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Simplifying CPS Application Development through

Fine-grained, Automatic Timeout Predictions

STEFANOS PEROS, STÉPHANE DELBRUEL, SAM MICHIELS, WOUTER JOOSEN, and
DANNY HUGHES, imec-DistriNet, KU Leuven

Application development for Cyber Physical Systems (CPS) is challenging, because the wireless network
and the devices introduce latencies that vary continuously along with the load, status, or environmental
conditions of the infrastructure. Reactive programming is well suited for the development of event-driven
applications, yet current reactive programming frameworks require developers to predict event arrival time-
boundaries at compile time, which is impractical, if not impossible, for CPS. Thus, there is a tradeoff between
timeliness and completeness of complex event computations, e.g., operational efficiency in a manufacturing
plant: Waiting too long until all individual events arrive can fail to produce a useful result, while not waiting
long enough may lead to faults due to incomplete status information. In this article, we propose (a) a set
of extensions to state-of-the-art reactive programming frameworks, which remove the burden of specifying
timeouts at compile time by utilizing (b) Khronos, a middleware that automatically determines timeouts
by taking into account variations in event arrival times due to the underlying infrastructure. Evaluation
on a physical testbed shows that the extensions significantly decrease developer effort and that Khronos
considerably improves timeliness under varying network configurations and conditions, while still satisfying
the application’s tolerance to missed events.

CCS Concepts: • Information systems → Stream management; • Networks → Network monitoring; • Com-

puter systems organization → Embedded and cyber-physical systems; • Software and its engineering →
Middleware;

Additional Key Words and Phrases: Cyber-physical systems, late arrivals, middleware, time management,
event-driven programming, reactive programming
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1 INTRODUCTION

Physical objects are being enhanced with computational capabilities to serve as components of
larger distributed cyber physical systems (CPS) [13]. The possibility to remotely monitor CPS
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behavior in distributed infrastructures, by aggregating event data from various sensors over a
wireless network, has digitally transformed several industries, including manufacturing, transport
and logistics, and utilities [27, 41, 46, 50].

The development, monitoring, and maintenance of CPS applications is difficult due to the large
number of devices, their dynamic network topology, heterogeneity, and their resource constrained
nature [20, 41, 44]. Distributed reactive programming (DRP) is an emerging paradigm that aims to
address these challenges by introducing the concept of remote signals. Signals are abstractions for
asynchronous data streams whose dependencies can be specified by the application developer in
a declarative fashion, forming a dependency graph. The reactive runtime elegantly handles signal
updates by automatically propagating changes down the dependency graph, based on the desired
consistency degree [37]. This relieves the application developer from the complexity of manual
callback management, which is often the source of many bugs in event-driven applications [24,
36].

In CPS applications, (remote) signals often rely on sensors that measure a physical property
of the environment, at a specified sampling period. However, packets can still be generated at
different rates, referred to as packet inter-generation delay [47], due to the lack of a shared and
accurate time-source along with device imperfections. This can lead to non-deterministic packet
arrival times, even in the presence of emerging network technologies that provide determinis-
tic network latency, e.g., Time-Sensitive Networking [62]. Packet inter-generation delay, together
with the presence of varying network latency in state-of-the-art wireless network technologies,
can result in non-deterministic packet arrival times at the gateway. In many cases, it is impossi-
ble to distinguish between a non-arrival due to a fault or due to delay, which can be crucial for
detecting failures in distributed systems [22].

The detection of complex events may depend on the occurrence of multiple events, such as the
arrival of sensor data, to compute a result. The problem lies in predicting time-boundaries for in-
dividual event arrivals, for which state-of-the-art solutions rely on the CPS application developer,
hereinafter referred to as the developer. This is difficult, if not impossible, due to the heterogeneity
and dynamism in the network, platform, and applications, along with the application developer’s
limited knowledge of the underlying infrastructure [11, 12]. For many CPS applications, complex
events need to be computed in a timely fashion to produce useful output, e.g., detecting produc-
tion line down-times in manufacturing. In other words, the quality of the result often depends on
the data age of the input events, which can be too high when timeouts occur too late. However,
when timeouts occur too soon, not all dependent events may have arrived, leading to incorrect
results under incomplete information. Having clear control over the tradeoff between timeliness
and completeness is of prime importance for CPS applications.

Current DRP frameworks offer developers limited support for timely interactions between event
streams and for failure handling due to late event arrivals. More concretely, existing solutions re-
quire developers to specify timeouts at compile time, which is impractical, since event arrival times
can differ due to the varying network latency and packet inter-generation delay [47]. Furthermore,
these solutions force the event stream to be terminated when a timeout occurs, which is unsuitable
for CPS applications that need to keep operating despite late event arrivals, e.g., monitoring pro-
duction in a factory. Leased signals [44], for example, are language abstractions for data streams
that enable the runtime environment to react to the expiration of a user-defined signal lease.

The main contributions of this work are (a) a novel set of language extensions for state-of-the-art
reactive programming frameworks that remove the burden of specifying timeouts at compile time
from the developer, built on top of (b) Khronos, a middleware that automatically predicts time-
outs for sensor data event streams in CPS, based on the application’s tolerance to missed events.
Taken together, we present a novel solution that provides developers with reactive language

ACM Transactions on Internet of Things, Vol. 1, No. 3, Article 18. Publication date: May 2020.



Simplifying CPS Application Development through Automatic Timeout Predictions 18:3

abstractions that lead to less complex and more concise programs, enabling them to easily trade off
the timeliness (latency) with the completeness (quality) of the data without relying on their CPS
infrastructure knowledge for the specification of static timeouts or other advanced configuration
parameters at compile time.

The proposed language extensions are used to implement an industrial use-case example: mon-
itoring the production process in a car safety equipment manufacturing plant. Our evaluation
shows that the language extensions reduce program complexity in comparison to ReactiveX [1], a
standard reactive programming framework. Finally, an extensive evaluation on a physical testbed
shows that Khronos not only ensures constraint satisfaction in the presence of dynamism and
heterogeneity, but that it also improves timeliness by dynamically setting timeouts, based on the
observed status of the underlying network. The complete code-base of the reactive extensions,1

Khronos, and the datasets used in the evaluation are open-source2 to ensure the reproducibility of
our work and promote collaboration.

The remainder of the article is structured as follows: Section 2 provides additional background,
a formal specification of the system model, and the problem statement and explores the problem
through the lens of a real-world industrial use-case. Section 3 provides an overview of the related
work and the identified middleware requirements. Section 4 describes the design of the reactive
extensions and the architecture of Khronos, along with the underlying prediction technique. Sec-
tion 5 presents the implementation details of the extensions, the CPS network, and the middleware.
Section 6 discusses the evaluation setup and results. Finally, Section 7 concludes the article.

2 BACKGROUND

Technological advancements in the area of Industry 4.0 have created new business opportunities
based on integrating CPS with manufacturing, in the past known as Cyber-Physical Production
Systems (CPPS) [33, 59, 63], which increase efficiency and reduce manufacturing costs [42]. Man-
ufacturing plants are enhanced with actuators and sensors that measure various physical, time-
varying properties, such as product displacement, machine temperature, liquid flow rate, and so on
[51]. Sensor data are transmitted over the network to a control unit that takes actions to improve
the operation of the manufacturing plant.

In reactive programming, time-varying values such as physical properties measured by sensors
are represented by so-called signals, which encapsulate streams of discrete events [45]. Devel-
opers can aggregate over events produced by multiple signals using signal combinators, which
result in a new output signal. The reactive program can be expressed by means of a dependency
graph, where each node has incoming edges from nodes producing its input signal(s) and out-
going edges to nodes receiving its output signal(s). The key advantage of reactive programming
is that the language runtime environment automatically propagates changes along nodes in the
graph. This allows programmers to elegantly write event-driven applications without the disad-
vantages of manually managing callbacks (e.g., callback hell [25]), which are present in traditional
programming solutions [14].

Typical network technologies used in industrial CPS applications are wireless mesh and star
networks [19]. In mesh networks, messages may need to traverse the network across many hops,
traveling through several devices before reaching their final destinations. Based on the underly-
ing medium access control protocols, e.g., Carrier-Sense Multiple Access (CSMA) and Time Syn-
chronized Channel Hopping (TSCH), per-hop latency varies from tens of milliseconds to several
seconds. Variable latency is also prevalent in wireless star networks, such as LoRa and BLE [52,

1Available at: https://github.com/mazerius/rx-extensions.
2Available at: https://github.com/mazerius/khronos.
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Fig. 1. Device data stream notation.

53]. In LoRA, latency varies with the spreading factor and payload size, while in BLE it is sensitive
to radio interference. As a result, predicting packet arrival times in these networks and specifying
corresponding timeouts in the application remains an open challenge.

State-of-the-art solutions rely on the developer’s infrastructure knowledge to manually specify
timeouts for each device data stream at compile time [44]. Static timeouts are hard to specify in
advance, since the developer has limited knowledge of the infrastructure [11, 12] and are highly in-
flexible in the presence of dynamism, as their performance depends entirely on the current state of
the network. Recent work [47] attempts to address this issue, focusing on probabilistic approaches
to manage late event arrival times, yet still relies on the developer to specify the query frequency
and further configuration parameters that directly impact their performance. In practice, static
timeouts are determined using rules-of-thumb, such as a multiple of the sampling period or adding
the average network delay [54].

Middleware can be used to interface between the CPS infrastructure and the applications [41],
allowing abstraction and flexibility in application development that lead to long-term sustainable
solutions. However, the diversity and heterogeneity of CPS architectures makes it hard for a gen-
eral purpose middleware to keep track of the aforementioned tradeoff. A dedicated middleware
is required that enables developers to easily manage the timeliness and completeness of events
flowing from the CPS to their application, without requiring additional configuration from the
developer by relying on his/her knowledge of the underlying infrastructure [26, 41].

Model and Problem Statement

In this section, we formally define the system model and problem statement that our solution aims
to solve. Let S = {s |s is a data source in the CPS} be the set of all sensing devices in the underlying
CPS infrastructure that transmit messages to the gateway. We refer to the sensing devices as data
sources and to the generated messages as events. An event e is defined as a tuple of four attributes
e = 〈s,v,дts,ats〉, where s is the data source that generated the event, v is the message payload
(e.g., sensor data), дts is the timestamp at which the event was generated, and ats is the timestamp
at which the event arrived at the gateway. We use the notation es as a shorthand notation to refer to
an event that is generated by data source s . Every data source s emits a (possibly) infinite sequence
of events, defined as the device data stream σ s , where σ s = {es }.

In our model, we focus on sensing devices that transmit periodically: A data source s has a
sampling period sp, noted as s .sp. Despite a fixed sampling period, events arrive at the gateway at
a non-constant rate due a varying delay d , where d = dд + dn with dд the packet inter-generation
delay and dn the network delay, as illustrated in Figure 1.

Device data streams serve as input streams to the application, which consists of stream opera-
tors that process incoming events and inject the result to their output stream. In real-time stream
processing, a timeout is associated with individual operations that can block the output stream
indefinitely, such as waiting for an event from a sensing device to arrive [55]. More concretely,
a timeout τ is associated with every event e , noted as τ e , that determines how long the program
should wait for e to arrive. The challenge lies in determining the value of τ in the presence of
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varying dд and dn , which are not known a priori and can vary at runtime, to balance the tradeoff
between two contradicting goals: completeness and timeliness.

The completeness γ (σ s ) for a device data stream σ s expresses the ratio of generated events that
arrived on time from that stream. Formally, let δ s

i = es
i .ats − es

i−1.ats be the difference between the

arrival times of two consecutive events from σ s . We define that an event es
i arrives late if δ s

i > τ es

i

and on time if δ s
i ≤ τ es

i . By definition, if an event arrives late, then it is missed. To formally define
the completeness of a stream σ s , we first define a new stream ϕs , such that ϕs = { f (es )}, where

f (es
i ) =

{
1 if δ s

i <= τ
es

i

0 otherwise
. (1)

In words, for every event generated by σ s , the stream ϕs produces 1 if the event arrived on time
and 0 otherwise. The completeness γ (σ s ) for a device data stream σ s is defined as

γ (σ s ) =

∑n
i=1 (ϕs

i )

n
, (2)

where n is the index of the last event generated by σ s .
The timeliness for a device data stream σ s refers to how close the timeouts are to the event

arrival times from that device stream. For that purpose, we define the prediction error ϵ (σ s ) for σ s

as

ϵ (σ s ) =

∑n
i=1 |τ es

i − δ s
i |

n
. (3)

A large prediction error corresponds to low timeliness and vice versa. Note that in theory, σ s is
a potentially infinite sequence of events, which means that n → ∞. In practice, the completeness
and prediction error are computed over a finite window of past events w , such that n − i = w .

The problem at hand consists of two objectives: minimizing ϵ (σ s ) while keeping γ (σ s ) within a
user-defined budget. Users, typically developers, can specify this budget by means of a completeness

constraint ρ for a device data stream σ s , which indicates how important events from that stream
are to the application. A completeness constraint ρ for σ s is satisfied if γ (σ s ) ≥ ρ. We can now
define the optimization problem that Khronos aims to solve:

Problem 1 (Timeliness Optimization). Given a device data stream σ s and a user completeness

constraint ρ for that stream, the Timeliness Optimization aims at finding a timeout τ es

for each event

es s.t.

min ϵ (σ s ), (4)

subject to γ (σ s ) ≥ ρ, (5)

The next subsection discusses further these concepts in the context of a real-world industrial use
case.

Industrial Context

This section describes an industrial use-case from the customization and packaging division of
a Fortune 500 car safety equipment manufacturing plant to further illustrate the problem. An
overview of the factory is shown in Figure 2, including the device communication links and the
corresponding link latency. In this example, under normal operation, link latency varies between
tens to hundreds of milliseconds, as shown by the intervals in Figure 2. The packaging plant has
six production lines, labeled Line 1 to Line 6. These lines consist of machines that produce airbags
and are equipped with sensors that periodically compute and transmit the item processing rate to
the gateway, measured as the number of produced units per minute. The item processing rate of
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Fig. 2. Example: Industrial plant overview consisting of six production lines.

Fig. 3. Visual display monitoring the airbag manufacturing process.

a production line is an indicator of its operational efficiency and the average item processing rate
across all production lines that manufacture airbags indicates the overall operational efficiency.
Furthermore, these production lines are physically connected to a trash aisle, where defect airbags
are deposited. The trash aisle is equipped with an object detection sensor, which enables the appli-
cation to count the number of defect airbags due to a failure in the production process. The sensors
in the manufacturing plant transmit messages at fixed sampling periods to the gateway, which are
unknown to the developer, containing the recorded metadata as payload over the past time period.
The metadata are forwarded to a back-end, e.g., the cloud, where the application computes the
overall operational efficiency, which is shown on a display as illustrated in Figure 3, and observed
by the operator, whose role is to monitor the manufacturing process. Furthermore, the application
notifies the operator to shut down production when the number of defect airbags exceeds a certain
threshold for a particular batch, as directed by the regulations on airbag manufacturing.

The application further requires that (1) the visual display is refreshed in a timely fashion, to
provide a soft real-time view of the operational efficiency, and that (2) the human operator is
informed based on correct information, to avoid shutting down production unnecessarily due to a
network or sensor failure at the trash aisle. The developer can easily express the latter requirement
using a high completeness constraint (e.g., ρ = 1.0), which causes large timeouts for the arrival of
trash aisle sensor data. In this case, reaching the timeout strongly indicates that there is something
exceptionally wrong with the sensor or the network, which the operator should investigate. The

ACM Transactions on Internet of Things, Vol. 1, No. 3, Article 18. Publication date: May 2020.
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former requirement can be accomplished by using lower completeness constraints, utilizing the
fact that the item processing rates do not vary significantly during a single batch. This leads to
shorter timeouts for the production line sensor data, and thus faster updates of the visual display,
using the last received sensor data in case of a timeout.

The problem lies in determining the refresh period of the display, which is non-trivial, since
packets can travel across different paths in the network, resulting in non-deterministic arrival
times due to varying link latency and packet inter-generation delay, as explained in Figure 1. The
information that depends only on events from a single sensor can be refreshed as soon as the
event from that sensor arrives. However, this is not possible when the displayed information is a
function of multiple events from different sources, in this case the overall operational efficiency,
where all of the combined events need to correspond to the same time period in the real-world
to ensure the quality of the result. Despite the small scale of the network, the recorded packet
arrival times at the gateway show substantial variance, to the order of seconds. Unlike the typi-
cal Internet, the challenge in Wireless Sensor Network (WSN) technologies is largely due to the
resource-constrained nature of the devices and the unreliability of the physical environment.

State-of-the-art solutions require the developer to specify a static refresh period for the dis-
play. In practice, typically an arbitrarily large refresh period is used to ensure completeness of
the results at the expense of timeliness. As a result, the display lags behind in time, making it
difficult for the operator to interpret the results and act in a timely fashion. Not only would the
developers benefit from a solution that automatically determines event arrival timeouts, by hav-
ing clear control through powerful language abstractions over the tradeoff between timeliness and
completeness, but also the operator(s) can make timelier decisions based on the visualized infor-
mation, improving the overall operation efficiency of the manufacturing plant. A critical overview
of the state-of-the-art solutions is discussed in the next section.

3 RELATED WORK

Middleware and related frameworks are key components of complex systems, especially when
dealing with the constraints of CPS. Due to the broader range of environments and related con-
straints on network resources found in CPS, the limited support offered by modern systems is
not enough and a one-size-fits-all solution is not an option. This need for more specific solutions
is raised by Mohamed et al. [41], who identifies that general-purpose distributed middleware are
not flexible enough to tackle unique challenges in CPS. The challenges of middleware for CPS, in-
cluding the support for real-time operations (e.g., decision making), autonomous operations, data
integrity and correctness, have been addressed in the past as a subset of these in a generic form for
a specific feature, or focusing on one for a more broader group of CPS applications. The authors
[41] rely on past work to emphasize the specificity and diversity of a CPS ecosystem, and propose
a more context-aware approach to consolidate the generic approach and limit the spread of the
specific solutions.

Among these past works, Zhang et al. [61] explored the issues of real-time middleware used as
platforms for distributed systems with time constraints when facing workloads with both aperi-
odic and periodic tasks. To tackle the lack of flexibility from existing systems, their contribution
of configurable middleware components providing effective on-line admission control and load
balancing for distributed computing platforms is an important step for CPS. However, the authors
do not address timeliness challenges that occur due to the underlying network and its resource-
constrained devices and middleware reconfiguration options to cope with its uncertainties and
maintain real-time support.

In the context of distributed reactive programming, Myter et al. [44] proposed the concept of
leased signals to deal with partial failures due to late event arrivals. Leased signals express a
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semantic agreement between the signal and its subscribers: The time window during which an
event is expected to be emitted by the signal. The runtime environment enables the application
to react to the expiration of a lease by executing the application failure handling logic. Nonethe-
less, leased signals offer limited support for late event arrival management, since they rely on the
developer to specify a static timeout for each signal at compile time. Furthermore, once a lease ex-
piration has occurred, the signal is terminated, thus disallowing the application to react to future
event arrivals from that signal’s source.

Derler et al. [23] propose PTIDES, an actor-based programming model that infers upper bounds
on the event propagation delay across actors. This enables correct event processing for timed mod-
els with discrete-event semantics, even in the presence of out-of-order events. However, PTIDES
requires a model-time and a real-time delay function to be specified by the developer, including
network latency bounds, which is unfeasible for non real-time CPS networks whose configura-
tion can change at runtime. In contrast, Khronos computes timeouts for events relying only on
its past observations of event arrival times, thus automatically adapting to changes in the CPS
infrastructure without requiring the specification of delay models and/or bounds in advance.

Significant research efforts focus on the management of late event arrivals in Complex Event
Processing systems, which can be categorized into punctuation, buffering, and speculation tech-
niques. To date, several studies have investigated punctuation techniques to safely process a group
of events that reside within the same time window [18, 32, 34, 35, 54, 54, 58]. A punctuation is a
special event that is injected into a data stream to indicate the end of a subset of that stream.
As a result, stream operators can safely process that subset of the stream with the knowledge
that no future events will arrive out-of-order with respect to events belonging to that subset of
the stream. However, most punctuation-based techniques rely on the developer and/or on a priori

knowledge, e.g., transmission delay upper bounds, to insert punctuations, which limits their ap-
plicability in highly dynamic CPS scenarios. These techniques could benefit by integrating with
Khronos to overcome this limitation while simultaneously providing guarantees on the amount of
missed events.

A number of authors have considered the effects of buffering events and postponing their pro-
cessing to ensure reliable results [28–30, 38]. While reliable, buffering techniques can introduce
high memory overhead and latency, which can be detrimental in the context of real-time stream
processing. The authors in Reference [39] focus on low latency event detection by reducing the
stream processing delay through the adaptive parallelization of stream operators. Their solution
does not consider the impact of large waiting times for event arrivals, which can negatively af-
fect the event detection latency. Previous studies [28–30] have explored the relationships between
result latency and accuracy for specific stream operators, striving to achieve a right balance by
dynamically adjusting the buffer size at runtime based on the network delay [60]. However, these
approaches are operator specific, which can be problematic for expressing complex CPS applica-
tions. In contrast, Khronos not only provides a generic solution for managing late event arrivals
that does not target specific operators, but it also takes into account changes in the packet inter-
generation delay.

A significant amount of research has explored speculation techniques to handle late event ar-
rivals [16, 18, 40, 48]. Unlike buffering, speculation techniques do not stall the processing of events
within the operator’s input buffer, which can lead to significant latency improvements. However,
the presence of late event arrivals causes the output stream to be rolled back and recomputed,
which can incur high performance penalties both in terms of result quality and latency [43, 47].
Furthermore, previous work in this area assumes reliable data sources that can reproduce their
events for rollback recovery [15, 31], which is typically not the case with resource-constrained
sensing devices. Recent research efforts [43] are combining speculation with buffer-based
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techniques to reduce result latency, but unlike Khronos they do not provide clear control over
the result accuracy.

Rivetti et al. [47] address the lack of support of the above mentioned techniques in trading
off result latency with quality by proposing ProbSlack, a probabilistic approach to deal with late
event arrivals. Probslack adds a dynamic offset, based on its models of the packet inter-generation
delay and network delay, to a user-specified query frequency that determines how often events
are processed. However, device sampling periods can change at runtime in the context of dynamic
CPS environments, which is why Khronos does not rely on the user to specify query frequencies
in advance. Furthermore, ProbSlack relies on a user-specified period T to refresh its models for the
two delays, which clearly impacts the performance of the approach. It is unclear from the article
how users should configure this period to ensure low result latency while satisfying the result
quality constraints in the presence of dynamism.

Requirements

In the context of the industrial use case and the related work, we identify five requirements for
CPS middleware:

A) The programming language should support fine-grained specification of application be-
havior not only for events that arrive on time, but also for events that arrive too late with
respect to the application requirements, in a non-terminal fashion. The middleware should
support the registration of completeness constraints for individual and groups of device
data streams, through a set of provided services.

B) The middleware should not rely on the developer’s knowledge of the underlying infrastruc-
ture and require no further manual configuration after deployment.

C) The middleware should adapt to changes in the CPS infrastructure to satisfy the application
constraints in the face of network and application dynamism.

D) The middleware should satisfy the application constraints for a wide variety of different
infrastructures and application requirements.

E) The middleware should provide CPS applications with context regarding the completeness
and timeliness.

4 ARCHITECTURE

In this section, we describe the design of the proposed reactive extensions, along with the under-
lying prediction technique and architecture of Khronos.

4.1 Reactive Extensions

The proposed reactive extensions, described later in this section, are built on top of observable
variables, observers and operators, as shown in Figure 4, because they provide a suitable basis
of elegantly expressing application logic for handling emissions of a single event type [21, 37].
Traditionally, an observable represents a data stream that emits events in a synchronous or asyn-
chronous fashion. Observers can subscribe to such events and be notified when (a) an event is
emitted by the observable, (b) the stream is completed, and (c) the stream terminated due to an
error. Operators can be attached to observables and be chained to one another, performing an op-
eration on the input whenever an event is emitted and passing the result along the chain until it
reaches the observer(s).

The traditional model of observables, as described above, terminates the stream once it has
ended its lifecycle and otherwise forwards emitted events to its subscribers. The lifecycle of
a stream can end without errors (completion) or due to an error. In our work, streams cannot
complete, since the sensing devices generate messages as long as they are powered. The stream
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Fig. 4. Observables, operators, and ob-
servers in ReactiveX.

Fig. 5. Observables, operators, and ob-
servers in extended ReactiveX.

however can terminate with an error when the device goes permanently offline, e.g., due to
depleted battery. A strong indicator of a device being permanently offline is the occurrence of a
timeout event under a large completeness constraint (i.e., ρ → 1.0 for the corresponding device
data stream).

However, this is not expressive enough to describe CPS applications that need to deal with
timeouts and completeness constraint violations in a non-terminal fashion, e.g., in the industrial
use case example described in Section 2. Thus, we extend the traditional observable model with
two additional non-terminal flows for timeout and violation events, as shown in Figure 5. In
addition to notifying its observers when a new value is emitted, i.e., a next event, an observable
emits a timeout and violation event to its subscribed observers when a timeout has occurred
or a completeness constraint is violated, respectively. Developers can specify isolated chains of
operators for each of the next, timeout, violation flows, improving expressiveness and enabling
fine-grained execution of application logic, as specified by requirement A).

4.2 Prediction Technique

Khronos automatically (re)computes the timeouts of event (sensor packet) arrivals, based on the
application completeness constraint(s) for that device. These timeouts are determined using an
approach similar to the Retransmission TimeOut (RTO) timer in the Transmission Control Protocol
(TCP), a well-established transport layer protocol for communications over the Internet [56].

TCP’s RTO is a durable solution that works on top of a wide, heterogeneous and dynamic in-
frastructure and also tackles the problem of determining timeouts for non-deterministic packet
arrivals. Both RTO and Khronos are faced with a similar challenge: determining how long to wait
for an event arrival before taking action, in the presence of varying network latency. In both cases,
the tradeoff between timeliness and completeness depends on these timeouts. RTO’s approach is
simple and lightweight, since it uses exponentially weighted moving averages instead of storing
past observations to compute the timeout in every step, which fits the resource-constrained model
of CPS. In RTO, however, it is the sender who needs to determine how long to wait after sending a
packet before deciding that the corresponding acknowledgement will not arrive (timeout). In the
context of industrial monitoring, it is the receiver (application) that needs to decide how long to
wait for a message from the sender, which transmits periodically. Since the application does not
know exactly when/if the message is sent, in contrast to RTO, the sender’s packet inter-generation
delay also needs to be taken into account. Finally, CPS applications can have flexible completeness
constraints, while RTO’s design is limited to covering 99% of all packet arrivals.

In TCP, the RTO needs to determine how long to wait for the acknowledgment to arrive after a
segment has been sent, before re-transmitting the segment. Short timeouts result in unnecessary
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re-transmissions and possibly network congestion, while long timeouts negatively impact perfor-
mance. RTO keeps track of two exponentially weighted moving averages: the smoothed round-trip
time (SRTT) and round-trip time variance (RTTVAR), with smoothing factors α = 7/8 and β = 3/4,
respectively, as specified in RFC 6298 [49]. SRTT is the best current estimate of the round-trip time
to the destination, and RTTVAR is the variance in round-trip times. The timeout is computed as
RTO = SRTT + K ∗ RTTVAR, where K = 4 based on the observation that typically less than 1% of
all packets arrive more than four standard deviations too late. The role of K in this formula is to
over-provision by adding that many times the variance to the mean to cover over 99% of packet
arrival times [56].

Khronos approach

In the context of our use-case, Khronos needs to determine how long it should wait for each packet
to arrive such that the application completeness constraints are satisfied for each device data
stream without unnecessarily long timeouts. For each completeness constraint ρ for a device data
stream σ s , Khronos computes the smoothed arrival time S (es

i ) and the arrival time variance V (es
i ),

whenever a new event ei arrives at timestamp ti . S (es
i ) is the best current estimate for the next

event arrival time and V (es
i ) the variance in arrival times. These are computed by the formulas:

S (es
i ) = αS (es

i−1) + (1 − α )R (es
i ), (6)

V (es
i ) = βV (es

i−1) + (1 − β ) |S (es
i−1) − R (es

i ) |, (7)

where R (es
i ) is the actual arrival time of the event at timestamp ti and α , β the smoothing factors,

set to the same values as in RTO, which are empirically derived. A timeout based on S (es
i ) alone

is too inflexible for large variance in arrival times, which is accounted for by V (es
i ). The timeout

τ es

i for the next event at timestamp ti+1 is computed as

τ es

i = S (es
i ) + Kρ ∗ V (es

i ), (8)

where Kρ is the K value for completeness constraint ρ. As in RTO, Kρ determines how sensitive
the timeout is to packet arrival time variance. Intuitively, large values for Kρ lead to large
timeouts and thus larger prediction errors but fewer missed events. Unlike RTO, our model
supports various completeness constraints ρ, for each of which we determine a corresponding
value for Kρ , as described later in this section. The computation cost of our approach is linear
(O (n)), where n is the number of registered completeness constraints. Concretely, whenever a
packet arrives from a device, Khronos performs, per completeness constraint for that device, five
multiplications and five additions to compute the next timeout.

Determining Kρ

In this section, we propose a methodology to determine a one-to-one mapping between Kρ and a
completeness constraint ρ ∈ 〈0.1, . . . , 1.0〉. Once Kρ is determined, timeouts can be directly com-
puted according to the equations in Section 4.2 without the need for further configuration. The
goal is to find the smallest K that satisfies ρ across all device data streams in the network both (a)
under normal operation and (b) in the presence of external disturbances. For the former, we moni-
tor the underlying network of sensing devices over a period of one week to collect a representative
set of event arrival times over all the sensing devices, noted as On .

For the latter, we identify three types of disturbances in the context of our use case, which
correspond to changing the device sampling period, network size and network latency respec-
tively. These types of disturbances are common for our use case, but are also typical in the context
of large CPS deployments. The sensing device sampling period is decreased and increased in a
stepwise fashion. This change corresponds to a common scenario where device sampling periods

ACM Transactions on Internet of Things, Vol. 1, No. 3, Article 18. Publication date: May 2020.



18:12 S. Peros et al.

can decrease during peak operation to sample more frequently, and then increase during normal
operation to save energy. The network size is reduced by turning off a part of the sensing de-
vices, and then restored by powering them up. This corresponds to a common scenario in any
real CPS deployment where devices can arbitrarily leave and (re)join the network later, e.g., due to
interference causing temporary connectivity errors. Finally, the network latency is increased by re-
configuring the allocated bandwidth assigned to each of the sensing devices, which is often done in
practice to ensure that the network has enough resources to support a large number of devices. For
each disturbance type, we monitor the network over the period of 1 week, before and after intro-
ducing that disturbance, to collect a representative set of event arrival times, noted asOd . The total
set of observed event arrival times during the entire monitoring period is denoted asO = On ∪Od .
While in our case monitoring the network over a week was enough to collect a representative set
of observations (around 200.000), this monitoring period depends on the device sampling periods.

After the monitoring period is finished, K is incrementally increased in small steps, starting
from zero, until the resulting timeouts satisfy the given completeness constraint ρ overO , noted as
Kρ,min . Naturally, larger ρ impose stricter limits to the number of missed events, leading to larger
K values. Finally, we overprovision to limit the impact of overfitting and to improve robustness by
setting Kρ equal to

Kρ = 2 ∗ Kρ,min . (9)

As a result, developers can deploy and use the middleware without the need of further configura-
tion, as stated by requirement C). A drawback of doublingKρ,min is that it leads to large prediction
errors in the extreme case where ρ → 1.0, which can be impractical for some applications, e.g.,
with both strict time and certainty requirements in fault detection. The resulting Kρ values are
discussed in Section 5.3, and the correctness of the approach is evaluated in Section 6.

4.3 Middleware

The proposed middleware acts as a generic bridge between the underlying CPS infrastructure and
the applications that run on top of them. The identified requirements that Khronos addresses are
highlighted in Section 3. Khronos’ architecture and key responsibilities of each component are
discussed in Section 4.3.1. Next, the provided Application Program Interface (API), which enables
CPS applications to specify completeness constraints for device data streams, is explained in Sec-
tion 4.3.2.

4.3.1 Components. Figure 6 shows a complete overview of Khronos’ architecture. Khronos acts
as a generic bridge between external CPS applications and the gateways of the underlying CPS
infrastructure. The middleware components are divided into three layers, based on their respon-
sibilities: CPS Communication, Time Management, and Application Management. The rest of the
section describes these responsibilities and the role of each component in greater detail.

CPS Communication. This layer is responsible for managing communication between
Khronos and the underlying CPS network(s). The Gateway Manager is responsible for maintain-
ing an overview of the underlying Gateways in the CPS, enabling communication between the
CPS network and the middleware. It listens for published sensor data from each Gateway and for-
wards it to the Data Parser for parsing. Assigning the responsibility of parsing raw messages to
a separate component improves extensibility for new message formats in the future. The parsed
data are then passed to the Network Monitor and the Time Management Layer. The Network
Monitor maintains an overview of network statistics, including the discovered devices and com-
munication latency between Khronos and the Gateway(s). The former is necessary to verify that
incoming requests refer to operational devices, while the latter is included in the resulting time-
outs for incoming messages from sensing devices in the CPS. For industrial-scale networks with a
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Fig. 6. Khronos component diagram.

large number of gateways, the modularity of this layer can be exploited to improve scalability, e.g.,
by distributing its components across the gateways and thus decoupling the CPS communication
logic from the rest of the middleware.

Time Management. This layer is responsible for processing network statistics and packet ar-
rival times to coordinate the callbacks of each CPS application. The Stream Manager maintains
completeness statistics and determines the timeouts per device data stream for the completeness
constraint(s) specified by the CPS application. This enables fine-grained automatic timeout pre-
dictions for each completeness constraint that is associated with an individual sensor data stream.
The Scheduler coordinates the notifications to the application layer using the above timeout(s)
through the Application Management layer, whenever a packet arrives or a timeout is exceeded,
complying with requirement F).

Application Management. This layer is responsible for communication between Khronos and
external applications. The Application Manager provides applications with the API described in
Section 4.3.2 and is responsible for registering the completeness constraint(s) and/or static timeouts
to the Scheduler. The Updater is responsible for notifying the registered applications when to
execute the on_next, on_timeout, and on_violation application logic, as coordinated by the
Scheduler. Grouping the notification logic in a separate component improves modularity and
simplifies support for multiple notification schemes.

4.3.2 Application Programming Interface. Khronos offers developers a simple API, which con-
sists of two operations:

• registerCompleteness(device, constraint, on_next,
on_timeout, on_violation)

• registerTimeout(device, timeout, on_next,
on_timeout)
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The registerCompleteness(..) method addresses requirement B) and takes five arguments:
the device, the completeness constraint, and three callback methods. device:<String> iden-
tifies the CPS device data stream(s) and can be a unique identifier (e.g., serial number) or a
wildcard (e.g., sensor type) that refers to a group of devices. constraint is the value for the com-
pleteness constraint, expressed as a fraction. Given the completeness constraint, the middleware
updates the timeout for the next packet, whenever a packet has arrived from the corresponding
device. on_next(value:<Sensor Data>, timeout:<Double>, completeness:<Double>) is
the callback method that is invoked by the middleware whenever data from the specified device
arrives on time. It takes as arguments the value of the arrived sensor data and the corresponding
timeout and completeness. on_timeout(timeout, completeness) is the callback method that is
invoked by the middleware whenever the timeout is reached and no sensor data have arrived. It
takes as arguments the value of the timeout and the current completeness. on_violation(value,
timeout, completeness) is the callback method that is invoked by the middleware whenever the
completeness is below the constraint when the timeout is reached or a packet has arrived. It takes
as arguments the value of the sensor data (if any) and the current timeout and the completeness. For
example, a simple application can define on_next(...) to update the average temperature when-
ever new temperature data arrives, on_timeout(...) to count the number of occurred timeouts
and on_violation(...) to spawn a pop-up alert window upon constraint violation.
registerTimeout(..) enables developers to register a static timeout for a sensor device data
stream and takes four arguments: the device, the static timeout, and two callback methods, which
contain application logic and are thus specified by the developer. device: <String> identifies
the CPS device data stream(s) and can be a unique identifier or a wildcard that refers to a group of
devices. timeout is the value for the static timeout for packet arrivals from the given device, ex-
pressed in time units (e.g., seconds). Given the timeout, the middleware recomputes the complete-
ness for the given device whenever it receives a new packet from it. on_next(value, timeout,
completeness) is the callback method that is invoked by the middleware whenever data from the
specified device arrives on time. It takes as arguments the value of the arrived sensor data, the
given timeout, and the current completeness, addressing requirement F). on_timeout(timeout,
completeness) is the callback method that is invoked by the middleware whenever the time-
out for packet arrival from this device is reached. It takes as arguments the current timeout and
completeness.

5 IMPLEMENTATION

This section discusses the key technologies that implement the reactive programming extensions,
the underlying CPS network, and the middleware.

5.1 Reactive Extensions

ReactiveX is implemented in most modern programming languages [1]. In this article, we focus
on extending RxJS, an implementation of ReactiveX in TypeScript, which is then compiled to
JavaScript. JavaScript is a programming language often used for the development of front-ends
that deal with asynchronous streams and events, thus an interesting choice for implementing the
display functionality described in our industrial use case.

The extensions and modifications to RxJS are shown in Figure 7, where newly added classes,
attributes and/or methods are highlighted in green. Note that the Observable<T> and the
Subscriber<T> classes, with T a generic type, correspond to the Observable and the Observer
in Figures 4 and 5, respectively. A Subject<T> is a special type of Observable<T> that al-
lows events to be multicasted to many Subscriber<T> objects. The Orchestrator<T> is sub-
class of Subject<T> and is responsible for connecting to the middleware and for parsing and
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Fig. 7. Simplified class diagram of reactive extensions to RxJS.

forwarding incoming events to the corresponding subscribers. It creates and subscribes to a
WebSocketListener<T> subject to connect to the middleware websocket, listening for incom-
ing next, timeout, or violation event messages. These events are sent as JSON objects of type
Message<T> with following attributes: the id of the data source related with the event, the
value of type T, the completeness of the device data stream, the timeout for the next event,
the timestamp of arrival, and the event type (next, timeout or violation).

Upon arrival of an event, the WebSocketListener notifies its subscriber (Orchestrator), who
then filters and notifies the relevant subscribers based on the event id attribute. The event
type is used by each chained Operator to determine if it should perform its operation and for-
ward the result or just pass the message down the chain, as shown for MapSubscriber<T> and
FilterSubscriber<T>. This enables operators to be associated only with a particular event
type, which is passed to their constructors as an argument from the methods pipeNext(...),
pipeTimeOut(...) and pipeViolation(...).

Finally, completeness constraints and static timeouts can be registered by creating
CompletenessConstraintSubscriber and StaticTimeoutSubscriber objects, respectively.
When a next, timeout or violation event occurs, the next(), timeout() or violation() func-
tions of the subscribers are called, respectively, after the relevant operators have performed their
operations on the input.

Use Case: Implementation

This section discusses the key elements for implementing the manufacturing plant monitoring
application, described in Section 2, using the proposed extensions. The complete implementation
is available online, along with the rest of the source code. The application requires: (a) visualizing
the operational efficiency in a timely fashion and (b) notifying the operator when the number of
defect airbags exceeds a threshold, to stop the production process, or when a timeout has occurred,
to check the status of the sensor or the network.

First, to visualize the operational efficiency of the plant, six ConstraintSubscriber objects are
created, one for each of the production line sensors. Listing 1 illustrates the initialization of such an
observer for line L1, which registers a low completeness constraint (0.75) for its sensing device to
achieve faster updates. This constraint is specified by the developer, and it is interpreted as follows:
The middleware waits long enough for the sensor data of L1 to arrive, so that it is present in at
least three out of four updates of the operational efficiency. When the sensor data are not present,
the previously received value is used instead, leveraging the fact that the processing rate of the
production lines varies slowly over time. These ConstraintSubscribers react to next, timeout,
and violation events, produced by Khronos, by (a) updating the operational efficiency when an
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1 var productionLine1 = new ConstraintSubscriber( 3303/5702:00 -17 -0D-00-00-30-E7 -2D|

Item Processing Rate , 0.75, 0.99,

2 function(v){nextProductionLine(v, )},

3 function(err) {console.error( + err)},

4 function () {console.log( 1 Completed )},

5 function(v){timeoutProductionLine(v, )},

6 function(v){violationProductionLine(v, )});

Listing 1. Initializing a ConstraintSubscriber for sensor at L1 with a 0.75 completeness constraint, used
for computing operational efficiency.

1 var trashAisle = new ConstraintSubscriber( 3303/5702:00 -17 -0D-00-00-30-E7 -2D|

Object Detection , 0.9999 , 0.99,

2 function(v){nextTrashAisle(v)},

3 function(err) {console.error( + err)},

4 function () {console.log( A Completed )},

5 function(v){timeoutTrashAisle (v)},

6 function(v){violationTrashAisle(v)});

Listing 2. Initializing a ConstraintSubscriber for sensor at the trash aisle with a 0.9999 completeness
constraint, used to detect faults in the manufacturing process.

1 var orchestrator = new OrchestratorSubject ();

2 var chain = orchestrator.pipeNext(map(x => log( ensor data received , x)),map(

x => storeValue(x)));

3 var chain = chain.pipeTimeOut(map(x => log( imeout event received , x)));

4 var chain = chain.pipeViolation(map(x => log( Violation event received , x)));

5

6 chain.subscribe(productionLine1);

7 chain.subscribe(productionLine2);

8 chain.subscribe(productionLine3);

9 chain.subscribe(productionLine4);

10 chain.subscribe(productionLine5);

11 chain.subscribe(productionLine6);

12 chain.subscribe(trashAisle);

Listing 3. Subscribing the observers after chaining operators for next, timeout, and violation events.

event is present from each production line and (b) writing the result to a database, which is used
by a third-party data visualization tool (e.g., Grafana [5]) to create and update the display. This
functionality is realized by the nextProductionLine(...), timeoutProductionLine(...), and
violationProductionLine(...) callbacks, shown in Listing 1.

Second, to notify the operator, a ConstraintSubscriber object is created for the sensor at the
trash aisle, with a very high completeness constraint (e.g., 0.9999), as shown in Listing 2. This ob-
server reacts to incoming next, timeout, and violation events using the nextTrashAisle(...),
timeoutTrashAisle(...), and violationTrashAisle(...) callbacks. The callback function
nextTrashAisle(...) checks whether the measured number of defect items exceeds the thresh-
old and if so notifies the operator. The latter two callbacks notify the operator that a timeout and
a violation event occurred, respectively.

Finally, Listing 3 shows how the developer can chain operators to the Orchestrator subject for
each of the next, timeout, and violation flows. Whenever an event arrives, a message is written
to a log file for debugging purposes. Additionally, in the case of a next event, the storeValue(...)
map operator stores the sensor value in a key-value map (dictionary), to be used in the future in
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case of a timeout. The developer then subscribes the observers to the chain subject, so that they
listen to each of the event streams. This illustrates how a non-trivial application, with multiple
completeness constraints, can be implemented in a concise fashion using the proposed extensions,
without requiring the developer to specify any timeouts at compile time. The resulting display of
running the application is shown in Figure 3.

5.2 Network

In industrial CPS applications, like the industrial use case in Section 2, two widely used net-
work technologies are Time Slotted Channel Hopping (TSCH) and Carrier-Sense Multiple Access
(CSMA) mesh networks. In a TSCH mesh, all motes are precisely synchronized to tens of mi-
croseconds. Time is organized in slots that are allocated to motes in the network, allowing them
to know in advance when to turn the radio on or off. Frequency bands are separated in chan-
nels, and communications are done using those different channels at different times, resulting in
reliable, low-power communication. In CSMA networks, motes sense the shared medium before
transmitting to verify the absence of other traffic. In wireless networks, CSMA is often enhanced
with Collision Avoidance (CSMA/CA) to improve performance, where motes wait for a random
period of time after sensing that the medium is not free, before retrying.

In the context of our use-case, a wireless mesh network is deployed to connect the underlying
CPS devices. Mesh networks introduce increased complexity when dealing with network latency
due to multi-hop communication. That is why we focus on a wireless mesh network and do not
use LoRa or BLE for the implementation. The key technology used for the underlying wireless em-
bedded network is SmartMesh IP (SMIP) [2], which is broadly used in industrial CPS applications,
such as the manufacturing plant described previously in the use case.

By default, a SMIP network is a TSCH mesh but it can be easily reconfigured to a CSMA mesh
through the bbmode setting. In the evaluation, we use this parameter to test our implementation on
top of both a TSCH and a CSMA/CA wireless mesh. A SMIP network is a wireless, multi-hop mesh
network that self-forms and self-maintains to guarantee high network reliability and ultra low-
power. Due to this self-adaptation, several network parameters, including allocated bandwidth,
latency, and hop-depth, can change over time without any system parameter reconfiguration, lead-
ing to non-deterministic packet arrival times.

For this article, a real-life testbed is built that consists of 34 physical devices, including the gate-
way. More concretely, there are 22 SmartMesh IP motes [3] (DC9003A-B), 11 VersaSense wireless
devices [9] (Model P02), and one VersaSense Edge Gateway [8] (Model M01). The SmartMesh IP
motes are not equipped with sensors: Their role is to act as routers that forward packets they re-
ceive across the network, enabling a widespread deployment with a large number of hops. The
VersaSense wireless devices are built on top of SmartMesh IP and provide plug-and-play support:
Up to four sensors or actuators, known as peripherals, can be connected on each VersaSense device.
Each VersaSense device is also equipped with a built-in peripheral that measures the battery-level.
As a result, there are in total 22 device data streams, each corresponding to a different periph-
eral. The VersaSense Edge Gateway, which is the network manager, acts as a bridge between the
wireless sensor network and Khronos.

Table 1 shows the types of peripherals that are deployed in the testbed along with their quanti-
ties and default sampling periods. Each VersaSense device is equipped with at most one peripheral
of the same type. These peripherals are fully self-identifying, requiring no further manual inter-
vention. In the rest of the article, we use the term “device” to refer to a peripheral connected to a
VersaSense device. It is uniquely defined by the peripheral identifier and the IPv6 address of the
VersaSense device.
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Table 1. Deployed Peripherals and Their Settings

Identifier Peripheral Type Quantity Sampling

3302/5500 Sensor (Presence) 1 10 s
9803/9805 Sensor (Light) 3 120 s
3303/5702 Sensor (Temperature) 3 120 s
8040/8042 Sensor (Pressure) 3 60 s

9903/9904/2 Sensor (Thermocouple) 1 10 s
1010/9000 Sensor (Battery) 11 900 s

5.3 Middleware

We implemented Khronos on a Raspberry Pi 3, because it is a gateway-class device in terms of
memory capacity and processing power, which is important for our industrial use-case. It is de-
veloped in Python v3.6 as a Representational State Transfer [6] (REST) server, using the flask
[4] framework and implements the API that was described in Section 4.3.2. REST is a stateless
communication protocol that separates the concerns of the client and server, enabling transpar-
ent communication between software systems. In this proof-of-concept implementation, Khronos
communicates with applications using remote method invocation (RMI) and/or websockets. Pyro
4.6 is a python library that enables remote method invocation (RMI) on objects that are created and
stored locally by client applications. These objects implement the callback methods discussed in
Section 4.3.2: on_next(...), on_timeout(...) and on_violation(...). Clients application(s)
register these objects to the Pyro name server, which provides them with a URI per object. Applica-
tion(s) provide this URI as an argument to Khronos when calling the provided API methods, instead
of directly passing the callback functions, leading to easier client-server integration. Khronos in-
vokes each of the callbacks accordingly, based on whether or not constraint violation occurred,
which then executes the corresponding method locally on the client machine. Alternatively, ex-
ternal applications can connect to a websocket that Khronos offers, which emits tagged events
whenever a packet arrives or a timeout or constraint violation occurs.

The Raspberry Pi is in the same local area network (LAN) as the Versasense Edge Gateway.
Khronos obtains the relevant network status information from the Versasense Edge Gateway
through a CoAP [7] API, which is a client-server model similar to REST but designed for resource-
constrained devices. Additionally, the VersaSense Edge Gateway listens for connections to a web-
socket [10], which enables full-duplex communication over a single TCP connection. Khronos
connects to the websocket to receive the raw sensor data stream, which is processed by the rest of
the middleware.

Resulting Kρ

Khronos uses the technique discussed in Section 4.2 to automatically compute the timeouts for
individual packet arrivals. Kρ is used in formula (8) to determine the sensitivity to packet arrival
time variance. Based on the described methodology, we determine Kρ for a wireless TSCH mesh
network. The same values can be used for Khronos on top of a CSMA/CA wireless mesh network,
as shown in the experiments performed in Section 6. For other network technologies, such as LoRa
and BLE, recomputation ofKρ might be necessary, using the methodology described in Section 4.2.
The resulting Kρ values are shown in Table 2 for various completeness constraints ρ. Intuitively,
since Kρ determines the sensitivity of the timeout to change, the higher the completeness con-
straint, the larger the resulting Kρ . For ρ = 1.0, Kρ is in theory infinitely large so that packets
always arrive on time. In practice, the results show that for ρ = 1.0, the ratio of missed events
saturates at 0.003 or 0.3% for Kρ >= 300.
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Table 2. Kρ Values for Different Completeness Constraints ρ

ρ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Kρ 0 0.1 0.6 1 1.2 1.4 2 2.8 4.6 300

Fig. 8. Accidental and essential complexity percentages for RxJS with (Program A) and without (Program B)
time management extensions.

6 EVALUATION

This section discusses the evaluation of the proposed language extensions and Khronos, focusing
on three key aspects based on the requirements in Section 3: (1) the complexity of the result-
ing CPS application, (2) the performance of the resulting timeouts in the presence of application
and network heterogeneity, and (3) the ability to adapt to network and application dynamism. The
proposed extensions are evaluated by comparing two equivalent implementations of our industrial
use case example, with and without the proposed extensions, discussed in Section 6.1. The per-
formance of Khronos in the presence of heterogeneity and dynamism is evaluated by conducting
an extensive set of experiments on a physical testbed. The evaluation metrics and the approaches
against which Khronos is compared are discussed in Section 6.2. Finally, the empirical evalua-
tion results are presented in Section 6.3 for each set of experiments, with a deeper discussion in
Section 6.3.2.

6.1 Reactive Extensions

To evaluate the proposed reactive extensions, we implemented the industrial use case example,
described in Section 2, using RxJS with and without the proposed time management extensions,
resulting in programs A and B, respectively. We compare the two programs in terms of code size
and complexity, using the notions of essential and accidental complexity [17]. As essential com-
plexity, we consider the application-specific functionality: (a) computing the operational efficiency,
which includes synchronizing the different sensor inputs; (b) updating the display, which involves
writing to a database; and (c) the corresponding callback methods to handle incoming next, timeout,
and violation events. As accidental complexity, we consider (a) the communication management
between the application and the CPS, because it is overhead that is not a property of the problem at
hand, (b) the creation of the reactive objects and their dependencies, as well as (c) helper functions
to the scheduling (e.g., retrieving a message from the queue based on an identifier). The measured
essential and accidental complexity of the two programs is presented in Figure 8.
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Table 3. Lines of Code Comparison of Programs A (with Extensions) and B (without)
Grouped in Terms of Functionality

Reactive Constructs

Communication Database Scheduling Instantiation Callbacks Operators Total LOC

Program A 0 43 48 21 49 8 169

Program B 86 43 48 27 108 8 320

Percentage Change −100% 0% 0% −22.22% −54.63% 0% −47.19%

The results show that the proposed extensions reduce the accidental complexity of the program
by 73.3%. This is largely due to eliminating (a) the communication overhead with the underlying
CPS, which is now managed automatically by the extensions (the Orchestrator object), and (b) by
eliminating the need for case splitting on the sensing device identifier inside the callback functions,
by creating a ConstraintSubscriber object for each device data stream. The remaining accidental
complexity is due to the import statements for the database and RxJS modules, the database and
reactive object creation and the queue manipulation helper functions that are used for scheduling.

Table 3 provides an overview of the code size of the two programs, per block of functional-
ity: communicating with the middleware, writing to the database, and scheduling the events to
compute the operational efficiency. Additionally, we measured the lines of code for creating the
needed dependencies between the reactive objects (observables and observers). The results show
that using the proposed reactive extensions decreases the size of the resulting program by 47.19%.
Thus, the proposed reactive extensions lead to programs that are less complex and more concise,
which reduces the overall developer effort.

6.2 Setup

All experiments conducted in this evaluation are performed on top of data collected from the real-
life testbed, as discussed in Section 5.2. The quantity and types of sensors are shown in Table 1.
The experiments aim to extensively evaluate Khronos across two dimensions: heterogeneity and
dynamism, both typical for CPS networks. Its performance is evaluated against the approaches
described in Section 6.2.1, using the metrics discussed in Section 6.2.2. Unless specified otherwise,
the experiments use the default topology of the testbed, which is shown in Figure 9.

6.2.1 Approaches. Khronos is compared against three state-of-the-art approaches [47, 54] that
use a fixed timeout per device data stream:

DSP (Double Sampling Period). DSP sets the timeout for each packet arrival from a device equal
to twice its sampling period. This leads to significantly large timeouts, ensuring high completeness
at the expense of timeliness.

SPND (Sampling Period Network Delay). SPND sets the timeout for each packet arrival equal to
the device sampling period plus the average network delay. This typically leads to smaller timeouts
compared to DSP, at the expense of completeness.

STO (Static Timeout Oracle). STO is a theoretical approach that knows in advance all the packet
arrival times from each device. STO computes a fixed timeout based on the completeness constraint
for each device data stream. The timeout is equal to the smallest value that satisfies the given
constraint for that device data stream across the experiment.

Khronos. For each completeness constraint, Khronos automatically computes timeouts for the
next packet arrival from the corresponding device whenever a packet arrives, as discussed in Sec-
tion 4.2.

DSP is an example that opts for high completeness, where fixed timeouts are set arbitrarily large
enough and SPND opts for timeliness, where timeouts are equal to the device sampling period plus
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Fig. 9. Default topology of the physical testbed, spanning throughout three building floors.

a fixed offset, e.g., the average network latency. In practice, only DSP, SPND, and Khronos can
be used, since STO requires perfect knowledge of the future to compute the timeouts. However,
STO is a reference benchmark as it demonstrates the best possible performance when using fixed
timeouts under perfect information.

6.2.2 Metrics. We measure the performance of each approach for a device data stream σ s using
two evaluation metrics: the prediction error ϵ (σ s ), as defined in Section 2, and the constraint
violation ν , which is defined next.

Constraint Violation (ν ). This is the percentage (%) of packet arrivals for which the constraint
is violated. In theory, to ensure that extremely large completeness constraints ρ → 1.0 are always
satisfied, the corresponding timeouts would be quasi-infinitely large. This is impractical, since
timeouts should still occur within a finite amount of time. Thus, we slightly relax the definition of
completeness constraint satisfaction in Section 2 by tolerating that γ (σ s ) < ρ for at most 0.001%
of event arrivals, where ρ ∈ [0..1). In other words, a completeness constraint is satisfied when
over 99.999% of the time, the measured completeness γ (σ s ) for σ s is greater or equal to the com-
pleteness constraint ρ, or equivalently while ν ≤ 0.001%. For the extreme case where ρ = 1.0, the
best approach is the one with the smallest constraint violation ν and the smallest prediction error
(best-effort). Each approach is evaluated for completeness constraints ρ ∈ 〈0.1, . . . , 1.0〉. Unless
specified otherwise, by default the results are illustrated for a completeness constraint ρ = 0.8.
The default values used for the most important gateway configuration parameters are shown in
Table 4.

6.3 Results

This section provides an overview of the performed experiments and results, comparing Khronos
against the approaches discussed previously in Section 6.2.1. The experiments evaluate Khronos
across two dimensions: dynamism and heterogeneity.
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Table 4. Default SMIP Network Manager Configuration Parameters [57]

Parameter txpower basebw numparents bbmode bbsize bwmult
Value 8 50000 2 0 1 1000

6.3.1 Dynamism. This section evaluates the capability of Khronos to satisfy application com-
pleteness constraints in the presence of network and application dynamism, as specified by re-
quirement C). From the use case and the literature study, we identify three sources of dynamism.
First, applications can change device sampling periods over time to achieve their goal. Second,
devices can leave (join) the network at any time, which results in a smaller (larger) network size,
measured by the number of operational motes. Third, network parameters can be re-configured on
the spot to impact the network latency. In the case of SMIP, the re-configuration requires a reset
of the network manager to take effect. In the experiments to follow, devices are deployed across
three floors of our departmental building, up to one floor away from the gateway, as is shown
in Figure 9. The acquired results are shown for an arbitrarily selected device, but the same trend
holds for all 22 sensing devices.

Impact of Network Size

In this experiment, we test the hypothesis that Khronos can consistently satisfy application com-
pleteness constraints in the presence of network size dynamism, by turning off and on 66.67% of
the devices. Figure 10(a) shows the impact of changing the network size on the constraint violation
and prediction error, over a period of five hours, for a sampling period of 10 s and ρ = 0.8. The
left and right arrows in Subplot 3 indicate the two events: reducing and increasing the network
size, respectively. Khronos reacts to the changes by increasing the smoothed arrival time variance
(Equation (7) in Section 4.2), which in turn leads to larger timeouts and temporarily larger predic-
tion errors (Subplot 2), but ensures that the constraint violation remains at 0% (Subplot 1). SPND is
the only approach that violates the constraint throughout this experiment, as indicated by the pink
line in Subplot 1. Overall, Khronos continuously satisfies the constraint, just like DSP and STO,
but has a far smaller prediction error than DSP, shown in Subplot 2. Note that DSP’s prediction
error is proportional to the sampling period, which can be up to many orders of magnitude larger
than Khronos’ prediction error.

Performance with Dynamic Sampling Periods

In this experiment, we test the hypothesis that Khronos can consistently satisfy application com-
pleteness constraints in the presence of changing sampling periods, by re-configuring the devices.
We evaluate the performance of each approach in two scenarios: stepwise increase and stepwise
decrease of the sampling period.

Figure 10(b) shows the impact of increasing the sampling period over three days. The sampling
period is increased from 60 to 120 s and from 120 to 240 s, shown by the arrival times in Subplot 3.
Khronos reacts to both changes by increasing the smoothed arrival time variance (Equation (7) in
Section 4.2), which in turn results in larger timeouts, leading to two peaks in the resulting predic-
tion error (Subplot 2). The benefits of Khronos in terms of completeness are shown in Subplot 1:
DSP and SPND both fail the constraint (Subplot 1) after the first change, in contrast to Khronos,
which always has a constraint violation smaller than 0.001%. Additionally, Khronos is the only ap-
proach that achieves a consistently low prediction error compared to the alternative approaches.
The large prediction errors of DSP, SPND, and STO clearly show the limitations of static timeouts,
even in the presence of perfect knowledge of the future.
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Fig. 10. Evaluation results for different dynamic scenarios. Timeplot for an arbitrary device, where ρ = 0.8,
illustrating the impact of (a) changing network size, (b) increasing device sampling period, (c) decreasing
device sampling period, and (e) increasing the network latency.

Figure 10(c) shows the impact of decreasing the sampling period over the course of 3 days. The
sampling period is decreased from 240 to 120 s and from 120 to 60 s, shown in Subplot 3. Since
SPND is defined by the initial sampling period and the sampling periods decrease, its constraint
violation percentage decreases to 0% (Subplot 1). However, there is a clear penalty in timeliness
for DSP, SPND, and STO, shown by the large prediction error in Subplot 2. Khronos is the only
approach that consistently satisfies the constraint while at the same time resulting in drastically
smaller prediction error, compared to the other approaches across the entire experiment.

Performance with Dynamic Network Latency

In this experiment, we test the hypothesis that Khronos can consistently satisfy application com-
pleteness constraints in the presence of network reconfiguration, leading to increased network
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latency and variance. Figure 10(d) shows the impact of changing network latency by re-configuring
the gateway. All devices are configured with a sampling period of 60 s, and ρ = 0.8 for each device
data stream. The gateway (network manager) is restarted, indicated by the arrow in Subplot 3, with
new configuration: bwmult = 100 and basebw = 1000. The new configuration leads to higher and
more variable latency (Subplot 3), which Khronos detects and reacts by increasing the smoothed
arrival time variance (Equation (7) in Section 4.2), which in turn results in larger timeouts and thus
a temporarily larger prediction error (peak in Subplot 2), to ensure the completeness constraint
remains satisfied (Subplot 1). SPND violates the constraint after network reconfiguration and DSP
results in a prediction error that is proportional to the sampling period.

6.3.2 Heterogeneity. This section evaluates the capability of Khronos to satisfy application
completeness constraints in the presence of network and application heterogeneity, as specified by
requirement D). Broadly, we identify two classifications for heterogeneity: on the network and on
the application level. Networks can vary in their topology based on the use-case at hand. Similarly,
networks can differ in their medium access control schemes, based on the application require-
ments (e.g., low-latency versus reliability). Sharing the medium without synchronization (CSMA)
can lead to lower network latency, while time-synchronized channel-hopping (TSCH) minimizes
packet collisions by allocating dedicated communication slots to each device. Finally, applications
can require devices to sample at distinct rates while imposing different completeness constraints.
The rest of this subsection compares the performance of the approaches for separate completeness
constraints, network topologies, medium access control protocols and sampling periods.

The results for each approach are shown as error-bar charts, where the bar height is equal to
the mean across the 22 peripherals and the min and max values are, respectively, the lower and
upper bound of the error range.

Meeting a Range of Completeness Constraints

In this experiment, we test the hypothesis that Khronos consistently satisfies a range of different
completeness constraints ρ. The testbed is deployed across three building floors and each device
is up to one floor away from the gateway, as shown by Figure 9. Devices are configured with their
default sampling periods, shown in Table 1, and data have been collected over 7 days. During this
period, over 4 million packets arrived at the gateway across all devices.

Figure 11(a) illustrates the constraint violation for each ρ, which is defined earlier in Sec-
tion 6.2.2. STO by design never violates any constraint and is thus omitted from the figure. Khronos
and DSP never violate the constraint, while SPND fails to satisfy ρ >= 0.6. For ρ = 1.0, Khronos
violates the constraint only in 0.32% of the events, over 10 times less than DSP.

Figure 11(b) illustrates the prediction error of each approach, computed for different ρ. Overall,
DSP has the highest prediction error, with a mean of 447 s and a max value of 850 s. Khronos’
prediction error is in the same order as that of SPND and STO for ρ ∈ [0..1), and slightly better
than DSP for ρ = 1.0. The results show the Khronos satisfies all completeness constraints at least as
well as DSP, with a prediction error comparable to that of SPND, almost two orders of magnitude
less than DSP.

Performance in Heterogeneous Network Topologies

In this experiment, we test the hypothesis that Khronos satisfies completeness constraints for
different network topologies. We compare the performance of the approaches for two different
deployments. In topology A, the entire testbed is deployed within 1 m of the gateway. In topology B,
devices are deployed across a building, up to two floors away from the gateway. For each topology,
data have been collected over 72 hours, and devices are configured with their default sampling
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Fig. 11. Evaluation results for different heterogeneity scenarios. (a) Constraint Violation % and (b) average
prediction error, measured in seconds, per-approach for ρ ∈ 〈0...1〉. Average Prediction Error per-approach
for ρ = 0.8, across (c) different network types, (d) different network topologies, (e) different sampling periods.

periods, shown in Table 1. During this period, around 2 million packets arrived at the gateway
across all devices.

The constraint violation percentage (ν ) of each approach is shown in Table 5. The results show
that Khronos does not violate the constraint in either topology, unlike SPND (27.8% in topology
A and 42.8% in topology B) and DSP (0.045% in topology B). Figure 11(c) illustrates the prediction
error of the different approaches per-topology, for ρ = 0.8. In topology A, Khronos has a prediction

ACM Transactions on Internet of Things, Vol. 1, No. 3, Article 18. Publication date: May 2020.



18:26 S. Peros et al.

Table 5. Constraint Violation (%)
Per-approach for Topology A and B, Where

Completeness Constraint ρ = 0.8

Approach Topology A Topology B

DSP 0% 0.045%
SPND 27.8% 42.8%
STO 0% 0%

Khronos 0% 0%

Table 6. Constraint Violation (%)
Per-approach for a TSCH and

CSMA/CA Wireless Mesh Network,
Where ρ = 0.8

Approach TSCH CSMA/CA

DSP 0% 0%
SPND 27.8% 40%
STO 0% 0%

Khronos 0% 0%

Table 7. Constraint Violation (%) Per-approach for
Different Device Sampling Periods and Constraint

ρ = 0.8

Approach 10 s 60 s 120 s 900 s

DSP 0% 0% 0% 0%
SPND 21.5% 20.3% 25.16% 16.18%
STO 0% 0% 0% 0%

Khronos 0% 0% 0% 0%

error in the same order as SPND and STO, while in topology B its prediction error is almost half
of STO and around two orders of magnitude less than DSP.

Performance with Heterogeneous Medium Access Control Protocols

In this experiment, we test the hypothesis that Khronos can satisfy completeness constraints for
networks with different medium access control protocols. We compare the performance of the
approaches for two different medium access control protocols: TSCH and CSMA/CA. Data are
collected over 72 hours, during which around 2 million packets are received at the gateway. All
devices are deployed within one meter of the gateway (Topology A).

The constraint violation percentage (ν ) of each approach for a TSCH and CSMA/CA wireless
mesh is shown in Table 6. The results show that Khronos does not violate the constraint in either
topology, unlike SPND (27.8% in topology A and 40% in topology B). Figure 11(d) illustrates the
prediction error per-approach for TSCH and CSMA/CA. While both DSP and Khronos satisfy the
constraint, Khronos scores similarly to SPND and STO with a prediction error of 0.87 s (TSCH)
and 0.27 s (CSMA/CA), drastically less than DSP’s mean of 450 s.

Performance with Heterogeneous Sampling Periods

In this experiment, we test the hypothesis that Khronos can satisfy completeness constraints for
different device sampling periods. We compare the performance of each approach for four sam-
pling periods: 10, 60, 120, and 900 s. The testbed is deployed across three floors of our departmental
building, as shown in Figure 9. For each completeness constraint, data has been collected over a
course of seven days and devices are configured with their default sampling periods, shown in
Table 1. During this period, over 4 million packets arrived at the gateway across all devices.

The constraint violation percentage (ν ) of each approach for different device sampling periods
is shown in Table 7. The results show that Khronos and DSP always satisfy the constraint ρ = 0.8,
while SPND fails it 21.5%, 20.3%, 25.16%, and 16.18% of the time for a sampling period of 10, 60,
120, and 900 s, respectively.
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Figure 11(e) illustrates the prediction error per-approach for TSCH and CSMA/CA. Khronos’
prediction error is slightly above SPND and comparable to STO, while satisfying ρ = 0.8 in contrast
to SPND. DSP satisfies the constraint at a far larger cost, with a prediction error proportional to the
sampling period and at least two orders of magnitude higher than Khronos for a sampling period
larger than 10 s.

Discussion. The evaluation results show that Khronos succeeds in tackling the problem stated
in Section 2, by yielding the smallest prediction error while ensuring completeness constraint
satisfaction when compared to the alternative approaches. Khronos accomplishes this through
dynamic timeouts for event arrivals, computed using Equation (8) in Section 4.2, which react to
changes in the observed arrival times. When the interval between consecutive arrival times is
close to constant, the second term in the equation is small, which also leads to smaller timeouts.
On the contrary, when the interval between consecutive arrival times varies substantially, the sec-
ond term in Equation (8) increases aggressively based on the value of Kρ , which is proportional to
the completeness constraint ρ. While this ensures, as the results have shown, that Khronos satisfies
ρ ∈ 〈0, . . . , 1〉 under various conditions, it does so at the expense of timeliness for ρ = 1.0, which
can be seen in Figure 11(b). Indeed, the stricter the completeness constraint, the further timeouts
are on average from the corresponding event arrival times. While this is a desirable property to
ensure consistent constraint satisfaction, for ρ = 1.0 it leads to timeouts up to hundreds of seconds
larger than the corresponding arrival times, which unlike our use case, can be unacceptable for
applications that do not tolerate both missed events and large timeouts. Finally, while extensive,
our evaluation is not exhaustive: depending on the underlying CPS network technology, other (dy-
namic) parameters can be present that influence event arrival times. In LoRa networks, for example,
the time between consecutive event transmissions depends on the payload size and the spreading
factor [52]. The payload size can change at runtime by the application, while the spreading factor
can change based on the distance of the device from the gateway. Our approach is agnostic of the
underlying network technology, since it relies purely on monitoring the network for event arrival
times. Thus, it naturally generalizes to other types of networks and applications, such as smart
cities using LoRa real-world deployments.

7 CONCLUSION

CPS are increasingly integrated with critical physical processes, including manufacturing, health-
care, and smart grids, enabling advanced monitoring and control to improve operational efficiency.
Reactive programming simplifies the development of event-driven CPS applications: It offers pow-
erful abstractions that encapsulate event streams, in addition to an execution environment that
automatically propagates updates based on their dependencies. Current reactive solutions require
CPS application developers to manually specify timeouts at compile time, which can lead to in-
efficiencies and incorrect results as event arrival times vary due to network and packet inter-
generation delay. Reacting in a timely manner to changes while operating over complete informa-
tion is a crucial research challenge.

This article introduced a novel set of reactive programming extensions that enable CPS appli-
cation developers to easily trade off timeliness versus completeness in their applications. These
extensions utilize Khronos, a novel middleware that supports the specification of completeness
constraint(s) per-device data stream, shielding the developer from manually specifying packet ar-
rival timeouts or further configuration parameters. This is achieved by monitoring the CPS in-
frastructure and automatically specifying timeouts for event arrivals while satisfying the specified
completeness requirements. Khronos relies on a single configuration parameter Kρ , which con-
trols the sensitivity to variance in event arrival times and can be determined empirically for any
completeness constraint ρ by following the methodology proposed in this article.
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The proposed reactive extensions are evaluated by comparing two equivalent implementations
of an industrial use case example, written in RxJS with and without these extensions. The results
indicate that using the proposed extensions reduces the accidental complexity of the program, de-
creasing the total lines of code by over 45%. Additionally, Khronos is evaluated on top of a physical
testbed of 34 devices, connected through a state-of-the-art wireless mesh network that supports
two medium access control protocols: TSCH and CSMA/CA. The experiments are performed in the
presence of various sources of heterogeneity and dynamism in the underlying CPS. Overall, the re-
sults show that Khronos improves upon state-of-the-art approaches, resulting in up to two orders
of magnitude smaller timeouts while never violating the application completeness constraints. To-
gether, these results suggest that the combination of the proposed novel language extensions and
Khronos provide an end-to-end solution that enables CPS application developers to easily write
reliable distributed applications with flexible completeness requirements. A natural progression of
this work is to analyze techniques that adapt the value of Kρ at runtime, which will eliminate not
only the need for pre-deployment configuration (e.g., by applying machine learning techniques)
but can also improve the prediction errors when no missed events are tolerated.
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