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Abstract

In this article, we study an optimization problem related to the design of
a telecommunication satellite, namely the beam-layout optimization prob-
lem in which the goal is to define the beams emitted by the antennas of a
geostationary satellite to cover regions on Earth. Four key features of the
application tackled are that (1) the regions to cover are defined as poly-
gons, (2) there is a very large number of candidate beams, (3) the selected
beams need to be colored (actually, allocated to an antenna reflector) and
two close beams cannot have the same color, and (4) the candidate beams
have heterogeneous sizes and the sizes of the selected beams must be mini-
mized for efficiency reasons. We provide a complexity analysis, showing that
the problem is NP-hard. To solve this challenging problem, we introduce two
decomposition methods based on column generation and logic-based Benders
decomposition, to go beyond the existing heuristic approaches. The experi-
mental results show that these decomposition methods provide high-quality
solutions within limited computational times, and that the logic-based Ben-
ders decomposition approach finds the optimal solution for many instances.

Keywords: Combinatorial optimization, OR in telecommunications,
Column Generation, Logic-Based Benders Decomposition

1. Introduction

The design of the payload of a telecommunication satellite on a geosta-
tionary orbit is driven by the mission it must provide: the characteristics of
the areas towards which data must be emitted (geographical position, size,
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shape) and the demand of the users on the ground (distribution, type). From
the set of requirements of a satellite’s operators or service provider, satellite
system manufacturers must develop a whole comprehensive solution speci-
fying the ground segment (gateways and control centers), the user segment
(satellite terminals), and the space segment (the telecommunication satel-
lite itself). Designing these three segments altogether is impractical due to
the numerous decisions and computationally intensive simulations required.
This is why the standard approach breaks down the problem into simpler
sub-problems. In this context, the beam-layout optimization problem illus-
trated in Figure 1 is one of the first sub-problems to be solved. It consists
in defining the positions, sizes, and shapes of a set of beams emitted by the
antenna reflectors (or dishes) of the telecommunication satellite to cover the
demand of the end-users on the ground, while minimizing the sizes of the
beams used for efficiency reasons. In many cases, satellite manufacturers
exploit multi-beam antennas where each antenna reflector (usually three or
four reflectors) can emit several highly focused beams providing high-capacity
and efficient coverage. But when using a standard technology such as Single-
Feed-Per-Beam (SFPB) antennas, one constraint is that two beams emitted
by the same reflector cannot be too close to each other.

Figure 1: Beam-layout for a multi-beam telecommunication satellite: (left) set of polygons
on the Earth surface, in green; (right) beams emitted by four antenna reflectors to cover
the polygons, with one color per reflector and several beams for each reflector

Globally, defining the beams emitted by the satellite and choosing the an-
tenna reflector allocated to each beam is a challenging optimization problem.
This problem encompasses on one hand a geometric covering problem since
a first expected goal is to define a set of beams of minimum sizes covering
a set of polygons, and on the other hand a coloring problem since a second
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objective is to associate a color (a reflector) to each beam so that two close
beams have different colors. Previous work on the considered beam-layout
optimization problem consists of an exact method exploiting a basic Inte-
ger Linear Programming (ILP) model and two incomplete methods based on
matheuristics and metaheuristics [16]. However, the existing basic ILP ap-
proach does not scale well and the existing heuristic methods do not bring any
guarantee on the quality of the solutions found. This article aims to explore
the use of two decomposition methods, namely column generation and logic-
based Benders decomposition, with the ambition of producing high-quality
solutions and, if possible, proving optimal solutions.

The remainder of the article is organized as follows. Section 2 describes
related works and our main contributions. Section 3 formalizes our beam-
layout optimization problem. Section 4 provides a complexity analysis show-
ing that the problem addressed is NP-hard. Section 5 gives an integer linear
programming model. Sections 6 and 7 detail the column generation method
and the logic-based Benders decomposition method, respectively. Section 8
provides experimental results on representative instances with regards to the
industrial needs. Section 9 concludes and gives perspectives.

2. Related Works

The problem we consider can be related to both generic works on covering
and coloring problems in the Euclidean space and works dedicated to beam-
layout optimization for telecommunication satellites.

Covering and coloring problems in the Euclidean space. On the coloring side,
the beam-layout optimization problem is related to the Unit Disk coloring
problem that has applications in channel allocation [12]. This problem con-
sists in coloring, with a given number of colors, the intersection graph defined
by unit disks in the Euclidean space [6]. In our case, the disks correspond
to the beams and the colors correspond to the reflectors. More details are
provided in Section 4 dedicated to the complexity analysis.

On the covering side, the beam-layout optimization problem is related
to the Unit Disk cover problem that consists in covering a set of points
P in a 2D plane with m unit disks with free centers. It is also related to
the Discrete Unit Disk cover problem, where a set of candidate disks D
is introduced and the goal is to select of subset of unit disks D′ ⊆ D of
minimal size to cover the points in P . Using a geometric transformation,
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this problem can be reformulated as a set covering problem for which greedy
methods can be used [7]. Recent works combine unit disk covering and
graph coloring, requiring overlapping disks to have distinct colors. Space
partitioning methods with exhaustive search were proposed to address this
constraint [19]. Beyond points and unit disks, some authors have studied
covering polygons with a union of disks having fixed centers and flexible
radii, aiming to minimize the total disk surface area [2]. They proposed two
branch-and-bound algorithms optimizing a similar objective function to ours,
but these cannot be directly reused as we require each polygon to be entirely
covered by at least one disk.

Beam-layout optimization. In the literature, several works are dedicated to
beam-layout optimization, but they differ on the features of the beams, anten-
nas, and end-user demands as well as on the objective functions optimized
and the methods exploited. In [1], the authors demonstrate the efficiency
of non-regular multi-beam payloads for addressing non-uniform traffic de-
mands. Evenly loaded polygonal regions are built using Voronoi diagrams
according to the distribution of the traffic load. The beam sizes based on
the polygons’ shape and surface. However, antenna configuration constraints
are not addressed. The introduction of antenna configuration constraints, or
mapping the different beams to the available reflectors, was first discussed
in [15]. They maximize the minimum inter-beam distances which implies
the largest possible feed sizes. A joint optimization of non-uniform beam
sizes (two sizes considered) and bandwidth allocation enhanced capacity and
resource efficiency compared to uniform beam sizes. In [4], the authors in-
troduced a randomized multi-start approach for irregular beam-layouts, al-
lowing beam centers and widths to take discrete values. Beam-to-reflector
allocation, modeled as a graph coloring problem, was solved using a dynamic
first-fit algorithm and simulated annealing for unsatisfactory cases. An ILP
formulation with continuous beam positions and sizes was also proposed in
[5], achieving good results on small instances but encountering numerical is-
sues for larger ones. In [9], hybrid methods combining heuristics, ILP, and
constraint programming were developed. One heuristic selects a user for ini-
tial beam placement, expanding the beam until capacity or size limits are
reached. Another employs weighted kMeans clustering to group users, with
a custom heuristic for adjustments. Frequency assignment uses a separate
graph coloring problem based on a four-color reuse scheme. However, these
methods fail to fully meet demand. All the previously mentioned works were
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carried out for a traffic modeled as points on Earth with specific bit-per-
second demands. Few studies address beam placement for polygon-defined
regions while considering antenna constraints and beam-to-reflector alloca-
tion. It is therefore of interest to the space industry to develop algorithms to
automatically solve this problem. Indeed, in this paper, we concentrate on
broadcasting satellites, placed in geostationary orbit to transmit television
signals to ground-based receivers. These satellites revolutionized television
by enabling the distribution of TV signals over vast distances, beyond what
traditional terrestrial transmitters could cover. Usually, broadcasting satel-
lites use a unique global beam covering a whole country or even continent
to broadcast the same channels on the whole area of interest. But some
companies prefer deploying satellites producing “linguistic beams” or “spot
beams” due to the market segmentation. These multiple and small beams
take advantage of the satellite’s ability to broadcast different signals to small
geographic areas and optimize content delivery based on the needs of the
audience. Patent [13] presents several beam-layouts for television broadcast-
ing on several regions of interest on the United-States. They generate non-
uniform beams (3 sizes allowed) based on population density within specific
polygons. But the paper only treats one use case and the method isn’t proved
to work on a set of polygons. In [16], we proposed two heuristic methods
to solve the exact same problem of this paper. The merge-and split heuris-
tic iteratively updates a set of beams with local mechanisms of merge and
split to find an feasible beam-to-reflector allocation. The second method is
a matheuristic: an Integer Linear Programming model (ILP) is solved given
an evolving pool of beams, which is build-up at each iteration as long as the
solution does not cover all polygons.

Contributions. The heuristics have shown good results to provide solutions
in a reasonable computational time and in [16]. A comparison of the solu-
tions of the two heuristic methods one with each other is provided, but it
is frustrating not to know if these solutions are close to the optimal ones.
Finding solutions using exact methods within reasonable time can validate
the heuristic solutions by comparing their quality to exact results. While
exact methods may require longer computation times, evaluating whether
this extra effort yields significantly higher-quality solutions is worthwhile.

The combinatorial complexity of the problem, with an exponential num-
ber of potential beams, makes it a large-scale optimization challenge. For
instance, 20 polygons yield over 1048576 subsets of polygons possible, and
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as much potential beams. Decomposition approaches, such as Column Gen-
eration to restrict variables or Logic-Based Benders Decomposition to limit
constraints, are promising strategies.

In the literature, few studies address beam placement for polygon-defined
regions with antenna constraints and beam-to-reflector allocation. The heuris-
tics in [16] do not provide an optimality gap, emphasizing the need for exact
methods to assess and validate heuristic performance.

3. Problem Formalization

3.1. Polygons

The area of interest is divided into a set of polygons P , each one specified
by a list of points in a 2-dimensional space. Each point in this 2-dimensional
space describes the angular position of a target on Earth from the point of
view of the geostationary satellite.

3.2. Beam definition

Each beam serves an area on Earth where the density of signal is suffi-
ciently high for the end-users to receive data. Also, for the telecommunication
mission addressed, each polygon p ∈ P must be fully covered by at least one
beam, i.e. it is not sufficient to cover p using a union of beams. In the 2-
dimensional space considered, a beam is modeled as a disk defined by a center
and a radius sb . A beam is limited in size: there exists a minimum beam ra-
dius sMIN > 0 and a maximum radius sMAX due to respectively the smallest
and largest manufacturable size of the feeds emitting the beams (physically
speaking, a bound on the beam angle in degrees). For the industrial ap-
plication tackled, antenna specialists specify an upper value sMAX = 0.75◦.
Reducing the value of sMAX allows us to reduce the set of possible beams
while preventing the selection of large beams, but care must be taken not to
make the problem infeasible. For this, we exploit the maximum beam radius
sMAX obtained in the solutions produced by heuristic methods [16].

3.3. Beam database

A beam produced by a geostationary satellite may be centered on any
point and may have any size in [sMIN , sMAX ]. However, in practice, small
size beams are preferred so as to optimize the quality of service. This is
why we assume that the best beam covering a subset of polygons P ′ ⊆
P is defined from the smallest circle enclosing the points that define the
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polygons in P ′. We compute such a smallest enclosing in polynomial time
using Welzl’s algorithm [23], and if needed we enlarge the radius of this circle
to reach value sMIN . All the beams we consider are defined this way and the
beam b obtained from the smallest enclosing circle of a subset of polygons
P ′ ⊆ P is referred to as b = W (P ′, sMIN ), or more simply b = W (P ′)
since sMIN is a constant input data. This assumption gives us a finite set
of candidate beams B = {b = W (P ′) |P ′ ⊆ P, P ′ ̸= ∅, sb ≤ sMAX} defined
from the coverage of subsets of polygons in P . One difficulty however is
that enumerating the 2|P | − 1 non-empty subsets of polygons in P leads to
a combinatorial explosion. But unlike our previous works [16], we exploit
a key property according to which the smallest enclosing circle of a set of
points Q can be determined by at most three points in Q that lie on the
boundary of the circle. The set of candidate beams B can then be obtained
by enumerating only the beams defined by subsets of 3, 2 and 1 polygon(s),
that is B = {b = W (P ′) |P ′ ⊆ P, sb ≤ sMAX , |P ′| ∈ {1, 2, 3}}. The number
of candidate beams is therefore at most cubic in the number of polygons in
P .

Table 1 gives the number of beams obtained for several instances, includ-
ing details concerning the time required to generate these beams and the size
of the subsets of beams B2P and B3P defined by 2 and 3 border polygons re-
spectively. For example, a beam b = W ({p1, p2, p3}) defined from 3 distinct
polygons p1, p2, p3 belongs to B3P if and only if b ̸= W ({p1, p2, p3} \ {pi}) for
every i ∈ {1, 2, 3}, that is the 3 polygons are actually needed to defined b.
For the instances in Table 1, we can observe that the size of B3P is lower
than the size of B2P . To get a quadratic number of candidate beams, an
alternative is to restrict the enumeration to subsets of 2 and 1 polygon(s).

3.4. Beam-to-reflector allocation

The number of antenna reflectors available is denoted by NR, and the set
of reflectors available is R = {1, . . . , NR}. With the Single-Feed Per Beam
(SFPB) antenna technology, the beams emitted through a reflector r are
produced by elementary devices called feeds, that are distributed in a cluster
placed just under r. As illustrated in Fig. 2, the sizes and positions of the
beams emitted through a reflector then depend on the sizes and positions
of their feeds in the cluster. The distribution of the beams on the different
reflectors needs to take into account design constraints because if two large
beams that are close to each other are assigned to the same reflector, there
may not be enough place for the two corresponding feeds under the reflector.
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Instance |P | sMAX (◦) |B| |B2P | |B3P | Time (s)
France 22 0.4 520 369 129 162.91
GuyaneSur. 23 0.5 677 484 170 2.24
Italy 30 0.3 862 710 122 3.06
Venezuela 34 0.6 1347 942 371 5.64
Morocco 39 0.5 1706 1408 259 6.41
UK 40 0.3 3946 3162 744 27.34
Spain 44 0.4 5046 3622 1380 609.83
BlackSea 51 0.5 6221 4750 1420 54.14
EU51 51 0.5 8322 6003 2268 177.03
EU52 52 0.5 4628 3920 656 1171.73
Egypt 90 0.5 30694 21778 8826 517.44
WestEU 92 0.5 16800 12539 4169 195.93
EU102 102 0.7 25707 4275 21325 18825.74
EU136 136 0.55 11655 3299 8220 9738.3

Table 1: Computation of the beam database for different instances

In the literature, these restrictions are modeled by beam separation con-
straint imposed over two beams assigned to the same reflector [4]. If d(b1, b2)
denotes the Euclidean distance between the centers of two beams b1 and b2,
this separation constraint is expressed as d(b1, b2) > κ(sb1 + sb2) where κ is
a parameter fixed by antenna specialists. This amounts to saying that the
beams enlarged by a factor κ must not overlap.

(a) Beam-layout of feed cluster (b) Feed cluster for 3 different beam sizes

Figure 2: Feed cluster and associated beams

3.5. Objective functions

The beam–layout and the mapping of beams to reflectors do not suffice
to precisely evaluate the performances of our system, due to missing features
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related to frequency assignment, power distribution, end-users terminals, etc.
These aspects are detailed later in the payload design process but we know
that smaller beams lead to stronger and more reliable signals for the end-
users. This is why our main objective at this design step is to minimize the
sizes of the selected beams. Considering B̃ the set of selected beams, different
objective functions can be considered:

• minimize SRS =
∑

b∈B̃ s2b (minimize the Squared Radius Sum);

• minimize MSRS = 1
|B̃|

∑
b∈B̃ s2b (minimize the Mean SRS over the beams);

• minimize MaxS = maxb∈B̃ sb (minimize the worst beam size);

• maximize |B̃| (maximize the total number of beams selected).

In this article, we choose to optimize the SRS criterion because (1) it is
easier to handle than the MSRS objective that involves term 1

|B̃| adding a

non-linearity (since the number of beams to select is not known beforehand);
(2) it has the advantage of impacting the whole set of beams of the solution
compared to the maximum radius criteria which only optimizes the worst
beam, (3) it is better than the |B̃| that may produce solutions involving a
few very large beams in exchange for many small ones. Nevertheless, even if
we optimize the SRS objective, we take care of evaluating the other criteria
on the solutions found.

3.6. Beam-layout optimization problem

Our problem is defined as a tuple (P, sMIN , sMAX , NR, κ) specifying a set
of polygons P , a minimum beam radius sMIN , a maximum beam radius
sMAX , a number of reflectors NR, and a beam separation factor κ. From this
definition, the set of candidate beams is B = {b = W (P ′) |P ′ ⊆ P, |P ′| ∈
{1, 2, 3}, sb ≤ sMAX} and the set of incompatible beams that cannot be
allocated to the same reflector is I = {{b1, b2} | b1, b2 ∈ B, d(b1, b2) ≤ κ(sb1 +
sb2)}. A solution to this problem:

• selects a subset of beams B̃ ⊆ B so that each polygon p ∈ P is fully
included in a beam b ∈ B̃ (i.e., there exists b ∈ B̃ such that p ⊆ b);

• assigns a reflector rb ∈ {1, . . . , NR} to each beam b ∈ B̃ so that two
incompatible beams are allocated to different reflectors (i.e., rb1 ̸= rb2
for every pair of incompatible beams {b1, b2} ∈ I).
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A solution is optimal when its SRS (
∑

b∈B̃ s2b) is minimal among the solutions.
From a graph coloring perspective, if we construct graph G = (B, I), the

set of beams B̃ can be emitted by the satellite while satisfying the beam
separation constraints if and only if the subgraph of G induced by B̃ is
colorable using at most NR colors. In the instances we tackle, the number
of reflectors available is NR = 4 but the methods we define are applicable to
any value of NR. Also, we use κ =

√
3 which was proved to be a good value

for multi-beam antennas involving four reflectors
In the following, Pb ⊆ P denotes the subset of polygons covered by a

beam b ∈ B. Conversely, Bp ⊆ B refers to the subset of beams which entirely
cover a polygon p ∈ P , and B{p1,...,pn} = Bp1 ∩ . . . ∩ Bpn refers to the set of
beams that cover all polygons in {p1, . . . , pn}.

4. Complexity Analysis

In the beam-layout optimization problem, there are two sources of com-
plexity: the covering part and the coloring part. This section provides new
complexity results showing that the beam-layout design problem we tackle is
NP-hard due to its relationship with two existing problems known as the unit
disk covering problem and the unit disk graph coloring problem. To avoid
considerations related to the manipulation of real numbers, we prove the
result for beam-layout optimization problems (P, sMIN , sMAX , NR, κ) whose
basic inputs are integers.

4.1. Complexity of the covering part

To analyze the complexity of the covering part, we use the unit disk cover
problem which can be stated as: given a set of points Q and a set of m unit
disks in the plane (or disks of fixed-radius), is it possible to cover all the
points in Q using the m unit disks, given that the center of each disk can be
freely chosen. This problem was proven NP-complete in the case where the
input data (point coordinates and disk radius) take integer values [8].

Let us transform an instance of this problem into an instance of our
beam-layout optimization problem. We consider the set of polygons P = Q
(polygons reduced to elementary points) together with integer input data
NR = m, sMIN = sMAX = 1, and κ = max{d(q1, q2)2 | q1, q2 ∈ Q}. If a
solution σ to the beam-layout problem with these settings exists, at most m
beams are selected in this solution because it is not possible to allocate two
beams to the same reflector due to the large value chosen for κ. As all the
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selected beams have a radius equal to 1, solution σ gives us a strategy to cover
the points in P using no more than m unit disks. On the other side, let us
assume that the points in P can be covered using no more than m unit disks
D1, . . . , Dm. In this case, each unit disk Dk covers a set of points QDk

⊆ Q
for which the beam-layout problem necessarily contains a candidate beam
βk = W (Qk). In this case, the selection of beams W (QD1), . . . ,W (QDm) is
a solution to the beam-layout problem. As a result, the points in Q can be
covered using m unit disks if and only if the beam-layout problem built has
a solution. This proves that our problem is NP-hard even in the case where
there is no real choice concerning the allocation of beams to reflectors.

4.2. Complexity of the coloring part

We now consider the unit disk graph coloring problem [6]. Basically, a
Unit Disk graph is an intersection graph obtained from a set of equal-sized
disks D in the plane, that is a graph containing one vertex per disk in D and
one edge between two vertices whose associated disks overlap. See Fig. 3a
for an illustration. Unit disk graph coloring is proven NP-complete for any
chromatic number k > 3 [11]. Moreover, for each unit disk graph G, it is
possible to compute in polynomial time an equivalent proximity graph defined
from a set of points Q having integer coordinates and an integer separation
distance d0. This proximity graph contains one vertex per point in Q and one
edge between two vertices q1, q2 whose Euclidian distance d(q1, q2) satisfies
d(q1, q2) ≤ d0 [11].

The coloring problem for such a proximity graph using at most k colors
can be transformed in polynomial time into our beam-layout optimization
problem. The transformation is illustrated in Fig.3b. The main idea is
to introduce, for each point q = (xq, yq) ∈ Q, one polygon defined as the
square losange Lq whose points have coordinates (2xq−1, 2yq), (2xq, 2yq+1),
(2xq +1, 2yq), (2xq, 2yq − 1), and to consider NR = k reflectors together with
parameters sMIN = sMAX = 1, κ = d0. With these input data, it can be
shown that the polygons in P = {Lq | q ∈ Q} never strictly overlap and the
set of candidate beams is B = {βq | q ∈ Q} where each beam βq has center
(2xq, 2yq) and radius sβq = 1. Then, determining whether it is possible to
allocate a reflector to each beam under the beam separation constraints is
equivalent to determining whether the initial unit-disk graph can be colored
using at most k colors. Indeed, two distinct beams βq1 , βq2 in B of centers
(2xq1 , 2yq1) and (2xq2 , 2yq2) can be allocated to the same reflector if and only
if the distance between theirs centers is greater than κ · (1 + 1), which is
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(a) A unit-disk graph coloring instance (b) A beam-layout design instance

Figure 3: From unit-disk graph coloring to beam-layout design

equivalent to condition d(q1, q2) > d0. This proves that our problem is NP-
hard, even when the candidate beams cover a unique region.

5. Integer Linear Programming Model

We now recall the integer linear programming model developed for the
beam-layout optimization problem [16]. This model is given in Equations (1a-
1e), where the decisions are represented by variables xb,r ∈ {0, 1} taking value
1 if and only if beam b is selected and allocated to reflector r. Objective func-
tion (1a) consists in minimizing the squared radius sum of the selected beams
(SRS objective). Constraints (1b) ensure that each polygon is fully covered
by at least one beam. Constraints (1c) ensure that each beam is assigned to
at most one reflector. Finally, Constraints (1d) enforce the separation con-
straints for the beams allocated to the same reflector. Aggregated versions of
these separation constraints could be expressed by imposing

∑
b∈C xb,r ≤ 1

for each reflector r and each maximum clique of incompatible beams C.
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Instance |P | sMAX (◦) |B̃| MaxS MSRS SRS Time (s)
Model creation Solving

France 22 0.4 9 0.372 0.0514 0.462 5.51 2.17
GuySur 23 0.5 6 0.4789 0.08862 0.5317 3.3 6.5
Italy 30 0.3 12 0.1940 0.01643 0.1971 2.6 5.5
Venezuela 34 0.6 7 0.5883 0.16846 1.1794 12.5 38.9
Morocco 39 0.5 9 0.3736 0.0438 0.5694 12.9 19.2
UK 40 0.3 12 0.2290 0.01708 0.2049 47.5 148.1
Spain 44 0.4 9 0.3993 0.04518 0.4067 120.9 418.1
EU51 51 0.5 7 0.4631 0.0815 0.571 291.3 1080.1
EU52 52 0.5 17 0.4738 0.0370 0.629 132.7 42.2
BlackSea 51 0.5 7 0.484 0.0771 0.539 133.3 468.4

Table 2: Exact ILP results obtained using CPLEX12.10 (runs made on a server with 96
cores of an Intel(R) Xeon(R) Gold 5318Y CPU @2.10GHz processor and 62GB of RAM)

MEXACT = minimize
∑

b∈B,r∈R
xb,r · s2b (1a)

subject to
∑

b∈Bp,r∈R
xb,r ≥ 1, ∀p ∈ P, (1b)

∑
r∈R

xb,r ≤ 1, ∀b ∈ B, (1c)

xb1,r + xb2,r ≤ 1, ∀{b1, b2} ∈ I, ∀r ∈ R, (1d)

xb,r ∈ {0, 1}, ∀b ∈ B, ∀r ∈ R (1e)

Solving optimally the previous model becomes challenging, if not im-
possible, for large instances. Table 2 illustrates computation times using
CPLEX12.10 for small and medium instances. We distinguish “Model cre-
ation time” (importing data, computing set I, and creating the model) from
the “Solving time” (reading and solving the model). Model creation is no-
tably time-intensive due to the high number of variables and constraints,
highlighting the need for decomposition methods. Larger instances are ex-
cluded from the table, as their model creation alone exceeded 2000 seconds,
making them impractical to handle.

6. Column Generation

One drawback of the model presented in Section 5 is that it involves a lot
of symmetries: for each solution produced, there are NR! equivalent solutions
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corresponding to the possible permutations of the NR reflectors, that is 24
equivalent solutions in case NR = 4. A way to overcome this is to use a
formulation exploiting the independent sets of graph G = (B, I), where an
independent set is a set of vertices that are not linked by an edge. Basically,
two beams in the same independent set can be allocated to the same reflector,
so a way to compute a solution is to select a set of at most NR independent
sets in G which can cover all the target polygons. Equivalently, a way to
compute a solution is to select a set of NR cliques of the complement graph
G ′ of G Fig. 4 illustrates an independent set of beams associated with one of
the industrial instances that we have.

While enumerating all the independent sets allows us to break symme-
tries, it does not help handle the combinatorial explosion because the number
of independent sets in G can be huge for large instances. This leads us to
propose a column generation approach where relevant independent sets are
generated during the optimization process. This idea is inspired from works
on the use of column generation for graph coloring [22]. In the following, we
denote by K the set of independent sets considered at a given search step.
ap,k is a parameter equal to 1 if there exists a beam b in independent set
k ∈ K such that b fully covers polygon p, and 0 otherwise.

6.1. Global description of the method

The basic idea behind column generation is to solve a master problem
considering only on a small subset of variables (columns) at a given time,
and to iteratively identify, through the resolution of a sub-problem, new
variables (columns) that have the potential to improve the objective function.
In our case, each column is a 0/1 variable corresponding to the selection of
an independent set.

In the master problem, the selection of independent sets is driven by two
objectives: first select at most NR independent sets covering all the target
polygons (i.e., find a feasible solution), and then select the independent sets
involving the smallest beams (i.e., improve the SRS criterion). Following
these two objectives, the column generation approach proposed is composed
of two phases, each phase having its own master problem.

In both phases, the sub-problem identifies whether there are any new
columns that can improve the objective function. It is formulated as a max-
imum weighted independent set problem (MWIS) and uses the value of the
dual variables of the master problem to compute the reduced cost of each
potential column. If the reduced cost is negative, adding this column can
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Images/ColumnGeneration/Solutions/ITALY_CG_with_feeds.png

Figure 4: Column generation and independent sets: four independent sets on instance
Italy, defining a solution (one color per independent set)
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potentially improve the solution. A global view of the column generation
procedure is given in Fig. 5, and this procedure is detailed thereafter.

Figure 5: Column generation procedure

6.2. Phase 1: find a feasible solution
Master problem. The master problem MP 1

CG used for the first phase is given
in Equations (2a-2c). Its goal is to select independent sets which cover the
polygons (decision variables zk ∈ {0, 1}). Objective function (2a) minimizes
the number of independent sets selected, or equivalently the number of re-
flectors required, while Constraints (2b) impose that all polygons must be
covered by at least one independent set.

MP 1
CG = minimize

∑
k∈K

zk (2a)

subject to
∑
k∈K

ap,kzk ≥ 1, ∀p ∈ P, (2b)

zk ∈ {0, 1}, ∀k ∈ K (2c)

Sub-problem. If the number of independent sets is greater that NR in the
solution found by the master problem, the sub-problem constructs a new
independent set given the beam database, and the master problem is solved
again. To define the sub-problem, let π1p be the dual variables of Constraints
(2b) for the polygons p ∈ P , and π̃1p be the values of these dual variables in
the current solution. The dual constraint of variable zk can be written∑

p∈P
ap,kπ1p ≤ 1

16



and the reduced cost of a beam b is defined by

˜c1b =
∑
p∈Pb

π̃1p − 1

With ub a variable representing the selection of a beam b in a new indepen-
dent set, the sub-problem is written as:

SPCG = maximize
∑
b∈B

˜c1bub (3a)

subject to ub1 + ub2 ≤ 1, ∀b1, b2 ∈ I, (3b)

ub ∈ {0, 1}, ∀b ∈ B (3c)

The relaxations of MP 1
CG and SPCG are successively solved until the

sub-problem cannot find any improving independent set or until the master
problem finds a solution using at most NR independent sets. In the first case,
we have proven that the problem is infeasible with the set of beams in the
database. In the second case, we solve the integer version of MP 1

CG using
integer programming. In our experiments, such a strategy always allows us to
find a feasible solution. The study of branch-and-price methods integrating
branch-and-bound and column generation is left for future work.

6.3. Phase 2: improve the solution found

Master problem. Once a feasible solution composed of at most NR indepen-
dent sets covering all polygons in P is found, we solve the master problem
MP 2

CG given in Equations (4a-4d) to optimize the selected beam sizes. Objec-
tive function (4a) consists in minimizing the SRS criteria, given that the cost
Ck of an independent set k ∈ K is defined as Ck =

∑
b∈k s

2
b . In the first phase,

the criteria of the master problem is transformed into Constraint (4b): the
number of independent sets selected must not exceed NR. Last, Constraints
(4c) ensure that each polygon is covered at least once by a beam.

MP 2
CG = minimize

∑
k∈K

Ckzk (4a)

subject to
∑
k∈K

zk ≤ NR , (4b)

∑
k∈K

ap,kzk ≥ 1, ∀p ∈ P, (4c)

zk ∈ {0, 1}, ∀k ∈ K (4d)
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Sub-problem. Let α be the positive dual variable of Constraint (4b) and π2p

the dual variables of Constraints (4c) for the different polygons p ∈ P . The
dual constraint of variable zk can be written∑

p∈P
ap,kπ2p − α ≤ Ck

Hence, to find a violated dual constraint, one searches for a beam set k
verifying ∑

p∈P
ap,k π̃2p − α̃ > Ck

where π̃2p and α̃ are the values of the dual variables in the current solution
of the master problem. Let c̃2b be the reduced cost of a beam b, equal to

˜c2b =
∑
p∈Pb

π̃2p − s2b − α̃

The sub-problem is expressed as in Equations (3a-3c) by replacing c̃1b by
c̃2b .

6.4. Generation of independent sets

The role of the sub-problem is to search for maximum weighted indepen-
dent sets in G that have a negative reduced cost. To enumerate all maximum
independent sets , the Bron-Kerbosh algorithm is often used [3]. Even if
existing improvements can boost the original algorithm, such as degeneracy
ordering , pivoting heuristics, or branch-and-bound [20], finding all the max-
imum cliques in a graph is NP-hard anyway. Initially, the master problem
MP 1

CG requires an initial set of independent sets K. We first tried to con-
sider only the beams in B1P and B2P that are respectively defined from 1
and 2 border polygons, preferred for there small size in the final solution. It
is possible to enumerate all cliques for this sets of beams for instances with
less than 50 polygons, using an the Bron-Kerbosh algorith, and adapted by
Tomita, Tanaka and Takahashi [21]. We can also find initial independent
sets heuristically, taking care that each polygon is covered by at least one
independent set in initial set K, based on a greedy clique expansion algo-
rithm. We browse all polygons p ∈ P and first select the node corresponding
to the beam covering only the polygon p. The algorithm randomly selects at
each step a vertex (a beam in our case), and then recursively adds neighbors
of this vertex in the complement graph of G as long as they form a clique.
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This heuristic method is always far better in terms of computational time, it
never exceeds 6s instead of thousands of seconds for the exact method.

Second, instead of solving an ILP minimizing the sum of reduced cost
c̃1b in the sub-problems, new independent sets can be produced produced
heuristically. For this, we generate a clique with the greedy clique expansion
algorithm, until finding a clique which doesn’t belong to Kwith a negative
reduced cost. We used the heuristic generation of clique or not according to
the instance, and the best solution was retained in the final table of results.

7. Benders Decomposition

The column generation approach presented before solves a master prob-
lem involving a subset of the decision variables and iteratively generates new
relevant variables based on the sub-problem. An opposite approach consists
in solving a master problem involving a subset of the constraints, and generat-
ing new relevant constraints at the level of the sub-problem. On this line, we
study Benders decomposition methods. In classical Benders decomposition,
the master problem works on a set of search variables, and the sub-problem
solves a linear program over a set of remaining variables conditioned by the
values found for the master problem’s variables; The sub-problem evaluates
whether the solution of the master problem is actually feasible or not and
generates Benders cuts (new constraints) that prevent the master problem
from making similar infeasible decisions over its search variables at future
iterations. As the formalization of the beam-layout optimization problem in-
troduced in Equations (1a-1e) does not involve continuous decision variables,
we exploit Logic-Based Benders Decomposition (LBBD [14]).

7.1. Global description of the method

The main idea of the method proposed is to avoid expressing all the con-
straints related to the compatibility between beams allocated to the same
reflector, because the number of these constraints is quadratic in the number
of beams (Constraints 1d). At a given search step, the master problem con-
siders only a subset of these compatibility constraints and proposes a solution
minimizing the SRS criterion, while the sub-problem identifies conflicts be-
tween beams allocated to the same reflector and generates new cuts for the
master problem. These cuts are iteratively added to the master problem,
until a feasible solution is found. One key point in the method is that to
get stronger cuts, the master problem and the sub-problem reason not only
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about the allocation of beams to reflectors (decision variables xb,r ∈ {0, 1}
for b ∈ B and r ∈ R), but also about the allocation of polygons to reflec-
tors (decision variables yp,r ∈ {0, 1} for p ∈ P and r ∈ R). Here, we say
that polygon p is allocated to a reflector r when we choose to cover p by a
beam allocated to r, and as detailed thereafter, these decisions allow us to
get stronger cuts mainly because the number of polygons is lower than the
number of beams.

7.2. Master problem

The model is presented in Equations (5a-5g). It uses the decision variables
xb,r ∈ {0, 1} and yp,r ∈ {0, 1} mentioned before. Objective function (5a)
consists in minimizing the total beam cost. Constraints (5b) ensure that
each polygon is associated with one reflector. Constraints (5c) ensure that
every polygon is covered by at least one beam. Constraints (5d) express
that each beam can be allocated to at most one reflector. Constraints (5e)
can be illustrated with an example. Basically, if two polygons p1, p2 are
allocated to the same reflector r and are very close to each other, it is not
possible to use two independent beams over r to cover p1 and p2 respectively.
This means that there must exist a beam b allocated to r that contains
both polygons p1 and p2. In other words constraint yp1,r + yp2,r ≤ 1 +∑

b∈B{p1,p2}
xb,r must be satisfied. In this case, we say that {p1, p2} is a polygon

cluster, and the constraint added is called a polygon grouping constraint over
cluster {p1, p2}. This example can be generalized to polygon clusters of
sizes greater than 2, where a polygon cluster h = {p1, . . . , pn} is a set such
that if all polygons in h are covered by the same reflector r, then there
must exist a common (potentially large) beam allocated to r that covers
all the polygons in h. This generalization leads to the polygon grouping
constraints expressed in Constraints (5e), that exploit as an input a set of
polygon clusters H. Note that these constraints can also be used to express
that a set of polygons cannot be covered by the same reflector when this
creates a beam of radius greater than sMAX (case Bh = ∅ in Constraints (5e)).
In the initial master problem, set H contains all polygons clusters {p1, p2}
composed of two polygons such that beams W ({p1}) and W ({p1}) have an
insufficient separation distance owing to parameter κ. As shown later, the
sub-problem is used to generate new relevant polygon clusters, giving the
master problem a better view of the actual beam activations required given
the reflector associated with each polygon.
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MPB = min
∑
b∈B

xb,r × sb
2 (5a)

s.t.
∑
r∈R

yp,r = 1, ∀p ∈ P, (5b)∑
b∈Bp,r∈R

xb,r ≥ 1, ∀p ∈ P, (5c)

∑
r∈R

xb,r ≤ 1, ∀b ∈ B, (5d)∑
p∈h

yp,r ≤ |h| − 1 +
∑
b∈Bh

xb,r, ∀h ∈ H,∀r ∈ R, (5e)

xb,r ∈ {0, 1} ∀b ∈ B,∀r ∈ R, (5f)

yp,r ∈ {0, 1} ∀p ∈ P,∀r ∈ R (5g)

7.3. Sub-problem

A solution of the master problem selects a set of beams B̃, allocates a
reflector to each selected beam, and allocates a reflector to each polygon.
The master problem tends to propose a solution involving small beams given
its objective function, but two beams using the same reflector in this solution
may actually be in conflict because the master problem is not aware of all
the beams incompatibility pairs in I. In the sub-problem, we identify these
conflicts and generate new cuts for the master problem, that is new polygon
clusters and new polygon grouping constraints. For instance, in Fig. 6a ,
we consider two beams b1 and b2 covering polygons {p7, p9, p10} and {p5} re-
spectively. These beams are associated with the same reflector in the master
problem but they are too close to each other. The sub-problem then com-
putes a new set of polygons h = {p5, p7, p9, p10} to add to the set of polygon
clusters H. From this point forward, in the master problem, the polygons
in cluster h cannot be allocated to the same reflector without activating one
of the beams covering all these polygons together, for example the beam in
Fig. 6b. The sub-problem must also compute Bh = {b ∈ B | h ⊆ Pb}, and
the new polygon grouping constraints associated with cluster h are

∀r ∈ R,
∑
p∈h

yp,r ≤ |h| − 1 +
∑
b∈Bh

xb,r

Note that from a theoretical point of view, these cuts are not necessarily
valid. Indeed, even if two beamsW (P1) andW (P2) obtained from two subsets
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of polygons P1, P2 are insufficiently separated according to parameter κ, there
may exist another polygon p such that W (P1 ∪ {p}) and W (P2) are not in
conflict thanks to the change of the radius of curvature of the first beam
following the addition of p (see Appendix B for an example). For the sake
of convergence speed, we ignore such non-monotonous effects, while keeping
in mind that the approach proposed then does not necessarily produce the
optimal solution even if it converges.

7.4. Cut reduction

(a) Two beams in conflict

(b) A beam, its border polygons
(red outline), and a minimal set
of polygons required to activate
the beam (orange polygons)

Images/Benders/steiner_tree.jpeg

(c) Minimal cut (in red) given
by the Steiner tree

Figure 6: Minimum definition of a beam

As the process progresses, the size of the cuts tends to increase: the
master problem selects larger and larger beams to avoid conflicts, and the
sizes of the polygon clusters h added to H grows. However, the efficiency of
our method depends on the strength of the cuts generated because tighter
constraints help the master problem make better decisions in subsequent
iterations and reduce the number of iterations required to converge. There-
fore, we introduce techniques to produce relevant polygon clusters of smaller
sizes. The approach is illustrated in Fig. 6b. A beam covers polygon clus-
ter h = {p1, . . . , p10}, but only a few of them need to be allocated to the
same reflector to force the activation of the beam. For example, if we remove
polygons p1, p2, p4, p6, p9, and p10, and if we compute beam W (h′) associated
with polygon cluster h′ = {p3, p5, p7, p8}, we obtain the exact same beam as
W (h). Hence, allocating the same reflector to the polygons in {p3, p5, p7, p8}
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already forces the activation of a beam as large as the black one, even if
p1, p2, p4, p6, p9 and p10 use a different reflector.

To compute a smaller polygon cluster sufficient to activate beam b =
W (h), we first identify the border polygons of b hat have a point placed
on the smallest covering circle of Pb . If these polygons are too far apart to
activate the beam, we add coupling polygons between them.

As depicted in Fig. 6c, (1) we construct the elementary beams W (p)
covering the polygons p ∈ Pb; (2) we build the graph Γ containing one vertex
per elementary beam W (p) and one edge between vertices associated with
two beams that are too close to each other to be placed on the same reflector;
(3) we compute a subset of edges of minimum size such that the sub-graph
induced by these edges is connected and contains all the vertices associated
with the elementary beams of the border polygons. The last problem is a
Steiner tree problem, which we solve using a fast approximation algorithm
proposed by Melhorn [17]. After that, we get a potentially reduced polygon
cluster h′ ⊆ h, and if h′ ̸= h we add both h and h′ to the master problem.

7.5. Growing pool of beams

To increase the performance of the Benders method over the largest in-
stances containing more than 100 polygons, we introduce a last (optional)
mechanism inspired from our previous matheuristic method [16]. Initially,
we consider a pool of beams is formed by all the beams defined from 1 and
2 border polygon(s). If a conflict between two beams b1 and b2 is detected
in the sub-problem, we add the cuts associated with this conflict as exposed
in Section 7.3, and we also add a new beam b3 = W (Pb1 ∪ Pb2) to the beam
database. Following this addition, we also update sets Bh for all polygon clus-
ters h ∈ H if needed. As shown in the experimental results, this extension
allows us to find solutions for our largest instance.

8. Experimental results

We have implemented the methods presented in section 6 and 7 in python3.8.
ILP models : (1,. . . , 5) were solved with CPLEX12.10. The runs were made
on a server with 96 cores of an Intel(R) Xeon(R) Gold 5318Y CPU @2.10GHz
processor and 62GB of RAM.
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8.1. Instances

We built a set of realistic instances presented in Table 3. The complexity
in the resolution of a given instance can first be evaluated by examining its
number of polygons referred as ”Nb polygons” in the table. The bigger are
the polygons, the more difficult it will be to group them in beams without
exceeding the maximum beam size. The inter-connectivity between the poly-
gons is important too: the closer they are from each other, the more difficult
it will be to find beams of small sizes with feeds that do not overlap. In order
to have a first indication of the difficulty of an instance, we have constructed
the set of beams B1P where each beam cover one unique polygon. We can
then construct the graph G1P = (B1P , E1P ), and evaluate its number of edges
|E1P | and its chromatic number γ1P . The higher is the number of edges in
G1P , the more difficult it is to find a set of beams that can be assigned to the
same reflector. Similarly, the higher the chromatic number of G1P , the further
we are from a feasible solution that requires a chromatic number lower than
or equal to NR. These assumptions can be directly verified in the table of
results; for example, on the Italy instance, the number of polygons is higher
than on the France instance, but the resolution time is significantly lower.
Similarly, the lower is the maximum radius of B1P , the fewer beam are al-
lowed, which tends to reduce the combinatorial complexity of the problem.
If the paper is accepted, the instances will be available on a gitbhub We have
grouped different beam-layout solutions plot on several instance in Appendix
A.

8.2. Table of results

The results and comparison of the methods are gathered in Table 5. “TM”
and “TS” respectively refer to the sum of total computational time of the
master problem and the sub-problem on each iteration, while “T” is the
total computational time. The number of iterations is referred in column
“It”. For the solutions obtained with the column generation approach, it is
the sum of the number of iteration of step1( finding a feasible solution) and
step2 (improving the solution), we don’t differentiate the two steps because
the number of iterations of step 1 is always 1. With the column generation
method, we differentiate when the sub-problem is solve using an heuristic
algorithm (CGH) and when an exact method is used in the sub-problem
(CGH), as explained in section 6.4. In column “GapBKS”, the SRS Gap
relatively to the Best Know Solution is given, which is the solution given by
the ILP on the instances form France to EU52 in the table’s order, and the
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Instance Nb polygons |E1P | γ1P Max radius
France 22 144 10 0.2192
GuySur 23 121 8 0.2114
Italy 30 126 8 0.1263
Venezuela 34 219 9 0.2903
Morocco 39 180 8 0.1743
UK 40 247 10 0.1494
Spain 44 337 11 0.1827
EU51 51 402 11 0.1797
EU52 52 294 10 0.2192
BlackSea 50 333 10 0.2018
WestEurope 92 467 9 0.1554
Egypte 90 695 11 0.1579
EU102 102 893 12 0.2192
EU136 136 969 11 0.2192

Table 3: Presentation of the instances

solution given by LBBD method on instances EU52 to EU136. The column
generation approach gives better solutions that the heuristic method, with a
SRS closer from the optimum on all instances except ”Italy” and ”EU52”.
It is not able to converge in the time given , so we gave for each instance
the maximum computational time of the heuristic on the instance where
all methods could find a solution (which each 180s). Thanks to the beam
database construction method presented in section 3.3, the ILP was solvable
in reasonable time on the smallest instances. The LBBD is definitely more
efficient in terms of computational time and quality of the solutions found
on all instances, it beats the heuristic, the column generation approach and
the ILP method computationally, and find the best solution on all instances.

Optimality. On the instances were we could manage to find an optimal so-
lution with the model 1 of sub-section 5, LBBD was always able to find the
optimal solution in shorter time than the ILP, which represents 10 instances
over 13. The Column generation approach generally finds a solution closer
from optimality that the heuristic at the cost of computational time, except
on the Italy, Venezuela, Morocco and EU52 instances.

Computational time. The minimum, maximum and mean speed-up (SpU)
computational time for each method on all the instances where the four
methods could find a solution in table 6, showing how fast is the LBBD
compared to the other methods. The speed-up time is defined as the relative
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Instance Method
T
(s)

TM

(s)
TS

(s)
It |B̃| MaxS MSRS SRS

GapBKS
(%)

France

Heur. 14.5 6.5 4.1 2 6 0.364 0.0907 0.544 17.8
ILP 7.91 1 9 0.372 0.0514 0.462 0
CGE 180 4.6 165.5 124 6 0.376 0.0785 0.471 1.85
CGH 180 0.5 178.7 2 11 0.399 0.042 0.497 7.42
LBBD 3.68 3.6 3.4 4 9 0.372 0.0514 0.462 0

GuySur

Heur. 6.6 6.2 0.3 2 6 0.46 0.0886 0.62 16.61
ILP 9.85 1 6 0.478 0.0886 0.532 0
CGE 180 3.5 174.9 80 6 0.479 0.0886 0.532 0
CGH 180 0.7 178.4 4 8 0.38 0.0739 0.591 11.16
LBBD 1.1 0.7 0.5 1 6 0.479 0.0886 0.532 0

Italy

Heur. 6.4 6.2 0.3 3 13 0.229 0.0153 0.198 0.7
ILP 8.12 1 12 0.194 0.0164 0.197 0
CGE 180 4.6 165.65 100 10 0.229 0.0213 0.213 7.8
CGH 180 0.8 179.1 7 8 0.27 0.0288 0.231 16.97
LBBD 0.71 3.6 3.2 3 12 0.194 0.0164 0.197 0

Venez.

Heur. 23.22 21.84 1.1 2 9 0.573 0.135 1.211 2.74
ILP 51.42 1 7 0.588 0.169 1.179 0
CGE 180.3 1.6 174.5 22 9 0.588 0.146 1.312 4.6
CGH 180 1.1 178.9 5 6 0.596 0.205 1.23 4.33
LBBD 48.81 32.1 16.17 11 7 0.588 0.169 1.179 0

Morocco

Heur. 10.96 10.09 0.69 2 12 0.368 0.050 0.589 3.44
ILP 32.02 1 13 0.374 0.0438 0.569 0
CGE 180 4.1 166.5 36 12 0.398 0.0533 0.634 12.39
CGH 180 0.9 178.9 3 9 0.434 0.102 0.713 25.29
LBBD 7.58 4.23 3.35 5 13 0.377 0.0438 0.569 0

UK

Heur. 30.4 28.58 1.47 2 10 0.226 0.0214 0.214 4.49
ILP 195.68 1 12 0.229 0.0171 0.205 0
CGE 180 1.4 172.1 6 12 0.259 0.0258 0.232 13.36
CGH 180 1.1 178.2 5 9 0.229 0.0234 0.211 2.97
LBBD 98.46 57.9 47.56 5 12 0.229 0.0171 0.205 0

Spain

Heur. 69.15 62.51 4.75 2 7 0.381 0.0718 0.503 23.56
ILP 539.16 1 9 0.399 0.0452 0.407 0
CGE 180 1.4 172.1 6 12 0.371 0.058 0.465 14.29
CGH 180 1.1 178.2 5 9 0.359 0.0563 0.45 10.7
LBBD 36.51 20.2 16.31 5 9 0.399 0.0452 0.407 0

BlackSea

Heur. 52.7 49.24 2.73 2 13 0.428 0.0462 0.601 11.33
ILP 601.8 1 7 0.484 0.0771 0.540 0
CGE 180 2.1 172 2 12 0.418 0.0523 0.628 16.5
CGH 180 1.9 176.1 4 4 0.489 0.155 0.62 14.9
LBBD 73.91 38.26 35.65 3 7 0.484 0.0771 0.540 0

EU51

Heur. 38.11 24.91 8.63 2 20 0.439 0.0336 0.672 17.72
ILP 1371.7 1 17 0.463 0.0815 0.571 0
CGE 180 2.7 172.5 1 8 0.489 0.809 0.647 3.7
CGH 180 2.1 171.6 2 8 0.489 0.809 0.6478 3.7
LBBD 25.81 11.9 13.91 2 7 0.463 0.0815 0.571 0

Table 4: All results, first table
26



EU52

Heur. 180.84 143.02 37.82 5 20 0.3545 0.0351 0.7016 17.7
ILP 175.18 1 17 0.474 0.0367 0.624 0
CGE 180 2.5 172.5 6 12 0.4777 0.041 0.830 45.5
CGH 180 2.5 169.58 2 11 0.485 0.0756 0.829 45.2
LBBD 26.02 13.28 12.74 6 17 0.474 0.0367 0.624 0

WestEU
Heur. 79.87 68.8 9.1 2 33 0.33 0.0283 0.934 27.96
LBBD 192.73 93.07 99.66 6 41 0.209 0.0178 0.73 0

Egypt
Heur. 739.4 750.9 36.96 3 12 0.481 0.0925 1.11 24.9
LBBD 674.72 320.23 354.49 7 15 0.493 0.0593 0.889 0

EU102
Heur. 560.4 500.89 41.75 2 11 0.6987 0.118 1.2976 16.71
LBBD 9564.37 4212.99 5351.38 12 19 0.619 0.0585 1.112 0

EU136
Heur. 445.3 371.83 48.6 2 21 0.5451 0.0588 1.2342 5.1
LBBD 1693.88 940.57 753.31 11 31 0.533 0.0379 1.174 0

Table 5: All results, second table

gap between the computational time of the compared method (tm) to the

computational time of LBBD (tLBBD) :
(tm−tLBBD)

tm
.

Min. SpU (s) Max. SpU (s) Mean SpU (s)
Heuristic -223.8 88.9 -2
ILP 31.3 98.1 75.45
CG 45.3 99.6 82.8

Table 6: Speed-up of LBBD method compared to Heuristic, ILP and CG

8.2.1. Impact of the settings of the LBBD decomposition method

Instance Method T It |B̃| MaxS MSRS SRS
EU Heur. 436 6 15 0.6870 0.08568 1.2501
EU LBBD 649 21 20 0.56123 0.06211 1.2422

Table 7: Results on Europe with extension

Impact of the growing pool of beams. LBBD method wasn’t performant on
one of the biggest instance with 102 polygons. The initial beam database
was too huge, and the number of cuts necessary to obtain a feasible solution
takes too much time to generate. Table 7 compare the results of ?? with
the best heuristic result found. It is important to notice that this extension
wasn’t an improvement on the other smaller instances.

Impact of the cut reduction technique.
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(a) Solution with LBBD (b) Solution with heuristic

Figure 7: Solutions on 102 polygons Europe instance

9. Conclusion

We propose to detail two decomposition methods to solve the beam-layout
optimization problem on multi-beam broadcasting missions. The area of in-
terest is divided in a set of polygons who needs to be covered entirely by at
least one beam. In addition, considering the SFPB antenna technology, we
propose to allocated the beams to the reflectors with graph coloring. The
polygons need to be grouped in beams and the beams dispatched on the
different reflectors available, such that the arrangement of their associated
antenna elementary equipment call feeds is mechanically feasible, knowing
that the smaller are the beams, the better will be the radio frequency per-
formances. Combining graph coloring constraints and high combinatorial
issues can give near-optimal solutions, leading us to decomposition meth-
ods. Results are compared with a heuristic and an exact ILP on realistic
instances. The first method, column generation, can addresses problem sym-
metries and improves the heuristic solutions. The second method, inspired
by Logic-Based Benders Decomposition, outperforms all other methods, and
was proven optimal for most of the instances. However, scaling up instances
is challenging for both methods, but some improvements can allow us to
provide solutions too. For the column generation, we can compute clique
heuristically in the sub-problems instead of solving an integer linear program
that might becomes unsolvable on the biggest instance. We tried to use a
greedy algorithm but some improvements can be done to generate potentially
good cliques. Concerning Benders decomposition, the biggest instance can
be solved by an iterative process for generating beams in the sub-problem,
but further analyses must be done on this line of research.
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(a) Cut evolution on UK (b) Cut evolution on West Europe

Figure 8: Number of cut evolution according to computing time for three different config-
uration, computational time on x-axis, number of cuts on y-axis

Appendix A. Solutions beam-layout plots

(a) LBBD solution on Spain (b) Column Generation solution on Spain
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(a) LBBD solution on France (b) Column Generation solution on France

(c) Heuristic solution on West Europe (d) LBBD solution on West Europe

(e) Heuristic solution on EU136 (f) LBBD solution on EU136

Figure A.10: Solutions plots
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Appendix B. Explanation Benders is not exact

Figure B.11: (right) 2 polygons in seperate beams associated to the same reflector are in
conflict (left) The decentring of one of the beam by adding a third polygon can avoid the
conflict
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