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A B S T R A C T

The optimal operation of Distribution Networks (DNs) using network reconfiguration has become more critical in
the modern power system due to the widespread use of Renewable Energy Sources (RESs) and the imbalance
between load demand and energy provided by RESs. However, attaining the most efficient functioning while
integrating RESs is a challenging endeavor due to the unpredictability of the electrical system and the com-
plexities associated with network reconfiguration. Integrating Distribution Static Compensators (D-STATCOMs)
with network reconfiguration is powerful for improving voltage deviation reducing overall costs, and minimizing
active power losses, while successfully accommodating the fluctuating characteristics of renewable energy
sources. To tackle these difficulties, we offer the Horned Lizard Optimization Algorithm (HLOA), a new approach
for optimizing the operation of DNs. The efficacy of HLOA is showcased on the IEEE 33-bus DN, to minimize
costs, voltage deviations, real power losses, and emissions in the presence of unpredictable factors like photo-
voltaic (PV) uncertainties, price changes, and load demand. The analysis encompasses three case studies: one
focused on optimizing operation solely with PV integration, another using both PV and D-STATCOM integration,
and a third incorporating PV, D-STATCOMs, and network reconfiguration. The results indicate that the combi-
nation of PV, D-STATCOMs, and network reconfiguration significantly decreases overall cost by 45.6%, real
power losses are reduced by 66.3%, and voltage variations are improved by 71.04%. Emissions are mitigated by
36.72% compared to the base case.

1. Introduction

1.1. Motivation

The growing integration of renewable energy sources (RESs), like
solar photovoltaic (PV) systems, into updated DNs brings significant
economic and environmental benefits (Emrani and Berrada, 2024;
Hassan et al., 2024). However, the inherent temperature and solar ra-
diation variability make the power output from distributed generators
(DGs) unpredictable, introducing new operational challenges. This
variability underscores the need for probabilistic assessments to manage
and mitigate network operations risks effectively (Hasanien et al., 2024;
Khalid, 2024). Additionally, network reconfiguration, a strategy

involving the adjustment of the distribution lines’ topological structure,
proves essential for improving network performance and reliability,
especially with the fluctuating nature of RESs (Bahrami et al., 2024;
Abbas et al., 2024). Deploying D-STATCOMs further enhances network
efficiency by providing a cost-effective way to improve stability and load
capacity. To maximize the benefits of D-STATCOMs, their optimal
placement and sizing must be determined, considering both economic
and technical aspects (Kilic et al., 2024; Kanase and Jadhav, 2024). The
complexity of these decisions is increased by the stochastic nature of
DNs and the interdependence of various uncertain variables. However,
techniques such as Monte Carlo simulation (MCS) and the Scenario
Reduction Algorithm (SRA) offer robust tools for addressing these
complexities, enabling more effective and reliable network
management.

* Corresponding author.
E-mail addresses: hachemi.ahmedtidjani@univ-ouargla.dz (Ahmed.T. Hachemi), sadaoui.fares@univ-ouargla.dz (F. Sadaoui), abdelhakim.saim@univ-nantes.fr

(A. Saim), mebeed@eng.sohag.edu.eg (M. Ebeed), s.arif@lagh-univ.dz (S. Arif).

Contents lists available at ScienceDirect

Energy Reports

journal homepage: www.elsevier.com/locate/egyr

https://doi.org/10.1016/j.egyr.2024.07.050
Received 7 May 2024; Received in revised form 16 July 2024; Accepted 24 July 2024

Energy Reports 12 (2024) 1623–1637 

Available online 31 July 2024 
2352-4847/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

mailto:hachemi.ahmedtidjani@univ-ouargla.dz
mailto:sadaoui.fares@univ-ouargla.dz
mailto:abdelhakim.saim@univ-nantes.fr
mailto:mebeed@eng.sohag.edu.eg
mailto:s.arif@lagh-univ.dz
www.sciencedirect.com/science/journal/23524847
https://www.elsevier.com/locate/egyr
https://doi.org/10.1016/j.egyr.2024.07.050
https://doi.org/10.1016/j.egyr.2024.07.050
https://doi.org/10.1016/j.egyr.2024.07.050
http://crossmark.crossref.org/dialog/?doi=10.1016/j.egyr.2024.07.050&domain=pdf
http://creativecommons.org/licenses/by/4.0/


1.2. Related work

The optimal operation of distribution networks has been addressed
from various angles. The authors in (Ebeed et al., 2024a) utilize
inverter-based PV systems with or without inherent D-STATCOM ca-
pabilities to enhance the dependability and safety of DNs, demonstrating
their method’s superiority on the IEEE 33-bus test network. Reactive
power capabilities of PV smart inverters are explored by (Tatikayala and
Dixit, 2024) as D-STATCOMs to resolve voltage control issues, inte-
grating them with conventional devices to minimize energy dissipation.
Dynamic power compensation in AC DNs using PV-D-STATCOMs is
detailed in (Montoya et al., 2024), where a step-by-step approach is used
to address multi-period power flow problems, highlighting the dual
functionality of PV-D-STATCOMs as both PV production plants and
reactive power compensators. The study in (Woldesemayat et al., 2024)
focuses on electricity distribution losses in Gesuba town’s 15 kV system,
identifying the high loss factor and limited voltage stability while
determining the optimal bus size and location of D-STATCOM for
improved performance. Innovative charging and battery swapping sta-
tion integration into radial distribution systems using renewable DGs
and D-STATCOM is introduced in (Balu and Mukherjee, 2024), effec-
tively mitigating demand issues from EV charging and swapping stations
based on student psychology optimization. With the rise of electric ve-
hicles, (Yuvaraj et al., 2023) discusses the challenges to distribution
systems due to increased electricity demand, proposing a method using
the Slime Mould Algorithm to optimize the placement and sizing of
components in radial distribution systems. The utilization of photovol-
taic sources and D-STATCOM devices to reduce annual grid operating
expenses over 20 years is explored in (Rincón-Miranda et al., 2023). A
probabilistic mixed-integer convex model for optimizing locations and
sizes of D-STATCOMs in electrical networks, considering renewable

energy integration and demand fluctuations, is presented by (Gil--
González, 2023), aiming to minimize annual installation and operation
costs. The research in (Marquez et al., 2023) proposes a cost-effective
strategy for improving distribution system efficiency through tie-line
network reconfiguration and distributed energy resources, calculating
the optimum Energy Not Supplied index. In (Hachemi et al., 2023a), the
authors present the Modified Reptile Search Algorithm, this technique
aims to improve network performance by reducing costs, voltage vari-
ations, and system instability, thereby enhancing overall system stabil-
ity. The Multi-Group Flight Slime Mould Algorithm, a flexible
reconfiguration approach for IEEE-33 and IEEE-118 bus DNs that
models dynamic reconfiguration across multiple periods, is introduced
in (Pan et al., 2022), enhancing economic efficiency and operational
safety. The efficacy of Demand Side Response and renewable energy
integration in the IEEE 118-bus distribution system is showcased in
(Hachemi et al., 2023b), introducing the Improved Walrus Algorithm to
optimize costs and enhance stability amid fluctuating conditions. In
(Noruzi Azghandi et al., 2023), the authors suggest adjusting the dis-
tribution network to better accommodate distributed generation units
and electric vehicles. This method considers various factors, including
energy loss, operational expense, and unsupplied energy. In (Ramadan
et al., 2022), the authors introduce a highly effective method for opti-
mizing the size and location of renewable distributed generators in
radial distribution systems, addressing the inherent uncertainties in the
power system. The approach employs an MCS technique alongside an
Artificial Gorilla Troops Optimizer. The integration of PV systems into
DNs on a large scale using a county-wide promotion model and the
Improved Multi-Objective Teaching-Learning Optimization algorithm is
elaborated in (Liu et al., 2024), achieving optimal integration of
distributed PV systems and enhancing voltage profiles. The
multi-objective hierarchical model for optimal distributed generation

Acronyms

BIBC Bus-injection to branch-current
BWO Beluga whale optimization
DGs Distributed generators
DNs Distribution networks
D-STATCOMs Distribution static compensators
HLOA Horned lizard optimization algorithm
MCS Monte carlo simulation
PDFs Probability density functions
PV Photovoltaic
RESs Renewable energy sources
RSA Reptile search algorithm
SCA Sine cosine algorithm
SRA Scenario reduction algorithm
TE Total emission
TVD Total voltage deviation
TRPL Total real power losses

Symbols
CGrid Cost of electricity drawn from the grid
CPV Cost of PV
CLoss Cost of losses
CDSTATCOM Cost of D-STATCOMS
CO2,NOX,SO2 Carbon dioxide, nitrogen oxides, and sulfur dioxide
F1,F2,F3,F4 Objective functions
Fitness min, Fitnessmax Best and worst fitness values
Fitness(i) Fitness value of the ithsearch agent at this stage
Ii,IUp,i Current flowing through the ith line, and the upper limit of

current
L Load demand

Max_iter Maximum allowable iterations or generations
NT Number of branches
r1, r2, r3, r4 The distinct integer values
P Price level
P(i,t), Q(i,t) Real and reactive power flows on the branch i
PGrid(t) Power from the grid at each hour t
PLoss,i(t) , QLoss,i(t) Active and reactive power losses at unit i and

time t
PLoad,i(t), QLoad,i(t) Active and reactive power consumed by loads at

unit i and time t
PPV,i(t) Active power from photovoltaic units at unit i and time t
PS(t) , QS(t) System’s active and reactive power generation at time

t
Ri Resistance of branch i
T Variable temperature
QDSTATCOM,i(t) Reactive power provided by D-STATCOM units
Vs(i,t) Voltage at the sending node of the branch i
V(i,t) Voltage at node i during the time interval t
x→i Position of a new search agent
x→best (t) Position of the best performing agent from the current

generation
μ Mean
σ Standard deviation
Γ Gamma function
∂,τ Shape parameters
G Normalized solar radiation
ϑGrid Price of grid electricity
ε1, ε2, ε3, ε4 Weights
θ Binary indicator
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planning that enhances power reliability and efficiency while reducing
annual costs and energy losses is presented in (Li et al., 2024). In
(Mahdavi et al., 2022), the authors examine the influence of load pat-
terns on switching sequences in three distribution systems,the objective
is to assess the significance of load profiles in reducing energy losses
wirth network reconfiguration. The study in (Liao et al., 2023), presents
a method for dynamically reconfiguring hybrid distribution networks,
this approach considers the cost of aging cycles and demand response,
and is based on non-ideal battery energy storage models. In (Wang et al.,
2021), the authors presents a thorough examination of operation sce-
narios to achieve the most efficient distribution network reconfigura-
tion, the system employs the K-Means technique for clustering common
cases and utilizes time interval loss index to assess the overall network
loss performance. The authors in (Amigue et al., 2021), proposed a
method to identify the most optimal location for integrating PVs into the
energy grid, this algorithm aims to minimize power losses and improve
the voltage profile. The study in (Ortega-Romero et al., 2023), suggests a
methodology for determining where distributed generation units should
be placed in a lengthy, medium-voltage electrical network to minimize
energy losses, raise voltage levels, and improve system reliability.In the
context of our discussion on related work, we conducted a detailed
comparison of all previously mentioned studies to explore the scientific
gaps that our current research aims to address in Table 1.

1.3. Research gaps

The research gaps identified in these studies are outlined below:

1. Many studies (Kanase and Jadhav, 2024; Ebeed et al., 2024a; Tati-
kayala and Dixit, 2024; Montoya et al., 2024; Woldesemayat et al.,
2024; Balu and Mukherjee, 2024; Yuvaraj et al., 2023; Rincón-Mir-
anda et al., 2023; Gil-González, 2023; Hachemi et al., 2023a, 2023b;
Noruzi Azghandi et al., 2023; Ramadan et al., 2022; Liu et al., 2024;
Li et al., 2024; Mahdavi et al., 2022; Liao et al., 2023; Wang et al.,
2021; Amigue et al., 2021; Ortega-Romero et al., 2023) do not
consider relevant uncertainties related to energy prices, load
behavior, and weather conditions. This limits the ability to develop
robust and reliable solutions that can adapt to varying conditions in
power distribution systems.

2. Reconfiguration is not addressed in several studies (Kanase and
Jadhav, 2024; Ebeed et al., 2024a; Tatikayala and Dixit, 2024;
Montoya et al., 2024; Woldesemayat et al., 2024; Balu and
Mukherjee, 2024; Yuvaraj et al., 2023; Rincón-Miranda et al., 2023;
Marquez et al., 2023; Pan et al., 2022; Noruzi Azghandi et al., 2023;
Ramadan et al., 2022; Liu et al., 2024; Li et al., 2024; Amigue et al.,
2021; Ortega-Romero et al., 2023). This limits the optimization po-
tential and adaptability of the power distribution systems.

3. References (Kanase and Jadhav, 2024; Ebeed et al., 2024a; Tati-
kayala and Dixit, 2024; Montoya et al., 2024; Woldesemayat et al.,
2024; Balu and Mukherjee, 2024; Yuvaraj et al., 2023; Rincón-Mir-
anda et al., 2023; Gil-González, 2023; Marquez et al., 2023; Hachemi
et al., 2023a; Pan et al., 2022; Hachemi et al., 2023b; Noruzi
Azghandi et al., 2023; Liu et al., 2024; Li et al., 2024; Mahdavi et al.,
2022; Liao et al., 2023; Wang et al., 2021; Amigue et al., 2021;
Ortega-Romero et al., 2023) focus only on single or dual objectives,
either technical or economic, and often neglect environmental ob-
jectives. Only study (Ramadan et al., 2022) attempts a more
comprehensive approach by considering multiple objectives. How-
ever, this study has limitations, such as not accounting for all un-
certainties within the system and not addressing the reconfiguration
of the system.

Based on these gaps, an essential question is how network reconfi-
guration, combined with the integration of Photovoltaic Systems and
Distribution Static Compensators, will influence the dynamic operation
of distribution grids in the presence of uncertainties related to price,
loading, temperature, and irradiance.

1.4. Novelty and contribution

1. The main novel contributions of this study work, aimed at addressing
the aforementioned research gaps, are visually illustrated in Fig. 1
and outlined below:

2. A techno economic and environmental investigation is presented for
optimal integration of PV system and D-STATCOM along with
reconfiguration of distribution systems.

Table 1
Comparative analysis between the current study and previous literature.

Reference Systems Uncertainty Reconfiguration Objective Functions

PV D-
STATCOM

Price Loading Temperature Irradiance Technical Economical Environmental

(Ebeed et al., 2024a) ✓ ✓ ⨯ ✓ ⨯ ✓ ⨯ ✓ ⨯ ⨯
(Tatikayala and Dixit, 2024) ✓ ✓ ⨯ ⨯ ⨯ ⨯ ⨯ ✓ ⨯ ⨯
(Montoya et al., 2024) ✓ ✓ ⨯ ⨯ ⨯ ⨯ ⨯ ✓ ✓ ⨯
(Woldesemayat et al., 2024) ⨯ ✓ ⨯ ⨯ ⨯ ⨯ ⨯ ✓ ⨯ ⨯
(Balu and Mukherjee, 2024) ✓ ✓ ⨯ ✓ ⨯ ✓ ⨯ ✓ ✓ ⨯
(Yuvaraj et al., 2023) ✓ ✓ ⨯ ⨯ ⨯ ⨯ ⨯ ✓ ⨯ ⨯
(Rincón-Miranda et al.,
2023)

✓ ✓ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ✓ ⨯

(Gil-González, 2023) ⨯ ✓ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ✓ ⨯
(Marquez et al., 2023) ✓ ⨯ ⨯ ⨯ ⨯ ⨯ ✓ ✓ ✓ ⨯
(Hachemi et al., 2023a) ✓ ⨯ ✓ ✓ ✓ ✓ ⨯ ✓ ✓ ⨯
(Pan et al., 2022) ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ✓ ✓ ✓ ⨯
(Hachemi et al., 2023b) ✓ ⨯ ✓ ✓ ✓ ✓ ⨯ ✓ ✓ ⨯
(Noruzi Azghandi et al.,
2023)

✓ ⨯ ⨯ ⨯ ⨯ ⨯ ✓ ✓ ✓ ⨯

(Ramadan et al., 2022) ✓ ⨯ ✓ ✓ ⨯ ✓ ⨯ ✓ ✓ ✓
(Liu et al., 2024) ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ✓ ⨯ ⨯
(Li et al., 2024) ✓ ⨯ ⨯ ✓ ⨯ ✓ ⨯ ✓ ✓ ⨯
(Mahdavi et al., 2022) ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ✓ ⨯ ✓ ⨯
(Liao et al., 2023) ✓ ⨯ ⨯ ⨯ ⨯ ⨯ ✓ ⨯ ✓ ⨯
(Wang et al., 2021) ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ✓ ✓ ⨯ ⨯
(Amigue et al., 2021) ✓ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ✓ ⨯ ⨯
(Ortega-Romero et al., 2023) ✓ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ✓ ⨯ ⨯
This paper ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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3. Exploring the synergies between PV system, D-STATCOMs, and
network reconfiguration to optimize the alignment of renewable
generation with flexible demand.

4. Utilizing the probability density functions and the Scenario Reduc-
tion Algorithm (SRA) along with Monte Carlo simulation (MCS) for
handling the uncertainties of the load power, price fluctuations, and
the yielded power from the PV system.

5. A novel HLOA algorithm is proposed for the first time to allocate the
PV system and D-STATCOM for optimizing four objective functions
simultaneously including the cost, the emissions, the voltage profile,
and real power losses of the distribution system.

6. A comprehensive comparison between the suggested HLOA tech-
nique and Reptile Search Algorithm (RSA), the Sine Cosine Algo-
rithm (SCA), and the Beluga Whale Optimization (BWO) to
demonstrate the effectiveness of HLOA.

This work is useful for society and practitioners as it provides inno-
vative solutions for integrating renewable energy sources into existing
grids, enhancing the efficiency and sustainability of energy distribution
systems.

1.5. Organization of the article

This paper is organized as follows: Section 2 addresses uncertainties
related to temperature, solar radiation, pricing, and load demand. Sec-
tion 3 outlines the problem formulation for the electrical distribution
network aimed at improving operational costs, voltage stability, power
loss, and emissions. This provides the foundation for applying the pro-
posed HLOA algorithm, detailed in Section 4. Section 5 discusses the
simulation results and analysis. The document concludes with Section 6,
summarizing the study’s findings and the implications of the results.

2. Probabilistic uncertainties

This study delves into the uncertainties of four critical variables:
temperature, solar radiation, pricing, and load demand. Understanding
these uncertainties is crucial as it allows for better risk assessment and

strategic planning in energy systems management. To model the sys-
tem’s uncertainties, the mean (μ) and the standard deviation (σ) values
are derived from meteorological data and the variations in loads and
prices. Table 2 lists the μ and σ values for temperature, solar radiation,
pricing, and load demand over 24 h, providing a foundation for under-
standing and managing the risks associated with these fluctuations in
the energy system.

2.1. Temperature probabilistic presentation

In the probabilistic analysis of temperature uncertainties, the vari-
ability is expressed through the normal distribution, as outlined in the
following equation (Hachemi et al., 2023b):

f(T) =
1

σT
̅̅̅̅̅̅
2π

√ exp

[

−
(T − μT )

2

2σT2

]

(1)

Where μT represents the mean temperature, σT is the standard deviation
indicating the spread around the mean, and T is the variable tempera-
ture. This model efficiently quantifies the statistical distribution of
temperature fluctuations.

2.2. Solar radiation probabilistic presentation

In the study of solar radiation, its variability can also be modeled
probabilistically. The distribution of solar radiation is mathematically
represented using the Beta distribution, detailed by the equation (Piri
et al., 2023; Akbari et al., 2017):

f(G) =

⎧
⎪⎨

⎪⎩

Γ(∂ + τ)
Γ(∂)Γ(τ)s

(∂− 1)(1 − G)(τ− 1) 0 ≤ G ≤ 1; ∂, τ ≥ 0

0 otherwise
(2)

Where Γ denotes the gamma function, ∂ and τ are shape parameters that
influence the form of the distribution, and G represents the normalized
solar radiation. This approach allows for a nuanced description of the
fluctuations in solar energy availability.

Fig. 1. The summary of the proposed framework.
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In the probabilistic model for solar radiation, the Beta distribution
parameters τ and ∂ are determined based on the mean μ and variance σ2

of the distribution. The parameter τ is defined by the equation (Ebeed
et al., 2020):

τ = (1 − μ) ×
(

μ × (1+ μ)
σ2 − 1

)

(3)

This parameter adjusts to reflect the skewness of the distribution
towards lower values. Meanwhile, the parameter ∂ is calculated with
(Zubo et al., 2018):

∂ =
μ × τ
1 − μ (4)

The real power output of the PV units can be calculated using the
formula below (Diaf et al., 2007).

Tc(t) = Ta(t)+
G(t)
800

× (NOCT − 20) (5)

PPV(h) = APV × ηPV(t) × G(t) (6)

In which

ηPV(t) = &ηr × ηt ×
[

1 − γ × (Ta(t) − Tr ) − γ × G(t) ×
(
NOCT − 20

800

)]

&
(7)

APV, is the area covered by the PV panel in square meters; Tc and Ta,
which represents the cell temperature and ambient temperature
respectively; G, standing for solar irradiance; NOCT, the Nominal
Operating Cell Temperature; γ, known as the temperature coefficient;
and ηr along with ηPV, referring to the reflection efficiency and the
direct efficiency of the PV array, respectively.

2.3. Price probabilistic presentation

In the probabilistic representation of price data, the normal proba-
bility density function is employed to quantify the distribution of price
fluctuations around a mean value. This is mathematically described by
the function f(P), which is given by (Morstyn et al., 2019; Shojaabadi

et al., 2016):

f(P) =
1

σP
̅̅̅̅̅̅
2π

√ exp

[

−
(P − μP)

2

2σP
2

]

(8)

In this formula, μP is the mean price, and σP is the standard deviation,
indicating the spread of price values around the mean, the variable P
represents the price level.

2.4. Load Demand probabilistic presentation

The probability distribution of load demand L is captured through
the normal probability density function f(L), which delineates how the
demand values are spread around the mean. This function is defined as
(Zubo et al., 2018; Kamel et al., 2024):

f(L) =
1

σL
̅̅̅̅̅̅
2π

√ × exp

[

−
(L − μL)

2

2σ2
L

]

(9)

Within this expression, μL signifies the average load demand, serving
as the central point around which load values are expected to fluctuate,
while σL denotes the standard deviation, providing a measure of the
spread or variability of the load demand around the mean.

The entire process of establishing parameters for the PDF is based on
the collected data (Rubinstein and Kroese, 1981; Ebeed et al., 2024b).
This data establishes parameters for variables, including temperature,
solar irradiation, load, and pricing. Monte Carlo simulations are
employed to generate 1000 data points for these variables. However, the
significant computational demand arising from the vast number of po-
tential scenarios necessitates a more streamlined approach. To mitigate
this, the Scenario Reduction Algorithm (SRA) is implemented, effec-
tively reducing the total number of scenarios to 25 (Growe-Kuska et al.,
2003; Biswas et al., 2019).

Fig. 2 presents a comprehensive distribution of scenarios derived
from MCS across various parameters critical to energy system analysis.
These scenarios help in understanding the probabilistic nature of these
variables.

The way SRA is represented is as follows:

Table 2
The μ and σ values of the uncertain parameters.

Hour Temperature Solar Radiation Price Load Demand

μ σ μ σ μ σ μ σ

1 17.174 7.3267 0 0 0.11 0.0275 76.19 8.28
2 16.5741 7.2526 0 0 0.1 0.025 72.13 8.49
3 16.0557 7.1976 0 0 0.11 0.0275 70.26 8.29
4 15.5933 7.1503 0 0 0.09 0.0225 68.04 8.21
5 15.1806 7.0987 0 0 0.11 0.0275 68.6 8.56
6 15.45 7.6149 0 0 0.11 0.0275 73.66 10.15
7 17.393 8.4126 22.1314 0.028833 0.13 0.0325 82.2 13.25
8 20.4664 8.6512 134.9197 0.100448 0.15 0.0375 90.56 15.11
9 23.5787 8.6734 335.1481 0.133864 0.26 0.065 94.59 14.26
10 26.0153 8.2898 543.2130 0.145496 0.3 0.075 96.52 12.81
11 27.7378 7.9859 716.3761 0.151267 0.35 0.0875 98.43 12
12 28.9056 7.7783 834.0451 0.156275 0.4 0.1 100 11.47
13 29.5949 7.6528 887.6853 0.159055 0.4 0.1 96.68 11.65
14 29.8343 7.5974 867.7212 0.160291 0.5 0.125 95.34 12.37
15 29.6227 7.6125 779.3058 0.158523 0.3 0.075 93.85 12.9
16 28.7845 7.8703 630.9906 0.154956 0.3 0.075 92.98 13.14
17 26.6448 8.669 436.3135 0.14444 0.4 0.1 93.29 13.87
18 24.021 8.241 224.0758 0.123348 0.5 0.125 94.91 14.7
19 22.4503 7.7399 62.2966 0.063725 0.3 0.075 95.23 14.31
20 21.4333 7.7191 3.2811 0.005689 0.26 0.065 93.6 12.73
21 20.4501 7.6865 0 0 0.15 0.0375 90.48 10.36
22 19.5017 7.622 0 0 0.13 0.0325 86.01 8.63
23 18.6408 7.5313 0 0 0.1 0.025 86.19 9.03
24 17.8621 7.4262 0 0 0.11 0.0275 80.35 8.75
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1. Initialize N0 scenarios, represented by vectors Yi for i=1, 2,…,

N0 . N0 represent the scenario generated by MCS.
2. Assign an equal probability to each scenario: Δ0 = 1

N0

3. Compute distance between each pair of scenarios by calculating
the norm.

4. Distance between scenarios Yi and Yj is dij =
⃦
⃦Yi − Yj

⃦
⃦
⃦
⃦Yi − Yj

⃦
⃦.

5. Calculate the distances between all pairs of scenarios (distance
matrix D).

6. Set NDy to N0 and define the target number of scenarios NSC.
7. Identify the smallest non-zero distance in the distance matrix D
8. Determine the two scenarios m and n corresponding to this

minimum distance.
9. Compare the probabilities Δm and Δn

10. If Δm ≥ Δn, eliminate scenario n and update Δm by adding Δn.
11. Otherwise, eliminate scenario m and update Δn by adding Δm.
12. Modify the distance matrix D by removing the row and column of

the eliminated scenario.
13. Decrement NDy by 1.
14. Check if NDy equals NSC (If NDy equals NSC, terminate the al-

gorithm; otherwise, repeat the reduction loop).

Fig. 3 illustrates the results of the SRA applied to MCS results for

various key parameters. This reduction is crucial for simplifying the
complexity of the problem while maintaining the integrity of the data’s
variability.

3. Problem formulation

This section explores the formulation of key performance indicators
for optimizing a power distribution system. The focus includes Total
Real Power Losses (TRPL), which asses system efficiency, Total Opera-
tion Cost (C), which calculates the comprehensive costs of running the
network, Total Voltage Deviation (TVD) for network stability, and Total
Emission (TE) reflecting the environmental impact. Each parameter is
calculated using specific formulas to guide strategies for reducing costs,
emissions, and improving system reliability and efficiency.

3.1. Objective functions

3.1.1. Total real power losses
Reducing Total Real Power Losses (TRPL) is important as it directly

impacts the efficiency and economic operation of the power distribution
system, aligning with our goal to enhance network performance and
reduce operational costs. TRPL can be represented using the following

(a) (b)

(c) (d)

Fig. 2. Monte Carlo simulation scenario distribution for (a) Temperature, (b) Solar Irradiance, (c) Pricing, and (d) Load Demand.
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equation (Hachimi et al., 2022; Badrudeen et al., 2024):

TRPL =
∑24

t=1

∑NT

i=1
PLoss(i,t) (10)

PLoss(i,t) =
⃒
⃒I(i,h)

⃒
⃒2 Ri =

(
P2
(i,t) + Q2

(i,t)
⃒
⃒Vs(i,h)

⃒
⃒2

)

Ri (11)

where I(i,t) is the current on the branch i, Ri is the resistance of branch i,
P(i,t) and Q(i,t) are the real and reactive power flows on the branch i,
respectively, and Vs(i,t) is the voltage at the sending node of the branch i,
NTis the number of branches.

3.1.2. Total operation cost
The total operation cost for a distribution network is determined by

Eq. (12), which summarizes the key components of operational ex-
penses. These include the cost of PV( CPV), the cost of electricity drawn
from the grid (CGrid), losses incurred within the system ( CLoss), and the
cost associated with the D-STATCOMS (CDSTATCOM). Minimizing this
aggregate cost is crucial for ensuring efficient and cost-effective opera-
tion of the power system.

C = CGrid + CLoss +CPV +CDSTATCOM (12)

In which,

CGrid = 365×
∑24

t=1
PGrid(t) × ϑGrid(t) (13)

PGrid(t) represents the power from the grid at each hour t, and ϑGrid(t)

denotes the price of grid electricity at that hour. These factors are used to
calculate the hourly cost of grid electricity, which is then summed up for
all 24 h of the day and multiplied by 365 to represent the annual cost of
electricity drawn from the grid.

CLoss = 365× εLoss ×
∑24

t=1
PT_Loss(t) (14)

Where εLoss is the cost per kilowatt-hour of power losses, set at 0.06 USD/
kWh (Sultana and Roy, 2014). PT Loss(t) represents the power losses at
each hour t over a 24-hour period.

CPV = Cinst
PV +CO&M

PV (15)

Where Cinst
PV represents the installation costs associated with the PV sys-

tem, and CO&M
PV refers to the ongoing operations and maintenance costs

of the PV system.

CO&M
PV = 365× μO&M

PV ×
∑24

t=1

∑NPV

i=1
PPV(i,t) (16)

Fig. 3. Scenario Reduction Algorithm for (a) Temperature, (b) Solar Irradiance, (c) Pricing, and (d) Load Demand.
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Cinst.
PV = CF × UPV ×

∑NPV

i=1
Prated_PV(i) (17)

Where μO&MPV is the cost per kilowatt-hour for operations and mainte-
nance, valued at 0.01 USD/kWh (Gampa and Das, 2015). and PPV(i,t)
represents the power output from the ith photovoltaic unit at time t. NPV
represents the number of photovoltaic units. For the installation costs,
CF denotes the capital recovery factor, UPV is the unit cost per rated
power, set at 770 USD/kW, and Prated PV(i) is the rated power of the ith

PV system (Augustine et al., 2012).
The capital recovery factor is represented by the following equation:

CF =
ir × (1+ ir)N

(1+ ir)N − 1
(18)

Where ir represents the interest rate, and N denotes the number of pe-
riods over which the investment is amortized.

CDSTATCOM = CS × QS ×
( 1+ ᶐ)Ns × ᶐ
( 1+ ᶐ)Ns − 1

(19)

Where QS represents the rated kVar of the D-STATCOM, CS stands for
the capital cost, Ns denotes the DSTATCOM’s lifetime in years, and
ᶐ represents the asset rate of return (Oda et al., 2021).

3.1.3. Total voltage deviation
Reducing voltage deviation is crucial for enhancing the performance

of electrical networks, particularly in stabilizing network voltage levels.
This is quantified by the Total Voltage Deviation (TVD), which is given
by the following equation (Asaad et al., 2023; Purlu and Turkay, 2022;
Ahmed et al., 2024):

TVD =
∑24

t=1

∑NB

i=1

⃒
⃒
(
V(i,t) − 1

) ⃒
⃒ (20)

Where NB represents the total number of buses or nodes in the network,
and V(i,t) denotes the voltage at node i at time t.

3.1.4. Total emission
Reducing Total Emission (TE) is crucial in our study as it directly

relates to environmental sustainability and compliance with regulatory
standards for air quality. The primary pollutants involved in this
calculation are carbon dioxide (CO₂), nitrogen oxides (NOₓ), and sulfur
dioxide (SO₂), which are critical contributors to atmospheric pollution.
These emissions are particularly significant in the context of power
generation from grid-supplied electricity. Total Emission is represented
by the following equation, with emissions measured in kilograms (kg)
(Esmaeili et al., 2016).

TE = 365×
∑24

t=1
PGrid(t) ×

(
COGrid

2 +NOGrid
x + SOGrid

2
)

(21)

Where the emissions factors for CO₂ are 921.25 kg/MWh, for NOₓ are
2.2952 kg/MWh, and for SO₂ are 3.5834 kg/MWh.

In this study, the weighted penalty summation method was used to
solve the multi-objective problem. This method involves combining the
individual objective functions into a single aggregated objective func-
tion by assigning a weight to each objective, as described below:

min(MOF) = min(ε1F1 + ε2F2 + ε3F3 + ε4F4) (22)

F1 =
TRPLafter
TRPLbefor

(23)

F2 =
Cafter

Cbefor
(24)

F3 =
TVDafter

TVDbefor
(25)

F4 =
TEafter
TEbefor

(26)

Where the terms befor and after refer to the values of parameters before
and after the implementation of improvements, respectively. Addition-
ally, the weights ε1, ε2, ε3, ε4 are all set to 0.25, equally distrib-
uting the importance across all objective functions F1,F2,F3,F4.

3.2. The system constraints

In the context of improving distribution electrical networks, it is
crucial to adhere to a set of constraints that form an integral part of the
design and enhancement process. These constraints ensure that the
implemented improvements not only enhance performance but also
comply with technical, safety, and regulatory standards.

3.2.1. Equality constraints
In the equations mentioned, the following elements are used to

balance generation and consumption within the electrical distribution
system (Elseify et al., 2024; Mohamed et al., 2024):

PS(t)+
∑NPV

i=1
PPV,i(t) =

∑NT

i=1
PLoss,i(t)+

∑NB

i=1
PLoad,i(t) (27)

QS(t)+
∑NQ

i=1
QDSTATCOM,i(t) =

∑NT

i=1
QLoss,i(t)+

∑NB

i=1
QLoad,i(t) (28)

Where PS(t) andQS(t) represent the system’s active and reactive power
generation at time t, respectively. PPV,i(t) denotes the active power
from photovoltaic units at unit i and time t, while QDSTATCOM,i(t) in-
dicates the reactive power provided by D-STATCOM units at the same
points. PLoss,i(t) andQLoss,i(t) refer to active and reactive power losses at
unit i and time t. Finally, PLoad,i(t) and QLoad,i(t) account for the active
and reactive power consumed by loads at unit i and time t.

3.2.2. Inequality constraints

3.2.2.1. constraints of voltage
VLp ≤ V(i,t) ≤ VUp (29)

In the voltage constraints equation, V(i,t) denotes the voltage at node i
during the time interval t. The permissible voltage limits are defined as
VLp at 0.90 p.u. (per unit) for the lower limit and VUp at 1.05 p.u. for the
upper limit, ensuring that voltage levels at each node remain within a
stable and safe operating range.

3.2.2.2. Constraint on the line capacity
Ii ≤ IUp,i (30)

In the constraint on line capacity, Ii represents the current flowing
through the ith line, and IUp,i denotes the upper limit of current that this
particular line can safely carry.

3.2.2.3. PV and DSTATCOM constraints
∑NPV

i=1
PPV_rated,i ≤

∑NB

i=1
PLoad,i (31)

∑NQ

i=1
QDSTATCOM,i ≤

∑NB

i=1
QLoad,i (32)

The constraints for PV systems and D-STATCOM ensure that the
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installed capacities are within safe operational limits relative to the load
demand. Specifically, the total rated power output of all PV installations,
denoted by

∑NP
i=1PPV rated,i, must not exceed the total power load across all

nodes,
∑NB

i=1PLoad,i. Similarly, the total reactive power compensation
provided by all

∑NQ
i=1QDSTATCOM,i, should not surpass the total reactive

power demand of the loads,
∑NB

i=1QLoad,i. These constraints ensure that
the PV and D-STATCOM systems are sized appropriately to support but
not exceed the load requirements of the network.

3.2.2.4. Constraint of Radial Configuration. In the reconfiguration of
electrical DNs, maintaining a radial configuration of the system is a
crucial constraint to ensure continuity and safety in operation. A radial
configuration prevents the formation of closed loops, which could lead
to disturbances in electrical flow and stability issues (Şeker et al., 2021).

3.2.2.5. Constraint of Isolation. This constraint ensures that all nodes or
buses in the network are active and energized post-reconfiguration
(Şeker et al., 2021).

4. Horned lizard optimization algorithm (HLOA)

The Horned Lizard Optimization Algorithm (HLOA) mathematically
models five defensive behaviours of the horned lizard (Peraza-Vázquez
et al., 2024):

4.1. Behavior of crypsis

Crypsis is a defensive adaptation in which an organism mimics its
surroundings by copying features such as color and texture or becoming
nearly transparent. This allows it to blend seamlessly into its environ-
ment, making it difficult for predators or prey to detect or recognize.
Such camouflage enhances an organism’s ability to evade detection,
significantly increasing its chances of survival in the wild. The lizard’s
color-changing ability to blend in with its surroundings is modelled
using the CIE Lab colour space and the equation:

x→i(t+1)&= x→best (t)+
(

∂ − ∂⋅t
Max_iter

)

&
[
c1(sin ( x→r1 (t)) − cos ( x→r2 (t))) − (− 1)θc2

(
cos
(
x→r3 (t)

)
− sin

(
x→r4 (t)

))]

(33)

In the revised formula, the position of a new search agent (symbol-
ized as a horned lizard) for the next generation (t+1) is denoted as
x→i(t + 1). It is determined based on the position of the best performing
agent from the current generation, noted as x→best (t). The parameters r1,
r2, r3, and r4 represent distinct integer values randomly chosen be-
tween 1 and the maximum number of agents, ensuring that r1, r2,r3, and
r4 are all different. The positions of these randomly selected agents in
the current generation are indicated by x→r1 (t), x→r2 (t), x→r3 (t), and
x→r4 (t) respectively. The term Max_iter stands for the maximum allow-
able iterations or generations, while θ is a binary indicator. The variable
∂ is fixed at a value of 2. Furthermore, c1 and c2 are distinct random
numbers sourced from (Peraza-Vázquez et al., 2024), which lists a
normalized range of colours.

4.2. Skin darkening/lightening

Based on the need to either increase or decrease its solar thermal
gain, the horned lizard can adjust its skin color by either lightening or
darkening it. These changes in the lizard’s skin hue are captured by Eqs.
(34) and (35). Eq. (34) describes the process of lightening the skin, while
Eq. (35) outlines the skin darkening method.

&
x→worst (t) = x→best (t) +

1
2
Light1sin( x

→
r1 (t) − x→r2 (t) )

− (− 1)θ1
2

Light2sin
(
x→r3 (t) − x→r4 (t)

)

&

(34)

x→worst (t) = x→best (t) +
1
2
Dark1 sin ( x→r1 (t) − x→r2 (t))

− (− 1)θ1
2
Dark2 sin

(
x→r3 (t) − x→r4 (t)

)
(35)

Light1 and Light2 are random integers calculated within the range
from Lightening1 (0 value) to Lightening2 (0.4046661 value), based on
normalized values from (Peraza-Vázquez et al., 2024). Similarly,
Dark1 and Dark2 are derived between Darkening1 1 (0.5440510
value) and Darkening2 (1 value), using the same table for normalization.

4.3. Blood-squirting

The Horned lizard has a unique defense strategy where it expels
blood from its eyes to deter predators. This defensive action can be
modeled mathematically as projectile motion, with its trajectory
described by the following equation:

x→i(t + 1)& =

[

vocos
(

α t
Max_iter

)

+ ε
]

x→best (t)

&+

[

vosin
(

α −
αt

Max_iter

)

− g + ε
]

x→i(t)
(36)

In the given model, x→i(t+1) represents the position of the new
search agent (styled after the horned lizard) in the solution space for the
subsequent generation, t + 1. The optimal search agent from the current
generation is x→best, and x→i(t) denotes the current search agent’s posi-
tion. The variableMax_iter indicates the maximum allowable iterations,
t represents the current iteration, vo is initialized at 1 seg, α is set at π/2, ε
is assigned a value of 1E-6, and g, representing Earth’s gravitational
acceleration, is taken as 0.009807 km/s2.

4.4. Move-to-escape

The horned lizard employs a rapid and erratic movement strategy to
evade predators. This behavior is mathematically modeled using a
function that incorporates both local and global movements, as
described in Eq. (37). The local movement is characterized by the

function walk
(

1
2 − ε

)

, which details the immediate area around the

position x→i(t). Meanwhile, global movement is integrated by adding the
position of the best search agent, x→best (t).

x→i(t+1) = x→best (t)+ walk
(
1
2
− ε
)

x→i(t) (37)

In the solution search space, x→i(t+1) represents the position of the
new search agent, known as the horned lizard, for the next generation
t + 1. The current position for the ith search agent at generation t is
denoted by x→i(t). The best-performing agent in generation t is identified
as x→best (t). A random number, walk, is generated between − 1 and 1 to
simulate movement, and ε is a random value drawn from a standard
Cauchy distribution with both mean and θ parameters set to 0 and 1,
respectively.

4.5. α -Melanophore stimulating hormone (α-MSH) rate

Horned lizards possess the capability to rapidly alter their skin color
to adjust their solar thermal intake, a process influenced by temperature-
dependent α -MSH. In this research, the rate of α -MSH in horned lizards
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is quantified using Eq. (38). If the α -MSH rate falls below 0.3, it triggers
the replacement of search agents as specified in Eq. (39). The vector of
values, melanophore(i), derived from Eq. (38) is then normalized within
the range [0,1].

melanophore (i) =
Fitness max − Fitness (i)
Fitness max − Fitness min

(38)

x→i(t) = x→best (t)+
1
2

[
x→r1 (t) − (− 1)θ x→r2 (t)

]
(39)

In the current generation t, Fitness min and Fitness max repre-
sent the best and worst fitness values, respectively. Meanwhile,
Fitness(i) refers to the fitness value of the ithsearch agent at this stage.

The selection of the HLOA is justified due to its superior performance
on benchmark tests and real-world applications. HLOA has demon-
strated consistent high rankings in statistical tests like the Wilcoxon
rank-sum and Friedman tests, outperforming other bio-inspired algo-
rithms in various scenarios. It excels in handling complex optimization
problems with unknown search spaces, requires minimal parameter
configuration, and has proven effective in minimizing costs and
enhancing performance in real-world engineering problems.

Fig. 4 shows the HLOA for the optimal operation solution.

5. Numerical results

The proposed method is tested on the IEEE 33-bus electric distribu-
tion system, as shown in Fig. 5. This system operates at a base voltage of
12.66 kV, with a nominal active load of 3715 kW and a nominal reactive
load of 2300 kVAr, supported by a base of 100 MVA (Kashem et al.,

2000). It is analyzed considering loads, prices, radiation, and tempera-
ture uncertainties, detailed in earlier sections. Meta-heuristic algorithms
utilize random numbers and require multiple runs to produce reliable
solutions. Therefore, the algorithm is executed several times for each of
the three scenarios under study to ensure accurate comparisons. The
maximum number of iterations is 100, and the population size is 30.

The optimal placement and sizing of PVs and D-STATCOMs, along
with system reconfiguration, were determined using a computer
equipped with an Intel Core i7–3537 processor, 6 GB RAM, and a 64-bit
operating system. The analyses were conducted using MATLAB 2014a
software.

The backward/forward sweep method was used for load flow anal-
ysis in the distribution systems. This method is favored for its compu-
tational accuracy, strong convergence properties, minimal memory
usage, and straightforward application (Abou El-Ela et al., 2016).

In the case of an initial distribution network before reconfiguration,
branch currents are calculated from network node currents and the
[BIBC] matrix (Teng, 2003).

[I] = [BIBC][IL] (40)

The distribution network reconfiguration uses the reconfigured BIBC
matrix, denoted [rBIBC], and the branch current expressions are calcu-
lated as follows (Şeker et al., 2021).

[rI] = [rBIBC][IL] (41)

The studied distribution network consists of 5 additional lines, thus
forming 5 loops. The reconfiguration procedure consists of opening only
one line among those constituting each loop. This operation must
comply with the following points:

Fig. 4. Flowchart illustrating the most optimal operational solution for the proposed HLOA.
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– The distribution network after reconfiguration must have a radial
topology. (Constraint of radial configuration)

– Do not open the same line on several loops.
– Ensure that all loads are supplied (constraints of isolation)

The following scenarios have been taken into account while evalu-
ating the system performance:

• Scenario #1: The base case, before adding PVs and D-STATCOMs,
and without reconfiguration.

• Scenario #2: Integration of PV systems only, without incorporating
D-STATCOMs or utilizing reconfiguration.

• Scenario #3: Combining PVs and D-STATCOMs together in a single
system without employing reconfiguration.

• Scenario #4: Integrating PVs and D-STATCOMs with the imple-
mentation of reconfiguration.

Figs. 6 and 7 briefly depict the estimated temperature and solar
irradiation alongside the anticipated market price and grid loading.

Various parameters were evaluated across each scenario to assess the
effectiveness of different scenarios in optimizing the electrical distri-
bution network. The table below outlines the optimal results achieved
under different scenarios, including the location and size of PV units, the
size of D-STATCOMs, the activation of open switches, as well as key
performance indicators such as power losses, voltage deviation, total
annual cost, total annual emissions, and the best MOF score. These re-
sults provide valuable insights into the impact of each scenario on
network performance and overall efficiency. Table 3

The primary goal of this study was to minimize costs, reduce envi-
ronmentally harmful emissions, and enhance the system’s efficiency by
integrating renewable energy sources and D-STATCOMs with network
reconfiguration into an electrical distribution network. The results
showed that the implementation of the HLOA algorithm led us to

discover the most effective solution to our optimization problem,
resulting in reduced costs, voltage deviations, real power losses, and
emissions.

No interventions were made in Scenario #1, which served as the base
case, leading to the distribution network facing its highest operational
challenges. In this scenario, power losses reached 3829.4 kW, and sig-
nificant voltage deviations of 37.3592 per unit (P.U) were recorded. This
resulted in a total annual cost of 7.4969e+06 USD and emissions
totaling 2.7579e+07 kg.

In Scenario #2, only PV systems were integrated at optimal locations

1 2Substation

Slack Bus

3 7 8 9 10 11 12 13 14 15 16 17 184 5 6

23 24 25 26 27 28 29 30 31 32 33

19 20 21 22

S1 S2

S3

S4 S5

S6

S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17

S18

S19 S20

S21
S2

2

S23 S24 S26 S27 S29 S30 S31 S32

S28

S37

S36

S33
S34

S35

S25

Fig. 5. The structure of the IEEE 33-bus distribution system topology.

Fig. 6. The expected temperature and solar irradiation.

Fig. 7. The expected price and loading.

Table 3
Optimal results Across Various Scenarios.

Item Scenario #1 Scenario #2 Scenario #3 Scenario #4

Optimal location - 8 17 9
16 26 29
30 30 30

Optimal size of PV
(kW)

- 2147.6 305.235 2291.9
744.855 1833 503.88
2061.2 2818 2121.1

Optimal size of D-
STATCOMs
(kVar)

- - 209.363 702.42
- 822.202 282.457
- 422.395 524.694

Open switches - - - 6, 13, 10, 36,
28

Power losses (kW) 3829.4e+03 2.7499e+03 1.7516e+03 1.2905e+03
Voltage deviation
(p.u)

37.3592 23.8809 17.3312 10.8138

Total annual cost
(USD/kWh)

7.4969e+06 4.2102e+06 4.1059e+06 4.0780e+06

Total annual
emission (kg)

2.7579e+07 1.7874e+07 1.7530e+07 1.7450e+07

Best MOF 1 0.6418 0.5262 0.4508
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on buses 8, 16, and 30, with capacities of 2147.6 kW, 744.855 kW, and
2061.2 kW. This intervention led to notable improvements in the
network; power losses were significantly reduced to 2.7499e+03 kW,
and voltage deviations dropped to 23.8809 p.u. Consequently, this
resulted in a reduced annual cost of 4.2102e+06 USD and a lower
emission level of 1.7874e+07 kg.

Building on the improvements seen in Scenario #2, Scenario #3
combined both PV systems and D-STATCOMs at buses 17, 26, and 30,
with respective PV capacities of 305.235 kW, 1833 kW, and 2818 kW,
and D-STATCOMs added at 209.363 kVar, 822.202 kVar, and 422.395
kVar. This hybrid system enhanced network stability by reducing power
losses to 1.7516e+03 kW and minimizing voltage deviations to 17.3312
p.u. The enhancements in this scenario slightly reduced the total annual
costs to 4.1059e+06 USD, with emissions at 1.7530e+07 kg.

Finally, Scenario #4 represented the most integrated approach,
incorporating PV systems, D-STATCOMs, and comprehensive network
reconfiguration. The optimal locations were at buses 9, 29, and 30, with
PV units producing 2291.9 kW, 503.88 kW, and 2121.1 kW, and D-
STATCOM units at 702.42 kVar, 282.457 kVar, and 524.694 kVar,
alongside opening switches at 6, 13, 10, 36, and 28. This strategic
adjustment led to the most optimized results, with the lowest power
losses at 1.2905e+03 kW and minimal voltage deviations at 10.8138 p.
u., achieving the lowest annual cost of approximately 4.0780e+06 USD
and emissions reduced to 1.7450e+07 kg. This complete integration
significantly enhanced network operations, delivering the best perfor-
mance regarding cost-effectiveness, stability, and environmental
impact, showcasing the profound benefits of a thoroughly optimized and
reconfigured network system.

Fig. 8 provides a detailed hourly comparison across different

scenarios, demonstrating that Scenario #4, which integrates PV systems,
D-STATCOMs, and network reconfiguration, consistently yields the
lowest values in power losses, voltage deviation, operational costs, and
emissions. This scenario significantly enhances electrical network effi-
ciency, as evidenced by its reduced power losses and voltage deviations.
These reductions not only lead to substantial cost savings but also
minimize environmental impacts by lowering emissions. The integration
of renewable energy with D-STATCOMs and strategic network reconfi-
guration in Scenario #4 clearly results in the most beneficial outcomes
compared to the other scenarios, showcasing its superiority in
improving system performance and sustainability.

In examining the effectiveness of various enhancements to an elec-
trical distribution system, Fig. 9 presents a clear comparative analysis of
the voltage profiles across four scenarios. From this comparison, it is
evident that Scenario #4 achieves the best voltage profile compared to
the others. This indicates that the combination of PV systems, D-STAT-
COMs, and network reconfiguration in Scenario #4 provides the most
stable voltage levels across the network.

Table 4 and Fig. 10 present the algorithmic results and convergence
curves for the various scenarios using different optimization techniques:
Reptile Search Algorithm (RSA) (Abualigah et al., 2022), Sine Cosine
Algorithm (SCA) (Mirjalili, 2016), Beluga Whale Optimization (BWO)
(Zhong et al., 2022), and Horned Lizard Optimization Algorithm
(HLOA).

Table 4 shows that HLOA consistently outperforms the other algo-
rithms in terms of average, best, and worst performance metrics across
all scenarios. Specifically, HLOA achieves the lowest average, best, and
worst scores in each scenario, underscoring its efficiency and robustness
in optimizing under varied conditions. This superiority is visually

(a) (b)

(c) (d)

Fig. 8. Hourly results across different scenarios for: (a) Power losses, (b) Voltage deviation, (c) Cost, (d) Emission.
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confirmed in Fig. 10, where the convergence curves for HLOA reach
lower values more quickly than those for RSA, SCA, and BWO, indicating
a faster and more effective optimization process.

6. Conclusions

In this paper, the key performance indicators, including Total Real
Power Losses (TRPL), Total Operation Cost, Total Voltage Deviation
(TVD), and Total Emission (TE), have been investigated under the
optimal integration of photovoltaic (PV) systems and Distribution Static
Compensators (D-STATCOMs) through the determination of both the
optimal placement and sizing of PV units and D-STATCOMs simulta-
neously, as well as the implementation of network reconfiguration based

on the Horned Lizard Optimization Algorithm (HLOA) technique. The
investigation was carried out under the uncertainties of solar irradia-
tion, temperature, load demand, and electricity pricing, in which the
Monte Carlo Simulation (MCS) based on the Probability Density Func-
tions (PDFs) along with the Scenario Reduction Algorithm (SRA) has
been used for addressing the uncertainty of the system. The efficiency of
the proposed HLOA method is demonstrated on the IEEE 33-bus distri-
bution system. The key findings of this research are that substantial
improvements in system performance, cost-effectiveness, and environ-
mental sustainability can be attained with the appropriate integration of
PV systems, D-STATCOMs, and network reconfiguration, in which the
overall cost is reduced by 45.6 %, real power losses are decreased by
66.3 %, voltage variations are improved by 71.04 %. Emissions are

Fig. 9. Voltage profiles results for: (a) Scenario #1, (b) Scenario #2, (c) Scenario #3, (d) Scenario #4.

Table 4
Algorithmic Results Across Various Scenarios.

Algorithm Scenario #2 Scenario #3 Scenario #4

Average Best Worst Average Best Worst Average Best Worst

RSA 0.6798 0.6554 0.7169 0.7414 0.5989 0.8588 0.6890 0.5831 0.7695
SCA 0.6568 0.6525 0.6596 0.5640 0.5540 0.5835 0.6371 0.5827 0.7367
BWO 0.6597 0.6539 0.6675 0.6038 0.5817 0.6218 0.5997 0.5857 0.6190
HLOA 0.6481 0.6418 0.6563 0.5511 0.5262 0.5644 0.4538 0.4508 0.4592
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mitigated by 36.72 %, compared to the base case scenario without
integration or reconfiguration. However, several limitations must be
acknowledged. The study does not address the integration of storage
systems into the grid to store excess energy produced by PV systems,
which is essential for optimizing renewable energy utilization. Addi-
tionally, demand response strategies, which can significantly enhance
grid stability and efficiency, were not explored.
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Şeker, A.A., Gözel, T., Hocaoğlu, M.H., 2021. BIBC matrix modification for network
topology changes: reconfiguration problem implementation. Energies vol. 14 (10),
2738.

Shojaabadi, S., Abapour, S., Abapour, M., Nahavandi, A., 2016. Simultaneous planning of
plug-in hybrid electric vehicle charging stations and wind power generation in
distribution networks considering uncertainties. Renew. Energy vol. 99, 237–252.

Sultana, S., Roy, P.K., 2014. Optimal capacitor placement in radial distribution systems
using teaching learning based optimization. Int. J. Electr. Power Energy Syst. vol. 54,
387–398.

Tatikayala, V.K., Dixit, S., 2024. Multi-stage voltage control in high photovoltaic based
distributed generation penetrated distribution system considering smart inverter
reactive power capability. Ain Shams Eng. J. vol. 15 (1), 102265.

Teng, J.-H., 2003. A direct approach for distribution system load flow solutions. IEEE
Trans. Power Deliv. vol. 18 (3), 882–887.

Wang, X., Liu, X., Jian, S., Peng, X., Yuan, H., 2021. A distribution network
reconfiguration method based on comprehensive analysis of operation scenarios in
the long-term time period. Energy Rep. vol. 7, 369–379.

Woldesemayat, M.L., Biramo, D.B., Tantu, A.T., 2024. Assessment of power distribution
system losses and mitigation through optimally placed D-STATCOM. Cogent Eng.
vol. 11 (1), 2330824.

Yuvaraj, T., Suresh, T., Meyyappan, U., Aljafari, B., Thanikanti, S.B., 2023. Optimizing
the allocation of renewable DGs, DSTATCOM, and BESS to mitigate the impact of
electric vehicle charging stations on radial distribution systems. Heliyon vol. 9 (12).

Zhong, C., Li, G., Meng, Z., 2022. Beluga whale optimization: a novel nature-inspired
metaheuristic algorithm,". Knowl. Based Syst. vol. 251, 109215.

Zubo, R.H., Mokryani, G., Abd-Alhameed, R., 2018. Optimal operation of distribution
networks with high penetration of wind and solar power within a joint active and
reactive distribution market environment. Appl. Energy vol. 220, 713–722.

Ahmed.T. Hachemi et al. Energy Reports 12 (2024) 1623–1637 

1637 

http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref9
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref9
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref10
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref10
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref10
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref10
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref11
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref11
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref11
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref12
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref12
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref12
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref13
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref13
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref13
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref14
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref14
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref14
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref15
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref15
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref15
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref16
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref16
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref16
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref16
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref17
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref17
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref17
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref18
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref18
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref18
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref18
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref19
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref19
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref20
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref20
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref20
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref21
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref21
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref21
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref22
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref22
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref22
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref23
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref23
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref23
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref24
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref24
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref24
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref25
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref25
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref26
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref26
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref27
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref27
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref27
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref28
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref28
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref28
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref29
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref29
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref29
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref30
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref30
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref30
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref31
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref31
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref31
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref32
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref32
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref33
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref33
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref34
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref34
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref34
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref35
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref35
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref35
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref36
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref36
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref36
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref37
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref37
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref37
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref38
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref38
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref38
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref38
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref39
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref39
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref39
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref40
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref40
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref40
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref40
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref41
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref41
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref41
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref42
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref42
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref42
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref43
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref43
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref43
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref44
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref44
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref44
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref44
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref45
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref45
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref45
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref46
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref46
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref46
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref47
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref47
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref47
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref48
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref48
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref48
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref49
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref49
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref49
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref50
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref50
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref51
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref51
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref51
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref52
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref52
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref52
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref53
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref53
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref53
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref54
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref54
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref55
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref55
http://refhub.elsevier.com/S2352-4847(24)00477-3/sbref55

	Dynamic operation of distribution grids with the integration of photovoltaic systems and distribution static compensators c ...
	1 Introduction
	1.1 Motivation
	1.2 Related work
	1.3 Research gaps
	1.4 Novelty and contribution
	1.5 Organization of the article

	2 Probabilistic uncertainties
	2.1 Temperature probabilistic presentation
	2.2 Solar radiation probabilistic presentation
	2.3 Price probabilistic presentation
	2.4 Load Demand probabilistic presentation

	3 Problem formulation
	3.1 Objective functions
	3.1.1 Total real power losses
	3.1.2 Total operation cost
	3.1.3 Total voltage deviation
	3.1.4 Total emission

	3.2 The system constraints
	3.2.1 Equality constraints
	3.2.2 Inequality constraints
	3.2.2.1 constraints of voltage
	3.2.2.2 Constraint on the line capacity
	3.2.2.3 PV and DSTATCOM constraints
	3.2.2.4 Constraint of Radial Configuration
	3.2.2.5 Constraint of Isolation



	4 Horned lizard optimization algorithm (HLOA)
	4.1 Behavior of crypsis
	4.2 Skin darkening/lightening
	4.3 Blood-squirting
	4.4 Move-to-escape
	4.5 α -Melanophore stimulating hormone (α-MSH) rate

	5 Numerical results
	6 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data Availability
	Acknowledgments
	References


