
HAL Id: hal-04901341
https://hal.science/hal-04901341v1

Submitted on 24 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A federated fog-cloud framework for data processing and
orchestration: A Case Study in Smart Cities

Dapeng Lan, Yu Liu, Amir Taherkordi, Frank Eliassen, Stéphane Delbruel,
Liu Lei

To cite this version:
Dapeng Lan, Yu Liu, Amir Taherkordi, Frank Eliassen, Stéphane Delbruel, et al.. A federated fog-
cloud framework for data processing and orchestration: A Case Study in Smart Cities. SAC ’21: The
36th ACM/SIGAPP Symposium on Applied Computing, Mar 2021, Virtual Event Republic of Korea,
South Korea. pp.729 - 736, �10.1145/3412841.3444962�. �hal-04901341�

https://hal.science/hal-04901341v1
https://hal.archives-ouvertes.fr

A Federated Fog-Cloud Framework for Data Processing and
Orchestration: A Case Study in Smart Cities

Dapeng Lan
Department of Informatics

University of Oslo

Oslo, Norway

dapengl@ifi.uio.no

Yu Liu
Department of Science and

Technology

Linköping University

Linköping, Sweden

yu.a.liu@liu.se

Amir Taherkordi
Department of Informatics

University of Oslo

Oslo, Norway

amirhost@ifi.uio.no

Frank Eliassen
Department of Informatics

University of Oslo

Oslo, Norway

frank@ifi.uio.no

Stéphane Delbruel
Department of Informatics

University of Oslo

Oslo, Norway

stephde@ifi.uio.no

Lei, Liu
Xidian University

Xi’an, China

tianjiaoliulei@163.com

ABSTRACT

The fog computing paradigm has been proposed to alleviate the

pressures on cloud platforms for data processing and enable comput-

ation-intensive and delay-sensitive applications in smart cities.

However, state-of-the-art approaches mainly advocate either cloud-

or fog-based data processing solutions, and they also lack a com-

mon framework for programming over the fog-cloud continuum.

In this paper, we propose a distributed, fog-cloud data processing

and orchestration framework, which is capable of exploiting the

semantics of both fog platforms and the Cloud. Our framework

can create on-demand process engine data flow (PEDF) spanning

multiple device layers with various resource constraints. This will

considerably help the developers rapidly develop and deploy data

processing applications over the fog-cloud continuum. Our pro-

posed framework is validated in a real-world scenario—IoT data

streaming analytics for the smart green wall in a smart city—which

demonstrates efficient resource usage and latency reduction.

CCS CONCEPTS

• Computer systems organization→ n-tier architectures.

KEYWORDS

Fog computing, Data processing, Cloud computing, Smart City,

Orchestration

ACM Reference Format:

Dapeng Lan, Yu Liu, Amir Taherkordi, Frank Eliassen, Stéphane Delbruel,

and Lei, Liu. 2021. A Federated Fog-Cloud Framework for Data Processing

and Orchestration: A Case Study in Smart Cities. In The 36th ACM/SIGAPP

Symposium on Applied Computing (SAC ’21), March 22–26, 2021, Virtual

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8104-8/21/03. . . $15.00
https://doi.org/10.1145/3412841.3444962

Event, Republic of Korea. ACM, New York, NY, USA, 8 pages. https://doi.org/

10.1145/3412841.3444962

1 INTRODUCTION

The term Internet of Things (IoT) was proposed to reflect connectiv-

ity between the physical and the digital world over the Internet. The

research on IoT applications has been evolving in various domains,

of which smart city is a promising representative. IoT technologies

in smart cities offer excellent opportunities to both public and pri-

vate sectors to harvest data sources, obtain data insights, and make

data-driven decisions[1, 2]. Conventional smart city services are

typically centralized, i.e., data storage, data analytics, and feedback

control solely rely on remote servers in the Cloud. However, the

cloud approach is difficult to fulfill the new services requiring high

throughput and low latency [3], such as augmented reality (AR) and

autonomous vehicles [4, 5]. Therefore, the fog and edge computing

paradigms have been proposed to address the above challenges

by moving parts of processing tasks from the Cloud to the edge

network devices, closer to the data source [6].

The adoption of fog computing frameworks for data processing

in smart cities introduces various challenges: 1) different from cloud

computing, fog computing nodes are more heterogeneous in terms

of hardware resources (e.g., different CPU architectures with x86,

arm32 or arm64), 2) due to a large number of fog computing nodes,

the computing framework requires a proper abstraction layer to

manage these nodes, and 3) due to the heterogeneity of fog comput-

ing nodes, it is more complicated to develop and deploy software

applications and arrange the execution process for the application.

Furthermore, it is essential to have a hybrid approach, combining

cloud and fog data processing, to fully utilize the resources. For in-

stance, heavy computing tasks with latency-tolerant requirements

can be processed in the Cloud while latency-sensitive tasks should

be deployed on the fog nodes.

There exist a number of frameworks and engines for data pro-

cessing and analytics within the Cloud, such as Apache Spark [7]

and Apache Flink [8]. In these frameworks, edge and end devices are

used only as proxies to transmit data to the Cloud. Several fog/edge

data processing engines have been introduced lately (e.g., Apache

729

Edgent[9] and Apache Minifi[10]). These engines usually process

local raw data on resource constraint IoT devices, which reduces the

load on the Cloud with respect to data processing and storage. Hy-

brid approaches, combining both cloud and fog processing, require

deploying two different process engines. This introduces two types

of challenges considering programming in such settings: how to ad-

dress synchronization overheads between the two engines and how

to split the data processing workflow into two platforms. Moreover,

application developers lack abstraction layers and need to spend

extra time and resources to consider both computing platforms and

frameworks.

We propose a distributed, fog-cloud data processing and orches-

tration framework leveraging the data-flow programming model to

tackle the above challenges. This framework provides a conceptual

structure and facilitates the fog-cloud data processing application

development dealing with heterogeneous infrastructures. We imple-

ment and experimentally evaluate our framework in a real-world

scenario—a smart green wall in the smart city. Our contributions

can be summarized as follows:

(1) We propose a conceptual fog-cloud system architecture for

dealing with the heterogeneity of the hardware resources

among devices.

(2) We propose a distributed, fog-cloud data processing and

orchestration framework leveraging the data-flow program-

ming model, alleviating the complexity for developers to

rapidly develop and deploy data processing applications.

(3) We implement the proposed fog-cloud data processing frame-

work and experimentally evaluate it with a representative

real-world scenario which is a smart green wall in smart

cities for IoT data stream analytics.

The rest of the paper is organized as follows. In Section 2, we

discuss the related work. In Section 3, we present the proposed

system architecture and the orchestration framework for a smart

city and then we explain the system implementation in Section 4.

In Section 5, we evaluate our framework through a real use case, a

smart green wall application. We conclude the paper and discuss

the future work in Section 6.

2 RELATEDWORK

In this section, we split the related work into two major branches:

cloud data processing platforms in smart cities and fog/edge-cloud

based data processing and orchestration frameworks.

Cloud platforms, with elastic computation, storage, and network

resources, have been popularly used in the past years, processing

large amounts of IoT data in smart cities. The cloud data processing

platforms are quite mature nowadays. For instance, the Hadoop

MapReduce framework [11] and Spark [7] have been vastly used

to perform large-scale batch processing tasks. Stream processing

frameworks are also proposed to reduce the time that data streams

spend in the data pipeline, such as Storm, Samza and Flink [8]. More

recently, some software frameworks (e.g., Apache Edgent[9] and

Apache Minifi[10]) have been introduced for fog/edge devices that

have constrained computing and storage resources. However, the

above frameworks mainly focus on either cloud- or fog-based solu-

tions and are still far away from a general data process framework

working across cloud and fog platforms.

There are also some research works combining the Cloud and

fog for data processing and orchestration. Hong et al. [12] pro-

posed MobileFog, which is a high-level programming model for

IoT with geospatially distributed and latency-sensitive properties.

It provides a general tree structure to map services to devices. In

the work [13], Giang et al. introduced a distributed data flow (DDF)

programming model by extending Node-RED, as a basis for fog-

based IoT applications. DDF provides an easy and flexible way to

design and develop IoT applications. B. Cheng et al. introduced the

FogFlow framework in [14] for cloud and edge platforms. FogFlow

extends the dataflow programming model and utilizes the NGSI

standard, enabling easy programming of elastic IoT services. How-

ever, the above architectures are not general frameworks as they

need specific interfaces. Yangui et al. [15] presented a PaaS archi-

tecture aiming for hybrid cloud and fog environments by utilizing

Cloud Foundry and REST communication interfaces. However, in

the above work, applications cannot run standalone in fog and

need support from the Cloud. In [16], a high-level fog framework

is designed, called Fog05, to provision, manage and monitor the

network that spans across things, edge and the Cloud. However,

it is still in an infant stage and needs to specify plugin, Zenoh, to

support the system.

Apart from the academic community, several frameworks for fog-

cloud data processing and orchestration have been proposed by the

industries, with tools for application development and deployment,

such as the Cisco edge computing framework, Amazon Greengrass,

Microsoft Azure IoT, Google CloudIoT, Foghorn [17], and Nebbi-

olo [18]. There are also some open-source projects or frameworks

dealing with fog-cloud data processing and orchestration, such as

ioFog [19], BAETYL [20] and EdgeX Foundry [21].

Despite the above works combining the Cloud and fog com-

puting, these systems use different standards and programming

approaches and need specific interfaces or specific plugins. There-

fore, in this study, we propose a fog and cloud data processing and

orchestration framework, as a supplementary enhancement and

feasibility verification to the state of the art in federated fog-cloud

computing. This study is not intended to compete with aforemen-

tioned frameworks that are put into industrial and academic prac-

tice, but rather provided as a real implementation and validation for

the federated fog-cloud framework for data processing and orches-

tration in smart cities, contributing valuable inputs to the related

research fields.

3 ARCHITECTURE AND ORCHESTRATION

FRAMEWORK

This section presents an overview of the proposed system archi-

tecture and orchestration framework for a smart city as shown in

Fig. 1. We then explain the details of the process engine orchestra-

tion framework based on a data-flow programming model and its

components. In the end, we compare different techniques for data

processing in the Cloud, fog and end devices.

3.1 System Architecture

As shown in Fig. 1, the system architecture consists of three lay-

ers: the Cloud layer, the Fog layer, and the End Devices (ED) layer.

The ED layer contains various types of smart devices (e.g., mobile

730

Figure 1: A federated fog-cloud framework for data processing and orchestration in smart cities

phones, wearable equipment, and intelligent vehicles) with limited

computational and storage resources. The end devices generate

various types of data for different applications, such as smart build-

ing, smart traffic, and smart green wall. The Fog layer consists of

various fog nodes communicating with different kinds of ED. They

can serve as switches at home or as base stations. A fog node resides

at the network edge, serving at the intermediate layer between the

ED layer and the Cloud layer. The Cloud layer is for processing

services with high computational and storage resources demands.

Smart city applications come with the properties of large scale

IoT data, high heterogeneity of devices, distributed intelligence, and

various quality of service requirements [22]. From the Cloud layer

to the ED layer, the data scale is dramatically increasing, and the

heterogeneity of the devices also becomes high. Latency is much

lower at the ED layer as the tasks run closer to the data sources.

However, from the Cloud layer to the ED layer, the intelligence

decreases because the ED layer lacks high computational capacity.

Due to heterogeneity of computing platforms from the Cloud to

Fog and ED layers, we design the process engine orchestration

framework (PEOF) utilizing the data-flow programming model.

This design principle creates a data-flow pipeline for applications

across different layers, which hides the complexities for application

developers as they do not need to consider the heterogeneity of

underlying devices. As shown in Fig. 1, applications One and Two

are represented by the process engine data flow across the ED, Fog

and Cloud layers.

We next describe the process engine orchestration framework

with more details (components and functions), as well as their

deployment.

3.2 Process engine orchestration framework

3.2.1 Process Engine. The process engine (PE) can be regarded as

an operator distributed in different layers, which is also platform-

agnostic. Fig. 1 shows the main components of PE, consisting of

hardware, virtualization, orchestration, data management, analytics

engine, communication interfaces, and data and application layers.

Fig. 2 shows techniques and tools that can be applied in the process

engine components for the Cloud, Fog and End Device layers.

Figure 2: Different techniques and tools for data processing

in the Cloud, Fog and End Devices layers

Figure 3: Process Enginewith data flowprogrammingmodel

• Hardware layer: The heterogeneous devices have various

kinds of resources (computation, storage and network) and

corresponding operating systems (OS). Which hardware to

choose depends on the target application scenario and ser-

vice requirements.

• Virtualization layer: This layer addresses the configura-

tion and virtualization of the system hardware resources.

Virtualization plays an important role in service develop-

ment and service integration due to heterogeneity of devices.

731

Nowadays, the popular virtualization techniques are Open-

stack, Software-Defined Network (SDN), Network Function

Virtualization (NFV), Virtual Machines (VM), containers,

Unikernel, etc. For instance, in our application scenario, we

utilize Docker to modularize the applications so that the

applications become portable between multiple platforms.

• Orchestration layer: This layer is responsible for deploy-

ing services on the corresponding devices. The popular or-

chestration techniques are Yarn, Mesos and Kubernetes for

the Cloud layer, and Kubernetes, KubeEdge and K3S for the

Fog and ED layers.

• Datamanagement layer: This layer addresses data storage

and distribution, including file systems, databases, caches,

and data lakes. There are various data management frame-

works, such as Kafka, Cassandra, MySQL, and SQLite. These

datamanagement frameworks are usually used together with

different communication interfaces and analytics engines.

• Analytics engine layer: This layer deploys the application-

specific processing framework for running the tasks and jobs,

which are usually divided into two categories: batch jobs and

streaming jobs. Recently, many data processing and analytics

frameworks have been proposed such as Apache Spark, Flink,

Storm, Beam, Edgent, Nifi, and Minifi. Moreover, different

machine learning (ML) libraries have been developed based

on these frameworks, such as Tensorflow and Pytorch.

• Communication interface layer: This layer is responsi-

ble for message communication and data exchange, usually

equipped with publish-subscribe messaging systems. The

popular communication interfaces are HTTP, Kafka, MQTT,

and CoAP.

• Applications layer: This layer defines the objective and

logic of data processing jobs. For instance, the Cloud layer

usually deals with complex event processing, streaming and

batching applications, and visualization and monitoring ap-

plications. The Fog layer commonly processes IoT streaming

and batching applications, context-awareness services, and

industrial control. End devices normally run tasks from real-

time crowdsensing, data fetching and filtering.

3.2.2 Process Engine Data Flow. Fig. 3 shows the deployment of

process engine data flow (PEDF) for applications One and Two.

PEDF is a directed acyclic graph (DAG) of PEs and each application

has its own PEDF. Each PE mainly contains three kinds of process-

ing modules: Data Input, Data Process and Data Output. The PEDF

for application Two has multiple modules in each PE because each

operator may have multiple data inputs, data process tasks and

data outputs. The Data Input module contains the communication

interfaces, which are the connectors among different PEs. It can be

sensor readings from end devices or data from another PE. Data

Process is the main module in PE for processing the data, which is

supported by various data analytics engines and data management

systems. Data Process is a self-contained atomic process consist-

ing of the application logic that can run standalone. Data Process

can also interact with the local storage and exchange messages.

Data Output module also contains the communication interfaces

for sending the data to other PE(s) and connecting to the next PE.

Table 1: Testbed parameters and performance metrics

Cloud node Fog node ED node

OS Ubuntu 18.04 Raspbian Raspbian

CPU 1(Intel 2.4Ghz) 4(Cortex 1.4Ghz) 4 * 1.4Ghz

RAM 4 GB 1GB 1GB

DISK 256GB 64GB 64GB

Hardware NREC Raspberry Pi 3 B+ Pi 3 B+

4 SYSTEM IMPLEMENTATION

As Fig. 3 shows, by connecting the PEs from different layers, these

PEs form the execution process for the application. When design-

ing these PEs, there are some principles needed to be considered.

These design principles can be adjusted depending on the system

requirements.

• Independency: As shown in Fig. 3, one device can run mul-

tiple processes for different applications. Therefore, these

processes need to be independent without interfering with

each other. Virtualization techniques such as VM and con-

tainers, provide good support for running processes inde-

pendently.

• Priority: Resources on devices are limited, thereby mech-

anisms for determining priority should be considered for

each process. The priority is defined by the developers when

deploying the services.

• Standard: As there are various techniques and tools for

data processing, shown in Fig. 2, standards are needed for

the integration of these components. For instance, from the

communication interface perspective, communication proto-

cols and data exchange formats should be standardized like

MQTT or Kafka. Which standard to choose also depends on

the application scenario and the industrial domain.

PEDF is flexible and can be adapted to different use-cases and

application scenarios. The execution process can be represented as a

directed acyclic/cyclic graph. In the next section, we will show how

to implement the data processing and orchestration framework.

In this section, we focus on the detailed implementation of the

data process and orchestration framework. The core of our pro-

posed data processing framework is to exploit the semantics of both

the Cloud and fog platforms in order to provide a user-friendly or-

chestration framework. Table 1 shows the testbed parameters and

performance metrics. We use one Raspberry Pi 3 B+ as our end

devices and fog nodes with Raspbian operating system, and one

Intel 2.4Ghz CPU machine in NREC (A Norwegian Cloud Infras-

tructure for Research and Education)[23] cloud with the Ubuntu

18.04 operating system. Fig. 4 shows the deployment of hardware

devices in a green plant wall system as our use case. The Raspberry

Pi equipped with various kinds of sensors (such as temperature,

humidity, and light sensors) is mounted at the top of the green plant

wall. Fig. 5 shows the technical implementation for process engines

and Fig. 6 depicts the platform setup.

Communication interface: Message Queue Telemetry Transport

(MQTT) is a lightweight publish-subscribe protocol that is popu-

larly used in IoT fields. We use the open-source Mosquitto MQTT

broker as our message handler in end devices. Apache Kafka is

732

Figure 4: Deployment to a green plant wall system.

Figure 5: Proposed system implementation for smart green

wall case study

an open-source stream-processing software platform. Kafka pro-

vides a unified, high-throughput, low-latency platform for handling

real-time data feeds but more resource-hungry.

Containerization and orchestration: Container orchestration ben-

efits deploying fog-cloud applications at scale. Container is a stan-

dardized way to package software components and their depen-

dencies, which helps these applications to be easily redeployed.

We use Docker as our container running environment, and we use

Kubernete as our container orchestrator. Kubernete is an open-

source container orchestration system for automating application

deployment, scaling, and management. Nowadays, Kubernete is

commonly used in public cloud platforms.

Analytics engine:Our data analytics engine aims to support event-

driven and data-flow applications. We use open-source Apache

Flink as our data analytics engine for cloud and fog nodes. Apache

Flink is a distributed stream processor, which also supports batch

processing. Apache Flink has intuitive and expressive interfaces to

enable various stateful/stateless data processing services.

Development and deployment:We use Dockerś Buildx [24] feature

to create customized Dockers for our components, such as Apache

Flink, MQTT and Kafka. After that, we use Kubernete to compose

the services running on the cluster crossing the Cloud and fog nodes.

Wewrap the components by a YAML script, which defineswhere the

service is deployed, how much resource is utilized by each service,

and connection between the services and network configurations.

Benefiting from the combination of Docker and Kubernete, the

developer can easily develop the application components without

worrying about hardware layers.

Application running: For the end device nodes, we use theMosquitto

MQTT broker as our communication interface, JSON files as local

storage and python programs as simple local analytics. The main

functions of this process engine are real-time data reading and

primitive data filtering, such as error data. Then, the PE in end

devices will send the processed data to the PE in the fog nodes. The

fog nodes can either store the data locally in the MySQL database

or push the data to the Apache Flink for further processing. We can

also use a machine learning library here for basic data inference

to help make automatic decisions, such as watering the green wall.

After that, the fog nodes will push the data to the Cloud using

Kafka. Our cloud platform is built using the Openstack platform.

After receiving the data from the fog nodes by Kafka, the Cloud

pushes the data to the Apache Flink engine for data analytics and

stores the data in the Cassandra database for long-term storage.

The processed data can also be sent to the Grafana visualization

platform or fetched by the third party APIs through the Cassandra

database.

5 EVALUATION AND RESULTS

A smart green wall is a vertical wall with plants growing on the

surface, which has a positive impact on improving people’s living

comfort and reducing indoor pollutants. The green wall system

has watering, lighting, and ventilation systems to grow the plant

healthily on the wall. Several temperatures, humidity and illumi-

nation sensors are installed in the system to monitor the changing

of the indoor climate in order to provide feedback control. The

hardware setup of the smart green wall is also partly illustrated in

our previous work[25]. A smart green wall application is selected

to verify the feasibility of our data processing and orchestration

framework for smart cities and evaluate the performance.

Fig. 4 shows the deployment of the framework to a green wall

system. Previously, the functioning of the green wall was solely

relying on a public cloud-based monitoring and management solu-

tion [26], i.e., the sensed data from geographically distributed green

wall applications is transmitted to the central Cloud where data

processing, storage, and analytics take place. However, an explicit

partitioning for data processing tasks between fog nodes and the

Cloud is still missing. The system also faces the threat of single

point of failure (SPOF) if it loses the communication connection to

the Cloud. As a continuation of our previous work [26], we elevate

the power of fog nodes by exploiting the proposed fog-cloud data

processing and orchestration framework to the green wall. In this

study, sensors keep measuring indoor environmental parameters

733

Figure 6: Proposed system setup for smart green wall

Figure 7: Visualization system for smart green wall system

and transmitting them to the fog node instead of the central Cloud.

Light-weight data pre-processing is performed in the fog node to

filter the invalid and trivial data and accelerate further data analyt-

ics. The monitoring and control functions are also shifted from the

Cloud to the fog, which are implemented as a standalone application

running on the fog device. For critical tasks such as watering that

need timely feedback control in abnormal situations, the fog node

can also make decision locally in time. After aggregation of sensor

data from various sources, the fog node then sends the data to the

Cloud for further processing and storing. Additionally, graphical

visualization of sensor data also takes place in the Cloud, taking

advantage of the powerful computing capability and the flexibility

of multiple visualization frameworks in the Cloud.

A sample of the collected sensor data from a green wall utilizing

the proposed framework is presented in Fig. 7 using the Grafana

visualization tool [27]. This figure shows the data collected from

the temperature, humidity, light, pm2.5 and 𝐶𝑂2 sensors. It depicts

the 𝐶𝑂2 level in the environment with around 440-460 ppm during

the evening. It also presents the temperature and humidity changes

during this period which can be clearly observed. Light sensors

help track whether plants have enough light for photosynthesis.

PM sensors can track air quality in the environment. The water

consumption pattern can also be easily noticed. If the water level

is lower than the pre-defined threshold, a red alarm is reported.

Then the fog node can send the control signal to fill the water for

that plant. It will not be efficient for human to monitor, predict

and water a large number of green walls. Therefore, deploying

a machine learning model on the fog nodes can support anomaly

detection and automatic watering control, which reduces human

labor intervention. The machine learning models can be trained

in the Cloud and deployed to the fog nodes. Using different kinds

of machine learning models for the green-wall application is not

within the scope of this paper. The details can be referred to the

work [28].

5.1 Machine learning performance comparison

This section further compares the performance on resource usage

of machine learning tasks in fog and cloud platforms, as shown

734

Table 2: Resources comparison for Machine learning tasks in fog and cloud platforms

Hardware Algorithm Time CPU load Memory usage

Training prediction training prediction training prediction

Cloud VM (1x Intel Processor 2.4GHz, 4G Memory) LSTM-ED 252 s 12.24 ms 94,65% 98,74% 81,74% 81,55%

Raspberry Pi 3B+ (4x armv7 1.4GHz, 1G Memory) LSTM-ED 2005 s 87.1 ms 35,46% 26,06% 90,28% 89,9%

in Table 2. In this performance comparison, we implemented an

LSTM-ED algorithm that is used for anomaly detection of indoor

climate in both cloud and fog nodes. The training time consumption

in the Cloud is 252 seconds, which is much less than the training

time (2005 seconds) cost on the edge node. The prediction time in

the Cloud side is 12.24 milliseconds while in the fog side is 87.1

milliseconds. This is due to the fact that the Cloud benefits from

more computational resources than the fog node. As we can see

from Table 2, machine learning tasks take full usage of the comput-

ing resources in the cloud node, leading to above 90% CPU load of

a single core processor in both training and prediction processes,

while the fog node equipped with an embedded four-core processor

can hardly shift more computing resources to improve efficiency.

The cloud node utilizes near 81% of assigned 4G memory in both

training and prediction processes while the fog node consumes near

90% of its 1G memory, which further enlarges the performance gap,

let alone the computing resources in the Cloud can be flexibly scaled

if necessary.

5.2 Latency performance comparison

In this section, we further compare the task performance between

fog and cloud layers. To clearly show the advantage of using the fog

computing framework, we have tested the processing time on the

nodes and the round trip time (RTT) in different scenarios. Figure 8

shows the comparison of on-node processing time between fog and

cloud nodes. The x-axis indicates the number of performed tests

while the y-axis denotes the on-node processing time. The result

shows that the on-node processing time in the fog is larger than that

in the Cloud, as the cloud platform has more resources to process

the tasks. Figure. 9 presents the comparison of round trip time

between fog and cloud nodes. It shows that the average RTT time

for the Cloud is near 65 ms, which is larger than in the fog side with

near 33 ms. The reason is that fog nodes are closer to the field node

as compared with that of the cloud platform. The above results

show that using the federated fog-cloud platform can efficiently

reduce the latency while improving the system performance. For

instance, the machine learning model can be trained in the cloud

platform to take full advantage of the computing resources and

the trained model then can be transferred and deployed on the fog

node to guarantee low-latency decision-making.

6 CONCLUSIONS

In this paper, we proposed a distributed, fog-cloud data processing

and orchestration framework. This framework is capable of ex-

ploiting the semantics of both the Cloud and fog platforms, which

creates on-demand process engine data flow (PEDF) spanning mul-

tiple devices with various resource constraints. We explained the

details of the framework design (logic, components and functions)

and framework implementation. Our real-world smart green wall

Figure 8: Comparison of on node processing time.

Figure 9: Comparison of round trip time.

application demonstrates the effectiveness of the orchestration

framework integrating the Cloud and fog nodes. In the future, we

will investigate dynamic service configurations in the fog-cloud

data processing and orchestration framework.

ACKNOWLEDGMENT

This workwas supported by the Norwegian Research Council under

the DILUTE project (Grant No. 262854/F20), and it was also partly

supported by the National Natural Science Foundation of China

under Grant No. 62001357 and the Swedish Innovation Agency,

Vinnova.

REFERENCES
[1] Z. Lv, B. Hu, and H. Lv. Infrastructure monitoring and operation for smart cities

based on iot system. IEEE Transactions on Industrial Informatics, 16(3):1957–1962,
2020.

735

[2] Dapeng Lan, Zhibo Pang, Carlo Fischione, Yu Liu, Amir Taherkordi, and Frank
Eliassen. Latency analysis of wireless networks for proximity services in smart
home and building automation: The case of thread. IEEE Access, 7:4856–4867,
2018.

[3] J. Yue, M. Xiao, and Z. Pang. Distributed fog computing based on batched
sparse codes for industrial control. IEEE Transactions on Industrial Informatics,
14(10):4683–4691, Oct 2018.

[4] Lei Liu, Chen Chen, Qingqi Pei, Sabita Maharjan, and Yan Zhang. Vehicular edge
computing and networking: A survey. Mobile Networks and Applications, pages
1–24, 2020.

[5] Lei Liu, Chen Chen, Tie Qiu, Mengyuan Zhang, Siyu Li, and Bin Zhou. A data
dissemination scheme based on clustering and probabilistic broadcasting in
vanets. Vehicular Communications, 13:78–88, 2018.

[6] P. Mach and Z. Becvar. Mobile edge computing: A survey on architecture and
computation offloading. IEEE Communications Surveys Tutorials, 19(3):1628–1656,
thirdquarter 2017.

[7] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and
Ion Stoica. Spark: Cluster computing with working sets. In Proceedings of the
2nd USENIX Conference on Hot Topics in Cloud Computing, HotCloud’10, page 10,
USA, 2010. USENIX Association.

[8] Paris Carbone, Stephan Ewen, Gyula Fóra, Seif Haridi, Stefan Richter, and Kostas
Tzoumas. State management in apache flink®: Consistent stateful distributed
stream processing. Proc. VLDB Endow., 10(12):1718–1729, August 2017.

[9] Apache edgent. Accessed September 28, 2020. http://edgent.apache.org, 2020.
[10] Apache minifi. Accessed September 28, 2020. https://nifi.apache.org/minifi/, 2020.
[11] Jens Dittrich and Jorge-Arnulfo Quiané-Ruiz. Efficient big data processing in

hadoop mapreduce. Proceedings of the Vldb Endowment, 5(12):2014–2015, 2012.
[12] Kirak Hong, David Lillethun, Umakishore Ramachandran, Beate Ottenwälder, and

Boris Koldehofe. Mobile fog: A programming model for large-scale applications
on the internet of things. In Proceedings of the Second ACM SIGCOMM Workshop
on Mobile Cloud Computing, MCC ’13, page 15–20, New York, NY, USA, 2013.
Association for Computing Machinery.

[13] N. K. Giang, M. Blackstock, R. Lea, and V. C. M. Leung. Developing iot applications
in the fog: A distributed dataflow approach. In 2015 5th International Conference
on the Internet of Things (IOT), pages 155–162, 2015.

[14] Bin Cheng, Gurkan Solmaz, Flavio Cirillo, Erno Kovacs, Kazuyuki Terasawa, and
Atsushi Kitazawa. Fogflow: Easy programming of iot services over cloud and
edges for smart cities. IEEE Internet of Things Journal, pages 1–1, 2017.

[15] S. Yangui, P. Ravindran, O. Bibani, R. H. Glitho, N. Ben Hadj-Alouane, M. J.
Morrow, and P. A. Polakos. A platform as-a-service for hybrid cloud/fog envi-
ronments. In 2016 IEEE International Symposium on Local and Metropolitan Area
Networks (LANMAN), pages 1–7, 2016.

[16] Angelo Corsaro and Gabriele Baldoni. fogØ5: Unifying the computing, network-
ing and storage fabrics end-to-end. In 3rd IEEE Cloudification of Internet of Things,
2018.

[17] Official foghorn website. Accessed September 28, 2020. https://www.foghorn.io/,
2020.

[18] Official nebbiolo website. Accessed September 28, 2020.
https://www.nebbiolo.tech/, 2020.

[19] Official iofog website. Accessed September 28, 2020. https://iofog.org/, 2020.
[20] Official baetyl website. Accessed September 28, 2020. https://baetyl.io/, 2020.
[21] Official edgex foundry website. Accessed September 28, 2020.

https://www.edgexfoundry.org/, 2020.
[22] Dapeng Lan, Amir Taherkordi, Frank Eliassen, and Geir Horn. A survey on fog

programming: Concepts, state-of-the-art, and research challenges. In Proceedings
of the 2nd International Workshop on Distributed Fog Services Design, DFSD ’19,
page 1–6, New York, NY, USA, 2019. Association for Computing Machinery.

[23] Norwegian research and education cloud. Accessed September 28, 2020.
https://www.nrec.no/, 2020.

[24] Docker buildx. Accessed September 28, 2020.
https://docs.docker.com/engine/reference/commandline/buildx/, 2020.

[25] Y. Liu, K. Akram Hassan, M. Karlsson, O. Weister, and S. Gong. Active plant
wall for green indoor climate based on cloud and internet of things. IEEE Access,
6:33631–33644, 2018.

[26] Y. Liu, K. Akram Hassan, M. Karlsson, Z. Pang, and S. Gong. A data-centric
internet of things framework based on azure cloud. IEEE Access, 7:53839–53858,
2019.

[27] Grafana. Accessed September 28, 2020. https://grafana.com/, 2020.
[28] Yu Liu, Zhibo Pang, Magnus Karlsson, and Shaofang Gong. Anomaly detection

based on machine learning in iot-based vertical plant wall for indoor climate
control. Building and Environment, 183:107212, 2020.

736

