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Abstract

Introducing interpretability and reasoning into Multiple
Instance Learning (MIL) methods for Whole Slide Image
(WSI) analysis is challenging, given the complexity of gi-
gapixel slides. Traditionally, MIL interpretability is limited
to identifying salient regions deemed pertinent for down-
stream tasks, offering little insight to the end-user (pathol-
ogist) regarding the rationale behind these selections. To
address this, we propose Self-Interpretable MIL (SI-MIL),
a method intrinsically designed for interpretability from
the very outset. SI-MIL employs a deep MIL framework
to guide an interpretable branch grounded on handcrafted
pathological features, facilitating linear predictions. Be-
yond identifying salient regions, SI-MIL uniquely provides
feature-level interpretations rooted in pathological insights
for WSIs. Notably, SI-MIL, with its linear prediction con-
straints, challenges the prevalent myth of an inevitable
trade-off between model interpretability and performance,
demonstrating competitive results compared to state-of-the-
art methods on WSI-level prediction tasks across three can-
cer types. In addition, we thoroughly benchmark the local-
and global-interpretability of SI-MIL in terms of statistical
analysis, a domain expert study, and desiderata of inter-
pretability, namely, user-friendliness and faithfulness.

1. Introduction
In the last decade, advancements in deep learning tech-
niques, especially Multiple Instance Learning (MIL) algo-
rithms [21, 36, 56], have dramatically revolutionized com-
putational pathology, which has transitioned from analyz-
ing local regions-of-interest [39] to gigapixel whole slide
images (WSIs). A standard MIL workflow takes in fea-
ture representations of patches from a WSI, embedded via a
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Figure 1. Unlike conventional MIL , SI-MIL co-learns from
deep and handcrafted features (referred to as PathExpert features).
While both MILs offer patch-level interpretability, only ours pro-
vides PathExpert feature-level rationale for WSI predictions. The
attention maps in SI-MIL are grounded on geometrically and
physically-interpretable descriptors.

deep neural network, and aggregates them to define a slide-
level representation adept for a downstream task. While
these deep neural network-reliant workflows have resulted
in high performance, they often lack pathologist-friendly in-
terpretability and reasoning in their predictions [52], which
is crucial for building trust in routine clinical workflows and
defining reliability and accountability of AI algorithms [7,
18, 54], particularly in clinical contexts.

In computational pathology, efforts to achieve WSI-level
interpretability have predominantly focused on two direc-
tions: (1) identifying salient regions in a WSI, and (2)
employing post-hoc techniques to elucidate the underlying
patterns in salient regions. The first approach, employed
by traditional MIL, includes techniques such as visualiza-
tion of attention maps [21, 36, 56, 57, 67, 68] and post-
hoc gradient-based saliency [47, 70], which highlight im-
age patches that influence the model prediction. These tech-
niques, though useful, may not offer a complete understand-
ing of the model’s decisions and can result in visualizations
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that are hard for experts to interpret due to a lack of user-
friendly feature grounding [4]. The latter approach involves
extracting interpretable handcrafted features (henceforth re-
ferred to as PathExpert features) from the MIL-identified
salient patches and then conducting statistical analyses to
find correlations between these features and the WSI ground
truths in a post-hoc manner [10, 15, 43]. However, there
is a clear disconnect between the deep features used for
MIL training and the PathExpert features. Using post-hoc
PathExpert features to explain deep models can be sub-
optimal [51]. Furthermore, patches with high attention may
be crucial for deep feature space, but may not be optimal in
PathExpert feature space, thus compromising interpretabil-
ity.

To truly interpret a prediction model, it seems inevitable
to bring interpretable features into training. A natural idea
is to directly train MILs using these features, followed by
statistical analysis of features from highly attended patches.
However, this will not exploit the full potential of deep
learning, as our analysis in Section 4 will reveal. This brings
us to the main question: Can we really achieve inherent in-
terpretability without compromising model performance?

The answer is yes. In this paper, we provide the first
WSI solution with both inherent interpretability and strong
prediction power. Our key observation is that a highly accu-
rate deep model is not unique; there can be many optimal or
close-to-optimal deep models for a dataset/task, due to over-
parameterization [27, 30, 45]. Therefore, we hypothesize
that we can alter the learning procedure and find an alterna-
tive model with desired interpretability and still be powerful
in prediction. In particular, we propose to pair a deep MIL
model with an interpretable model grounded on PathEx-
pert features during training. Through co-learning, the MIL
retains its predictive power. Meanwhile, it is sufficiently
“tamed” by the co-learned interpretable model, which ren-
ders interpretability. As shown in Fig. 1, the tamed deep
MIL model has a different attention map from the standard
MIL. It is attending to patches which can also be discrimi-
nated by the companion interpretable model.

Our method, Self-Interpretable MIL (SI-MIL), is a dual
branch network, consisting of a conventional MIL and a
novel Self-Interpretable (SI) branch. The MIL exploits
deep features’ discriminative power to guide the SI branch.
Grounded on PathExpert features, the SI branch then pro-
vides a linear prediction. A differentiable Top-K operator
for selecting patches, connects the two branches and enables
end-to-end co-learning. To highlight, SI-MIL is inherently
interpretable [5, 51] due to the linear mapping between
the PathExpert features and the output predictions. There-
fore, it can reflect the impact of each feature on the output,
thus providing a feature-level rationale, as shown in Fig. 1.
Also, by leveraging the potential of a deep feature extractor,
state-of-the-art MIL, and geometrically and physically- in-
terpretable PathExpert features, SI-MIL counters the well-

known myth of unavoidable model interpretability and per-
formance trade-off [4, 51]. Notably, SI-MIL is generic
enough to substitute any state-of-the-art MIL method in the
MIL branch. In summary, our main contributions are:
• SI-MIL, the first interpretable-by-design MIL method for

gigapixel WSIs, which provides de novo feature-level in-
terpretations grounded on pathological insights for a WSI.

• A novel co-learning strategy for SI-MIL to mitigate the
model performance-interpretability trade-off associated
with self-interpretable methods. We quantitatively estab-
lish the efficacy of our method for classification tasks on
three cancer types.

• We demonstrate the utility of SI-MIL’s local WSI-level
and global cohort-level explanations thorough quantita-
tive and qualitative benchmarking in terms of statistical
analysis, a domain expert study, and desiderata of inter-
pretability, i.e., fidelity, user-friendliness and faithfulness.

• We provide a comprehensive dataset for ∼2.2K WSIs,
featuring nuclei maps, PathExpert features, and SI-MIL
derived outputs, with the aim of streamlining the resource
intensive preprocessing towards interpretability studies in
computational pathology.

2. Related work
This section presents an overview of different forms of in-
terpretability, primarily focusing on the domain of compu-
tational pathology.
Post-hoc interpretability methods: These methods fall
into two categories: patch-level and WSI-level. Patch-
level techniques, like GradCAM and Layer-Wise Relevance
Propagation (used in [19, 53]), highlight key pixels in model
predictions. For deeper insight, studies like [22, 23] use
biological entity-based graphs for pathologist-friendly ex-
planations. At the WSI-level, interpretability is primarily
achieved through attention maps that identify salient re-
gions in WSIs. Additionally, few methods, such as those
by [47, 70], use segmentation maps or gradient-based tech-
niques to localize significant areas. However, these meth-
ods, as [51] notes, may suffer from a disconnect from the
model’s computations. In pathology, this is particularly evi-
dent when comparing the deep features used for MIL train-
ing and the handcrafted features used for subsequent anal-
ysis [10, 15, 43], revealing a disparity in the features for
training versus those for feature correlation.
Vision-Language methods: Previous works [20, 32, 37,
48] have explored interpretability using task reasoning
through textual descriptions or vision-language similar-
ity [2, 38, 69]. However these methods [20, 38] either
suffer from post-hoc approximation [51], or are not scal-
able [32, 69] for gigapixel images. Note that in pathology,
most paired image-text data are only at the patch level [20].
This makes it challenging to design WSI-level interpretable
prediction models from only patch-level descriptions. Fur-



thermore, at WSI-level, unlike natural images, the text de-
scriptions in pathology reports are not holistic; i.e. these re-
ports do not capture the complete landscape and primarily
consist of global summaries of the pathologists’ findings.
Self-interpretability methods: A family of models,
grounded in concepts [14, 29, 46, 64, 65], has become
prominent for natural image interpretation. These models
learn interpretable embeddings by mapping visual repre-
sentations to a concept layer, and linearly aggregate these
for prediction. Challenges such as information leakage and
semantic inaccuracies are noted in [5, 40, 41]. To ad-
dress this, [5] uses concept embeddings [14] to learn syn-
tactic rules and make predictions based on concept truths.
While effective in interpretability, its validation is confined
to Boolean logic tasks. Despite its emergence in the anal-
ysis of natural images, this field has yet to be explored in
the context of gigapixel pathology. Building upon this, our
proposed SI-MIL can handle complex WSI tasks while em-
bedding interpretability directly into the MIL framework.

3. Method
In this section, we present the details of our dual branch SI-
MIL (overview in Fig. 2), consisting of a conventional MIL
branch and a Self-Interpretable (SI) branch, for analyzing
WSIs. We describe the conventional MIL in Sec. 3.1. De-
tailed description of the feature extraction pipelines, i.e., the
process of extracting black-box deep features (g) and inter-
pretable PathExpert features (f ), is provided in Sec. 3.2.
Finally, we present the complete SI-MIL framework in
Sec. 3.3.

3.1. Conventional MIL
In conventional MIL, each WSI is decomposed into patches
(p1, p2, . . .pN ), and their extracted features (g1, g2, . . . gN ),
gi ∈ RD are treated as a bag of instances. In this work, we
leverage an additive version of MIL [24] in the conventional
MIL, which imparts better spatial credit assignment to tis-
sue regions in a WSI. As illustrated in Fig. 2b, conventional
MIL consists of a projectorH(·) operating on the input fea-
ture space, followed by a patch attention module Ap(·) to
compute soft attention α over patches as follows:

g̃i = H(gi); αi = Ap(g̃i); i ∈ {1, 2, ...N} (1)

where Ap(·) is a parameterized module with softmax acti-
vation. The attention-scaled feature embeddings are input
to the predictor C(·) which estimates the marginal contri-
bution of each patch to the slide-level task. Finally, these
contributions are aggregated and activated with ψ to infer
slide-level prediction Ŷg as:

Ŷg = ψ
( N∑

i=1

C(αi · g̃i)
)

(2)

The MIL performs slide-level prediction while comput-
ing the contributions through patch-level attentions. How-

ever, these attentions are too coarse for pathological inter-
pretability as they do not explain the underlying patterns in
pathologist-friendly terminologies.

3.2. WSI patch feature extraction

For each WSI, we extract patches (p1, p2, . . .pN ) and derive
two sets of features for each patch pi, defined as:
1. Deep features: We pretrain a ViT [13] through self-

supervised learning on patches from the WSIs, and use
the ViT as feature extractor to encode a patch pi into a
deep feature vector gi ∈ RD. Note that any other pre-
trained or foundational model [9, 26, 49, 61–63] can be
used for patch encoding.

2. Hand-crafted PathExpert features: We use HoVer-
Net [17], pretrained on PanNuke [16] dataset, to seg-
ment and classify nuclei into 5 classes in each pi. Then,
pathologist-friendly features fi ∈ Rd are extracted
to quantify nuclei morphology and spatial distribution
properties in pi. These features can be grouped as:
Morphometric properties, i.e., intensity, shape, and tex-
ture, are computed for all the nuclei in a patch, and are
aggregated via statistical measures, i.e., mean, standard
deviation, skewness and kurtosis for each nuclei class.
Spatial distribution properties of different communities
of nuclei types in a patch are quantified using graph anal-
ysis and heterogeneity. The former uses nuclei centroids
to construct cell-graph and then extracts social network
analysis [66]-based features for each nucleus, followed
by statistical aggregation. These features capture proper-
ties such as degree of cohesiveness and nuclei clustering.
The latter quantifies the spatial interaction of different
nucleus class communities by using the nuclei centroids
and class labels. Entropy and infiltration based descrip-
tors are leveraged for this computation [42].

The comprehensive list detailing the different groups of fea-
tures, along with illustrative sample images are provided in
supplementary.

3.3. Self-Interpretable MIL (SI-MIL)

As shown in Fig. 2a, along with the aforementioned con-
ventional MIL as a branch, SI-MIL consists of a Patch
Attention-Guided Top-K (PAG Top-K) module and a SI
branch. The PAG Top-K module aims for a differentiable
selection of top K patches identified in the MIL branch;
thus enabling the co-learning with the SI branch. This
branch operates on these top K patches, by leveraging a
feature attention module to linearly scale the corresponding
relevant PathExpert features. The patch-wise PathExpert
features and feature attention scores are subsequently aggre-
gated by a linear predictor for slide-level task. SI-MIL de-
notes the dual branch co-learning framework that discrim-
inates complex WSIs using a linear equation, advancing
interpretability by introducing feature-level insights while
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Figure 2. Overview of SI-MIL: Conventional MIL branch guides the Patch Attention-Guided Top-K (PAG Top-K) patch selection module
to select the PathExpert features of key regions from WSI, followed by linear scaling in the Self-Interpretable branch, and linear prediction.

maintaining high performance and complementing existing
MILs. The details of the individual components are de-
scribed in the following sections.

PAG Top-K patch selection module: This module
leverages the patch attention scores α from the conventional
MIL branch to select the K most salient patches in a WSI.
As the naive Top-K operation is non-differentiable, we use
the differentiable perturbed Top-K operation from [11, 58].
This perturbed Top-K operation is imperative to enable the
co-learning of both the branches: conventional MIL and
SI branch. Following patch selection, only the PathEx-
pert features of the salient patches are utilized in the sub-
sequent steps. Therefore, the use of deep features in the
MIL branch does not hinder the interpretability of SI-MIL;
rather it guides the selection of informative patches, which
is denoted as:

SK = TopK(α,K) (3)
where SK denotes the indices of the selected topK patches.

Feature Attention module: The Af (·) module consists
of a patch feature mixing network and gated attention net-
work. Their synergistic integration forms a learnable fea-
ture selector without interfering with the interpretability of
SI-MIL. First, the PathExpert feature matrix M ∈ RK×d,
corresponding to the SK patches, is transposed and fed to
a patch feature mixing network PF-Mixer, PF (·). It con-
textualizes each value in MT with the top K patches and d
features. In practice, PF (·) is implemented via MLP lay-
ers [59], with separate layers dedicated to mixing spatial
patch information and per-patch feature information. Sub-
sequently, gated attention network G(·) processes each row
of the matrix MT ∈ Rd×K independently to determine the
attention score βj for each feature dj , computed as:

βj = G(PF (MT )); j ∈ {1, 2, ...d} (4)

To enforce the model to be dependent on most salient fea-
tures, we scale the feature attention scores β as follows: β
values are first scaled using percentile Prγ (where γ is the
γth precentile) and standard deviation (std), and then sig-
moid activated with a hyper-parameter, temperature (t) as

shown in Eqn. 5. This operation enforces the β values above
Prγ towards 1 and remaining towards 0, thereby imposing
sparsity in feature selection. Note that for brevity, we de-
note the scaled values of β with same notation in Eqn. 5.

βj =
βj − Prγ(β)

std(β)
; βj =

1

1 + e−βj×t
(5)

These feature attention values are used to linearly scale the
PathExpert feature matrix M such that the salient features
are emphasized while attenuating others:

M
′

ij = βj ×Mij ; i ∈ {1, 2, ...K}; j ∈ {1, 2, ...d} (6)

Note that even though Af (·) includes non-linear operations
to compute β, the original feature space M ∈ RK×d is just
linearly scaled with β. Af (·) paves the way for linear pre-
diction in the next stage, while preserving interpretability.

Linear Predictor and Aggregation: Following the at-
tention scaling of the PathExpert features corresponding to
the SK patches, the features are fed to a linear predictor
L(·) characterized by weights w(·) and bias b as:

M
′′

i =

d∑
j=1

wjM
′

ij + b; i ∈ {1, 2, ...K} (7)

Finally, for slide-level prediction, the contributions M
′′

i of
the selected patches undergo an aggregation and an activa-
tion ψ as:

Ŷf = ψ
( K∑

i=1

M
′′

i

)
(8)

It can be observed that the WSI-level prediction in the SI
branch can be decomposed into a linear combination of
feature attention scores β, classifier weights w(·), and the
PathExpert feature matrix M ∈ RK×d of the top K patches
(SK), given as:

Ŷf = ψ
( K∑

i=1

d∑
j=1

wjβjMij + b
)

(9)

Optimization: Given the true label Y for a WSI, the pre-
dictions Ŷg from the MIL branch and Ŷf from the SI branch,



SI-MIL is optimized using slide-level cross entropy losses
LCE for both the predictions with respect to the true label.
This joint optimization tames the patch attention module to
select the patches collaboratively in the deep feature and
PathExpert feature space. To enhance the performance of
the SI branch, a knowledge distillation loss LKD is opti-
mized based on the mean squared error between Ŷf and Ŷg .
LKD enforces alignment in performance between the two
branches. The overall loss is computed as:

L = LCE(Y, Ŷg) + LCE(Y, Ŷf ) + λLKD(Ŷg, Ŷf ) (10)

where λ is used as a weight to align the scale of LKD

with the LCE losses of deep feature and self-interpretable
branch. Note that during inference, prediction from any
branch can be used. However to enforce interpretability,
the WSI-level prediction is obtained from the SI branch,
i.e., Ŷf is considered for slide-level prediction and the non-
interpretable branch’s output Ŷg is discarded.

4. Experiments: Prediction Performance
Here, we first describe the datasets and implementation de-
tails, common to both performance and interpretability as-
sessment. Then, we benchmark SI-MIL on multiple WSI
classification tasks. We conclude with ablation studies and
showcasing adaptability of SI-MIL to various MIL models.

4.1. Datasets and Implementation details

Datasets: We evaluate SI-MIL on three WSI datasets:
TCGA-BRCA [33], TCGA-Lung [3, 28], and TCGA-
CRC [44]. TCGA-BRCA contains 910 diagnostic slides
of two breast cancer subtypes: invasive ductal carcinoma
(IDC) and invasive lobular carcinoma (ILC). TCGA-Lung
contains 936 slides of two non-small cell lung cancer sub-
types: lung adenocarcinoma (LUAD) and lung squamous
cell carcinoma (LUSC). TCGA-CRC: includes 320 slides
of colorectal cancer with low- or high-mutation density for
hypermutation. Additional details about train-test splits are
provided in the Supp. Sec. 8.

Patch and feature extraction: Patches of size 224×224
at 5× magnification and corresponding 1792×1792 at 40×
are extracted for each dataset. For deep features extraction,
we pretrain ViT-S [13] with DINO [8] on the 5× patches
from the training splits of individual datasets mentioned
above. PathExpert features are extracted on corresponding
patches at 40×.

MIL setting: Additive ABMIL [24] is adopted as the
conventional MIL in this study. Ap(·) and Af (·) are
deep neural network based gated attention modules adopted
from [36]. For all the MIL experiments, the batch size is set
to 1 to handle WSIs of variable bag sizes. For robustness, 5-
fold cross-validation is performed on the train split and the
mean performance on the held-out test split is reported. By
default, #PF-Mixer layers =4, λ = 20, K = 20, γ = 0.75,

and t = 3. More implementation details are provided in
the Supp. Sec. 9. Note that SI-MIL is evaluated with only
DINO ViT-S features. Experimentation with other deep fea-
tures is left for future exploration.

4.2. Slide-level classification performance

In this section, we benchmark the WSI classification perfor-
mance of SI-MIL in terms of accuracy and area under the
curve (AUC), which are the commonly employed metrics
to quantify the fidelity of interpretability algorithms [18].
Table 1 presents the classification performance of SI-MIL
and the competing baselines. In absence of WSI-level self-
interpretable methods, we construct interpretable baselines
by perturbing SI-MIL under various settings. The baselines
can be grouped in terms of the types of employed features
as follows:

Baselines using deep features: These baselines denote
training Additive ABMIL with features from different pre-
trained deep feature extractors, i.e., ImageNet [12] super-
vised ViT-S (IN ViT-S), RetCCL [63], CTransPath [62], and
our pretrained DINO ViT-S. Although these baselines can
render patch-level contributions in terms of attention maps,
one cannot entirely deduce the reasoning behind these patch
attentions, and cannot obtain feature-level understanding
due to their inherently non-interpretable characteristics.

Baselines using PathExpert features: These baselines
denote training Additive ABMIL with PathExpert features.
To induce interpretability, we train MIL with PathExpert
features, referred as PathFeat. However, this framework is
non-interpretable as the projectorH(·) maps the PathExpert
features into a non-interpretable deep feature space. There-
fore, we include a true interpretable baseline by training the
MIL without H(·).

2-stage training using PathExpert features: Here, we
first train the Additive ABMIL and extract top-K attended
patches for each WSI. Then, a self-interpretable linear clas-
sifier using the PathExpert features from the patches is
trained. Specifically, we train the SI branch independent
of the MIL branch, i.e., without PAG Top-K. This is analo-
gous to the post-hoc analytical methods in [10, 15].

Results: As observed in Table 1, conventional MIL us-
ing PathExpert features, and particularly the one without
projector, performs considerably worse than the methods
using deep features. This accuracy-interpretability trade-off
often undermines the benefits of using interpretable frame-
works/features. SI-MIL aims to close this performance gap
by utilizing deep feature-based guidance. We find that SI-
MIL, despite imposing a linear constraint (Eq. 9) on predic-
tions, elevates the performance of PathExpert features to be
on par with deep feature-based baselines.

Note that the results for RetCCL and CTransPath are po-
tentially inflated as the feature extractors were pretrained
on the entire TCGA cohort, including test splits used in our
study. Thus, the DINO ViT-S and IN ViT-S baselines, unaf-



Table 1. Results indicate the mean of 5-fold cross-validation on
test set. All methods are trained with Additive ABMIL as base
MIL. Int. denotes self-interpretability of a method.

Lung BRCA CRC
Int. Acc. AUC Acc. AUC Acc. AUC

IN ViT-S ✗ 0.859 0.919 0.929 0.967 0.891 0.898
RetCCL ✗ 0.860 0.935 0.929 0.976 0.889 0.891

CTransPath ✗ 0.904 0.967 0.920 0.974 0.906 0.897
DINO ViT-S ✗ 0.896 0.957 0.937 0.974 0.904 0.897

PathFeat ✗ 0.830 0.888 0.885 0.950 0.886 0.818
PathFeat w/o H(·) ✓ 0.767 0.837 0.889 0.914 0.853 0.720

2-stage training ✓ 0.865 0.932 0.908 0.924 0.876 0.862
SI-MIL (ours) ✓ 0.884 0.941 0.944 0.968 0.884 0.910

Ablation study of SI-MIL components

w/o PAG Top-K ✓ 0.859 0.936 0.915 0.922 0.876 0.869
w/o KD ✓ 0.853 0.915 0.932 0.951 0.878 0.830

w/o PAG Top-K & KD ✓ 0.857 0.924 0.915 0.899 0.879 0.858

Table 2. Mean of 5-fold cross-validation for adapting SI-MIL with
other MIL frameworks (additive versions [24]) on TCGA-BRCA.

DINO ViT-S SI-MIL
MIL Acc. AUC Acc. AUC

ABMIL 0.937 0.974 0.944 0.968
CLAM 0.937 0.972 0.925 0.957

TransMIL 0.934 0.936 0.929 0.933

fected by the test split, provide a more accurate comparison.

Ablation studies: In Table 1, we mainly showcase the
significance of the meticulously designed components of
SI-MIL. We show the implication of the PAG Top-K mod-
ule by omitting the perturbed Top-K selection and block-
ing gradient flow from the SI branch to the MIL branch.
In Table 1, we observe that a non-differentiable approach
degrades the performance. This indicates that the most dis-
criminative region identified by the MIL is potentially less
effective in the PathExpert feature space, thus highlighting
the need to find regions discriminative in both feature spaces
for enhancing the predictive power of SI branch. It can also
be observed that in both settings, with or without perturbed
Top-K, knowledge distillation is instrumental in enhanc-
ing the performance. LKD acts as a regularizer for the SI
branch, pushing it to stay as close as to the high-performing
MIL branch. Additional ablations demonstrating the effect
of varyingK in the PAG Top-K module, the number of PF-
Mixer layers, and the percentile and temperature for scaling
β are presented in the Supp. Sec. 11.

Adaptability of SI-MIL to other MILs: On the TCGA-
BRCA dataset, we evaluate the generalizability of SI-MIL
by adapting to state-of-the-art MIL frameworks, i.e., AB-
MIL [21], CLAM [36], and TransMIL [56], in the MIL
branch. Results in Table 2 establish that our SI-MIL ex-
tensions remain competitive with the corresponding MIL
methods using standalone DINO ViT-S features.

5. Experiments and Results: Interpretability

In this section, we evaluate our SI-MIL model across vari-
ous statistical criteria, i.e., univariate and multivariate class-
separability, and desiderata of interpretability [18], i.e.,
user-friendliness and faithfulness, focusing on both local
slide-level and global cohort-level interpretations. The
user-friendliness metric evaluates how easily end-users,
i.e. pathologists, can understand and trust the model pre-
dictions, and the faithfulness metric gauges the extent to
which model’s explanations align with the expert’s reason-
ing. The paper includes detailed analyses on TCGA-BRCA
test WSIs. Further analyses on TCGA-Lung and TCGA-
CRC are presented in the Supp. Sec. 14.

5.1. Local Interpretation: Slide-level
SI-MIL can explain model predictions at WSI-level with-
out relying on post-hoc methods [4]. Contrary to existing
MIL [24, 36, 56], SI-MIL can produce both patch- and
feature-level explanations, due to the linear mapping be-
tween the PathExpert features and output predictions. Fig. 3
presents aggregated patch-feature importance reports gen-
erated by SI-MIL for two TCGA-BRCA WSIs, elucidat-
ing the rationale behind the predictions. Below, we explain
the setup for generating such reports and then quantify their
quality in terms of user-friendliness and faithfulness.
WSI-level patch-feature importance report setup: Input
WSIs with overlaid patch-attention saliency maps, gener-
ated by the MIL branch are shown in Fig. 3a. Up next,
Fig. 3b shows the informative top K patches and their nu-
clei predictions (K =2 for simplicity). The nuclear map
identifies the nuclei types and highlights their spatial orga-
nization in the tissue. Next, the feature contributions across
the top K patches are detailed in Fig. 3c. Recall that in
Eqn. 9, wjβjMij denotes the contribution of the i-th patch
and its j-th feature, where

∑K
i=1 wjβjMij infers the ag-

gregated contribution of the j-th feature towards WSI pre-
diction. We present the mean contributions and 95% confi-
dence intervals across K patches, shown only for the three
most contributing features for simplicity. The negative and
positive contributions are indicative of class 0 (IDC) and
class 1 (ILC), respectively, as activated by sigmoid in Eq. 8.
The feature distribution shows the range of the correspond-
ing normalized features across K patches. The distribution
inclining towards left or right indicates low/negative values
or high/positive values of the feature, respectively. Look-
ing at the distribution and contribution together, if we have
a positively inclining distribution and negative contribution,
then it means increasing the feature pushes the prediction
towards class 0. Fig. 3d illustrates a few features identified
in Fig. 3c, with the representative patches having low and
high value of corresponding features.
User-friendliness: We qualitatively evaluate the utility of
the patch-feature reports by an expert pathologist. First, we
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Figure 3. Qualitative Patch-Feature importance report: In (a) and (b), we present WSIs with overlaid attention heatmaps and the top
two patches, along with their nuclei maps. In (c), we demonstrate the mean contribution magnitude of select representative features across
the top K patches employed in the Self-Interpretable branch. Additionally, we display a feature density plot that quantifies the distribution
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presented top K (= 20) patches and corresponding nuclear
maps for the WSIs in Fig. 3a to the expert. The selected
IDC and ILC patches demonstrated good agreement with
class-specific prior knowledge. The IDC patches contained
coherent cancer cells forming malignant glands, nests, or
sheets with commentary about nuclear size, shape, color,
and chromatin texture; and the ILC patches showed infil-
trating small round cells in single file configurations. Af-
terwards, the top 10 contributing PathExpert features and
associated feature distributions, as identified by SI-MIL in
Fig. 3c, were evaluated by the expert to assess their correla-
tion with domain knowledge in classifying IDC and ILC.
90% and 80% of these features for IDC and ILC WSIs
in Fig. 3a were found relevant, respectively, due to their
strong association with cell cohesiveness, nuclear hyper-
chromaticity, and morphology of cancerous nuclei prop-
erties. These analyses helped the pathologist in reasoning
with the model’s rationale and developing trust in model’s
predictions. Interestingly, the pathologist commented on
the utility of such feature-level relevance report in down-
stream correlations with genomic and laboratory data.
Faithfulness: We evaluated the faithfulness of our reports
by quantifying the alignment of the top identified PathEx-
pert features with pathologist’s assessments. The evaluation
involved the pathologist assigning relevance scores to the
top features. Specifically, we selected 10 WSIs each from
IDC and ILC, and generated patch-feature reports includ-
ing top 10 contributing PathExpert features. Then, the re-
ports were analyzed and the features were categorized into
high-, moderate-, or non-relevant categories by the expert.
The mean and standard deviation of the number of features
in each category are reported separately in Table 3. Also,

an aggregated percentage of the number of features in each
category is reported. The analysis shows that the major-
ity of the identified features are either highly or moderately
relevant towards correct classification and interpretability.
Among the non-relevant features, a few are interesting to
be analyzed on larger cohorts to potentially discover new
diagnostic biomarkers. The selection of some of the non-
relevant features may also be due to certain misclassifica-
tions by HoVer-Net. This is left for future exploration.

Table 3. Pathologist evaluation at slide-level for top contribut-
ing features’ relevancy for IDC and ILC classes in TCGA-BRCA.
Agg. denotes aggregated percentages of features belonging to
three relevancy groups.

Highly Relevant Moderately Relevant Non Relevant

IDC 5.40 ± 1.43 2.10 ± 0.94 2.50 ± 1.28
ILC 3.25 ± 0.97 3.75 ± 0.83 3.00 ± 1.12

Agg. 44.5% 28.3% 27.2%

5.2. Global Interpretation: Cohort-level
In this section, we holistically analyze how SI-MIL in-
terprets at a global cohort-level and benefits over conven-
tional MIL. Specifically, we perform univariate and multi-
variate statistical analysis to measure class-separability in
the PathExpert feature space, inline with [10, 15, 43].
Univariate and Multivariate class-separability: Through
global cohort-level analysis, we demonstrate that SI-MIL,
which includes the co-learning of MIL and SI branches, op-
timizes the selection of more informative patches than con-
ventional MIL. During inference for both the models, we
separately collect the top K attended patches across WSIs
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and Univariate analyses depict that the top K patches selected by SI-MIL and their PathExpert features are more separable.

corresponding to the two classes in TCGA-BRCA. Subse-
quently, we use the pre-extracted d PathExpert features for
the selected patches, as described in Sec. 3.2. Formally,
given N1 and N2 number of WSIs in the two classes, we
construct PathExpert feature matrices F1 ∈ R(N1×K)×d

and F2 ∈ R(N2×K)×d for both the models.

Multivariate analysis employs t-SNE [60] to project F1

and F2 into a 2D embedding space, as shown in Fig. 4a. Af-
terwards, we measure the class-separability in terms of two
metrics: (1) JSdiv@i, which entails fitting a 2D Gaussian
mixture model with i components to each class and calcu-
lates the Jansen-Shannon (JS) divergence between the two
distributions; and (2) Silhouette score [50], an unsupervised
metric to evaluate the quality of class-wise created clusters.
Both the measures are distance-based metrics that aim to
highlight how separable the patches from the two classes
are, in the projected embedding space. To account for mod-
eling variability, we report the mean and standard deviation
of the metrics across 5-fold cross-validation, as presented in
Sec. 4.1. It can be observed in the table in Fig. 4a that SI-
MIL consistently provides higher class-separability scores
than conventional MIL method. This can be attributed to
the co-learning technique in SI-MIL, which results in se-
lecting more informative patches for individual classes that
are better separable in the PathExpert feature space.

Univariate analysis examines the class-separability of
patches for individual PathExpert features. For a given fea-
ture, i.e., a column in F1 and F2, we create class-wise den-
sity distributions and measure the JS divergence. For vi-
sual simplicity, we show the univariate analysis for the two
PathExpert features for both SI-MIL and the conventional
MIL in Fig. 4b. We can observe that the class-wise density
distributions in SI-MIL are significantly better separated
than the MIL. This further supports our argument of better
patch selection in SI-MIL from multivariate analysis. For an
aggregated univariate analysis, we rank the features by the
decreasing order of JS divergence, and plot the median JS
divergence against the increasing number of features. Sim-

ilar to multivariate analysis, we state the mean and std of
the medians across 5-fold cross-validation (Fig. 4b). We
can observe that SI-MIL provides significantly better me-
dian class-separability for a good number of features, which
strongly supports the enhanced quality of selected patches
while preserving pathological understanding.

5.3. Dataset contribution
We contribute a comprehensive dataset aimed at enhancing
interpretability and reproducibility in MIL research. It com-
prises of nuclei maps, PathExpert features, and SI-MIL-
generated patch-feature importance reports for 2.2K WSIs.
WSI processing and feature extraction involved significant
computing resources (details in Supp. Sec. 13). The com-
plete list of PathExpert features, including cell shape and
texture properties, spatial configurations, and interactions
among different cell types, is detailed in the supplementary
material. We provide the key elements to enable researchers
to further expand on the already comprehensive set.

6. Conclusion
We present Self-Interpretable MIL, which not only aug-
ments model interpretability by identifying salient regions
and providing feature-level contributions within these re-
gions but also achieves high performance on gigapixel WSI
tasks. SI-MIL bridges the gap between AI-driven analy-
sis and pathologist-friendly reasoning, a first of its kind in
histopathology. From an evolutionary perspective, differ-
ent cancers may share fundamentally similar characteris-
tics; the PathExpert features in SI-MIL can capture these
properties, possibly lending itself well to rare/unseen can-
cers. Future work will also involve integration of LLM-
driven pathological concepts in model training.
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Supplementary Material

In this supplementary material, details are provided on
the following:
• Dataset details (additional) (8)
• Implementation details (additional) (9)
• SI-MIL additional results (10)
• SI-MIL ablation studies: hyperparameter sensitivity (11)
• SI-MIL ablation studies: model components (12)
• Dataset contribution details (additional) (13)
• Local interpretability analysis (additional) (14)
• Global interpretability analysis (additional) (15)
• Top-K comparative analysis (16)
• Hand-crafted PathExpert feature extraction (17)

8. Dataset details (additional)
We benchmark our SI-MIL on three WSI datasets, namely
TCGA-BRCA, TCGA-Lung, and TCGA-CRC. SI-MIL
necessitates PathExpert features for interpretable predic-
tion. We use HoVer-Net for segmenting and classifying the
nuclei, and afterwards computed hand-crafted PathExpert
features. Since HoVer-Net is trained exclusively on 40×
magnification patches, our analysis is confined to WSIs hav-
ing 40× magnification. This ensures accurate nuclei predic-
tion and thereby meaningful PathExpert feature extraction.

TCGA-BRCA is split into 825 training (653 IDC, 172
ILC) and 85 testing (67 IDC, 18 ILC) WSIs following [9].
TCGA-Lung dataset is split into 744 training (388 LUAD,
356 LUSC) and 192 testing (96 LUAD, 96 LUSC) WSIs
following DSMIL [31]. For TCGA-CRC, following [6,
34], we use the first three folds for training, i.e., 241 WSIs
(38 hypermutated, 203 not) and the fourth for testing, i.e.,
79 slides (12 hypermutated, 67 not) with 40× filtering. The
patch extraction process implemented in our study follows
the methodology outlined in the aforementioned DSMIL
repository [31].

9. Implementation details (additional)
9.1. Deep feature extractors

We compared SI-MIL against different baselines that in-
clude training Additive ABMIL using different types of
patch features. Details of the patch feature extractors are
presented as follows:
IN ViT-S: We train the Additive ABMIL using features ex-
tracted by a popular ImageNet-supervised model, specif-
ically ViT-Small [13] model pre-trained using ImageNet
dataset [12]. The model extracts a feature embedding of
size D = 384 for each WSI patch.
RetCCL: We adopted a state-of-the-art feature extrac-
tor [63] pre-trained using pathology images. This bench-

marks our trained feature extractor, described in Sec. 4.2.
This model extracts a feature embedding of size D = 2048.
CTransPath: Similar to RetCCL, we benchmarked against
a Transformer-based feature extractor pre-trained using
pathology images [62]. The resulting patch embeddings are
of size D = 768.

It is important to note that CTransPath and RetCCL were
pre-trained on the pan-TCGA [1] dataset, and our evaluated
datasets are subset of this dataset. Therefore, these models
were pre-trained using the WSIs in our test dataset, which
can potentially result in inflated performances during clas-
sification. Though benchmarked, these models may not be
suitable for reliable comparisons in our study.
DINO ViT-S: For a reliable comparison, we used DINO [8]
to pre-train ViT-Small models for each dataset (TCGA-
BRCA, TCGA-Lung, and TCGA-CRC), using the dataset-
specific training splits as provided in the Supp Sec. 8 For
pre-training, we used the default hyperparameter values of
DINO [8], while using only two global crops. These pre-
trained models extract a feature embedding of sizeD = 384
for each WSI patch. One RTX 8000 GPU is utilized for pre-
training the ViT-S with a batch size of 256.

9.2. SI-MIL

Hyperparameter tuning is performed with a range of learn-
ing rates ∈ {1e−3, 2e−3, 1e−4, 2e−4} and weight decays ∈
{1e−2, 5e−3}. By default, #PF-Mixer layers =4, λ = 20,
K = 20, γ = 0.75, and t = 3. Additionally, d = 246 ex-
cept for in TCGA-Lung where d = 203 as annotations for
only 4 (instead of 5) cell types are available for HoVer-Net
classification in the Lung dataset. For both the predictors
L(·) and C(·), we use the sigmoid activation (ψ), since our
tasks involve binary classification. Note that LKD is uti-
lized with stop-gradient since the goal is to align the perfor-
mance of the Self-Interpretable branch to be close to high
performing conventional MIL branch in SI-MIL. All MIL
experiments are performed on one RTX 8000 GPU.

9.3. Interpretability analysis setup

For interpretability analysis, we compare the separability of
the top K patches in the PathExpert feature space between
the conventional MIL and SI-MIL (refer to Figure 4). To
ensure a fair comparison, we select WSIs from the held-out
test set where both MIL methods result in correct predic-
tions.

Note that, we employ 5-fold cross-validation on the
training split and held out the test set. We chose the best-
performing fold for both local (visualization and patholo-
gist relevancy score experiment) and global (visualization)



interpretability analysis for the MIL methods. However, for
multivariate class-separability scores (refer to Figure 4), we
report the median and standard deviation from all 5-folds.
Similarly, we report the median and standard deviation of
Jensen-Shannon (JS) divergence across all 5-folds in Fig-
ure 4.

9.4. SI-MIL complexity analysis

The mitigation of the trade-off between performance and
interpretability by SI-MIL can be attributed to the choice
of PathExpert features and the SI-MIL design choices, in-
stead of merely an increase in the number of model param-
eters. It can be justified by comparing the size and perfor-
mance of SI-MIL with the competing baselines. The num-
ber of model parameters in SI-MIL is 625K, while those
in conventional MIL with DINO/IN ViT-S, CTransPath and
ReTCCL are 345K, 985K, and 5.25M, respectively. Despite
the differences in model sizes, SI-MIL results in compara-
ble performance with respect to the competing baselines, as
shown in Table 1.

10. SI-MIL additional results
Here we provide the mean and standard deviations for the
main experiments (refer to Table 1) in Table 4.

11. SI-MIL ablation studies: hyperparameters
In this section, we provide studies of SI-MIL hyperparame-
ters on TCGA-BRCA dataset. Particularly, these ablations
demonstrate the effect of varying K in the PAG Top-K
module, the number of PF-Mixer layers, and the percentile
and temperature for scaling β.

Effect of varying K in the PAG Top-K module: In
Figure 5, we illustrate the impact of varying K on SI-MIL
performance. We observe that a larger value of K leads to
a significant drop in performance compared to the default
K = 20. This decrease may be attributed to an increase
in irrelevant noisy patches, which makes it difficult for the
model to classify WSIs in the PathExpert feature space.
Effect of varying number of PF-Mixer layers: SI-MIL’s
performance is generally robust across various values of the
number of PF-Mixer layers, but experiences a performance
drop for very high values, e.g., #PF-Mixer layers = 6 (Fig-
ure 6). This decline can be attributed to potential overfitting
induced as a result of higher number of layers.
Effect of percentile and temperature for scaling β: In
Figure 7, we show the variation in performance of SI-MIL
with respect to the percentile value (Prγ) and temperature
(t) for scaling the feature attention values β in eq. 5. “None”
in Figure 7 refers to the absence of percentile and standard
deviation scaling.
Prγ controls the percentage of features (d) that have a

positive value before being fed to the sigmoid activation in

Figure 5. PAG Top-K module ablation

Figure 6. PF-Mixer module layers ablation

eq. 5. The temperature parameter (t) determines the sharp-
ness of this curve, with a high value indicating that most
values deviate from zero before being fed to the sigmoid.
Thus, having high Prγ and high t leads to a very sparse se-
lection of features. Since our goal is to interpret the predic-
tion of WSI, it is beneficial to explain the prediction in terms
of the contribution of “few” most discriminative features.
Note that the absence of Prγ scaling and/or low tempera-
ture allows the model to use a large number of features for
its prediction; thus making it harder to interpret the predic-
tions. Therefore, the main goal is to have higher values of
Prγ and t, while maintaining a good SI-MIL performance.

In Figure 7, we can observe that having no Prγ scaling
generally results in the best performance, whereas a very
high value, such as Prγ = 0.9, performs poorly in most
cases. We find that having a slightly lower Prγ = 0.75 and
t = 3 establishes an optimal balance, by enforcing adequate
sparsity while still performing efficiently.

12. SI-MIL ablation studies: components
In Table 1, we demonstrate the variations in performance
when ablating different components of SI-MIL. Similarly,
in Table 5, we present additional experiments on the impact



Table 4. Results indicate the mean and standard deviation of 5-fold cross-validation on test set. All methods are trained with Additive
ABMIL as base MIL. Int. denotes self-interpretability of a method.

Lung BRCA CRC
Int. Acc. AUC Acc. AUC Acc. AUC

IN ViT-S ✗ 0.859± 0.014 0.919± 0.004 0.929± 0.011 0.967± 0.005 0.891± 0.013 0.898± 0.018
RetCCL ✗ 0.860± 0.008 0.935± 0.003 0.929± 0.011 0.976 ± 0.001 0.889± 0.015 0.891± 0.047

CTransPath ✗ 0.904 ± 0.003 0.967 ± 0.002 0.920± 0.023 0.974± 0.002 0.906 ± 0.010 0.897 ± 0.023
DINO ViT-S ✗ 0.896± 0.003 0.957± 0.003 0.937 ± 0.012 0.974± 0.005 0.904± 0.006 0.897 ± 0.014

PathFeat ✗ 0.830± 0.015 0.888± 0.009 0.885± 0.014 0.950± 0.005 0.886 ± 0.016 0.818± 0.031
PathFeat w/o H(·) ✓ 0.767± 0.018 0.837± 0.016 0.889± 0.012 0.914± 0.003 0.853± 0.013 0.720± 0.044

2-stage training ✓ 0.865± 0.007 0.932± 0.009 0.908± 0.017 0.924± 0.019 0.876± 0.020 0.862± 0.036
SI-MIL (ours) ✓ 0.884 ±0.018 0.941 ±0.009 0.944 ±0.028 0.968 ±0.012 0.884 ±0.017 0.910 ±0.018

Ablation study of SI-MIL components

w/o PAG Top-K ✓ 0.859 ±0.009 0.936 ±0.011 0.915 ±0.023 0.922 ±0.026 0.876 ±0.022 0.869 ±0.024
w/o KD ✓ 0.853 ±0.010 0.915 ±0.007 0.932 ±0.016 0.951 ±0.024 0.878 ±0.024 0.830 ±0.039

w/o PAG Top-K & KD ✓ 0.857 ±0.005 0.924 ±0.005 0.915 ±0.009 0.899 ±0.013 0.879 ±0.022 0.858 ±0.036

Figure 7. β scaling ablation

of different SI-MIL components.

We observed that omitting the Feature Attention mod-
ule Af (·) results in better performance compared to us-
ing it without the PF-Mixer network Mix(·), though both
scenarios underperform relative to the proposed SI-MIL.
This indicates that Af (·), which softly selects features, re-
quires contextualization among the patches and features be-
fore highlighting or attenuating specific features within this
module. Without appropriate contextualization, processing
each feature row in matrix MT independently leads to sub-
optimal decisions by Af (·) and reduces performance.

We further investigate the necessity of deep features
in SI-MIL. For this purpose, we substituted deep features
with PathExpert features in the conventional MIL branch,
thereby using the same PathExpert features in both SI-MIL
branches. As shown in Table 5, the performance declines
with or without LKD when replacing deep features, under-
scoring the importance of employing potent deep features
to guide the Self-Interpretable branch in SI-MIL.

Table 5. Results indicate the mean of 5-fold cross-validation on
test set. All methods are trained with Additive ABMIL as the base
MIL. Int. denotes self-interpretability of a method.

Lung BRCA CRC
Int. Acc. AUC Acc. AUC Acc. AUC

PathFeat ✗ 0.830 0.888 0.885 0.950 0.886 0.818
PathFeat w/o H(·) ✓ 0.767 0.837 0.889 0.914 0.853 0.720

2-stage training ✓ 0.865 0.932 0.908 0.924 0.876 0.862
SI-MIL (ours) ✓ 0.884 0.941 0.944 0.968 0.884 0.910

Ablation study of SI-MIL components

w/o Af (·) ✓ 0.853 0.935 0.939 0.981 0.871 0.857
w/o Mix(·) ✓ 0.838 0.915 0.925 0.953 0.866 0.863

w/ PathFeat only ✓ 0.863 0.936 0.911 0.942 0.876 0.836
w/ PathFeat only & w/o KD ✓ 0.847 0.911 0.911 0.945 0.853 0.781

13. Dataset contribution details (additional)

We contribute a unique comprehensive dataset aimed at
enhancing interpretability and reproducibility in MIL re-
search. The dataset encompasses nuclei maps and PathEx-
pert features for over 2,200 WSIs. SI-MIL-generated patch-
feature importance reports will also be made available for
representative slides. It covers multiple organs and can-
cer types, including Lung (lung adenocarcinoma vs. lung
squamous cell carcinoma), Breast (invasive ductal vs. in-
vasive lobular carcinoma), and Colon (low vs. high mu-
tation). This diverse collection facilitates in-depth studies
across various cancer types, providing a valuable resource
for advancements in interpretable MIL methodologies.

Successful translation of AI tools to the clinic hinges
upon the interpretability and trustworthiness of the tools.



This dataset will serve as a critical asset for both the medical
vision and digital pathology communities, facilitating the
exploration of new research directions in the development
of interpretable AI techniques for computational pathol-
ogy. A significant obstacle in digital pathology research
has been the intensive resource requirements for extracting
features that possess clear geometric and physical signif-
icance, and which are interpretable by pathologists. The
dataset creation involved analyzing gigapixel WSIs at 40×
magnification, leveraging HoVer-Net [17] for cell segmen-
tation and classification, followed by extracting PathExpert
features and feature importance scores detailed in Sec. 3.2
and Sec. 5, respectively. Processing each WSI required ∼2
hours, divided between GPU-based cell map prediction and
CPU-based PathExpert feature extraction. Employing three
RTX 8000 GPUs and a 40-core CPU with 500GB RAM, the
total processing amounted to ∼4400 hours (≈60 days). We
provide the comprehensive set to enable further research.

In view of ∼2 TB memory foorprint of HoVer-Net nuclei
maps and the processed PathExpert features, we intend to
host this dataset on TCIA Analysis Results, akin to other
popular preprocessed datasets [25, 55].

The dataset will be released under the Creative Com-
mons Attribution-NonCommercial 4.0 International Li-
cense (CC BY-NC 4.0). It permits the sharing, copying, and
redistribution in any medium or format, as well as adapta-
tion, remixing, transforming, and building upon the mate-
rial for non-commercial purposes. Appropriate credit must
be given, a link to the license must be provided, and any
changes made should be indicated.

14. Local interpretability analysis (additional)
Here, we present additional predictions (refer to Sec. 5) for
WSIs from other datasets, i.e., TCGA-Lung and TCGA-
CRC. Please note that the predictions for all WSIs in the
evaluated datasets will be released as part of the contributed
dataset. Qualitative patch-feature importance reports for
TCGA-Lung and TCGA-CRC are illustrated in the upper
and lower half of Figure 8, respectively.

15. Global interpretability analysis (addition)
Here, we present global interpretability analysis (refer to
Sec. 5) for patches from the test set WSIs. We include only
the WSIs that were correctly predicted by both the conven-
tional MIL and SI-MIL, to ensures a fair comparison, as
described in Sec. 9. Cohort-level interpretation for TCGA-
Lung and TCGA-CRC are illustrated in the upper and lower
half of Figure 9, respectively.

16. Top-K comparative analysis
In this section, we demonstrate how the Self-Interpretable
branch of SI-MIL tames the patch attention map of con-

ventional deep MIL. Specifically, Figures 10 and 11 com-
pare the spatial attention maps generated after the training
of conventional MIL (i.e., without PathExpert features) and
SI-MIL, which integrates both the conventional MIL and
Self-Interpretable branches. We proceed to visualize the
top K = 20 patches from both MIL methods, categoriz-
ing them into groups based on whether they are common or
distinct between the methods.

In Figure 10, we contrast the topK = 20 patch selection
of our Self-Interpretable MIL (SI-MIL) with conventional
MIL in analyzing invasive ductal carcinoma (IDC) WSIs.
SI-MIL and conventional MIL share 6 out of 20 patches,
but differ in the remaining 14. While conventional MIL
often chooses patches near the dermis, featuring IDC with
smooth connective areas and occasionally normal glands,
SI-MIL targets patches indicative of malignancy, marked
by malignant cancerous ducts with large, distorted nuclei.
This difference, especially evident in the unique patches
of SI-MIL, underscores its focus on diagnostically rele-
vant areas like malignant glands with compressed lumens
and hyperchromatic nuclei, contrasted against the tissue
highlighted by conventional MIL. SI-MIL’s emphasis is on
patches comprising 70-80% of malignant features, includ-
ing dense pink-colored cancer-associated stroma, aligning
with its goal of accurate diagnosis.

In the context of invasive lobular carcinoma (ILC), early
detection is crucial due to its rapid spread and poor long-
term survival outcomes, necessitating clear differentiation
from invasive ductal carcinoma (IDC). In Figure 11, we ob-
serve an absence of common patches between the top K =
20 attended patches of both MIL methods. Our method,
in contrast to conventional MIL, distinctively focuses on
invasive single file chains, often found at the periphery
of the tumor bulk or the invasive front, which are more
characteristic of ILC. This is in contrast to the conventional
MIL’s emphasis on patches with high cellularity within the
tumor bulk. The rapid spread of lobular cancer is evident
in its infiltration through various tissues, and unlike IDC,
which often presents as glandular structures with clear sep-
arations between tumorous and connective nuclei, ILC is
characterized by discohesive arrangements, leading to sin-
gle file patterns with a notable mixing of tumor nuclei with
connective nuclei.

17. Hand-crafted PathExpert feature extrac-
tion

In Sec. 3.2, we briefly discussed the categories of
handcrafted PathExpert features, such as Morphomet-
ric and Spatial distribution properties. This section
provides a detailed description of these features, ac-
companied by visualizations to elucidate the signifi-
cance of their geometrical and physical meaning in
computational pathology. We further refine these fea-

https://creativecommons.org/licenses/by-nc/4.0/
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Figure 8. Qualitative Patch-Feature importance report: In (a) and (b), we present WSIs with overlaid attention heatmaps and the top
two patches, along with their nuclei maps. In (c), we demonstrate the mean contribution magnitude of select representative features across
the top K patches employed in the Self-Interpretable branch. Additionally, we display a feature density plot that quantifies the distribution
of features within the K patches. For brevity, we omit the y-axis. Given that these features are normalized, a curve leaning towards the
right indicates higher/positive values, while one towards the left signifies lower/negative values, depending on the feature. Finally, in (d),
we illustrate, the description of representative features in (c).

tures into three categories, based on the studies from
which they were adopted: Morphometric properties (from
FLocK [35]), Graph-based Social Network Analysis [66],
and Spatial heterogeneity properties [42].

17.1. Feature categories

We employ HoVer-Net [17] to segment and classify nuclei
in each WSI patch pi, using the model trained on PanNuke.
The classified nuclei include Neoplastic epithelial, Connec-
tive, Inflammatory, Necrosis, and Non-neoplastic epithelial
classes. Subsequently, image-processing tools are used to

quantify the properties and spatial distribution of nuclei in
each patch. Next we provide a detailed description of each
feature within these categories.

17.1.1 Morphometric properties

In a patch pi, we extract 10 morphometric properties for
each segmented nucleus as outlined in Table 6. To rep-
resent the entire patch, these nuclei-level features are ag-
gregated using 4 statistical properties: mean, standard de-
viation, skewness, and kurtosis. This aggregation is per-
formed separately for each of the 5 nuclei classes identified



Metrics Conventional MIL SI-MIL
Silhouette score 0.03 ± 0.01 0.06 ± 0.03

JSdiv @ 1 0.07 ± 0.03 0.22 ± 0.15
JSdiv @ 2 0.26 ± 0.05 0.74 ± 0.26
JSdiv @ 3 0.54 ± 0.06 0.86 ± 0.17
JSdiv @ 4 0.62 ± 0.08 0.94 ± 0.21

SI-MIL: top 𝑲 patchesConventional MIL: top 𝑲 patches
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Metrics Conventional MIL SI-MIL
Silhouette score 0.09 ± 0.05 0.11 ± 0.05

JSdiv @ 1 0.53 ± 0.37 0.63 ± 3.55
JSdiv @ 2 2.06 ± 1.03 8.02 ± 4.59
JSdiv @ 3 4.29 ± 0.86 8.99 ± 6.88
JSdiv @ 4 5.51 ± 1.47 17.28 ± 7.55
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Figure 9. Cohort-level Interpretation: Separability of top K patches of WSIs across classes in the PathExpert feature space. Multivariate
and Univariate analyses depict that the top K patches selected by SI-MIL and their PathExpert features are more separable.

by HoVer-Net. Additionally, the number of nuclei in each
class is included as a feature.

Consequently, this results in a total of 205 patch-level
aggregated morphometric properties: 10 × 4 × 5 for the
morphometric properties aggregated across the four statis-
tics and five nuclei classes, plus five for the count of nuclei
in each class.

In computational pathology, these 205 morphometric
properties from each patch pi provide a holistic tissue pro-
file. These features encapsulate key morphological charac-
teristics of nuclei, crucial for pathological assessment. By
employing statistics like mean, standard deviation, skew-
ness, and kurtosis, we gain insights into the variability,
asymmetry, and tailedness of the nuclei’s morphological
properties within each patch. Separately analyzing these
features for each of the five nuclei classes as identified
by HoVer-Net enriches the model’s understanding of the
tissue heterogeneity and cellular composition. Addition-
ally, counting nuclei per class quantifies cellular composi-
tion, further enriching the diagnostic value in computational

Group Feature

Shape

Area
Eccentricity
Roundness
Orientation

Morphology

Mean of Intensity
Standard Deviation of Intensity

Contrast of Texture
Dissimilarity of Texture
Homogeneity of Texture

Energy of Texture

Table 6. Description of extracted morphometric properties for
each segmented nuclei

pathology.



17.1.2 Graph-based Social Network Analysis

In a patch pi, we construct a graph based on the centroids
of nuclei and quantify the properties of this network. Draw-
ing inspiration from [66], we initially create a k-nearest
neighbor graph (with k = 6) using the centroid locations of
each segmented nucleus, irrespective of their classes. Sub-
sequently, we extract 4 traditional social network analysis
properties for each nucleus, as detailed in Table 7. This
is followed by statistical aggregation to patch-level using
mean, standard deviation, skew, kurtosis, and max. This
results in total 20 aggregated Social Network features.

Feature
Degree

Degree centrality
Clustering coefficient
Closeness centrality

Table 7. Description of extracted social network analysis proper-
ties for each nuclei

The Degree and Degree Centrality metric in our study
provides insight into the number of direct connections a nu-
cleus has within the tissue network, illuminating its level of
interaction. This is pivotal in understanding nuclei commu-
nication and behavior in various pathological states. The
Clustering Coefficient is another key measure, offering in-
sights into the extent of interconnectivity among a nucleus’s
neighbors. This can reveal localized nuclei clusters, a
feature often observed in certain pathological conditions.
Lastly, Closeness Centrality assesses the average shortest
distance from a nucleus to all others, aiding in identifying
nuclei that are central or isolated within the tissue architec-
ture. This comprehensive analysis of nuclei organization
and interaction patterns through these SNA features is cru-
cial for an in-depth understanding of the tissue’s pathology.

17.1.3 Spatial Heterogeneity properties

This feature group goes beyond analyzing just the centroids
of nuclei; it also incorporates their classes to assess the spa-
tial heterogeneity of various nuclei communities within a
patch [42]. Heterogeneity is quantified at both global and
local levels in each patch.

Global level: A range of entropy-based descriptors and
k-function metrics are utilized, examining all segmented
nuclei to evaluate the uniformity versus randomness in their
spatial distribution. These global heterogeneity descriptors
are listed in Table 8.

Local level: Following the methodology in [42], we con-
struct a k-nearest neighbor graph (with k = 6) using the nu-
clei. For each nucleus, entropy and interaction-based prop-
erties are extracted, focusing on immediate neighbors. A
local interaction-score is then aggregated at the patch level,

as per the process in [42]. Additionally, skewness of en-
tropy property distribution across nuclei is computed. This
skewness metric discerns whether most nuclei have lower,
medium, or higher entropy values, thus offering a detailed
view of cellular interactions and complexity. This local-
level approach highlights the intermixing of different nuclei
communities, taking into account their spatial relationships,
an aspect overlooked by global entropy-based descriptors.
These local-level features are enumerated in Table 9.

This results in total 21 Spatial Heterogeneity features (9
Global and 12 Local). For an in-depth explanation and visu-
alization of these features, we direct readers to the seminal
work by [42], which extensively explores these methodolo-
gies and their implications.

Group Feature

Global Entropy

Global Shannon index
Global Simpson index
Global max entropy

Global Richness (number of cell-types present)
Graph modularity with cell types as community

k-function

Neoplastic cells: k-function at radius 224 pixels
Neoplastic cells: k-function at radius 448 pixels
Neoplastic cells: k-function at radius 672 pixels
Neoplastic cells: k-function at radius 896 pixels

Table 8. Global Spatial Heterogeneity Descriptors

Group Feature

Local Entropy [42]

Skewness of cells’ local Shannon index
Skewness of cells’ local Simpson index
Skewness of cells’ local max-entropy

Skewness of cells’ local richness

Local Interaction score [42]

Mixing of neoplastic cells in inflammatory cells’ region
Mixing of neoplastic cells in connective cells’ region

Mixing of neoplastic cells in necrosis cells’ region
Mixing of neoplastic cells in non-neoplastic epithelial cells’ region

Mixing of inflammatory cells in neoplastic cells’ region
Mixing of connective cells in neoplastic cells’ region

Mixing of necrosis cells in neoplastic cells’ region
Mixing of non-neoplastic epithelial cells in neoplastic cells’ region

Table 9. Local Spatial Heterogeneity Descriptors

For instance, clustered arrangements of different nuclei
communities typically result in lower local-level entropy,
as the neighboring nuclei are mainly from the same class.
Conversely, intermixed arrangements lead to higher local-
level entropy due to the diversity of neighboring nuclei
classes. However, at the global level, these differing ar-
rangements may yield similar entropy values if the overall
count of each nuclei class remains constant, despite their
distinct spatial distributions. This highlights the importance
of analyzing spatial heterogeneity at both local and global
levels to capture the full complexity of cellular arrange-
ments in tissue pathology.



17.2. Normalization
In this study, we implemented a two-step normalization
process for all handcrafted PathExpert features. The first
step addresses potential inaccuracies in nuclei segmentation
and classification by HoVer-Net, using a binning operation.
Each feature within a patch is assessed based on its per-
centile relative to other patches in the training split of a WSI
task. These percentiles are then categorized into 10 discrete
bins, ranging from the 0-10th to the 90-100th percentile,
effectively shifting the scale of features from absolute val-
ues to a relative range from very-low to very-high. This
approach transforms feature values into a robust and inter-
pretable format across different patches. The second step
involves mean and standard deviation normalization, once
again using the training split data. This step centers the data
around zero, optimizing it for effective processing by neural
networks.

We emphasize that the normalization process alters the
scale of the features. For instance, the skewness proper-
ties listed in Table 9 would typically be near 0, negative,
or positive in their absolute scale. However, after mean-
standard deviation and binning normalization, the scale of
skewness may shift, with a 0 skew potentially appearing on
either the positive or negative side. Hence, for a more accu-
rate interpretation of our predictions in the local slide-level
interpretable predictions (refer to Figure 3), it is crucial to
consider this scaling effect. Readers should interpret the
features as being generally in the lower or higher range and
then conceptually approximate these back to their absolute
scale. This approach ensures a more nuanced understanding
of the predictions post-normalization.

17.3. Feature Visualization
In the following figures (Figures 12 to 16), we present a
visual exploration of some representative features by show-
casing patches with low and high values of these features.
Each figure is accompanied by a detailed caption that elu-
cidates the feature in the context of the patches, providing
insights into what constitutes low and high values with re-
spect to that specific feature. This visual representation aids
in understanding the impact of these features on the tissue’s
pathology and offers a deeper perspective on how they man-
ifest in different patches.

Note that the terms ‘cell’ and ‘nucleus’ are used inter-
changeably. However, since the imaging modality is H&E,
all the features actually pertain to nuclei.



WSI (TCGA-BRCA: IDC) SI-MILConvention MIL

Common patches in top 𝐾 = 20

Different patches in top 𝐾 = 20
SI-MILConvention MIL

Figure 10. TCGA-BRCA Invasive Ductal Carcinoma (IDC) sample. Refinement of the patch attention map by the Self-Interpretable
branch, transitioning from conventional MIL to SI-MIL.



WSI (TCGA-BRCA: ILC) SI-MILConvention MIL

Common patches in top 𝐾 = 20

Different patches in top 𝐾 = 20
SI-MILConvention MIL

None

Tumor bulk

Figure 11. TCGA-BRCA Invasive Lobular Carcinoma (ILC) sample. Refinement of the patch attention map by the Self-Interpretable
branch, transitioning from conventional MIL to SI-MIL.



Figure 12. Neoplastic Cells: Mean of Eccentricity. As illustrated, in the patches under the column named ‘Low’, there are round cancer
cells (the larger ones), whereas on the right side, under the column named ‘High’, elliptical cells are present, indicating a higher mean of
eccentricity. In histopathology, this feature refers to the average deviation of cancer cells from a perfect circular shape. A higher mean
eccentricity, as observed in the ‘High’ column, suggests more elliptical cells, often associated with more aggressive or advanced cancer
forms.



Figure 13. Neoplastic Cells: Mean of Intensity Standard Deviation. As illustrated, in the patches under the column named ‘Low’, there
are cancer cells (the larger ones) with uniform intensity, thus the standard deviation is low for each cell, leading to a low mean intensity
standard deviation. Whereas on the right side, under the column named ‘High’, the cells exhibit anisochromasia, indicating a higher mean
intensity standard deviation. In histopathology, this feature refers to the average deviation of cancer cells from homogeneous intensity. A
higher value of this feature, as observed in the ‘High’ column, suggests more anisochromasia, often associated with more aggressive or
advanced cancer forms.



Figure 14. Standard Deviation of Cells’ Degree. As illustrated, in the patches under the column named ‘Low’, there is a homogeneous
distribution of cells of all types. For this feature, we first construct a k-nearest neighbor graph from cells’ centroid and then calculate
the cell’s degree for each cell. Therefore, a homogeneous distribution leads to each cell having a similar degree, resulting in a lower
value of standard deviation. Whereas on the right side, under the column named ‘High’, the cells are much more randomly distributed
(disorganized), with grouping in some areas and sparse cells in others. This leads to some cells having a higher degree and others lower,
resulting in a high standard deviation of cells’ degree in a patch. In histopathology, this feature loosely refers to cohesive versus non-
cohesive or homogeneous versus heterogeneous distribution in a spatial context.



Low High

Figure 15. Graph Modularity with Cell Types as Community. As illustrated, in the patches under the column named ‘Low’, cancer cells
(in red) co-occur in close spatial proximity with other cell types such as connective (in green) and inflammatory cells (in blue). This results
in interconnections among different cell classes when constructing a graph for this feature, leading to low graph modularity. Whereas on
the right side, under the column named ‘High’, cells of different classes/communities are more distinctly separated and grouped, resulting
in more connections within the same community in the k-nearest neighbor graph, leading to higher graph modularity. In histopathology,
this feature can serve as a proxy for distinguishing ductal versus single file line patterns in IDC versus ILC classification in TCGA-BRCA.

Low High

Figure 16. Infiltration of Connective Cells in Neoplastic Cells’ Region. In contrast to the scenario presented in Figure 15, the ‘High’
column patches display cancer cells (colored in red) closely intermingled with connective cells (colored in green). This proximity results
in more interactions between these cell types in the graph-based analysis of this feature, leading to a marked increase in the infiltration
of connective cells within the neoplastic area. On the other hand, in the ‘Low’ column, there is a clearer segregation and clustering of
the two cell classes, manifesting in reduced connectivity between them in the k-nearest neighbor graph, and consequently, lower levels
of infiltration. In histopathological analysis, this characteristic can be instrumental in differentiating ductal cancers, which show minimal
infiltration by other cell types, from invasive patterns characterized by a significant presence of connective cells within the neoplastic areas.
This explanation is also applicable to features like the Infiltration of Inflammatory Cells in Neoplastic Cells’ Region.
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