
HAL Id: hal-04901787
https://hal.science/hal-04901787v1

Submitted on 20 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive Compression of Supervised and
Self-Supervised Models for Green Speech Recognition

Mouaad Oujabour, Leila Ben Letaifa, Jean-françois Dollinger, Jean-Luc Rouas

To cite this version:
Mouaad Oujabour, Leila Ben Letaifa, Jean-françois Dollinger, Jean-Luc Rouas. Adaptive Compres-
sion of Supervised and Self-Supervised Models for Green Speech Recognition. IEEE International
Conference on Acoustics, Speech, and Signal Processing ICASSP, Jan 2025, Hyderabad, India. �hal-
04901787�

https://hal.science/hal-04901787v1
https://hal.archives-ouvertes.fr

Adaptive Compression of Supervised and
Self-Supervised Models for Green Speech

Recognition
Mouaad Oujabour∗, Leila Ben Letaifa∗, Jean-François Dollinger∗, Jean-Luc Rouas†,

∗CESI LINEACT UR 7527, Nancy, France
†LaBRI, CNRS UMR 5800 Univ. de Bordeaux, Bordeaux INP Talence, France

Abstract—Computational power is crucial for the development
and deployment of artificial intelligence capabilities, as the large
size of deep learning models often requires significant resources.
Compression methods aim to reduce model size making artificial
intelligence more sustainable and accessible. Compression tech-
niques are often applied uniformly across model layers, without
considering their individual characteristics. In this paper, we
introduce a customized approach that optimizes compression for
each layer individually. Some layers undergo both pruning and/or
quantization, while others are only quantized, with fuzzy logic
guiding these decisions. The quantization precision is further ad-
justed based on the importance of each layer. Our experiments on
both supervised and self-supervised models using the librispeech
dataset show only a slight decrease in performance, with about
85% memory footprint reduction.

Index Terms—Adaptive compression, Self Supervised models,
speech recognition, pruning, quantization, fuzzy logic

I. INTRODUCTION

Artificial Intelligence (AI) achieves remarkable success in
a wide array of applications. This success stems from the
development of deeper and wider Deep Neural Network
(DNN) architectures, which enhance the model’s ability to
learn intricate patterns for specific tasks. This is especially
evident in computer vision, in natural language processing
and audio processing, including speech recognition. However,
the deployment of such large models comes with significant
computing and financial costs and contributes to a substantial
carbon footprint [1]. This not only challenges the inclusivity
of AI but also raises environmental concerns [2]. To address
these issues, reducing model size is crucial. Several methods
exist for compressing DNNs, including quantization, pruning,
knowledge distillation, parameter sharing, and matrix factor-
ization [3]–[9].

Today, most DNN applications rely on supervised learning,
which requires labeled data — a process that is often time-
consuming and costly. In contrast, human learning begins
unsupervised, as infants learn language through observation,
and later through supervised tasks like reading and writing.
To mimic this process, self-supervised learning (SSL) frame-
works have been developed. In speech processing, models like
Wav2vec 2.0 [10], HUBERT [11], and WavLM [12] excel
with minimal annotated data by pretraining on large unlabeled
datasets, followed by fine-tuning on smaller labeled datasets.

Several works in the literature have focused on large model
compression, but only a limited number address SSL mod-
els [13], [14]. Among these, in [15], the authors applies
knowledge distillation (KD) to the Wav2vec acoustic model,
achieving a 4.8x compression ratio, though with a WER
increase of 3.62. In [16], genetic algorithms are proposed for
structured pruning of the Wav2vec2 XLSR53 model, resulting
in a slight WER increase of 0.21% with 40% pruning. In [17],
the authors employ symmetric linear quantization to reduce
the precision of weights and activations of a BERT model to
INT8. To our knowledge, quantization has not yet been applied
to speech SSL models.

Previous research often applies a uniform compression
method across all layers. However, recent studies reveal that
weight distributions vary by type and position within the
network [5], [18]. For example, layers with many critical
weights need higher quantization precision, while layers with
mostly low-magnitude weights are more suitable for pruning.
We propose a customized approach that selects the optimal
compression method for each layer individually. Some layers
will undergo both quantization and/or pruning, while others
will be only quantized, with fuzzy logic guiding the decision
process.

II. MODEL COMPRESSION

Focusing on Green AI [1] to minimize computational costs
while preserving performance, we prioritize techniques with
minimal parameter tuning. We explore two model compres-
sion strategies, quantization and pruning, which are not only
easily applied to pre-trained models but also ideal for rapid
deployment on mobile devices.

A. Quantization

Model quantization reduces the size of the neural networks
by using lower precision values of the weight or activation
[6]. The two main approaches are Post-Training Quantization
(PTQ) and Quantization-Aware Training (QAT). A standard
quantization function Q(x) converts a floating-point value x
to an integer :

Q(x) = Int
(x

S

)
− Z (1)

where S is a floating-point scaling factor, and Z is an integer
zero point, representing the zero value in the quantization

scheme. The Int(·) function rounds the scaled x to the nearest
integer. This approach is known as uniform quantization
because all x values are scaled by the same factor S, leading
to evenly spaced quantized values. Non-uniform quantization,
with its variable spacing between quantized values, can more
effectively capture signal information, but it is challenging
to implement efficiently on standard hardware. As a result,
uniform quantization is the preferred method.

Clipping range selection, or calibration, can be done using
the signal’s minimum and maximum values α = xmin and
β = xmax resulting in asymmetric quantization as the range
may not be centered. Alternatively, symmetric quantization
sets α = −β often using the maximum absolute values −α =
β = max(|xmax|, |xmin|). Asymmetric quantization typically
narrows the clipping range, which is important for imbalanced
weights or activations like those following ReLU. Setting the
zero point to Z = 0 simplifies symmetric quantization.

B. Pruning

Pruning removes unimportant weights/components, by ze-
roing values close to zero. Formally, a neural network model
can be defined as a function family f(x,W) where x denotes
the network architecture and W its parameters. Pruning a
neural network involves taking an existing model f(x,W) and
generating a new model f(x,W ′) such that W ′ = M ⊙ W

where M ∈ {0, 1}|W | is a binary mask to set some parameters
to zero and ⊙ is the elementwise product operator [19].

The pruning techniques include : – Unstructured pruning
[20] removes individual weights, creating sparse matrices
– Structured pruning removes entire blocks, such as rows,
columns, neurons, or attention heads [21]. In this paper, our fo-
cus is on unstructured pruning, as it targets the smallest model
elements without significant performance loss. Unstructured
pruning introduces sparsity, creating irregular memory access
patterns but sparse matrix representations [22] or specialized
hardware [23] can address this issue. Pruning can be done
iteratively between training epochs, applied once after training
[18], or integrated during fine-tuning [24]. Pruning can be
applied globally, removing a fraction of parameters across
the entire model, or locally, targeting a specific percentage
of parameters within each layer [19].

III. ADAPTIVE COMPRESSION

We propose an adaptive compression method using fuzzy
logic [25] to evaluate weight importance in each layer and
dynamically select the optimal compression strategy. By an-
alyzing the statistical distribution of weight magnitudes (e.g.,
minimum, maximum, median, standard deviation), the method
defines fuzzy membership functions to classify weights as low,
medium, or high importance.

1) Fuzzy Membership Functions: Fuzzy logic allows us to
assign degrees of membership to different importance classes
low, medium, or high for each weight based on its magnitude.
In the adaptive method, we used basically trapezoidal and
triangular membership functions to describe the fuzzy sets for
low, medium, and high importance as shown on Fig. 1.

Fig. 1. Fuzzy membership functions for weight importance in the adaptive
compression method.

a) Trapezoidal Membership Function: This function is
used to classify weights into two categories: low or high
importance. The corresponding membership function, denoted
by µk(x), where k ∈ {low, high}, is given by:

µk(x; ak, bk, ck, dk) =

0 if x ≤ ak
x−ak

bk−ak
if ak < x ≤ bk

1 if bk < x ≤ ck
dk−x
dk−ck

if ck < x ≤ dk

0 if x > dk

(2)

b) Triangular Membership Function: For weights clas-
sified as medium importance, we use a triangular mem-
bership function. The triangular membership function
µmedium(x; aM, bM, cM) is defined as:

µmedium(x; aM, bM, cM) =

0 if x ≤ aM

x−aM

bM−aM
if aM < x ≤ bM

cM−x
cM−bM

if bM < x ≤ cM

0 if x > cM

(3)

2) Membership Degree Calculation: For each weight w
in a layer, we calculate its degree of membership in each
importance class as low, medium, or high. Let x = |w|, the
magnitude of the weight. The membership degrees are µlow(x),
µmedium(x) and µhigh(x). These degrees describe the extent to
which a weight belongs to each importance class.

3) Defuzzification and Decision-Making: Defuzzification
converts fuzzy weight classifications into concrete actions.
Based on the percentage of weights in each importance
category (low, medium, high), the method applies the appro-
priate compression strategy. Layers with a majority of low-
importance weights are pruned or quantized with low preci-
sion, while those with medium or high-importance weights are
quantized with higher precision.

IV. EXPERIMENTS AND RESULTS

We conducted experiments comparing quantization, prun-
ing, and the proposed adaptive method under identical con-
ditions. Each technique was applied post-training in a one-
shot manner and evaluated by memory footprint and Word
Error Rate (WER). Compression was measured by storage

efficiency for quantization and sparsity for pruning. To ensure
fairness, we introduced a unified compression rate for doubly
compressed models.

A. Baseline systems
We utilize automatic speech recognition (ASR) models

trained with the ESPnet toolkit [26] on the LibriSpeech
dataset [27], which comprises approximately 1000 hours of
16kHz English speech recordings. Of these, around 960 hours
are dedicated to training, with the remaining hours evenly
split between development (dev) and testing (test) sets. The
dataset distinguishes between two categories: clean data (test-
clean and dev-clean) and other data (test-other and dev-other).
Other data refer to recordings that are more challenging due
to factors such as background noise, unclear pronunciation,
or varied accents. Instead, clean data consist of recordings
with clear and high-quality audio. We chose to evaluate the
Transformer architecture [28] and some of its variants that
are the Conformer [29], the Branchformer [30] and the E-
Branchformer [31] because of their high performance in End
to End ASR. We also used the Wav2Vec, the Hubert and the
WavLM SSL models. These models are referred to as Transf ,
Conf , Branch, Ebranch, W2V , Hub and Wlm. Results are
reported in TABLE I.

TABLE I
BASELINE SYSTEMS’ MODELS: NUMBER OF PARAMETERS (MILLIONS),

MEMORY FOOTPRINT (MEGABYTES) AND WORD ERROR RATE (%).

Characteristic Trans Conf Branch Ebranch W2V Hub Wlm
Parameters 99 93 116 148 432 433 431
Mem. 397 373 596 553 1734 1731 1727
Mem. zip 369 345 433 467 1176 1179 1174
WER

Test-clean 3.3 2.9 2.4 2.2 2.5 2.0 2.0
Test-other 8.0 7.3 5.3 4.6 6.3 4.2 4.2
Dev-clean 3.0 2.9 2.1 2.0 2.3 1.9 1.9
Dev-other 7.9 7.1 5.2 4.6 6.6 4.1 4.2

Among classical DNNs, E-Branchformer is the most per-
formant but also the largest. For SSL models, all have compa-
rable and significant memory sizes, with Hubert and WavLM
showing superior performance than Wav2vec.

B. Quantization
We reduced the model precision from 32 bits floats to

8, 4, and 2 bits integersusing the symetric PTQ dynamic
quantization method with Quanto software1. TABLE II shows
that all models are robust to 8 bits quantization but less so
to 4 bits one. The best performance is achieved by the E-
Branchformer, Hubert, and Wavlm models. Overall, the error
rate remains stable or increases slightly, with a maximum
absolute rise of 0.2% for clean data (test and dev) and up to
0.6% for noisy data. Quantizing to 2-bit integers significantly
degrades performance on clean data. So, we chose not to
evaluate it on the remaining dataset. Regarding memory size,
according to TABLE III, it is reduced by more than 3.6 times
for 8 bits quantization and by 6.3 times for 4 bits quantization.

1https://github.com/huggingface/optimum-quanto/tree/main

TABLE II
WORD ERROR RATE (WER) AFTER QUANTIZATION TO 2, 4, AND 8 BITS.

Models Data Initial Qint8 Qint4 Qint2

Transf

Test clean 3.3 3.3 3.5 94.0
Test other 8.0 8.0 8.6
Dev clean 3.0 3.0 3.2
Dev other 7.9 7.9 8.4

Conf

Test clean 2.9 3.0 3.0 33.2
Test other 7.3 7.4 7.6
Dev clean 2.9 2.9 3.0
Dev other 7.1 7.3 7.4

Branch

Test clean 2.4 2.4 2.4 22.7
Test other 5.3 5.3 5.6
Dev clean 2.1 2.2 2.2
Dev other 5.2 5.2 5.4

E-branch

Test clean 2.2 2.2 2.2 16.5
Test other 4.6 4.6 4.7
Dev clean 2.0 2.0 2.0
Dev other 4.6 4.6 4.7

Hubert

Test clean 2.0 2.0 2.0 66.3
Test other 4.2 4.2 4.2
Dev clean 1.9 1.9 1.9
Dev other 4.1 4.1 4.2

Wav2Vec

Test clean 2.5 2.5 2.6 100.0
Test other 6.3 6.3 6.6
Dev clean 2.3 2.3 2.4
Dev other 6.6 6.6 6.9

WavLm

Test clean 2.0 2.0 2.1 11.4
Test other 4.2 4.2 4.3
Dev clean 1.9 1.9 2.0
Dev other 4.2 4.2 4.2

TABLE III
MEMORY FOOTPRINT (MEGABYTES) AFTER QUANTIZATION.

Models Qint8 Qint4 Qint2
Mem. Mem. zip Mem. Mem. zip Mem. Mem. zip

Transf 108 97 65 59 41 34
Conf 131 119 95 87 75 66
Branch 129 111 79 69 50 41
E-branch 163 138 99 87 63 51
Hubert 512 443 332 279 231 171
Wav2Vec 512 444 332 279 230 171
WavLm 510 442 330 277 229 170

C. Pruning

Local unstructured pruning is applied to each linear layer to
all the models using the pruning rates 40% and 60%. Accord-
ing to TABLE IV, not all models are equally robust to pruning.
For traditional models, the Branchformer and E-Branchformer
architectures appear to be over-parameterized, as they can be
pruned by up to 50% without any loss in performance. These
models are larger compared to transformers and conformers
and include more MLP layers. In the context of SSL, the
Hubert and WavLM architectures show considerably greater
robustness to pruning than Wav2vec. This enhanced robustness
is likely due to their training processes, which rely on masked
prediction.

D. Adaptive compression

Each model is compressed layer by layer as follows: For
each layer, a membership function categorizes the weights into
three groups: L (low), M (medium), and H(high). To define
the parameters of these membership functions, let us denote

TABLE IV
WORD ERROR RATE (WER) FOR THE PRUNING RATES: 40% AND 60%

Models Pr = 40% Pr = 60%
Transf 3.6 10.7
Conf 3.1 5.2

Branch 2.4 2.7
E-branch 2.1 2.3
Hubert 2.3 3.1

Wav2Vec 4.1 18.5
WavLm 2.1 2.9

|w| the weight magnitude. The following relationships then
hold under tuple notation:

(aM , bM , cM) = (median(|w|)− β,

median(|w|),
median(|w|) + β)

(4)

(aL, bL, cL, dL) = (min(|w|),min(|w|),
min(|w|) + std(|w|),
median(|w|)− α)

(5)

(aH , bH , cH , dH) = (max(|w|),max(|w|),
max(|w|)− std(|w|),
median(|w|) + α)

(6)

with α and β variable parameters.
We apply two experiments: three-class compression and

two-class compression.
1) Three-class compression: : If class L has the highest

cardinality, the layer is pruned and quantized to 8 bits. If class
M has the highest cardinality, the layer is quantized to 4 bits.
Otherwise, it is quantized to 8 bits. TABLE V show the results
for the following values :
(α1, β1) = (std_magnitude

2 , std_magnitude
4) and

(α2, β2) = std_magnitude
1 , std_magnitude

2)

TABLE V
RESULTS OF THE THREE-CLASS COMPRESSION: (α1, β1) AND (α2, β2),

%Ł, %H AND %M THE PERCENTAGE OF RESPECTIVE COMPRESSED
LAYERS AND Pr THE PRUNING RATE OF THE PRUNED LAYERS.

Model WER Mem.z %L %M %H %Pr
(α1,β1)

Transf 3.3 88.06 1.17 85.96 12.87 48
Conf 3.1 118.97 0.68 97.28 2.04 48
Branch 2.4 88.7 26.57 58.94 14.49 59
E branch 2.2 107.82 24.72 63.29 11.99 53
Hubert 2.0 308.46 0.00 91.82 8.18 0
Wav2Vec 2.6 299.82 0.62 93.12 6.25 48
WavLm 2.1 313.66 1.47 89.44 9.09 54

(α2,β2)
Transf 3.4 97.25 44.45 32.16 23.39 36
Conf 3.1 120.54 54.42 27.21 18.37 36
Branch 2.4 94.76 54.11 27.54 18.35 49
E branch 2.2 117.8 56.93 25.09 17.98 45
Hubert 2.1 357.45 38.05 34.91 27.04 36
Wav2Vec 4.4 358.52 37.81 32.50 29.69 36
WavLm 2.1 370.2 42.82 31.09 26.09 36

Using (α1, β1), the WER has either remained the same or
increased slightly. The majority of layers in all models were

not pruned, except for the Branchformer and E-Branchformer,
where a quarter of the layers were pruned without performance
loss. With (α2, β2), we focused on increasing the proportion
of weights in the low class since 60% pruning rate led to
a WER increase of 0.3, 0.1, and 0.9 respectively for the
Branchformer, E-Branchformer, and WavLm (see TABLE IV).
We find that the model size is typically larger than with
4-bit quantization but smaller than with 8-bit quantization.
Branchformer offers the best trade-off, reducing size by 75%
with slight increasing the WER.

2) Two-class compression: : According to paragraph IV-B,
WER changes little with the 4-bit quantization of all layers but
increases significantly with 2-bit quantization. The approach is
to use 2 bits for insignificant layers and 4 bits for the remaining
layers. The adaptive compression is applied as follows: if
class L has the highest cardinality, the layer is quantized to 4
bits; otherwise, it is quantized to 2 bits. TABLE VI show the
compression results.

TABLE VI
RESULTS OF THE TWO-CLASS COMPRESSION

Model WER Mem .zip %H %L
Transf 5.8 54 92.49 7.51
Conf 4.7 84 95.97 4.03
Branch 2.7 54 47.37 52.63
E branch 2.4 74 66.17 33.83
Hubert 3.2 239 76.56 23.44
Wav2Vec 15.3 233 73.60 26.40
WavLm 2.8 237 74.93 25.07

The memory size falls between 4-bit and 2-bit quantization.
While the WER is higher than that of the quantization into 4
bits, it remains much better than 2-bit quantization, offering a
balance between the two. For Branchformer, 2-bit quantization
of all layers yields a WER of 16.5%, 4-bit gives 2.2%, and a
mix of 34% of the layers at 2 bits and 66% at 4 bits results
in 2.4% WER with a memory reduction to 15%. For WavLM,
2-bit quantization gives a WER of 11.4%, 4-bit achieves 2.0%,
and a 25%-75% mix results in 2.8% WER.

V. CONCLUSIONS

Large DNN models are resource-intensive and compres-
sion techniques can reduce model size without compromising
performance, making Artificial intelligence more sustainable
and accessible. Typically, compression methods are applied
uniformly across all network layers, neglecting their individual
characteristics. This work introduces a refined approach that
adapts compression methods to each layer’s specific needs,
optimizing performance. Our experiments with supervised
and self-supervised models show only a slight performance
reduction. BranchFormer achieves the best balance, reducing
memory size by up to 85% with just a 0.2% increase in WER.

ACKNOWLEDGMENT

This work was supported by the FVLLMONTI project,
funded by the European Union’s Horizon 2020 program (grant
agreement No. 101016776).

REFERENCES

[1] R. Schwartz, J. Dodge, N. A. Smith, and O. Etzioni, “Green AI,”
Commun. ACM, vol. 63, no. 12, p. 54–63, nov 2020. [Online].
Available: https://doi.org/10.1145/3381831

[2] G. Sastry, L. Heim, H. Belfield, M. Anderljung, M. Brundage, J. Hazell,
C. O’Keefe, G. K. Hadfield, R. Ngo, K. Pilz et al., “Computing
power and the governance of artificial intelligence,” arXiv preprint
arXiv:2402.08797, 2024.

[3] S. S. Jash Rathod, Nauman Dawalatabad and D. Gowda, “Multi-stage
progressive compression of conformer transducer for on-device speech
recognition.” in INTERSPEECH, 2022.

[4] L. B. Letaifa and J.-L. Rouas, “Transformer model compression for
end-to-end speech recognition on mobile devices,” in European Signal
Processing Conference, EUSIPCO, 2022.

[5] L. Ben Letaifa and J.-L. Rouas, “Variable scale pruning for transformer
model compression in end-to-end speech recognition,” Algorithms. Spe-
cial Issue ”Recent Advances in Machine Learning Algorithms”, 2023.

[6] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer,
“A survey of quantization methods for efficient neural network infer-
ence,” in Low-Power Computer Vision. Chapman and Hall/CRC, 2022,
pp. 291–326.

[7] M. B. Noach and Y. Goldberg, “Compressing pre-trained language
models by matrix decomposition,” in International Joint Conference on
Natural Language Processing, 2020.

[8] D. Bekal, K. Gopalakrishnan, K. Mundnich, S. Ronanki, S. Bodapati,
and K. Kirchhoff, “A metric-driven approach to conformer layer pruning
for efficient asr inference.” INTERSPEECH, 2023.

[9] Y. Wang and J. Li, “Residualtransformer: Residual low-rank learning
with weight-sharing for transformer layers,” in ICASSP 2024-2024 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2024, pp. 11 161–11 165.

[10] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0: A
framework for self-supervised learning of speech representations,” in
Advances in Neural Information Processing Systems, vol. 33, 2020, pp.
12 449–12 460.

[11] W.-N. Hsu, B. Bolte, Y.-H. H. Tsai, K. Lakhotia, R. Salakhutdinov, and
A. Mohamed, “Hubert: Self-supervised speech representation learning
by masked prediction of hidden units,” in IEEE/ACM Transactions on
Audio, Speech, and Language Processing, vol. 29. IEEE, 2021, pp.
3451–3460.

[12] S. Chen, C. Wang, Z. Chen, Y. Wu, Y. Liang, Y. Q. Fan, M. Z. Chang,
S. Liu et al., “Wavlm: Large-scale self-supervised pre-training for full
stack speech processing,” in IEEE/ACM Transactions on Audio, Speech,
and Language Processing, vol. 30. IEEE, 2022, pp. 346–360.

[13] C.-I. J. Lai, Y. Zhang, A. H. Liu, S. Chang, Y.-L. Liao, Y.-S. Chuang,
K. Qian, S. Khurana, D. Cox, and J. Glass, “Parp: Prune, adjust and
re-prune for self-supervised speech recognition,” Advances in Neural
Information Processing Systems, vol. 34, pp. 21 256–21 272, 2021.

[14] Y. Peng, K. Kim, F. Wu, P. Sridhar, and S. Watanabe, “Structured
pruning of self-supervised pre-trained models for speech recognition and
understanding,” in IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2023, pp. 1–5.

[15] Z. Peng, A. Budhkar, I. Tuil, J. Levy, P. Sobhani, R. Cohen, and
J. Nassour, “Shrinking bigfoot: Reducing wav2vec 2.0 footprint,” arXiv
preprint arXiv:2103.15760, 2021.

[16] O. Ludwig and T. Claes, “Compressing wav2vec2 for embedded applica-
tions,” in 2023 IEEE 33rd International Workshop on Machine Learning
for Signal Processing (MLSP). IEEE, 2023, pp. 1–6.

[17] O. Zafrir, G. Boudoukh, P. Izsak, and M. Wasserblat, “Q8bert: Quantized
8bit bert,” in 2019 Fifth Workshop on Energy Efficient Machine Learning
and Cognitive Computing-NeurIPS Edition (EMC2-NIPS). IEEE, 2019,
pp. 36–39.

[18] L. B. Letaifa and J.-L. Rouas, “Fine-grained analysis of the transformer
model for efficient pruning,” in International Conference on Machine
Learning and Applications ICMLA, 2022.

[19] D. Blalock, J. J. Gonzalez Ortiz, J. Frankle, and J. Guttag, “What is the
state of neural network pruning?” in Proceedings of Machine Learning
and Systems, I. Dhillon, D. Papailiopoulos, and V. Sze, Eds., vol. 2,
2020, pp. 129–146.

[20] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural network with pruning, trained quantization and huffman coding,”
in proceedings ICLR, 2016.

[21] S. Anwar, K. Hwang, and W. Sung, “Structured pruning of deep
convolutional neural networks,” ACM Journal on Emerging Technologies
in Computing Systems, vol. 1, p. 1–18, 2017.

[22] G. Nazli, J. Ankit, and S. Qian, “Comparative analysis of sparse matrix
algorithms for information retrieval,” computer, vol. 2, 2003.

[23] G. A. Alireza Amirshahi, Joshua Alexander Harrison Klein and
D. Atienza, “Tic-sat: Tightly-coupled systolic accelerator for transform-
ers.” 28th Asia and South Pacific Design Automation Conference, 2023,
pp. 657–663.

[24] M. Gupta and P. Agrawal, “Compression of deep learning models for
text: A survey,” Computer Science. ACM Trans. Knowl. Discov. Data,
2020.

[25] G. Klir and B. Yuan, Fuzzy sets and fuzzy logic. Prentice hall New
Jersey, 1995, vol. 4.

[26] S. Watanabe, T. Hori, S. Karita, T. Hayashi, J. Nishitoba, Y. Unno,
N. E. Y. Soplin, J. Heymann, M. Wiesner, N. Chen, A. Renduchintala,
and T. Ochiai, “Espnet: End-to-end speech processing toolkit.” INTER-
SPEECH, 2018, pp. 2207–2211.

[27] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech: an
asr corpus based in public domain audio books,” in ICCASP, 2015.

[28] L. Dong, S. Xu, and B. Xu, “Speech-transformer: A no-recurrence
sequence-to-sequence model for speech recognition.” IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing ICASSP,
2018.

[29] A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han,
S. Wang, Z. Zhang, Y. Wu, and R. Pang, “Conformer: Convolution-
augmented Transformer for Speech Recognition,” in INTERSPEECH,
Oct. 2020.

[30] Y. Peng, S. Dalmia, I. Lane, and S. Watanabe, “Branchformer: Parallel
mlp-attention architectures to capture local and global context for speech
recognition and understanding,” in International Conference on Machine
Learning. PMLR, 2022, pp. 17 627–17 643.

[31] K. Kim, F. Wu, Y. Peng, J. Pan, P. Sridhar, K. J. Han, and S. Watanabe,
“E-branchformer: Branchformer with enhanced merging for speech
recognition,” in 2022 IEEE Spoken Language Technology Workshop
(SLT). IEEE, 2023, pp. 84–91.

