz, a0,
The proof thus splits into bounding these two terms on the right-hand side.
1. Bound on E[H&fﬁ A ]I(EHAOQHA)C].
Decompose this expectation in two parts:
E[I5% = 0312 Lizarnnny| < 2E[I5% — Taoil2 Lz, amn,a] + 2E[I0302 1z, 00,00
First, note that
157 — o4l < 21155 - Taoiln + 2lo4l7,
since Idz — I is a projector of norm at most 1.

(i) Bounding |52 — 0% |2
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An argument similar to (28) shows

. 1 .
o5 — Maoillh = E(R'*—V)T(I)fﬁ\l/ﬁll L (R+V) < *II‘PA llop

L& (R V)|

2,m

Since M € My, the operator norm ||\/I\l7%1 lop is of order vnA. In addition, the map m +» || @%(R—&—V)H%’m
is non-decreasing in m, so

2
||372ﬁ— mUAH2 VALY H ‘I)LnAJ V)H

2,lnAJ

By Lemma 5.4,
8163~ acdls] € GA)E[|28am+ V)|, ] S nd0d) 08 (% +47),

Lemma 5.5 bounds P((Z,4)¢ U (2,4)¢) by (nA)~>, hence
1 1
~2 212 2 /1 2
E[16% ~ Maoill3 Le,s)u@as)] S ay (A At S DAl

(i) Bounding ||c%]2.
Apply Cauchy—Schwarz:

2,nA

1 1 1 1
2112 8 = c c
E[IoAl Luarumar] < CE[0°(X0)] 7 B(Ena)* U (@a))? S (oxyom S
Combining the above two parts,
~ 1
E[I15% = o412 Liz,annaar| S - +A%
2. Bound on E[|[62 — 032 1z, .n0,.]-
On Z,A NQpa, for any m € Mpya and t € S,
Fn(G%) + pen(m) < F,(t) + pen(m).
Arguing as in (19), for every t € S,,,
162 — o4l < |lt—d4l2 + 2v,(G% —t) + 2(R, 8%—t>n + pen(m) — pen(in).
Decompose v, (t) = (t, V), with V = (Va,...,V,ua) and R = (Ra, ..., R,a). Group the principal term V()

and secondary terms V2 + V) + V4 Using 2ab < é a? + 8b? one obtams

6% o412 < Flle—oAl2 + 3155 - oA2 + 8( sup (wV(®)? — plm.))

teBT +

8 — _ R .
+8 sup Ty(t)? + - ZRiA + pen(m) + 24p(m,m) — pen(m).
tGBL,m h—1

(i) Bounding sup (vV(t))? — p(m,m).

teBy,
This term is bounded using Lemma 5.6 whose proof uses a version of Talagrand’s inequality under the Berbee
coupling argument to control the dependence in (Xga )g-

Lemma 5.6. Under the assumptions of Theorem 3.1, define

(m V) 950 llop
n

p(m,m’) = ko Ci]E[OA(Xo)]
Then there is kg > 0 such that

E[( s (1)~ p(m, i), 1=, 500,s] <

m,m

S |-
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(ii) Bounding sup,cp~ _Un(t)%.

Since m is bounded by M: A deterministically on =, A, Lemma 5.3 with m = M: A implies

E[ sup (1) 113%} < JE[ sup wH(t)?| S A%
tESm+Sm tGSM+A

(iii) Bounding > i _, Rin/n.
By Lemma 5.2, E[R3] < A2, so
E[%iRiA] < A%
k=1
(iv) Bounding the penalty terms.

m |||,
pen(m) := k¢, E[o*(Xo)] w7 p(m,m') < pen(m) + pen(m’),

provided s > kg. The lemma 5.7 below ensures that one can interchange pen with pen up to a small error.

Lemma 5.7. According to the assumptions of Theorem 3.1, there exist positive constants ci,co > 0 such
that for all m € Mpua and m € Mya,

E[pei(m) Iz,5n0,,] < cpen(m)+ %, E[(pen(i) — pon(m)) , 1z,5n0,.] < %

n’ n

Lemma 5.7 is essentially the same as Lemma 6.7 in [7], where nA is replaced by n in the notation and o2 is
replaced by o*. The proof relies on similar concentration arguments and is omitted.

Putting all these parts together controls every term on =, N Q,a. Hence
~ 1
E[I6% — o4l3 Lz,an0,. | S - +A%
and combining with the bound on E[[|52, — 03|12 1(z,,nq,A)c] vields the final risk estimate

N 1

E[llo7 —oaln] S -+ A%
n

This completes the proof of Theorem 3.1.

5.6. Proof of Lemma 5.6.

Lemma 5.8 (Talagrand’s Deviation Inequality). Letn be a positive integer and let F be a countable collection

of measurable functions. Suppose Xi,...,X, are independent real-valued random wvariables and for each
f € F define
1 n
wlf) = = 2(F00) - BLF(X)]):

i=1
Assume there exist positive constants M, H, and v such that:

(1) sup [[flloc < M,
fer

(2) E[;gg\vn(f)ﬂ < H,

1 n

3) sup — Var( f(X;

@) s S Var 1)

Define C(a) := (v/1+a—1) A1 for each a >0, and set b:= §. Then, for all o > 0,

4 (v n H? 49 V> V2bC(a)ya nH
(£ cof a0 (-2t e i)

E[(;gglvn(fﬂz B 2(1—|—2a) HQ)-J = b v 6C(a)?n? CXP

IN

V.

7 M

This result is given in [20]. To prove Lemma 5.6, we apply Lemma 5.8 together with the Berbee coupling
approximation (see, for example, Chapter 5 of [23]). Throughout this proof, let

Ui
Uk == Wirna — Weka, xx = N 1.
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To implement the uniform bound required by Talagrand’s inequality, introduce truncated versions of y; and
0(Xka). For suitably chosen integers ky,,,, (specified later), define

2 2
xi = (3 - )1\%—1\9” a E{(%_l)ﬂ\ﬁ‘l‘”}

A
o®(z) == (@) L@t} XE = Xk —XE,  00%(2) == o*(z)—0
Set

v () = 1) + vl + ol
where

opt(®) = (b 0> Xia) xilizn),e vb(®) = (8 [0 (Xaa) xillizn),.
1 en
o (t) = (t [0°(Xua) X{liz ),
A standard application of Young’s inequality shows
2 ~ ~ 2 2
(swp (@) —plmm) < (3 sup (L10)" ~plm.m) +3 swp (o3(0)"+3 sup (o3(1)"

teBT - te

Bounding the terms ,(L% and 01(11:)3 and choosing [,, and k,.

It can be shown that
1
S T r o
log“(nA) 125

Indeed, with the same argument as in Lemma 5.3(ii), we can show

(1) 2.
Bl s (130" 1=.

o ML VL o 9
B s (030)"1=.] < A El()? Elr® (X0,
then, noting that E[(x{)?] < 2 and ||\I/M+ llop < m Then
El sup (v21)’1s | < ———E|o%(X, 14, .
LGB;E’,J B0)12,] 8 s Bl ) ooz
Slnce ]1‘02(93”21" < |O'( )|50/l2
E X, 54
B[ swp (h0)*1z] 5 g0l
teBy log“(nA) 25
An analogous argument shows
1
B s (00 1] § L
teB;;I? ( nal )) - log2(nA) k3
Choose [, = k,, ~ % so that
1 1 1 - 1
o (i) 25 S CINEE S . and similarly for e
Thus,
1 2 1
E[ (1)t2]1:}<—, JE[ () (4 1=}<f.
sup (Un,Z( )) Zn ~ n tESBP"pA vn,S( )) Zn ~ n

tGB;’:hm

Bounding the term with v 1)1(1?).

n)

It remains to bound (3 sup,¢pr A(vnl)l(t))Q - p(m,m)) by invoking Talagrand’s inequality together with
Berbee’s coupling. ’

Berbee’s coupling. Now, we employ the coupling method (Lemma 5.1 in [23]) to construct associated variables

(V), where each Vi, = (x, Xxa) for k= 1,...,n. For simplicity, assume that n = 2p,,q,, for some integers
prn, and g,. Then, there exist random variables Vi, = (x5, Xir), for ¢ = 1,...,n, satisfying the following
properties:

- For each ¢ =0,...,p, — 1, the random vectors
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— T T * * T
Vi = (V(2éqn+1)Av = '7V(2€+1)an) and V7, = (‘/(26(1"+1)Aa . ~aV(21z+1)an>

are identically distributed. Similarly, random vectors

— T ) * * T
Vez = (Vi@es)gut1)as - Viees2ygaa)  and Vip = (VL(2Z+1)qn+1JA’ .. -,V<2z+z>an)
also share the same distribution.

- Foreach £ =0,...,p, — 1,

P [Ver # Vis| < By (aa8) = Bx (4a8)  and P [Vez # V| < By (0ndd) = Bx (@ad).

Application of Talagrand. On the event Q*, replace (ug, Xxa) by (ujf, XiA) and split the indices into odd
and even blocks. For instance, the term

B( s (330)° - damn) ]

appears, with

Pn— dn
”Zﬁ = P Z <2an szeqnw X(2eqn+r>A) (X(*”anrT)A))’
£=0

where {x;" }. This is a sum of p,, independent blocks. Define

]
X2 (g < kn

In
FO: (z2) o iZ{zrlmgkn - E(Zrllwszcn)}t(xr)02($r)1\a2<zr>\§ln-
r=1
Hence
1 pn—1
i) = — 3 (FO0) - EO ),
Pn —o
where
}/Z = (X2an+r7 X(Q@qn-i-r)A) 1yqn’

Apply Talagrand’s inequality with F = {f® : ¢ € BF, .} and v, (f) = U:ﬁ (t). As in Lemma 6.6 of [7], it

holds that:

wp | floe < M = ey kb Vonvm) 19,0, o,

2 o . 2E[0*(Xo)l el (mVm') W5 llop
]E[]élell;lvn(f)l] < H® = - :

2c 8 1/2
sy LSV I00) < 0 = B OO o )
Denote by C' a universal constant. Then Talagrand’s inequality (Lemma 5.8) implies
2

E[( s (i) -687),] < 0 (L om0y 2 l0) + T oal-Cy 23,

teBT B DPn Pn

Since 2 py, ¢ =N, pn = log(nA)’ and max{m, m'} [V} lop S m, it follows that

*,1 2 2 / \/z ! (kn Zn)
) _ < _ \vnn) ~ =
E[(teSBu:f)m,(vml(t)) 6 H ).J = Cl(  Gn exp( CV2 \/Z) + p% ( CS fk In )) A+B7
where Z := (m Vv m/) ||¥, ! |lop. Moreover,
A
n n > Dy n'/%0 > D, log(n),

Prtn =90 Yog(nd) v/ kn by
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so the second exponential is at most exp(—3log(n)) = n=3. A brief calculation then shows the series
S VZ exp(—cV/Z) converges then A < 1/n, while B is also O(1/n). Summing over m’ € M;" yields
1
IEI[ sup (023 (1)% = L p(m,m’ } < -
SE[( g i -dptmm),] < 2

Lastly, it suffices to control

E[(t;ﬁwp v (t)? = p(m, ﬁ%))+ l{zmann(mc}}v

m,m

which is straightforward using P((2*)¢) < 1/(nA)% and arguments in Lemma 5.3.

This completes the proof of Lemma 5.6.
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