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ABSTRACT 

Repeated adaptations rely in part on convergent genetic changes. The extent of convergent 

changes at the genomic scale is debated and may depend on the interplay between different 

factors. Rodents have repeatedly adapted to life in arid conditions, notably with altered renal 

morphology and physiology. This occurred at different time periods, allowing us to test the 

importance of time in convergent genomic evolution. We analyzed kidney transcriptomes from 

34 species to quantify and characterize convergent evolution at the level of gene expression, 

tissue composition, and coding sequences. We found that several genes showed convergent 

expression  changes,  some  of  which  also  carried  convergent  changes  in  their  coding 

sequence. We then subdivided these data to test the influence of evolutionary history. First, 

within  the  subfamily  Murinae,  we  found  more  convergent  gene  expression,  reflecting 

convergent changes in cell proportions. Second, we compared data for recent (within genera) 

and ancient (between genera) adaptations, and observed more convergent changes in the 

latter. Our study shows that adaptation to xeric environments in rodents involves repeated 

changes in tissue composition, gene expression and coding sequences, and that the degree of 

convergent evolution increases with both the age of the adaptations and species relatedness.

INTRODUCTION

Repeated evolution, also known as parallel or convergent evolution, occurs when different 

lineages  evolve  similar  traits  independently.  If  the  same  genetic  changes  are  used  by 

independent  lineages in  repeated adaptations,  the genetic  basis  of  adaptation might  be 

predictable. Recent genomic studies have significantly advanced our understanding of this 

question (Chaturvedi et al. 2022; Sackton et al. 2019; Brown et al. 2019). They highlighted a 

large variability in the degree of genomic convergence, which may be influenced by several 

factors. In particular, the amount of genomic convergence could be higher between closely 

related species that undergo parallel phenotypic evolution because they share a common 

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

2

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 3, 2024. ; https://doi.org/10.1101/2024.10.02.616319doi: bioRxiv preprint 

https://paperpile.com/c/nzEJDt/heiz7+QDI3l+lw4qf
https://doi.org/10.1101/2024.10.02.616319
http://creativecommons.org/licenses/by-nc-nd/4.0/


genetic background  (Bohutínská and Peichel 2023). It may also increase with the age of 

adaptation because species that have adapted long ago may have accumulated genomic 

changes affecting various phenotypic traits, which could be shared with other lineages.

Repeated adaptations to arid environments have occurred in a variety of  clades.  These 

adaptations enable species to cope with temperature and seasonal unpredictability, and with 

challenges to food and water availability and quality (Schwimmer and Haim 2009). They have 

motivated a rapidly growing area of research in genomics (Rocha et al. 2021). Studies include 

the comparison of renal gene expression in a few species (Bittner et al. 2022; MacManes and 

Eisen 2014; Giorello et al. 2018; Marra et al. 2014), dehydration experiments to study the 

plasticity of gene expression (Blumstein and MacManes 2023; Kim and Shin 2016; Bittner et 

al. 2021), genomic analyses (Cheng et al. 2023; Peng et al. 2023) and population genomic 

analyses (Tigano et al. 2020; L Rocha et al. 2023).

Most of the studies of adaptations to arid environments have been performed in rodents. Many 

xeric  rodent  species  have  acquired  behavioral  and  physiological  adaptations  linked  to 

metabolism and water retention (Rocha et al. 2021), including modified kidneys capable of 

producing very concentrated urine (Bankir and de Rouffignac 1985). A recent study analyzed 

gene expression changes and genes under positive selection in 3 independent adaptations to 

desert life in rodents (Bittner et al. 2022). They discovered many idiosyncratic changes but 

also shared changes in genes of interest known to be involved in osmoregulation and kidney 

function. Overall, genes involved in fat metabolism, response to insulin signaling and diabetes, 

stress response, endocrine system, arachidonic acid metabolic pathway and water transport 

have all been found to be involved in the adaptation of rodents to arid environments (Giorello et 

al. 2018; Bittner et al. 2022). 

Here  we  study  the  repeated  adaptation  of  rodents  to  life  in  xeric  environments  using 

transcriptomic data. We investigated the evolution of gene sequences and expression levels in 
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kidney transcriptomes based on a large RNA sequencing (RNA-seq) dataset spanning 34 

rodent species and 2 strains, including new data for 18 of them. Contrary to previous studies 

(Corral-Lopez et al. 2024; Bittner et al. 2022; Cossard et al. 2022; Zancolli et al. 2022; Pankey 

et al. 2014; Hart et al. 2018; Gallant et al. 2014; Foster et al. 2022; Parker et al. 2019b, 2019a)

, this dataset encompasses divergences ranging from several thousands of years to 70 million 

years, which provides a comparative framework for studying the effects of time scales on 

repeated transcriptomic and genomic evolution. 

We selected 8 rodent families and a balanced number of species with xeric and mesic habitat, 

which allowed us to robustly infer evolutionary changes in kidney gene expression and coding 

sequences. First, we found that several genes carried convergent expression changes, some 

of which also carried convergent changes in their coding sequence. Second, we searched for 

genes showing convergent evolution of expression in the Murinae subfamily and showed that 

there were many more of them than in the total dataset, and that they reflected convergent 

changes in the proportions of renal cell types. Finally, we compared two subsampled datasets, 

designed to represent recent (within genera) or ancient (between genera) habitat transitions, 

and observed more convergent changes in ancient transitions.

RESULTS

Sequencing, Assembly, and Annotation

In  order  to  investigate  the  evolution  of  kidney  transcriptomes  in  rodents,  we  selected 

representative species belonging to 8 rodent families that diverged up to 70 million years ago 

(MYA, Fig. 1a, Supplemental Fig. 1). We sampled and sequenced bulk kidney RNA-seq data 

from 16 species and two mouse strains. In total, we generated 42 RNA-seq samples, which we 

combined with  carefully  selected publicly  available  RNA-seq data  into  a  dataset  of  102 

samples in 34 species plus 2 strains, including samples for transcriptome assemblies and 
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replicates for expression analyses (Supplemental Tables 1,2). Because we depend on wildlife 

capture, for eight species we could only secure one individual. But in most cases, closely 

related  species  from the  same genus  can  serve  as  biological  pseudo-replicates  for  the 

considered environmental transition. In addition, we retrieved the coding sequences from the 

published genomes of 24 species, obtaining in total 51 species for the coding sequence 

analyses, plus two strains.  

After constructing de novo transcriptome assemblies of the RNA-seq data and assessing their 

quality (Supplemental Table 3, 4), we derived gene orthology relationships between all species 

and isolated 11437 gene orthogroups with at least 3 species. We performed gene expression 

analyses based on these 1:1 orthologs and on the high quality RNA-seq dataset (80 samples) 

and reconstructed gene alignments and phylogenetic trees for coding sequence analyses (see 

Methods, Supplemental Fig. 2). 

To associate each species with a biological status corresponding to xeric and mesic life, we 

determined its geographical distribution area and extracted the corresponding bioclimatic 

variables.  Because  an  annual  average  pluviometry  can  hide  large  differences  between 

seasons, we decided to use the precipitation of the driest quarter of the year and to define a 

species with less than 40 mm as a xeric species. We annotated the status of 1898 species 

along a published rodent phylogenetic tree containing 2260 rodent species (Fabre et al. 2012)

 and modeled state transitions to infer ancestral states at each internal node of the phylogeny. 

We then extracted the ancestral states for the subset of nodes corresponding to our dataset 

(see Methods, Supplemental Fig. 3,4). We annotated 29 and 22 xeric species in the coding 

sequences and expression datasets, respectively (Fig. 1a). 
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Figure 1. Detection of transcriptomic convergence across rodent phylogeny

a) Phylogeny of the 51 species used in the study. The medians of the precipitation of the driest 

quarter of the year are indicated in squares defining the biological status of the species (mesic 
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<40, green; xeric >40, orange). The number of individuals used for the expression analyses is 

indicated in the circles. Colors of squares and circles correspond to previously published data 

(light gray) and to new data (dark gray). 

b)  First  and second components of  a  PCA analysis  using normalized but  non-corrected 

expression values. Individuals are colored by rodent families (upper) or by habitat status 

(lower).

c) First and fifth components of a PCA analysis using normalized and either non-corrected 

(upper) or batch corrected (lower) expression values. Individuals are colored by their habitat 

status.

d) Heatmap representing eigengenes per WGCNA module. Number of genes for each module 

is indicated as a barplot. Modules significantly Over- (o) or Under (u)-regulated modules in 

xeric species are depicted at the top of the figure. 

e) Barplot showing distribution of eigengene values of the black module in five phylogenetic 

groups.

Characterization of global patterns of convergent expression in rodent kidneys

The first components of a principal component analysis (PCA) on expression levels tended to 

group samples from the same species together and to separate samples from different rodent 

families (Fig. 1b). The difference between species accounted for 89.7% of the total variation, 

and the difference between families for 37.0% (between class analyses). This suggested that 

gene expression diverged following the phylogeny, as seen previously in several studies 

including rodents (Bittner et al. 2022).

To  minimize  the  influence  of  phylogenetic  effect  we  applied  a  batch  correction  using 

ComBat_seq to account for the effect of the phylogeny at the family level (see Methods). We 

performed another PCA with these phylogeny-corrected data. We observed that the fifth 

principal component, accounting for 4% of the variance, separated xeric and mesic species, 
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although incompletely (Fig. 1c). This shows that some gene expression levels in xeric species 

have converged and acquired similarities.

We quantified differential expression by using pairwise contrast between xeric and mesic 

status  using  these  phylogeny-corrected  data  and  found  26  genes  significant  at  the  0.1 

adjusted p-value threshold and with log-fold change greater than 0.4 (21 genes were found 

with LFC>1, Supplemental Table 6). To assess whether this number of genes was larger than 

expected by chance, we compared it to the numbers measured in 1,000 permuted datasets 

(permutation method adapted from (Bittner et al. 2022), see Supplementary Methods). We 

found that the true number of differentially expressed genes is eleven times higher than 

expected (p-value < 0.0001). Unsurprisingly given its modest size, this group of 26 genes 

revealed  only  two  overrepresented  Gene  Ontology  (GO  BP)  terms,  “small  molecule 

biosynthetic process” and “animal organ morphogenesis” (adjusted p-value < 0.02). Among 

these genes, we found two members of the solute carrier (SLC) gene family, Slc35b4 and 

Slc40a1  (Kordonowy and MacManes 2017),  which is  marginally  more than expected by 

chance (Fisher exact test, p-value = 0.059). Slc40a1 is an iron exporter previously identified in 

a dehydration experiment (Kordonowy and MacManes 2017). This set also included 5 genes 

known  as  kidney  markers  or  associated  with  renal  diseases,  Casr  (associated  with 

hypocalcemia and calcium kidney stones  (Vezzoli et al. 2011; Hanna et al. 2021)), Ctsh, 

Xpnpep2  (Böttinger 2010), Fam20a (associated with enamel renal syndrome  (Wang et al. 

2014)) and Cpne2 (renal cancer (Zhou et al. 2018)).

We hypothesized convergence in gene expression could be detected in functionally related 

modules of genes, which work together in the kidney and therefore may tend to change their 

expression in a coordinated manner along the phylogeny.  We ran a correlation network 

analysis  (Langfelder and Horvath 2012) on the complete expression dataset and found 14 

modules of co-varying genes. In the following, these modules are given arbitrary color names 

and represented by their eigengenes, which correspond to the weighted mean of expression 
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levels in the module. Six of them correlated significantly with the aridity status (Fig. 1d). Within 

each rodent family,  the expression level  in modules is distinct  between xeric and mesic 

species, confirming that a convergence signal is present alongside the phylogenetic signal. 

We looked for functional overrepresentation for GO terms and reactome pathways within the 

modules. For example, the black module (Fig. 1e) was related to blood vessel development 

and extracellular matrix organization, the salmon module was related to metabolic processes 

and the green-yellow module to metabolic processes and ion homeostasis (Supplemental Fig. 

5 and Supplemental Table 7).

Global patterns of convergent evolution in coding sequences

To characterize cases of convergent evolution in coding sequences, we searched for sites 

where preferred amino acids differ between mesic and xeric species. We used Pelican, a 

method that takes into account the phylogeny of the species and which proved to be the best of 

its kind in a recent benchmark (Duchemin et al. 2023). We selected 4,065 gene families with 

well-aligned single-copy orthologs found in at least 20 mesic and 25 xeric species. We further 

refined the list of candidate sites by discarding all sites that had undergone a substitution in 

only one of the xeric clades, considering that we were interested in profile changes that have 

occurred in a convergent manner, at least in two xeric clades. We then ranked the genes 

based on the best p-value among their sites and studied their functional relevance by using 

gene set enrichment analyses (GSEA). Three pathways of the Reactome database displayed 

a significant enrichment: SLC-mediated transmembrane transport, fatty acid metabolism and 

transport  of  small  molecules  (adjusted  p-value  <  0.1,  Supplemental  Fig.  6  and  7  for 

corresponding enriched GO and REACTOME terms). The genes with the best detected sites 

were also enriched for the set of differentially expressed genes (GSEA, p-value = 0.0269, 

Supplemental Fig. 8). This enrichment was supported by 12 genes whose gene expression 

levels and amino-acid profiles differed between xeric and mesic species (Fig. 2). However, 

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

9

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 3, 2024. ; https://doi.org/10.1101/2024.10.02.616319doi: bioRxiv preprint 

https://paperpile.com/c/nzEJDt/4A4kU
https://doi.org/10.1101/2024.10.02.616319
http://creativecommons.org/licenses/by-nc-nd/4.0/


repeated evolutions were not observed in all independent transitions, but limited to a subset of 

the families of rodents. This suggested that convergent evolution might be more important 

when examined within a family.

Figure 2. Twelve core genes with convergence detected in the coding sequence and 

in expression.
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a) Amino acid composition (percentage) for the best site of the twelve genes in function of 

mesic or xeric species.

b) Boxplots showing normalized expression of the twelve genes. Orange dashed line shows 

the mean expression of xeric individuals and green dashed line shows the mean expression 

of mesic individuals.

Convergent evolution in gene expression, coding sequences, and cell proportions in 

the Murinae subfamily

We investigated convergent evolution within the Murinae, a large subfamily of rodents that 

diversified quickly after it originated 11.2 MYA (Aghová et al. 2018). This left us with a dataset 

of 7735 genes and 14 taxa including 8 xeric species to study gene expression, representing 4 

independent habitat transitions (see Methods, Fig. 3a). Because this dataset contains species 

for a single rodent family, we did not apply our family-level phylogenetic correction. The first 

two components of the principal component analysis of this dataset showed a clear distinction 

between mesic  and xeric  species  (Fig.  3b).  Three individuals  of  the  xeric  species  Mus 

macedonicus locate with mesic species of the genus Mus, probably because they are closely 

related  and  because  M.  macedonicus lives in  the  moderately  xeric  mediterranean 

environment. Apart from this, the first component carries most of the separation between xeric 

and mesic individuals and accounts for a large proportion of the variation (24%). This suggests 

that there is a conserved and pervasive habitat-related transcriptomic signature that rivals 

phylogenetic divergence, within Murinae. 
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Figure 3. Detection of transcriptomic convergence in the Murinae subfamily.

a) Phylogenetic relationships of the Murinae species and strains used. The biological status of 

the species is indicated as in fig. 1.

b) Visualization of the two first components of the Principal Component Analysis (PCA).
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c-d) Clustering of the top 25 overrepresented GO annotations for biological processes (c) and 

molecular functions (d) using genes down-regulated in xeric species.

e) Heatmap showing expression of cell type specific markers retrieved from the literature 

(rows) in the single-cell dataset of Park et al. (column). Environmental status is indicated if the 

marker genes are found in differential expression analyses.

f) PCA summarizing cell proportions estimated by deconvolution. Centroid values from both 

xeric and mesic are indicated. Cell types included collecting duct (CD), proximal tubule (PT), 

loop of Henle (LOH), distal convoluted tubules (DCT), podocytes (Podo), endothelial cells 

(Endo, that also contain descending loop of Henle) and Fibroblasts (Fib).

g) Heatmap representing eigengenes per WGCNA module. Number of genes for each module 

is indicated as a barplot. Significant Over- (o) or Down (d)-regulated modules are depicted at 

the right side of the figure. The left heatmap represents Pearson correlations between values 

of the deconvoluted proportions and module eigengenes.

We quantified differential expression between xeric and mesic species and obtained 692 

genes with significant differences, which is 19.8-fold more genes than expected and highly 

significant (p-value < 0.0001, Supplemental Table 6).

We intersected this list with marker genes of kidney cell types and genes associated with renal 

diseases. We found 30 marker genes and 20 disease genes in our list, 1.4-2 times more than 

expected (p-values 0.0003 and 0.17 respectively, see Methods and Supplemental Table 8). 

Differentially expressed genes included 2 aquaporins (Aqp2, a vasopressin-regulated water 

channel involved in diseases affecting urine-concentrating ability  (Pannabecker 2015) and 

Aqp7, expressed in proximal tubules, with phenotypes of insulin resistance and important in 

glycerol reabsorption in the kidney (Sohara et al. 2006)), 18 solute carriers (including the urea 

transporter Slc14a2, the sugar transporter Slc17a5, the sodium carrier gene Slc8b1, Slc27a2 

that plays an important role in hepatic fatty acid uptake and was found overexpressed in 

kangaroo rat kidney  (Marra et al.  2012)),  and 6 genes of the arachidonic acid pathway. 
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Focusing on genes significantly down-regulated in xeric species, enriched GO terms included 

response to insulin, regulation of autophagy, transmembrane transporters (Fig. 3b,d).

We performed a correlation analysis and found 14 coexpression modules in the dataset, 7 of 

which significantly correlated to xeric/mesic status, even though a phylogenetic effect was also 

visible  (see  for  instance  the  Mus  clade,  Fig.  3g).  The  7  modules  presented  functional 

categories congruent with the differentially expressed genes, such as glucose metabolism 

(green-yellow module), regulation of apoptotic processes and response to lipids (blue, Fig. 3h), 

solute carriers (yellow) (complete lists are available in Supplemental Fig. 5).

Bulk RNA-seq data reflects variation both in expression per cell and in cell type composition. 

Here, different species may exhibit divergent tissue histologies as part of their adaptation to 

the  xeric  environment.  We  therefore  decided  to  deconvolve  the  bulk  RNA-seq  data  to 

investigate changes in cell  type composition distinguishing xeric and mesic species (see 

methods and Supplemental Fig. 9). Cell proportions were estimated by MuSiC (Wang et al. 

2019) using published kidney single-cell RNA-seq data from mouse (Park et al. 2018). The first 

two components of a PCA calculated on these proportions separated xeric and mesic species 

(Fig. 3f), with the exception of Mus macedonicus samples (which resemble mesic species as 

already seen above), one of the  Mus caroli samples and our single sample of  Apodemus 

sylvaticus. Cell types that mostly contributed to this axis were, on the xeric side, collecting duct 

cells (CD), podocytes (Podo) and endothelial cells (which also contain LOH cells) and on the 

mesic side, proximal tubule cells (PT). This discrimination is significant (discriminant analysis, 

p-value = 0.002, Monte-Carlo test  based on 1000 replicates) and consistent with biases 

observed between xeric and mesic species in the expression of 177 marker genes (Fig. 3E 

and Supplemental Table 8).

We characterized sites with convergent evolution in coding sequences on 3670 gene families 

with more than 7 xeric and 9 mesic species and studied their functional enrichments by using 

GSEA. Three pathways of the Reactome database displayed a significant enrichment: SLC-
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mediated transmembrane transport, fatty acid metabolism, and transport of small molecules 

(adjusted p-value < 0.1, Supplemental Fig. 6). Differentially expressed genes displayed a 

marginal enrichment (p-value = 0.051, Supplemental Fig. 8). 

Much more genomic convergence was observed at the level of a single rodent family than in 

the entire dataset. One possible reason is that Murinae have recently diverged and thus share 

a common genomic background. Another reason may be that their adaptations all occurred in 

a similar time frame, whereas in the entire dataset some species belong to lineages that have 

adapted over tens of millions of years to extreme environments, while others adapted very 

recently from mesic ancestors to moderately xeric environments. 

Comparing  datasets  with  ancient  (between  genera)  and  recent  (within  genera) 

adaptations

We prepared two datasets of similar size to that of Murinae, in terms of number of species and 

number of transitions, but where these transitions to xeric habitat are either relatively recent 

(within the same genus and younger than 6 MYA), or more ancient (at the base of a rodent 

family and/or older than 6 MYA, see Supplemental Fig. 1).

The subset with “within-genera” transitions allowed us to study gene expression levels in 15 

species, representing four recent transitions to the xeric condition in two sister families (Fig. 

4a). The fourth PCA axis correlated best, although imperfectly, with xeric/mesic status and 

accounted for 9% of the variation (Fig. 4c). We found only 29 genes showing evidence of 

differential expression, which nevertheless constituted a significant enrichment (11-fold, p < 

0.0001).  Co-expression  analyses  identified  15  modules,  of  which  only  one  module  was 

significantly correlated with aridity state (Fig. 4d). 29 species were available for analyzing 

convergent sequence evolution, spanning 4 transitions (4604 gene families, with at least 20 

mesic and 4 xeric species). The sites we detected were not enriched in differentially expressed 
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genes (p-value = 0.12), nor in the module of coexpressed genes correlated with aridity status 

(Supplemental Fig. 8).

The subset with “between-genera” transitions contained 12 species belonging to 4 families, 

and representing 4 ancient xeric transitions (Fig. 4b). The second axis of the PCA clearly 

separated  xeric  and  mesic  species  (16%  of  the  variation,  Fig.  4D).  There  were  632 

differentially  expressed genes (3-fold excess based on permutation test,  p<0.0001).  Up-

regulated genes were involved in anion transporter activity, oxidoreductase activity, organic 

acid and calcium binding (Fig. 4g). We identified 15 modules of co-expressed genes, of which 

10 are correlated with the aridity state, with concordant functional enrichment (Fig. 4f, such as 

regulation of glucose metabolic process for salmon, solute-carrier-mediated transmembrane 

transport for green-yellow, see Supplemental Table 7). 28 species were available for analyzing 

convergent  sequence evolution  (3670 gene families  with  at  least  20  mesic  and 4  xeric 

species). The sites we detected were enriched for the set of differentially expressed genes (p-

value = 0.033) and for three modules of coexpression which are all correlated with aridity state 

(Supplemental Fig. 8). 
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Figure 4.  Detection of convergence in datasets with ancient (between genera) and 

recent (within genera) transitions.

a and b) Phylogenetic relationships of the sets containing recent (within genera) and ancient 

(between genera) transitions, respectively. The biological status of the species is indicated as 

in fig. 1.

c and e) PCA plot using corrected expression values from the set of recent and ancient 

transitions respectively.

d and f) Heatmap representing eigengenes per species and per WGCNA module in the set 

with recent and ancient transitions respectively.
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g-h) Clustering of the top 25 overrepresented GO annotations for molecular functions and 

associated with genes up (g) and down (h)-regulated in xeric species in the dataset with 

ancient transitions.

For certain families important in renal function (ABC transporters, aquaporins, ion transport, 

solute carriers), we examined the 5 best sites per gene. We retained 9 genes (Fig. 5), either 

because the amino-acid profile changed markedly in one position for 2 to 3 xeric transitions, or 

(most  often)  because several  positions behaved in  a correlated manner,  suggesting the 

structure of the protein might have changed. The gene Ctns (a lysosomal transporter causing 

kidney failure characterized by proximal tubular dysfunction (Attard et al. 1999)) displays a 

convergent change at 3 sites in 2 branches.The same change occurred in two other xeric 

transitions in the total dataset (Supplemental Fig. 10). This gene is not differentially expressed 

in  the  “ancient  transition”  (between genera)  dataset  but  gene expression is  significantly 

upregulated in Xeric species in the “murinae” dataset. The gene Abcc2 displayed a site with 

convergent evolution in three xeric species. In humans, mutations in this gene are associated 

with substrate transport efficiency in the kidney  (Muhrez et al. 2017). Slc28a1 (nucleoside 

transport in kidney (Persaud et al. 2023)) and Slc36a1 (aminoacid reabsorption in proximal 

tubule (Chrysopoulou and Rinschen 2024), significantly down-regulated in xeric species in the 

Murinae dataset) both displayed convergent evolution in two lineages. Scnn1a (mutations in 

this gene impact sodium balance in mouse and human (Rossier et al. 2002)) is an example 

where the same amino-acid tends to increase in frequency at different positions of the protein. 

For  Slc2a4,  we  observed  a  well-conserved  sequence  among  mesic  species,  but  more 

variation in xeric species, suggesting a relaxation of selection. Therefore, many different 

patterns of convergent evolution in amino-acid profiles are present in the data. 
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Figure  5.  Selected  sites  with  evidence  of  convergent  shift  in  amino-acid  profiles 

detected by Pelican. (Top) The 5 best sites are represented for 9 genes from relevant gene 

families. Amino-acids are represented by squares of different colors. Blank spaces indicate 

that the sequence was missing for that species. Amino-acids from xeric and mesic species are 

circled in orange and green, respectively. (Bottom) Amino acid composition (percentage) for 

each site in function of mesic or xeric species.

Comparison of differentially expressed genes between datasets

We compared the genes with repeated changes in expression in different datasets to see 

whether the processes involved are the same. There were only 4 common genes between our 

4 datasets: Two genes up-regulated in xeric species, Cpne2 and Fam20a, and two genes 

down-regulated in xeric species, Ctsh, Casr (a marker of the distal tubules that regulates 
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calcium reabsorption (Habuka et al. 2014; Vezzoli et al. 2019)), of which 3 show some degree 

of convergent amino-acid profiles in at least one site (Fig. 2). 

We then focused on the datasets with most differentially expressed genes, the Murinae (692 

genes) and the “ancient transitions” datasets (632 genes) and we found an overlap of 84 for 

differentially expressed genes, of which 71 are biased in the same sense. This represented a 

2.1-fold increase and a significant enrichment (Chi-squared test, p-value<10-9), although 6 

taxa are found in both datasets. There was no particular functional enrichment within ancient-

specific genes. The common genes were significantly overrepresented in “transmembrane 

signaling receptor activity”, while the murine-specific genes were enriched in “lipid 

transporter  activity”,  “cellular  response  to  oxygen−containing  compound”, 

“epithelial cell apoptotic process” and “innate immune system” (complete list of 

GO terms in Supplemental Fig. 7). 

DISCUSSION

We studied repeated genome and transcriptome evolution in response to adaptation to aridity, 

at the macroevolutionary scale, in 8 families of rodents. Our analyses covered transcriptomes, 

coding sequences and cell type proportions. Together with our extensive species sampling we 

studied convergent molecular evolution at multiple levels and across time scales. The strength 

of  our  study  is  the  large number  of  mesic  and arid  species  including already available 

transcriptomic data as well as a wildlife sampling that captured 1-3 individuals for several 

species. A caveat in this strategy is that  we only have a single individual in several species.  

We fully acknowledge that this prevents studying species-specific changes in expression, but 

it does not prevent concluding on convergence at the clade level. Indeed in most cases, sister 

species that share the same ancestral environmental transition represent biological variation 

in the branch and serve as pseudo-replicate to quantify convergent evolution. 
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Gene functions and overlap with previous studies 

Our expression comparisons revealed a significant amount of genes associated with kidney 

physiology.  Among  the  common  physiological  systems  allowing  mammalian  survival  in 

deserts described in a recent survey, there were increased urine osmolarity and increased 

water reabsorption from the kidney, higher levels of plasma creatinine, increased plasma 

osmolality, change in insulin secretion for adaptive tolerance to dehydration and starvation 

(Rocha et al. 2021). We found in our data several genes and pathways relevant to these 

systems. 

Aquaporins form a gene family of water transporters that has been associated with desert 

adaptation in rodents (Bittner et al. 2022; Pannabecker 2015; Marra et al. 2014; Giorello et al. 

2018). In the Murinae dataset, we found convergent upregulation of Aqp2 and Aqp7 in xeric 

species. Aqp2 is the dominant water transport gene in the medullary Collecting Ducts. Since its 

spatial pattern of expression seems similar in many rodent species (Pannabecker 2013), we 

may have detected a change in intracellular expression level. Of note, because for some 

species we rely on de novo transcriptome assemblies, we cannot reconstruct the sequences of 

genes  with  very  low  levels  of  expression.  Aqp4  for  instance,  another  important  water 

transporter (Donald and Pannabecker 2015), is not available in our datasets, possibly for this 

reason. In a previous study, aquaporin expressions were shown to respond to hydric stress 

(MacManes 2017), but in our dataset we cannot discriminate between adaptation and plastic 

response.

We  found  that  many  solute  carriers  are  differentially  expressed.  Slc14a2,  which  was 

upregulated in xeric species in Murinae, is an urea transporter whose knock-out causes 

decreased urine osmolality (Fenton et al. 2004). Slc8b1, a calcium:sodium exchanger, was 

upregulated in xeric species in Murinae and carried marks of positive selection in a previous 

study of adaptation to aridity in Peromyscus rodents (Tigano et al. 2020).
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We  intersected  our  differentially  expressed  genes  with  results  from  a  recent  study  of 

convergent adaptation to desert life in 3 pairs of rodent species (Bittner et al. 2022). Among 

their list of genes with evidence for convergent differential expression and involvement in 

kidney physiology and/or signature of sequence selection, we found that four genes were also 

differentially expressed in the Murinae dataset (Fstl1, Cpne2, Paox and Blmh).

Convergent evolution in cell-type proportions

The  structure  of  kidneys  varies  considerably  among mammals  (Zhou  et  al.  2023),  with 

differences in renal histology related to adaptations to the xeric environment (Bankir and de 

Rouffignac 1985). Certain differences are species-specific, such as the unique papillary loop of 

the chinchilla (Chou et al. 1993). Others have been measured across a wide range of species, 

such as the relative thickness of the medulla, which is proportional to the maximal length of the 

loop of Henle (Beuchat 1996) and is positively associated with habitat aridity, once body mass 

and  phylogenetic  signal  are  accounted  for  (al-Kahtani  et  al.  2004).  Hence,  when  we 

deconvolved our bulk kidney RNA-seq to estimate kidney cell type composition, we were 

expecting to observe an increased proportion of cells from the loops of Henle in xeric species. 

We do observe a signal of convergence in several cell types. Indeed LOH cells (actually, cells 

from the ascending loop of Henle) and endothelial cells (which also include LOH cells, but from 

the descending loop), but also collecting duct and distal collecting duct cells (CD, DCT), and 

Podocytes tend to be in higher proportion in xeric species. The proportion of proximal tubule 

cells  (PT)  was  enriched  in  mesic  species.  The  convergent  changes  in  proportions  are 

consistent with convergent changes in many marker genes. This is for instance the case for 

the internal medullary collecting duct (CD), a cell type that selectively expresses Aqp2 (Chen 

et al. 2017; Habuka et al. 2014; Miao et al. 2021). We found that xeric Murinae species express 

Aqp2 at a significantly higher level in bulk RNA-seq data and, accordingly, CD is found in a 

higher relative proportion. Conversely, Slc28a1, a marker gene of the proximal tubule (PT), is 

downregulated in xeric murinae, in accordance with a smaller number of PT cells in these 

species.
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Beyond histological differences, this signal could also be explained by subtle differences in cell 

type annotation. We lack resolution in the granularity of cell type annotations, particularly 

between PT segments (Chrysopoulou and Rinschen 2024) and between short and long loops 

of Henle. In species with high capacity for urine concentration, the relative number of short 

loops is increased (Pannabecker 2013). Another possibility is that cell type identity has shifted 

along the loops. For instance, as compared to rats, Aqp1 was found to be expressed in a 

greater territory of the descending thin limbs of the loops of Henle in the kangaroo rats, which 

may allow greater solute concentration (Urity et al. 2012). In our deconvolutions, we do not 

have the precision necessary to test the above hypotheses.

Variation in cell proportions estimated by deconvolution is correlated with global variation in 

gene expression, as evidenced by PCA axes and coexpression modules. This reiterates the 

often overlooked impact of differences in cellular proportions on bulk RNA-seq. Renal single-

cell RNA sequencing data from multiple rodent species, ideally including xeric species, will be 

needed to harness the full power of deconvolutions in our system. As in the kidney, cellular 

composition  has  likely  undergone  convergent  changes  in  many  other  complex  and 

heterogeneous organs and the deconvolution approach we present here could help study 

them.

Convergence in amino-acid profiles

A few convergent phenotypes, such as echolocation or C4 carbon fixation in plants, provide 

classic examples of perfect convergent amino-acid sites (Besnard et al. 2009; Marcovitz et al. 

2019). Since this definition is very restrictive, we wanted a method that can identify these sites 

as well as others with more flexible criteria. We used Pelican, a new method that relies on 

amino-acid profiles to identify sites that would correlate with xeric and mesic habitat along the 

species phylogeny (Duchemin et al. 2023). It was not possible to compare the number of sites 

between the different subsets because Pelican’s p-values are not calibrated, but we were able 

to rank the sites based on their scores. Even in the best sites, we did not observe sites with the 
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exact same amino-acid change occurring in all xeric species. We do not think this is due to a 

lack  of  sensitivity,  as  suggested  by  simulations  on  trees  whose  depth  and  number  of 

transitions are comparable to ours (Duchemin et al. 2023). Consistent with our results, a recent 

analysis of molecular evolution associated with diverse convergent phenotypes in rodents 

found very few cases of perfect convergent amino acid evolution (Roycroft et al. 2021). We 

were not able to study all the genes in the rodent genome, since we left aside genes that had 

undergone recent  duplications  and low-expressed genes whose sequence could  not  be 

reconstructed  in  certain  species.  It  therefore  remains  possible  that  examples  of  perfect 

convergent amino acid substitutions are hidden among the remaining genes.

Gene set enrichment analyses, based on Pelican site ranking, identified pathways relevant to 

xeric adaptations, such as SLC-mediated transmembrane transport, fatty acid metabolism, 

small molecule transport and lipid metabolism. We described above a modest but significant 

overlap between the sites detected by Pelican and the lists of differentially expressed genes. 

We did not expect perfect overlap since, in theory, differentially expressed genes in the kidney 

correspond primarily to processes in renal physiology, while amino acid changes may relate to 

various aspects of the adaptation to xeric lifestyle, possibly outside of the kidney.

Effect of time on the convergent evolution of expression levels

Several studies have now shown that cases of repeated phenotypic evolution exhibit higher 

rates of convergent molecular evolution within recently diverged lineages than within lineages 

that diverged a longer time ago, but the relationship becomes less clear within clades with 

older divergence (Bohutínská and Peichel 2023). Here we took advantage of the fact that we 

sampled many species to study the effect of time scales on convergent expression evolution at 

the  macroevolutionary  level.  We focused  on  a  single  organ  and  a  single  rodent  clade. 

Compared to a meta-analysis of different works carried out in different clades and for different 

phenotypic  traits,  this  has the advantage of  better  controlling the confounding effects  of 

differences in polygeny and genome architecture on the level of molecular convergence.
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We studied two different time effects, the age of adaptation and the age of the most recent 

common ancestor from which different lineages have adapted. We studied the whole dataset, 

and 3 subtrees with roughly the same number of leaves, xeric species, and habitat transitions. 

In all  4 datasets, we observed an excess of convergent changes in gene expression as 

compared to expectations. However, much larger sets of shared changes in gene regulation 

were observed when convergent evolution was detected within a single rodent subfamily 

(Murinae), or when we compared relatively old adaptations to xeric lifestyle (between genera) 

to relatively recent adaptations (within genera).

The reasons for this excess may differ in the two cases. The convergences that have taken 

place within the Murinae subfamily are perhaps favored by the fact that these species share a 

relatively recent common ancestor and therefore still have a similar genomic background. This 

results in similarities in their mutational landscape, protein interactomes, regulatory pathways, 

or even in some cases in shared alleles. Thus, adaptive changes are more likely in certain 

genes because the genetic structure, or the probability of specific mutations, is more favorable 

to them (Schluter 1996). A phylogenetic effect is visible in the coexpression modules, which 

can be considered as the mark of this common background in gene expression. 

The molecular convergences between distant lineages that have long adapted to aridity could 

be attributed to  the  fact  that  many important  changes in  physiology  have accumulated, 

increasing the chances of finding some repeatedly. We observed a significant overlap between 

convergent genes in the “between-genera” and Murinae datasets, but also murinae-specific 

functional enrichments. This highlights that the amount of convergent evolution is influenced 

by both historical contingency, leading to clade-specific adaptations, and time scale.
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METHODS

Wild and lab maintained sampling

To cover a maximum of rodent families, we performed a sampling of wild and lab maintained 

rodent species. The collected individuals are summarized in Table S2. We were able to 

retrieve RNA-later preserved kidneys (see next section) from three different laboratories and 

from several natural habitats over six countries (Senegal, South Africa, Cameroun, Nigeria, 

Benin, Greece, France). Because many domestic mouse samples exist in the databases, we 

generated our own samples. Moreover, we chose to add two strains of Mus musculus, namely 

DDO and WLA, that were maintained for generations at the “Conservatoire de la souris” 

(Montpellier, France). The DDO strain was initially captured in Odis (Denmark). The WLA 

strain, initially captured in Toulouse (France). We selected the different Mus species from the 

“Conservatoire de la souris” to obtain a range of consumption. Interestingly, we obtained two 

genera, i.e. Mus and Mastomys, from the Murinae family with at least four different species.

Kidney dissection

To homogenize dissections between the different collectors, we set up a specific protocol. The 

main objective was to avoid introducing any bias in gene expression by recovering RNA from 

subparts of the kidney that would not be representative of the whole organ, or by co-preparing 

other tissues, such as adrenal gland or fat, with the kidney. Animals were mostly captured 

during the night or early morning and killed using cervical dislocation for small animals and a 

lethal  intracardiac  dose  of  pentobarbital  for  bigger  animals  administered  under  deep 

anesthesia. Immediately after, the kidneys were dissected. Adrenal glands were carefully 

removed as well as fat using a stereomicroscope when available. Dissections were carried out 

in a petri dish placed on ice, with cold cell culture medium, or PBS or HBSS solution. Kidneys 

were then transferred in a small cell culture dish with RNA later (THERMOFISHER – AMBION 

solution, AM7020) and cut in small pieces of approximately 2-3mm3. The pieces with the RNA 
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later were then transferred to 2 mL (or 14 mL depending on the size of the kidney) tubes with at 

least 5-10 volumes of RNA later. When possible, tubes were agitated overnight at 4°C on a 

rocker and then stored at -20°C. For field captures, samples were occasionally kept at 4°C for 

1-2 days. 

RNA extraction and sequencing

We prepared RNA-seq libraries for 42 samples corresponding to 16 rodent species and 2 

mouse strains (Table S1, S2, S4). For representativity, we used the whole kidney, including for 

large-sized species. All  pieces from a single kidney were lysed in trizol  with a Precellys 

homogenizer (Bertin). When needed, several lysates were prepared independently, and then 

carefully mixed together to ensure homogeneity of the lysate before precipitation and further 

purification using the RNeasy mini  kit  from QIAGEN. RNA integrity  was controlled on a 

Tapestation (Agilent Technologies, most samples had a RIN between 7.8-10, a few samples 

had a RIN between 6.5 and 7.1 RIN over 6.5 were selected). PolyA+ libraries of the large-scale 

dataset were prepared with the Truseq V2 kit (Illumina, non stranded protocol), starting with 

150 ng total RNA. Libraries were sequenced (Illumina HiSeq4000, 100bp paired-end or 50bp 

single-end reads, see Table S2). We evenly distributed 10 samples on  5 lanes for single-end 

libraries and 6 samples on 4 lanes for paired-end libraries. 

Bioclimatic variables

We  obtained  the  geographical  distribution  area  of  each  species  using  GBIF 

(https://www.gbif.org/)  data through the rgbif  package  (Chamberlain and Boettiger 2017). 

Then, for each species we extracted BIO17 values of its distribution area with the dismo 

package  (Hijmans,  R.J,  Phillips,  S.,  Leathwick,  J.  and  Elith,  J.  (2011)),  which  indicate 

precipitation  values  of  the  driest  quarter,  from  the  international  database  worldclim 

(https://www.worldclim.org/data/bioclim.html).  Median  values  were  calculated  for  each 

species. To avoid any bias on natural geographic distribution, we excluded values collected 

from samples in zoos, museums or laboratories. We considered a species as xeric if the 
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median BIO17 is below 40 and mesic if the median BIO17 is over 40. For homogeneity, we 

also used the median of the species for the collected samples even if we have the variable for 

their location of capture. The biological status of the collected samples was similar whether 

taking the median of the species or the specific location of capture, except for  Mastomys 

natalensis (Species-BIO17 is  46  and  Sample-BIO17 is  0)  which  was  only  used for  the 

sequence-based analyses due to the ambiguity of the status.

Species selection for the subsets

For the Murinae subset, we selected Murinae species from our dataset, and further removed  3 

xeric  species  (Meriones  unguiculatus,  Acomys  dimidiatus and  Arvicanthus  niloticus)  for 

equilibrating the number of mesic (6) and xeric (8) species in the dataset. This resulted in 30 

samples for the expression dataset, with 5 transitions to the xeric status.

For the “within-genera” and “between-genera” subsets, we dated transitions to arid condition 

by using the closest relatives in the phylogeny published by (Fabre et al. 2012) and Timetree5 

(Kumar et al. 2022), supplemented by specific articles for certain nodes (see rationale and 

references  in  Supplemental  Fig.  1).  The  two  datasets  resulted  in  32  and  31  samples, 

respectively, with 4 transitions to the xeric status.

Detecting convergent changes in gene expression data

We integrated 102 RNA-seq kidney samples extracted from public repositories or produced in 

the lab. An automatic workflow was set up using Nextflow (version 19.04.0, April 2019) and is 

summarized in Supplemental Fig. 2. The scripts used to analyze the data are available here: 

https://gitbio.ens-lyon.fr/LBMC/cigogne/convergent_aridity_2024.

Published RNA-seq libraries

We interrogated the NCBI for rodent Illumina RNA-seq libraries, and selected those with 

kidney in the metadata. To limit heterogeneity, we only selected Illumina-based RNA-seq in 
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Genbank BioProjects. We manually removed pooled data and excluded mouse and rat data. A 

preliminary  quality  control  using the top 500000 reads was performed for  each sample, 

allowing us to select manually the three best individuals per species whenever possible (using 

FastQC and MultiQC (Ewels et al. 2016). The 60 selected samples, from 21 different species, 

are listed in Tables S1 and S4. 

De novo transcriptome assemblies 

We generated de novo transcriptome assemblies for 37 species. We used the selected 69 

public samples, plus 20 of our samples (Supplemental Table 3). We removed adapters and 

low-quality  bases  (Q<20)  using  Trimmomatic  version  0.38,  with  options  “TRAILING:20 

MINLEN:25 AVGQUAL:20” (Bolger et al. 2014). After this trimming, we checked the quality of 

the reads with FastQC. We then assembled the data with Trinity version 2.8.5 (Grabherr et al. 

2011) with option “--full_cleanup”. We predicted coding sequences from trinity assemblies with 

TransDecoder version 5.5.0, retaining only the best open reading frame per transcript, at least 

80 amino-acids long (https://github.com/TransDecoder/TransDecoder). Basic quality values of 

assemblies, such as N50 and number of transcripts were retrieved with the implemented 

Trinity script trinityStats.pl (Haas et al. 2013). Completeness of gene repertoire was evaluated 

with BUSCO version 3.0.2 (Haas et al. 2013; Manni et al. 2021) with the mammalian library 

(mammalia_odb9). The quality of the assemblies is summarized in Supplemental Table 4. 

Quantification of expression levels

Expression levels were obtained for 34 species and 2 strains by mapping the sequence reads 

against coding sequences from de novo assemblies using Kallisto 0.45.1 (Bray et al. 2016) 

with default parameters.

Annotation of transcripts

We selected the rodent subset from the orthology database EggNOG version 5 (Huerta-Cepas 

et al. 2019) and used them as a BLASTX database (containing 14 rodent genomes, that are 
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used for annotating the families but not in our sequence and expression datasets). Coding 

sequences (CDSs) were aligned to this database using BLASTX (with options -outfmt '6 

qseqid  sseqid  evalue  bitscore  length  pident  qstart  qend  sstart  send'  -max_hsps  1  -

max_target_seqs 1). We retained the best hit for each CDS (with an E-value threshold 1e-6), 

and assigned it to the corresponding EggNOG cluster. In case there were several CDS of the 

same species associated with a given EggNOG cluster, we retained the CDS with the best hit.

Preparation of expression matrices

All transcripts of a given gene were imported using tximport package (Soneson et al. 2015) 

with  option  countsFromAbundance=”lengthScaledTPM”  for  additional  scaling  using  the 

average transcript length. This accounts for gene length differences between species. We 

performed  the  following  steps  on  each  data  set  independently.  We  first  adjusted  the 

expression levels to minimize the influence of phylogenetic effect by applying batch correction 

using ComBat_seq from sva package  (Zhang et al. 2020).

We defined batch groups based on species phylogenetic relatedness. A batch group usually 

corresponds to a rodent family. Because we need at least one xeric species and one mesic 

species in a batch group to perform resampling (see below), we combined two sister families in 

the same batch when needed (see Table S5). The correction was realized on all sets except 

Murinae because all species belong to the same family. 

We implemented PCA using the prcomp function from the stats package, before and after 

batch correction. Between-class analyses were used to estimate the effect of different factors 

on the PCA axes (Dray and Dufour 2007). 

Convergence detection by differential and correlation network analyses

Differential expression analyses and co-expression analyses were performed on the four 

different data sets with their respective prepared count matrices. Only genes with non-null 

values in all individuals were used and mitochondrial genes were removed.

We performed differential expression analyses using the DESeq2 package (Love et al. 2014) 

with the following command lines:
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dds <- DESeq(ddsInput)

res <- results(dds,  lfcThreshold=.4, altHypothesis="greaterAbs")

Differentially  expressed  genes  were  filtered  based  on  Log  Fold  Change  threshold  0.4 

corresponding to fold change over 1 (“greaterAbs”) and adjusted p-value <0.1. Thresholds 

were chosen after a thorough comparison (Supplemental Table 6). 

We searched for modules of genes with correlated expression values with a Weighted Gene 

Co-expression Network Analysis  (WGCNA  (Horvath 2011)).  We used normalized counts 

obtained  with  DESeq2  and  the  top  50%  most  variable  genes  based  on 

varianceStabilizingTransformation from DESeq2. We selected soft-thresholding power from 

16 to 20 based on the pickSoftThreshold function and we used the ‘signed’ network and a 

minModuleSize = 30 in the blockwiseModules function in WGCNA. 

We performed functional enrichment for Gene Ontology terms and Reactome pathways using 

the ClusterProfiler package (Wu et al. 2021) on lists of differentially expressed genes and 

modules of co-expressed genes significantly correlated with xeric/mesic habitat. We also used 

the package REVIGO for visualization (Supek et al. 2011). 

We also intersected the lists with kidney marker genes and genes involved in kidney diseases. 

391 marker genes were retrieved from (Park et al. 2018; Cao et al. 2018) and manually curated 

from literature; 179 of these genes were available in the Murinae dataset. 244 disease genes 

were retrieved from the OMIM database and (Park et al. 2018), of which 165 were found in the 

Murinae dataset. Enrichments were computed with Fisher’s exact tests.

Testing the significance of the number of differentially expressed genes

To estimate whether the number of observed DE genes between xeric and mesic species is 

significantly different from a random observation, we set up a simulation protocol inspired by  

(Bittner et al. 2022). This protocol preserves the overall distribution of the phenotype in the 

phylogeny. For each of the datasets, we defined phylogenetic groups within which the species 

labels can be permuted (Supplemental Table 5). The following steps were then carried out, 

and repeated 1000 times (See Supplementary Methods for details). Within each taxonomic 
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group, each xeric species was associated with a mesic species randomly and individuals were 

subsampled to equalize the number of samples in each species of the pair. An “observed” 

number of differentially expressed genes was calculated with this reduced table retaining the 

true labels (adjusted p-value <0.1). For each gene and each previously associated pair of 

species,  expression values were swapped between the xeric  and mesic samples with a 

probability of 0.5. The permuted table was then used to calculate an “expected” number of DE 

genes. At the end of 1000 permutations, we performed a paired Wilcoxon test to compare the 

distribution of “observed” with those “expected” DE genes.

Deconvolutions

To determine whether changes in cell proportions occurred between mesic and xeric species, 

we used computational methods to infer cell type proportions from bulk transcriptomics data. 

Many methodologies to infer proportions of individual cell types from bulk transcriptomics data 

have been developed, some of which using marker genes for different cell types, and others 

using scRNA-seq data. We implemented the former using sets of known marker genes plus 

marker genes extracted from the reanalysis of a mouse single-cell RNA-seq kidney dataset ((

Park et al. 2018) and Supplemental Table 8). For the latter methods, we used the same whole 

scRNA-seq dataset. Upon reanalysis of these data, we removed one of the 7 individuals in the 

original publication. This sample (ind 7) created an additional cluster and lacked several 

clusters in the published parent study. Data were then normalized using SCTransform and 

UMAP was then generated using 15 dimensions of the PCA (Seurat package (Hao et al. 2021)

). Cell type identities assigned in the original publication were then re-attributed to each cell. To 

determine the best deconvolution method for our data, we used the available benchmark from 

Cobos et al.  (Avila Cobos et al. 2020) and tested 12 methods on our bulk RNA-seq data 

(Supplemental Fig. 9). With the best applicability to other Murinae species and good results in 

Mus musculus, MuSiC was selected in our analysis. Estimated proportions were then plotted 

per cell type and summarized by PCA analyses. Pearson correlations between estimated 

proportions and WGCNA eigengene values were computed and shown by heatmap.
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Detection of convergent changes in protein sequences

Coding sequences from genome assemblies

We retrieved coding sequences from 24 published rodent genomes (Ensembl release 99 

(Harrison et al. 2024)). For nine species, kidney transcriptome assemblies and genome were 

available (Supplemental Table 1). In these cases, cDNA Ensembl sequences were favored 

over  transcriptomes in  the sequence analysis. We assigned these coding sequences to 

EggNOG groups as described above (‘Annotation of transcript’).

Sequence alignments 

We grouped coding sequences associated with the same EggNOG group into gene families. 

We removed families with less than 3 species and sequences within families if their length is 

smaller  than 70% of  the median length of  the family.  We aligned the remaining protein 

sequences with MAFFT (version 7.313, with options --localpair --maxiterate 1000 (Katoh and 

Standley 2013)) and cleaned the alignments with HmmCleaner (version 0.180750 (Di Franco 

et  al.  2019)).  We discarded sequences for  which more than 50% of  the positions were 

removed by HmmCleaner and amino acid sites with more than 10% gaps. Finally, we back-

translated the protein alignments into nucleic sequences. We obtained multiple alignments for 

11437 sets of orthologs, ranging from 3 to 51 species (plus 2 strains).

Phylogenetic reconstruction

We selected the 4,065 complete gene families (with 53 sequences), and retained only the sites 

without gaps for phylogenetic analysis. Ten subsets were extracted from these families. For 

each subset, we chose randomly 500 genes and 200 sites per gene, and then concatenated 

the 100,000 sites (using catfasta2phyml.pl (https://github.com/nylander/catfasta2phyml). For 

genes  shorter  than  200  sites,  all  sites  were  retained  in  the  concatenate.  Phylogenetic 

reconstruction was performed using raxml-ng software (Kozlov et al. 2019) with options --all 
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and --model LG+G. We then obtained 10 different trees. We estimated the likelihood of the 

complete dataset given these 10 trees and retained the tree with the best likelihood as the 

species tree presented Fig.1 and used it for detecting convergent sequence evolution. The 

chronogram presented Supplemental Fig. 1 was established with Timetree5  (Kumar et al. 

2022). 

Detection of convergent sites

We used Pelican (Duchemin et al. 2023) to detect convergent changes in protein alignments 

using “multinomial-filter=0.8”. Pelican annotated the tips of the species tree (see above) with 

xeric and mesic labels and inferred ancestral states by using parsimony. For each dataset, we 

filtered the gene families based on the total numbers of mesic and xeric species (see main 

text). We further refined the list of candidate sites by discarding all sites that had undergone a 

substitution in only one of the xeric clades, considering that we were interested in profile 

changes that have occurred in a convergent manner, at least in two xeric clades, using a 

custom script. 

We ranked genes based on the p-value of their best site and used this ranking for gene set 

enrichment analyses (GSEA). GSEA were performed using Gene Ontology terms, Reactome 

pathways,  and  a  custom  set  made  of  the  differentially  expressed  genes  using  the 

ClusterProfiler package (Wu et al. 2021). 

DATA ACCESS

All  raw sequencing data generated in this  study have been deposited to the EBI under 

accession number PRJEB54931. Previously published cDNA libraries and expression raw 

data are listed with accession numbers in Supplemental Table 1. All codes are available in a 

gitlab  repository  (https://gitbio.ens-lyon.fr/LBMC/cigogne/convergent_aridity_2024). 

Sequence  alignments,  species  tree,  Pelican  results,  count  table  (used  for  expression 
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analyses) and the associated coldata, as well  as Supplemental Fig. 3 and 5 have been 

deposed on Dryad (https://doi.org/10.5061/dryad.r7sqv9sm1). 
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The South African rodent specimens were sampled at Tussen die Riviere Nature Reserve 
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