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ABSTRACT: Space-borne remote sensing of atmospheric chemical constituents is crucial for

monitoring and better understanding global and regional air quality. Since the 1990s, the continuous

development of instruments onboard low-Earth orbit (LEO) satellites has led to major advances

in air quality research by providing daily global measurements of atmospheric chemical species.

The next generation of atmospheric composition satellites measures from the geostationary Earth

orbit (GEO) with hourly temporal resolution, allowing the observation of diurnal variations of air

pollutants. The first two instruments of the GEO constellation coordinated by the Committee on

Earth Observation Satellites (CEOS), the Geostationary Environment Monitoring Spectrometer

(GEMS) for Asia and the Tropospheric Emissions: Monitoring of Pollution (TEMPO) for North

America, were successfully launched in 2020 and 2023, respectively. The European component,

Sentinel-4, is planned for launch in 2025. This work provides an overview of satellite missions for

atmospheric composition monitoring and the state of the science in air quality research. We cover

recent advances in retrieval algorithms, the modeling of emissions and atmospheric chemistry,

data assimilation, and the application of machine learning based on satellite data. We discuss

the challenges and opportunities in air quality research in the era of GEO satellites, and provide

recommendations on research priorities for the near future.
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SIGNIFICANCE STATEMENT: Space-borne measurements of the chemical composition of the

atmosphere are crucial for understanding and forecasting air quality. With the next generation

of atmospheric composition satellites measuring from the geostationary Earth orbit, air quality

research has entered a new era. We provide an overview of the constellation of satellites for

atmospheric composition monitoring and review the latest advances in satellite-driven air quality

research. We identify the challenges and opportunities for a better exploitation of the wealth of

satellite data from a geostationary perspective.

CAPSULE: The International Space Science Institute International Expert Team has reviewed

recent advances and discussed challenges and opportunities in air quality research in the era of

geostationary atmospheric composition satellites.

1. Introduction

Air pollution is one of the leading causes of global premature mortality and economic damages

(Cohen et al. 2017; Dechezleprêtre et al. 2019). Space-borne remote sensing instruments have

played a key role in monitoring atmospheric composition since the 1990s (Burrows et al. 1999;

Bovensmann et al. 1999; Drummond and Mand 1996; Veefkind et al. 2006, 2012; Zoogman et al.

2017; Levelt et al. 2018; Kim et al. 2020, among others). Satellite observations have been used

with sophisticated models to help develop policies to reduce emissions (e.g., Duncan et al. 2016;

Jiang et al. 2018), improve our knowledge about air pollution (e.g., Fu et al. 2007; Silvern et al.

2019; Yang et al. 2023b), and better forecast air quality (e.g., Peuch et al. 2022; Eskes et al. 2024).

Efficient reduction of air pollution often contributes to the reduction of co-emitted greenhouse gases

(GHGs) and towards the mitigation of climate change (West et al. 2013; Miyazaki and Bowman

2023).

Efforts have been made to improve the observation of atmospheric composition from space over

the past two decades. The TROPOspheric Monitoring Instrument (TROPOMI; 2017–present;

Veefkind et al. 2012) is the first to provide daily global multi-constituent measurements at a sub-

10 km spatial resolution (Veefkind et al. 2012), which helps to reveal detailed linkages between

human activities and air quality (e.g., Riess et al. 2022; Martı́nez-Alonso et al. 2023; Zuo et al.

2023). The next generation of atmospheric composition monitoring satellites measures column

abundances of trace gases from the geostationary Earth orbit (GEO). The first two GEO atmospheric
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2017; Levelt et al. 2018; Kim et al. 2020, among others). Satellite observations have been used
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2019; Yang et al. 2023b), and better forecast air quality (e.g., Peuch et al. 2022; Eskes et al. 2024).

Efficient reduction of air pollution often contributes to the reduction of co-emitted greenhouse gases

(GHGs) and towards the mitigation of climate change (West et al. 2013; Miyazaki and Bowman

2023).

Efforts have been made to improve the observation of atmospheric composition from space over

the past two decades. The TROPOspheric Monitoring Instrument (TROPOMI; 2017–present;

Veefkind et al. 2012) is the first to provide daily global multi-constituent measurements at a sub-

10 km spatial resolution (Veefkind et al. 2012), which helps to reveal detailed linkages between

human activities and air quality (e.g., Riess et al. 2022; Martı́nez-Alonso et al. 2023; Zuo et al.

2023). The next generation of atmospheric composition monitoring satellites measures column

abundances of trace gases from the geostationary Earth orbit (GEO). The first two GEO atmospheric

composition satellites, GEMS (Geostationary Environment Monitoring Spectrometer; Kim et al.

2020) for Asia and TEMPO (Tropospheric Emissions: Monitoring of Pollution; Zoogman et al.

2017) for North America, were successfully launched in 2020 and 2023, respectively. The European

component, Sentinel-4, is planned for launched in 2025 (Stark et al. 2013). Ongoing LEO missions

have been proposed to sustain atmospheric composition observations outside the GEO domains.

The International Space Science Institute (ISSI) offers the platform to facilitate international col-

laboration on interdisciplinary research in space science. The ISSI International Expert Team 489

(Brasseur and Granier 2020) recently assessed advancements in the use of space-borne instruments

to improve air quality characterization and forecasts. We summarize the discussion and conclusions

from the ISSI Team 489 Workshop (2023) in this paper to provide an overview of the opportunities

and challenges arising in the era of GEO atmospheric composition satellites. The recently launched

and scheduled satellite instruments motivate us to review the state of air quality research based on

satellite observations. We cover advances in the development of retrieval algorithms, modeling

and forecasting of air quality, data assimilation, and machine learning applications. We conclude

with recommendations for research priorities for the near future to better exploit GEO satellite

atmospheric composition observations.

2. Constellation of LEO and GEO atmospheric composition satellites

a. Heritage of LEO satellites

Column concentrations of short-lived air pollutants, including tropospheric ozone (O3), nitrogen

dioxide (NO2), sulfur dioxide (SO2), formaldehyde (HCHO), and aerosols, are retrieved in the

ultraviolet (UV), visible (Vis), and near-infrared (NIR) spectral bands from nadir-viewing satellite

instruments. NASA’s Backscatter UV (BUV) instruments were the first satellite missions measuring

total ozone columns since the 1970s (Mateer et al. 1971; Heath et al. 1975; Frederick et al. 1986;

Bhartia et al. 2013). As shown in Table 1, satellites in low-Earth obit (LEO) provide a nearly

daily global coverage and their spatial resolution has improved over time. Compared to GOME

(1995–2011; Burrows et al. 1999), the GOME-2 series (2006–present; Munro et al. 2016) measure

at four times higher spatial resolution, and the Ozone Monitoring Instrument (OMI; 2004–present;

Veefkind et al. 2006) has a further improved spatial resolution (13×24 km2). Measurements made

by GOME, GOME-2, SCIAMACHY (2002–2012; Bovensmann et al. 1999), and OMI include
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important chemical species for atmospheric chemistry and have greatly advanced our understanding

of air quality (e.g., Duncan et al. 2016; Levelt et al. 2018). TROPOMI (2017–present) onboard the

Copernicus Sentinel-5 Precursor (Sentinel-5P) mission measures from UV-Vis-NIR to short-wave

infrared (SWIR), which allows the measurements of an extended list of trace gases (Veefkind et al.

2012). Its unprecedented resolution of 3.5× 5.5 km2 and the high signal-to-noise ratio reveal

enriched details of air pollution, which has greatly advanced air quality research in recent years

(e.g., Fioletov et al. 2020; Stavrakou et al. 2020; Riess et al. 2022).

Infrared (IR) instruments also provide measurements about atmospheric composition. The

MOPITT (Measurements Of Pollution In The Troposphere; 1999–present; Drummond et al. 2022;

Buchholz et al. 2021) instrument measures carbon monoxide (CO) from the short-wave infrared and

thermal infrared (TIR), and was one of the first satellite instruments that tracked global pollution

transport. The Infrared Atmospheric Sounding Interferometer (IASI; 2006–present; Clerbaux

et al. 2009) instruments were launched on the Metop (Meteorological Operational satellite) series,

measuring meteorological variables, air pollutants, and greenhouse gases from the TIR with a

12 km footprint resolution. To date, 33 chemical species have been detected above the IASI

instrumental noise level (Clarisse et al. 2011; Franco et al. 2018). As a companion to IASI, a series

of TIR instruments have been launched by NASA and NOAA, the Atmospheric Infrared Sounder

(AIRS; 2002–present; Lambrigtsen et al. 2004) on Aura, and NOAA’s Cross-track Infrared Sounder

(CrIS; 2011–present; Han et al. 2013).

Nadir-viewing LEO satellites provide valuable information on the seasonal and interannual

variability of atmospheric composition. Rapid changes in emissions are detected, often in real-

time, as demonstrated during the lockdowns in response to the COVID-19 spread (Bauwens et al.

2020; Liu et al. 2020a; Gkatzelis et al. 2021, among others). The LEO satellites provide decades

of atmospheric composition measurements since the 1990s, allowing trend analysis at different

spatial scales (e.g., Lamsal et al. 2015; Duncan et al. 2016; Stavrakou et al. 2018; Hedelius et al.

2021).

b. GEO satellites for atmospheric chemistry

Atmospheric composition measurements from GEO satellites greatly expand the global observing

system for air quality. They can provide continuous observations during daytime hours (24 hours
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Fig. 1. (Top) Domain and coverage of the GEO satellites. Background is annual mean TROPOMI NO2

tropospheric columns in 2022. Regions not covered by the GEO satellites are shaded in gray. (Bottom) Spatial

and temporal resolution of space-borne instruments for atmospheric composition measurements. Figure adapted

from Fig. 1 in Kim et al. (2020).

in the TIR). The geostationary orbit is 36 000 km from the Earth, as compared to ∼500 km for

LEO, but the weaker photon flux is compensated by a long staring capability so that pixel sizes

and precisions from LEO and GEO atmospheric composition instruments are comparable. The

same suite of species observable from LEO is also observable from GEO but with much higher

data density over the field of regard. The field of regard for a geostationary instrument can be

as large as one third of the Earth, although smaller domains are used in the geostationary air

quality constellation (see Figure 1) to increase data density and achieve finer pixel resolution.
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Fig. 1. (Top) Domain and coverage of the GEO satellites. Background is annual mean TROPOMI NO2

tropospheric columns in 2022. Regions not covered by the GEO satellites are shaded in gray. (Bottom) Spatial

and temporal resolution of space-borne instruments for atmospheric composition measurements. Figure adapted

from Fig. 1 in Kim et al. (2020).

in the TIR). The geostationary orbit is 36 000 km from the Earth, as compared to ∼500 km for

LEO, but the weaker photon flux is compensated by a long staring capability so that pixel sizes

and precisions from LEO and GEO atmospheric composition instruments are comparable. The

same suite of species observable from LEO is also observable from GEO but with much higher

data density over the field of regard. The field of regard for a geostationary instrument can be

as large as one third of the Earth, although smaller domains are used in the geostationary air

quality constellation (see Figure 1) to increase data density and achieve finer pixel resolution.

Geostationary satellites observe from fixed longitudes in an equatorial plane, which means that

they have highest resolution at the Equator and limited observation capability for latitudes poleward

of 60 degrees.

The Geostationary Interferometric Infrared Sounder (GIIRS) onboard China’s FengYun-4 satel-

lite series (FY-4A/B) is the first GEO hyperspectral infrared sounder. FY-4A and FY-4B currently

operate at 86.5°E and 105°E, respectively. The GIIRS observations cover most of East Asia with

a focus on China, with a 2-hour observing cycle. GIIRS measures at a 12 km spatial resolution at

nadir and was recently used to retrieve ammonia (NH3; Clarisse et al. 2021; Zeng et al. 2023b),

CO (Zeng et al. 2023a), and formic acid (HCOOH; Zeng et al. 2024). The GIIRS onboard FY-4B

(GIIRS/FY-4B; 2021–present) demonstrates improved sensitivity, better spatial resolution, and

higher accuracy compared to GIIRS/FY-4A (2016–present;Yang et al. 2017). FY-4A/B also carry

the Advanced Geostationary Radiation Imager (AGRI) that measures in Vis and IR.

GEMS is the first component of the GEO air quality constellation (see Fig. 1) and measures

aerosols, O3, NO2, SO2, HCHO, and glyoxal (CHOCHO), over Asia. It measures in UV-Vis with

a spectral resolution of 0.6 nm and a spatial resolution of 3.5 km (NS) × 7.7 km (EW) at Seoul. It

operates above 128.2°E, covering a field of regard from east of Japan to western India (75–145°E)

and from Mongolia to Indonesia (45°N–5°S). GEMS is the first satellite observing the diurnal

variation of air pollution in Asia, including urban pollution, power plants, industrial activities,

ship emissions, wildfires, Asian dust, and volcanic eruptions. Figure 2A shows tropospheric NO2

columns measured by GEMS for July 2023. Asian megacities are observed as pollution hot spots.

The diurnal column variations of tropospheric NO2 columns in Seoul, Beijing and New Delhi show

large disparities due to regional differences in emissions, chemistry, and transport (see Figure 2C).

NASA’s first Earth Venture Instrument (EVI), TEMPO is hosted onboard the Intelsat-40e satellite

operating above 91°W. Compared to GEMS, TEMPO has a similar spectral resolution and an

additional Vis-NIR channel to enhance retrieval sensitivity for tropospheric O3 (Zoogman et al.

2017) and aerosols (Chen et al. 2021a). TEMPO scans North America from east to west hourly

with a spatial resolution of 2.0 km (NS) × 4.75 km (EW) at the center of the field of regard

(see Figure 2). TEMPO started its nominal operation in October 2023. The Beta version of data

products was released on NASA’s Atmospheric Science Data Center (ASDC) in May 2024 and

was upgraded to the provisional status in December 2024 (see Table 2). Figure 2 shows TEMPO
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tropospheric NO2 columns with marked pollution hot spots including the Northeast Corridor, the

Canadian oil sands, and the Los Angeles Basin. The observed diurnal variations of tropospheric

NO2 in New York City and Los Angeles for 17–24 December 2023 show large regional differences

as seen by GEMS (see Figure 2B). TEMPO can also measure the spectral signatures of nighttime

lights and differentiate lighting types (Carr et al. 2017).

c. Future missions

The Copernicus Sentinel-4 mission will cover Europe, parts of North Africa and parts of the

Atlantic (see Figure 1) centered at a fixed longitude of 0 degrees, with an hourly measuring

frequency similar to GEMS and TEMPO. The operational products include NO2, O3, SO2, aerosols,

as well as the VOC (Volatile Organic Compound) tracers HCHO and CHOCHO. The first Meteosat

Third Generation Sounder (MTG-S1) satellite, expected to be launched in 2025, will carry a

Sentinel-4 instrument on board as well as the Infra-Red Sounder (IRS) (Coopmann et al. 2023).

The IRS has an observational coverage including the entire Africa and Europe. It will measure

every 30 minutes above Europe, and one hour elsewhere in the field of regard, which could be

useful for species with a strong diurnal variability such as NH3 (see Clarisse et al. 2023).

The Geostationary eXtended Observations (GeoXO) mission, NOAA’s next generation GEO

constellation covering the Western Hemisphere, is scheduled for launch in the early 2030s (Lindsey

et al. 2024). The central GeoXO platform (operating above ∼105°W) will carry an atmospheric

composition instrument (ACX) in the UV-Vis, as well as a hyperspectral IR sounder (GXS) for

measurements of CO, NH3, isoprene, and other VOCs. The east and western GeoXO platforms

will carry an imager (GXI) on board, similar to the Geostationary Operational Environmental

Satellites-16 (GOES-16) Advanced Baseline Imager (ABI) currently used in various applications.

For example, Zhang et al. (2022) and O’Dell et al. (2024) estimated surface particulate matter

(PM2.5) concentrations using aerosol optical depth measurements from GOES-16 and GOES-17.

Watine-Guiu et al. (2023) also showed the potential of using the GOES constellation to monitor

methane point sources.

IASI-new generation (IASI-NG, Clerbaux and Crevoisier 2013; Crevoisier et al. 2014) is the

follow-on program for IASI, which will be flown onboard the Metop Second Generation (Metop-

SG) satellites. The first Metop-SG platform is planned to be launched in 2025 to LEO and will also
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tropospheric NO2 columns with marked pollution hot spots including the Northeast Corridor, the

Canadian oil sands, and the Los Angeles Basin. The observed diurnal variations of tropospheric

NO2 in New York City and Los Angeles for 17–24 December 2023 show large regional differences

as seen by GEMS (see Figure 2B). TEMPO can also measure the spectral signatures of nighttime

lights and differentiate lighting types (Carr et al. 2017).

c. Future missions

The Copernicus Sentinel-4 mission will cover Europe, parts of North Africa and parts of the

Atlantic (see Figure 1) centered at a fixed longitude of 0 degrees, with an hourly measuring

frequency similar to GEMS and TEMPO. The operational products include NO2, O3, SO2, aerosols,

as well as the VOC (Volatile Organic Compound) tracers HCHO and CHOCHO. The first Meteosat

Third Generation Sounder (MTG-S1) satellite, expected to be launched in 2025, will carry a

Sentinel-4 instrument on board as well as the Infra-Red Sounder (IRS) (Coopmann et al. 2023).

The IRS has an observational coverage including the entire Africa and Europe. It will measure

every 30 minutes above Europe, and one hour elsewhere in the field of regard, which could be

useful for species with a strong diurnal variability such as NH3 (see Clarisse et al. 2023).

The Geostationary eXtended Observations (GeoXO) mission, NOAA’s next generation GEO

constellation covering the Western Hemisphere, is scheduled for launch in the early 2030s (Lindsey

et al. 2024). The central GeoXO platform (operating above ∼105°W) will carry an atmospheric

composition instrument (ACX) in the UV-Vis, as well as a hyperspectral IR sounder (GXS) for

measurements of CO, NH3, isoprene, and other VOCs. The east and western GeoXO platforms

will carry an imager (GXI) on board, similar to the Geostationary Operational Environmental

Satellites-16 (GOES-16) Advanced Baseline Imager (ABI) currently used in various applications.

For example, Zhang et al. (2022) and O’Dell et al. (2024) estimated surface particulate matter

(PM2.5) concentrations using aerosol optical depth measurements from GOES-16 and GOES-17.

Watine-Guiu et al. (2023) also showed the potential of using the GOES constellation to monitor

methane point sources.

IASI-new generation (IASI-NG, Clerbaux and Crevoisier 2013; Crevoisier et al. 2014) is the

follow-on program for IASI, which will be flown onboard the Metop Second Generation (Metop-

SG) satellites. The first Metop-SG platform is planned to be launched in 2025 to LEO and will also

Fig. 2. (A) Illustration of tropospheric NO2 column densities measured by TEMPO (left) and GEMS (right).

Tropospheric NO2 column densities measured over selected cities are shown on top. (B and C) Hourly tropo-

spheric NO2 column density measurements show diurnal and weekly cycles over large cities. The TEMPO data

set used in this figure is preliminary and unvalidated, and is used for illustration purposes only.
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carry the Copernicus Sentinel-5 mission. IASI-NG will have higher spectral resolution and signal-

to-noise ratio relative to IASI, providing better sensitivity near the surface and an improved vertical

resolution of retrievals. Detection of weak absorbers (e.g., NH3 and SO2) will also improve.

3. Advances in air quality research using space-borne measurements

Over the past few decades, advances in atmospheric composition satellites have set the stage

for air quality research and emission monitoring. The wealth of space observations has driven

progress across all aspects of the research process. In this section, we provide an overview of

recent advances in satellite-based air quality research. In Section 3.a, we review recent progress

in the retrieval of atmospheric composition abundances from satellite measurements. In Sections

3.b and 3.c, we introduce efforts to improve emission estimation and data assimilation techniques,

respectively. Finally, in Section 3.d, we discuss the applications of machine learning in air quality

research.

a. Improved retrieval algorithms

Technological innovations and increasing quality requirements are driving the science of satellite

retrievals forward. For example, significant improvements have been made on retrieval algorithms

for TROPOMI since its launch in 2017, with a focus on better constrained uncertainties and reduced

biases (Theys et al. 2021; Heue et al. 2022; Van Geffen et al. 2022, among others). Besides an

improved degradation correction (Ludewig et al. 2020) and better consistency among retrieval

products (Tilstra et al. 2024), new retrievals from TROPOMI measurements were developed, e.g.,

solar induced fluorescence (SIF; Guanter et al. 2021), aerosol optical depth (Torres et al. 2020),

glyoxal (CHOCHO; Alvarado et al. 2020; Lerot et al. 2021), and nitrous acid (HONO; Theys et al.

2020). An overview of key air pollutants retrieved from space measurements is shown in Table 2.

The TROPOMI data products are carefully validated and validation reports are released regularly.

As such, TROPOMI has been used as the reference and transfer standard for the development of

GEMS retrieval algorithms. The first evaluation of GEMS retrievals using TROPOMI and ground-

based measurements showed a good consistency (Baek et al. 2023; Kim et al. 2023). GEMS

measurements captured clear seasonal variations over cities, as well as hourly variations that are

also seen in ground-based remotely sensed columns (Lee et al. 2024). The list of GEMS retrievals

Brought to you by SORBONNE UNIVERSIT CADIST 1894 | Unauthenticated | Downloaded 02/10/25 11:24 AM UTC



13
Accepted for publication in Bulletin of the American Meteorological Society. DOI 10.1175/BAMS-D-23-0145.1.

carry the Copernicus Sentinel-5 mission. IASI-NG will have higher spectral resolution and signal-

to-noise ratio relative to IASI, providing better sensitivity near the surface and an improved vertical

resolution of retrievals. Detection of weak absorbers (e.g., NH3 and SO2) will also improve.

3. Advances in air quality research using space-borne measurements

Over the past few decades, advances in atmospheric composition satellites have set the stage

for air quality research and emission monitoring. The wealth of space observations has driven

progress across all aspects of the research process. In this section, we provide an overview of

recent advances in satellite-based air quality research. In Section 3.a, we review recent progress

in the retrieval of atmospheric composition abundances from satellite measurements. In Sections

3.b and 3.c, we introduce efforts to improve emission estimation and data assimilation techniques,

respectively. Finally, in Section 3.d, we discuss the applications of machine learning in air quality

research.

a. Improved retrieval algorithms

Technological innovations and increasing quality requirements are driving the science of satellite

retrievals forward. For example, significant improvements have been made on retrieval algorithms

for TROPOMI since its launch in 2017, with a focus on better constrained uncertainties and reduced

biases (Theys et al. 2021; Heue et al. 2022; Van Geffen et al. 2022, among others). Besides an

improved degradation correction (Ludewig et al. 2020) and better consistency among retrieval

products (Tilstra et al. 2024), new retrievals from TROPOMI measurements were developed, e.g.,

solar induced fluorescence (SIF; Guanter et al. 2021), aerosol optical depth (Torres et al. 2020),

glyoxal (CHOCHO; Alvarado et al. 2020; Lerot et al. 2021), and nitrous acid (HONO; Theys et al.

2020). An overview of key air pollutants retrieved from space measurements is shown in Table 2.

The TROPOMI data products are carefully validated and validation reports are released regularly.

As such, TROPOMI has been used as the reference and transfer standard for the development of

GEMS retrieval algorithms. The first evaluation of GEMS retrievals using TROPOMI and ground-

based measurements showed a good consistency (Baek et al. 2023; Kim et al. 2023). GEMS

measurements captured clear seasonal variations over cities, as well as hourly variations that are

also seen in ground-based remotely sensed columns (Lee et al. 2024). The list of GEMS retrievals
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was recently extended to SO2 (Park and Jeong 2021), aerosols (Cho et al. 2023; Park et al. 2023),

and glyoxal (Ha et al. 2024).

Continued efforts to improve retrieval algorithms have led to new data products for older missions

like OMI, e.g., SO2 (Li et al. 2022) and O3 (Bak et al. 2024). Thermal infrared measurements are

now better utilized to monitor extreme events, such as wildfires (Vu Van et al. 2023; Luo et al. 2024)

and volcanic activities (Taylor et al. 2018). Notably, the phenomenal 2022 Hunga Tonga–Hunga

Ha’apai eruption was well observed by thermal infrared spectrometers (e.g., Wright et al. 2022).

The IASI NH3 and ethylene (C2H4) retrievals were used to identify point sources from industrial

and agricultural sectors (Van Damme et al. 2018; Franco et al. 2022).

The signal-to-noise ratio remains a limiting factor for the retrieval of weakly-absorbing trace

gases (e.g., formaldehyde, SO2, and NH3). Some recent studies average satellite measurements

over longer time periods to obtain a significant signal (e.g., Van Damme et al. 2018). For more

strongly absorbing gases, like NO2, sources of retrieval uncertainties include surface reflectivity,

clouds and aerosols, and aspects like thermal contrast for infrared measurements. Atmospheric

profiles have a strong impact on retrievals in the UV-Vis due to the altitude dependency of Rayleigh

scattering, which becomes more important as the spatial resolution increases (Lamsal et al. 2021).

Averaging kernels have been used in the validation of retrievals and data assimilation to account

for the information content of the retrievals (Eskes and Boersma 2003).

To use satellite data at a higher spatial resolution, new oversampling methods have been developed

(Valin et al. 2013; Fioletov et al. 2015; Sun et al. 2018; Van Damme et al. 2018; Clarisse et al.

2019, among others). For retrievals over emission hotspots, the assumptions about the vertical

distribution of gases and their retrieval sensitivites (characterized by averaging kernels and air

mass factors) are particularly important for the quantification of tropospheric amounts and diurnal

variations (Yang et al. 2023b). Regional models capable of achieving 10 km resolution are being

used to provide a priori information for high-resolution retrieval products (e.g., Liu et al. (2020b)

for NO2 in Asia, and Douros et al. (2023) for NO2 in Europe).

b. Estimation of emissions

The development of emission inventories remains challenging due to the large number of species

taken into account, the variety of emission sources, and because the a priori information is typically
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was recently extended to SO2 (Park and Jeong 2021), aerosols (Cho et al. 2023; Park et al. 2023),

and glyoxal (Ha et al. 2024).

Continued efforts to improve retrieval algorithms have led to new data products for older missions

like OMI, e.g., SO2 (Li et al. 2022) and O3 (Bak et al. 2024). Thermal infrared measurements are

now better utilized to monitor extreme events, such as wildfires (Vu Van et al. 2023; Luo et al. 2024)

and volcanic activities (Taylor et al. 2018). Notably, the phenomenal 2022 Hunga Tonga–Hunga

Ha’apai eruption was well observed by thermal infrared spectrometers (e.g., Wright et al. 2022).

The IASI NH3 and ethylene (C2H4) retrievals were used to identify point sources from industrial

and agricultural sectors (Van Damme et al. 2018; Franco et al. 2022).

The signal-to-noise ratio remains a limiting factor for the retrieval of weakly-absorbing trace

gases (e.g., formaldehyde, SO2, and NH3). Some recent studies average satellite measurements

over longer time periods to obtain a significant signal (e.g., Van Damme et al. 2018). For more

strongly absorbing gases, like NO2, sources of retrieval uncertainties include surface reflectivity,

clouds and aerosols, and aspects like thermal contrast for infrared measurements. Atmospheric

profiles have a strong impact on retrievals in the UV-Vis due to the altitude dependency of Rayleigh

scattering, which becomes more important as the spatial resolution increases (Lamsal et al. 2021).

Averaging kernels have been used in the validation of retrievals and data assimilation to account

for the information content of the retrievals (Eskes and Boersma 2003).

To use satellite data at a higher spatial resolution, new oversampling methods have been developed

(Valin et al. 2013; Fioletov et al. 2015; Sun et al. 2018; Van Damme et al. 2018; Clarisse et al.

2019, among others). For retrievals over emission hotspots, the assumptions about the vertical

distribution of gases and their retrieval sensitivites (characterized by averaging kernels and air

mass factors) are particularly important for the quantification of tropospheric amounts and diurnal

variations (Yang et al. 2023b). Regional models capable of achieving 10 km resolution are being

used to provide a priori information for high-resolution retrieval products (e.g., Liu et al. (2020b)

for NO2 in Asia, and Douros et al. (2023) for NO2 in Europe).

b. Estimation of emissions

The development of emission inventories remains challenging due to the large number of species

taken into account, the variety of emission sources, and because the a priori information is typically

collected by networks that are spatially and temporally sparse (Granier et al. 2023; Sindelarova

et al. 2023). For instance, the activity data and emission factors for anthropogenic emissions

are available from diverse agencies, such as the International Energy Agency, but public access

to this information is often limited. The development of open-source databases has been led by

intergovernmental organizations, e.g., the Intergovernmental Panel on Climate Change Emissions

Factor Database (IPCC EFDB) or the United Nations Framework Convention on Climate Change

(UNFCCC), both of which are built on the data released in national reports. Global emission

inventories are generally available with a delay of three to four years. To support policy-making and

air quality applications, techniques have been developed to extrapolate emissions to the most recent

years (Soulie et al. 2023). The development of emission inventories also needs to incorporate a finer

temporal resolution and detailed categorization by specific emission sectors. To this end, temporal

profiles based on statistical information (e.g., traffic counts) and meteorological parametrizations

are typically considered (e.g., Guevara et al. 2021). Additional constraints on temporal profiles

can be obtained from the hourly GEO observations, especially the diurnal variations of emissions

(Park et al. 2024). Table 3 lists the main publicly available emission inventories, covering both

pollutants and greenhouse gases at global and regional scales.

Large discrepancies have been highlighted among emission inventories due to differences in the

activity data and emission factors (Elguindi et al. 2020; Granier et al. 2023). Complementary to

the emission inventories, a growing number of studies (cf. Section 3.c) use satellite observations

and inverse modeling techniques to estimate emissions, namely NOx (e.g., Stavrakou et al. 2008;

Kurokawa et al. 2009; Miyazaki et al. 2017; Jiang et al. 2022; Plauchu et al. 2024; van der A et al.

2024), VOCs (e.g., Millet et al. 2008; Stavrakou et al. 2012; Marais et al. 2012; Bauwens et al.

2016; Cao et al. 2018; Oomen et al. 2024; Müller et al. 2024), CO (e.g., Arellano et al. 2004;

Müller et al. 2018; Qu et al. 2022b) and greenhouse gases (e.g., Wang et al. 2018; Lu et al. 2021).

Figure 3 illustrates a comparison of NOx emissions in China from 2000 to 2020 from several

emission inventories and satellite-based emission estimates (Elguindi et al. 2020). The differences

between various estimates remain significant, especially for the trends, which underscores the need

for continued efforts on mitigating uncertainties in emissions.

The development of new retrievals (see Section 3.a) has advanced emission estimates from both

natural and anthropogenic sources. For example, the new TROPOMI HONO retrieval product
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Fig. 3. Comparison of annual mean NOx emissions in China from 2000 to 2020 (in Tg NOx-NO/yr) from

several datasets. Solid and dashed lines represent emission inventories and satellite-based emission estimates,

respectively. The references for the emission estimates are shown in the legend on top. Figure adapted from

Elguindi et al. (2020).

shows intense emissions in wildfire plumes, accounting for a substantial share of total hydroxyl

radical (OH) production from natural sources (Theys et al. 2020). The first global satellite isoprene

retrievals from CrIS (Fu et al. 2019), combined with HCHO observations, have been used to

constrain isoprene emissions and atmospheric oxidation (Wells et al. 2020). These analyses reveal

significantly underestimated isoprene emissions in emission inventories, particularly in tropical

regions (Wells et al. 2020). The use of satellite retrievals has also proven to be crucial for

identifying seasonalities and weekly patterns in emissions, providing complementary information

to temporal profiles derived from activity data. This is particularly valuable for sources with

limited activity information, such as those in the agricultural sector (e.g., Damme et al. 2022).

Wind rotation method is another important advancement that estimates point source emissions by

resolving emission plumes aligned with the wind direction (e.g., Beirle et al. 2011; Valin et al.

2013; Fioletov et al. 2015; Clarisse et al. 2019).
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Fig. 4. Evolution of the spatial resolution of space-based NO2 data assimilation studies over the past two

decades. Orange symbols denote global studies, blue symbols denote regional studies. Circles describe data

assimilation systems in which only NO2 is assimilated. Squares represent multi-species data assimilation studies.

The size of the symbol represents the temporal scale.

c. Advances in data assimilation

Data assimilation in air quality research combines observations with chemical transport models

(CTMs) to produce an analysis of the state of atmospheric composition (e.g., Carmichael et al.

2008; Lahoz and Schneider 2014). Areas of application include air quality forecasting (e.g., Inness

et al. 2015), inverse modeling of emissions and other model parameters, and constructing reanalyses

of atmospheric composition. Numerous advances have been achieved in data assimilation in the

past decades, owing to improved satellite retrievals, better parameterized models, and advanced

assimilation techniques (Sandu and Chai 2011; Streets et al. 2013; Bocquet et al. 2015). For

example, as shown in Figure 4, the assimilation of space-based NO2 data has evolved to increasingly

high spatial resolution in recent years.
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decades. Orange symbols denote global studies, blue symbols denote regional studies. Circles describe data
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c. Advances in data assimilation

Data assimilation in air quality research combines observations with chemical transport models

(CTMs) to produce an analysis of the state of atmospheric composition (e.g., Carmichael et al.

2008; Lahoz and Schneider 2014). Areas of application include air quality forecasting (e.g., Inness

et al. 2015), inverse modeling of emissions and other model parameters, and constructing reanalyses

of atmospheric composition. Numerous advances have been achieved in data assimilation in the

past decades, owing to improved satellite retrievals, better parameterized models, and advanced

assimilation techniques (Sandu and Chai 2011; Streets et al. 2013; Bocquet et al. 2015). For

example, as shown in Figure 4, the assimilation of space-based NO2 data has evolved to increasingly

high spatial resolution in recent years.

Data assimilation techniques solve for the statistically optimal solution based on observations

and models (Kalnay et al. 2007). Filtering approaches such as the ensemble Kalman filter (EnKF)

capture chemical non-linearities using an ensemble of models and estimate emissions at regional

(Tang et al. 2013; Yumimoto et al. 2014; Gaubert et al. 2020; Feng et al. 2020; Dai et al. 2021;

van der Graaf et al. 2022) and global (Miyazaki et al. 2012, 2020a; Gaubert et al. 2023) scales.

The 4D-Var method utilizes the adjoint of forward models to minimize the model-observation

mismatch. Although the development of adjoint models can be complex and running them can be

computationally costly, 4D-Var has been successfully implemented for various applications (Elbern

et al. 2000; Müller and Stavrakou 2005; Henze et al. 2007). 4D-Var is also used in the Integrated

Forecasting System (IFS) of the European Union’s Copernicus Atmosphere Monitoring Service

(CAMS) (Inness et al. 2015, 2019, 2022).

Simultaneous joint assimilations of multiple species, such as CO/NO2 (Müller and Stavrakou

2005), HCHO/CHOCHO (Stavrakou et al. 2009; Cao et al. 2018), SO2/NO2 (Qu et al. 2019;

Wang et al. 2020), and NO2/CO/SO2 (Miyazaki et al. 2017, 2020a,b), have shown to improve data

assimilation results, as they account for the impact of emission changes on the chemical lifetimes

of various species. Specifically, assimilating short-lived species can help better characterize the

budget of longer-lived gases (e.g., Gaubert et al. 2017; Zheng et al. 2019). To address the increased

computational cost of multi-species data assimilation, hybrid approaches combining 3D-Var and

mass balance have been recently developed to improve the computational efficiency (Li and Xiao

2019; Chen et al. 2021b).

d. Application of machine learning

Machine learning has recently become a popular choice for satellite retrievals due to its higher

computational efficiency with respect to traditional retrieval methods. One of the first machine

learning applications widely used in data products is the operational IASI NH3 retrievals based on

neural networks (Whitburn et al. 2016; Van Damme et al. 2017). Following that, new data products

have been developed for IASI, e.g., the acetone and ethylene retrievals (Franco et al. 2019, 2022),

and the CrIS data products (Wells et al. 2022, 2024).

An emerging application of machine learning studies is the estimation of surface concentrations

using neural networks and tree-based models for PM2.5 (Di et al. 2019; Wei et al. 2020; Pendergrass
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et al. 2022), O3 (Sayeed et al. 2021; Betancourt et al. 2022), NO2 (Di et al. 2020; Ghahremanloo

et al. 2021; Chan et al. 2021), CO (Han et al. 2022; Chen et al. 2024), and CH4 (Balasus et al.

2023). These studies rely on the fusion of data from multiple sources and show improved skill

compared to conventional approaches (Balasus et al. 2023; Oak et al. 2024; Huang et al. 2024).

Other research directions include the development of surrogate models or modules in conventional

modeling systems with an improved efficiency (Keller and Evans 2019; Kelp et al. 2020, 2022; He

et al. 2024b). Using machine learning to understand drivers of air pollution (Zhang et al. 2023;

Ma et al. 2023; Wang et al. 2024) and conduct trend analysis (He et al. 2022a; Pendergrass et al.

2022, 2024; Li et al. 2023a) are other intriguing directions. The potential of machine learning in

the inverse modeling of emissions has also been explored (Huang et al. 2021; He et al. 2022b).

4. Challenges and opportunities in the era of geostationary space observations

Space observations from GEO offer a number of opportunities for improved characterization of

air quality and emissions as compared to LEO observations. The higher observation density due to

more frequent return times allows for higher precision. It also facilitates cloud clearing, meaning

an increased probability of observing a cloud-free scene in a certain location (or adjacent locations)

over a certain time period. The continuous observation available from GEO instruments enables

the tracking of pollution transport on meso- and synoptic scales. Multiple measurements during the

day provide information on the diurnal variations of emissions and chemical evolution. However,

there are also important challenges in the retrieval and the interpretation of GEO observations.

Next, we elaborate on the opportunities and challenges in retrieval development (Section 4.a),

atmospheric composition modeling (Section 4.b), data assimilation (Section 4.c), and machine

learning applications for GEO observations (Section 4.d), and we discuss air quality research for

large world regions that are not covered by the planned GEO satellite constellation (Section 4.e).

a. Retrievals

For GEO observations, not only do the pollutant concentrations change over the day, but the

position of the Sun, the surface temperature, the vertical mixing of the atmosphere, and meteorology

also change. These parameters are either input variables or impact the a priori vertical profile of
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et al. 2022), O3 (Sayeed et al. 2021; Betancourt et al. 2022), NO2 (Di et al. 2020; Ghahremanloo

et al. 2021; Chan et al. 2021), CO (Han et al. 2022; Chen et al. 2024), and CH4 (Balasus et al.

2023). These studies rely on the fusion of data from multiple sources and show improved skill

compared to conventional approaches (Balasus et al. 2023; Oak et al. 2024; Huang et al. 2024).

Other research directions include the development of surrogate models or modules in conventional

modeling systems with an improved efficiency (Keller and Evans 2019; Kelp et al. 2020, 2022; He

et al. 2024b). Using machine learning to understand drivers of air pollution (Zhang et al. 2023;

Ma et al. 2023; Wang et al. 2024) and conduct trend analysis (He et al. 2022a; Pendergrass et al.

2022, 2024; Li et al. 2023a) are other intriguing directions. The potential of machine learning in

the inverse modeling of emissions has also been explored (Huang et al. 2021; He et al. 2022b).

4. Challenges and opportunities in the era of geostationary space observations

Space observations from GEO offer a number of opportunities for improved characterization of

air quality and emissions as compared to LEO observations. The higher observation density due to

more frequent return times allows for higher precision. It also facilitates cloud clearing, meaning

an increased probability of observing a cloud-free scene in a certain location (or adjacent locations)

over a certain time period. The continuous observation available from GEO instruments enables

the tracking of pollution transport on meso- and synoptic scales. Multiple measurements during the

day provide information on the diurnal variations of emissions and chemical evolution. However,

there are also important challenges in the retrieval and the interpretation of GEO observations.

Next, we elaborate on the opportunities and challenges in retrieval development (Section 4.a),

atmospheric composition modeling (Section 4.b), data assimilation (Section 4.c), and machine

learning applications for GEO observations (Section 4.d), and we discuss air quality research for

large world regions that are not covered by the planned GEO satellite constellation (Section 4.e).

a. Retrievals

For GEO observations, not only do the pollutant concentrations change over the day, but the

position of the Sun, the surface temperature, the vertical mixing of the atmosphere, and meteorology

also change. These parameters are either input variables or impact the a priori vertical profile of

the trace gases being retrieved, of which the hourly variations need to be accounted for in retrieval

algorithms.

An important aspect is the variation in surface reflectivity for UV-Vis retrievals. Larger reflec-

tivity increases the sensitivity of satellite measurements to trace gases close to the surface, and

not considering the diurnal variations in surface reflectivity could lead to artifacts in the retrieved

diurnal variation of pollutants. While surface reflectivity information is available from satellite ob-

servations, the temporal and spatial resolution may not be sufficient, and uncertainties can be large

for individual observations. A similar problem exists for TIR retrievals, where surface radiation

emission is strongly dependent on temperature.

A second challenge is the diurnal variation due to vertical mixing, which can change the sensitivity

of the satellite measurements to different vertical layers in the atmosphere (Yang et al. 2023a). For

UV-Vis retrievals, sensitivity is usually lowest close to the surface, and a shallow boundary layer in

the morning reduces sensitivity compared to a fully developed boundary layer in the afternoon. The

situation can further be complicated by residual aerosols above the boundary layer. Similar issues

are expected from the combination of vertical trace gas distributions and temperature profiles for

TIR observations. To account for these effects, atmospheric models used as a priori information in

retrievals must reflect the diurnal evolution of the boundary layer, which can be challenging over

complex urban areas and terrain.

The viewing geometry from GEO can also present challenges, especially for higher latitudes and

at the edges of the field of regard. For UV-Vis observations, large viewing zenith angles can lead

to increased scattering in the atmosphere and reduced sensitivity to trace gases near the surface.

The effect is further amplified by the presence of aerosols and clouds. Spatial oversampling might

have limited use for GEO observations due to the nearly constant ground pixel pattern, as reported

in Lange et al. (2024) for the case of GEMS. A possible solution would be to adjust the latitudinal

pointing and longitudinal sampling of GEO measurements, but this may complicate the retrievals of

aerosol, cloud and gases and their diurnal variations, which depend on accurate surface reflectance

characterization. The pointing of TEMPO has a standard deviation of ∼1 pixel due to jitter and

other uncertainties, so oversampling can still be useful for TEMPO.

For some trace gases, such as O3 and NO2, significant amounts are present in both the troposphere

and the stratosphere. This necessitates a stratospheric correction, which, in the case of GEO
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observations, also needs to account for the diurnal change of the stratospheric amounts. This is

particularly relevant for small signals, which are more affected by uncertainties in the stratospheric

correction.

Given the challenges outlined above, robust calibration and validation of GEO observations

becomes essential to ensure a consistent retrieval quality across different sensors and GEO regions.

The calibration and validation efforts for GEO observations will build on the experience from

heritage LEO missions (CEOS 2019). These efforts should be supplemented by intensive ground-

based and aircraft validation campaigns to evaluate the diurnal patterns measured by the GEO

satellites (see e.g. Kim et al. 2023; Lee et al. 2024; Lange et al. 2024; Ha et al. 2024). LEO

air quality missions will serve as a traveling standard for the inter-comparability of the different

GEO instruments. Further efforts should focus on the development of an harmonized framework

for the processing, validation, and publication of all data products from the constellation of GEO

composition observations (CEOS 2019).

The availability of multiple measurements per day also provides opportunities for improved

retrieval techniques. For example, the nearly simultaneous observation of contiguous scenes

facilitates cloud slicing, where differences in column amounts above optically thick clouds are used

to provide information on vertical distribution (Marais et al. 2021). Imagers and spectrometers on

GEO platforms, combined with LEO missions, will deliver measurements of multiple chemical

species over emission hotspots across a broad spectral range. This expanded coverage has the

potential to enable the retrieval of new information and deepen our understanding of emission

activities.

b. Modeling

GEO composition observations will be useful for the evaluation of high-resolution regional and

local chemical transport models, and specifically to compare calculated diurnal variations with the

hourly data provided by the retrievals. The measured variations in column concentrations may be

very different from the time evolution of surface concentrations (e.g., Tang et al. 2021). A full

understanding of the observed diurnal variation is not straightforward because, in addition to the

time-evolving forcing from solar radiation, it is driven by other factors such as local emissions,

boundary layer meteorology, etc. (Edwards et al. 2024). One challenge is to improve the represen-

Brought to you by SORBONNE UNIVERSIT CADIST 1894 | Unauthenticated | Downloaded 02/10/25 11:24 AM UTC



23
Accepted for publication in Bulletin of the American Meteorological Society. DOI 10.1175/BAMS-D-23-0145.1.

observations, also needs to account for the diurnal change of the stratospheric amounts. This is

particularly relevant for small signals, which are more affected by uncertainties in the stratospheric

correction.

Given the challenges outlined above, robust calibration and validation of GEO observations

becomes essential to ensure a consistent retrieval quality across different sensors and GEO regions.

The calibration and validation efforts for GEO observations will build on the experience from

heritage LEO missions (CEOS 2019). These efforts should be supplemented by intensive ground-

based and aircraft validation campaigns to evaluate the diurnal patterns measured by the GEO

satellites (see e.g. Kim et al. 2023; Lee et al. 2024; Lange et al. 2024; Ha et al. 2024). LEO

air quality missions will serve as a traveling standard for the inter-comparability of the different

GEO instruments. Further efforts should focus on the development of an harmonized framework

for the processing, validation, and publication of all data products from the constellation of GEO

composition observations (CEOS 2019).

The availability of multiple measurements per day also provides opportunities for improved

retrieval techniques. For example, the nearly simultaneous observation of contiguous scenes

facilitates cloud slicing, where differences in column amounts above optically thick clouds are used

to provide information on vertical distribution (Marais et al. 2021). Imagers and spectrometers on

GEO platforms, combined with LEO missions, will deliver measurements of multiple chemical

species over emission hotspots across a broad spectral range. This expanded coverage has the

potential to enable the retrieval of new information and deepen our understanding of emission

activities.

b. Modeling

GEO composition observations will be useful for the evaluation of high-resolution regional and

local chemical transport models, and specifically to compare calculated diurnal variations with the

hourly data provided by the retrievals. The measured variations in column concentrations may be

very different from the time evolution of surface concentrations (e.g., Tang et al. 2021). A full

understanding of the observed diurnal variation is not straightforward because, in addition to the

time-evolving forcing from solar radiation, it is driven by other factors such as local emissions,

boundary layer meteorology, etc. (Edwards et al. 2024). One challenge is to improve the represen-

tation of small-scale dynamical features in the planetary boundary layer, including the formation of

the heat island in urban areas, the development of convective cells and local cloudiness, the impact

of topography and buildings on the small-scale flow, and the influence of diurnal varying coastal

circulation cells.

Regional chemical-meteorological models at a spatial resolution of typically 1 to 5 km are used to

provide background information on the chemical composition; they are now often complemented

by numerical simulations of large eddies in the boundary layer in order to resolve their impact

on the reaction rates and on chemical segregation associated with emission heterogeneity in a

complex urban canopy (Wang et al. 2022). Street network models such as the MUNICH model

(Kim et al. 2018) provide the distribution of chemically reactive pollutants along street canyons.

The success of such approaches depends on the availability of detailed high-resolution (better than

1 km) emission inventories, which are usually not yet available.

Recent efforts have led to the development of global multi-scale models with grid refinement

capabilities over selected geographical regions. An irregular model grid with a grid refinement

capability over the three regions covered by GEMS, TEMPO and Sentinel-4 has been developed

as part of the next-generation community modeling infrastructure, MUSICA (the Multi-Scale

Infrastructure for Chemistry and Aerosols; Pfister et al. 2020). Its purpose is to insert high-

resolution regional information provided by the GEO satellites in a global modeling framework

that accounts for large-scale transport and distant influences on chemical species (Pfister et al.

2020).

c. Data assimilation

There are several challenges related to the assimilation of GEO observations. The efficient

assimilation of such dense observations will require high-resolution forecast models and appropriate

data assimilation techniques, in addition to a flexible system handling multiple satellite sensors

from both GEO and LEO. As summarized below, further innovations are needed to take advantage

of GEO satellite observations with data assimilation.

(1) Parameter estimation: In tropospheric chemistry, boundary conditions, reaction rates, and

emissions often play an important role, whereas the role of initial conditions is limited due to rapid

chemical reactions (Sandu and Chai 2011; Goris and Elbern 2013). Dense observations from GEO
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satellites may allow for detailed parameter estimation beyond a few key chemical species, improved

sectoral emissions estimates (Qu et al. 2022a; Gaubert et al. 2023), and speciation information

for VOCs and aerosols. They can also be used to correct for meteorological parameters such as

horizontal wind (Liu et al. 2021).

(2) Data assimilation methodology: With greater observational coverage and high measurement

accuracy, local emission sources could be estimated using computationally efficient approaches

such as the mass balance approach (e.g., Cooper et al. 2017; Qu et al. 2019), or by making use

of trajectories to describe the non-local relation between emissions and concentrations (e.g., van

der A et al. 2024). Nevertheless, flow-dependent background covariance, including covariance

among chemical species, is essential to integrate multiple-species information and their spatial

distributions. DA techniques also need to account for diurnal changes in chemistry, emissions,

and measurement characteristics (e.g., Timmermans et al. 2019; Shu et al. 2023). Efficient non-

Gaussian methods such as particle filters may also be needed for high-resolution DA (Valmassoi

et al. 2023).

(3) Plume analysis and emission estimates: The latest GEO and LEO satellite composition

observations are able to resolve plumes of urban emissions, major point sources and even individual

ships. Computationally efficient techniques such as plume fitting (e.g., Fioletov et al. 2017), the

flux-divergence technique (e.g., Beirle et al. 2023), or the integrated mass enhancement method

(e.g., Varon et al. 2018; He et al. 2024a) have been successful in providing emission estimates

for short-lived and long-lived tracers at the instrumental resolution. A major challenge for short-

lived compounds like NO2 is to account for the non-linear chemistry in plumes, leading to a

heterogeneous plume composition and lifetime (Krol et al. 2024), and to determine how these local

effects impact global or regional data assimilation systems.

(4) Combination of multiple observing systems: LEO composition observations provide con-

straints on long-range transport (Miyazaki et al. 2022) and reduce model errors in regions con-

strained by GEO composition observations. Well-validated LEO data can be used to benchmark

GEO composition observations, for example, as an anchor for DA bias correction. As the spatial

resolution of both forecast models and satellites increases, assimilation of in situ and satellite

observations will be another effective approach to improve analysis, especially near the surface.

New technical challenges for simultaneous assimilation include appropriate background error co-
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satellites may allow for detailed parameter estimation beyond a few key chemical species, improved

sectoral emissions estimates (Qu et al. 2022a; Gaubert et al. 2023), and speciation information

for VOCs and aerosols. They can also be used to correct for meteorological parameters such as

horizontal wind (Liu et al. 2021).

(2) Data assimilation methodology: With greater observational coverage and high measurement

accuracy, local emission sources could be estimated using computationally efficient approaches

such as the mass balance approach (e.g., Cooper et al. 2017; Qu et al. 2019), or by making use

of trajectories to describe the non-local relation between emissions and concentrations (e.g., van

der A et al. 2024). Nevertheless, flow-dependent background covariance, including covariance

among chemical species, is essential to integrate multiple-species information and their spatial

distributions. DA techniques also need to account for diurnal changes in chemistry, emissions,

and measurement characteristics (e.g., Timmermans et al. 2019; Shu et al. 2023). Efficient non-

Gaussian methods such as particle filters may also be needed for high-resolution DA (Valmassoi

et al. 2023).

(3) Plume analysis and emission estimates: The latest GEO and LEO satellite composition

observations are able to resolve plumes of urban emissions, major point sources and even individual

ships. Computationally efficient techniques such as plume fitting (e.g., Fioletov et al. 2017), the

flux-divergence technique (e.g., Beirle et al. 2023), or the integrated mass enhancement method

(e.g., Varon et al. 2018; He et al. 2024a) have been successful in providing emission estimates

for short-lived and long-lived tracers at the instrumental resolution. A major challenge for short-

lived compounds like NO2 is to account for the non-linear chemistry in plumes, leading to a

heterogeneous plume composition and lifetime (Krol et al. 2024), and to determine how these local

effects impact global or regional data assimilation systems.

(4) Combination of multiple observing systems: LEO composition observations provide con-

straints on long-range transport (Miyazaki et al. 2022) and reduce model errors in regions con-

strained by GEO composition observations. Well-validated LEO data can be used to benchmark

GEO composition observations, for example, as an anchor for DA bias correction. As the spatial

resolution of both forecast models and satellites increases, assimilation of in situ and satellite

observations will be another effective approach to improve analysis, especially near the surface.

New technical challenges for simultaneous assimilation include appropriate background error co-

variance at multiple scales and error statistics including representative errors of each measurement

(Wang and Wang 2023).

d. Machine learning

For future applications of machine learning in air quality research, the differences between LEO

and GEO viewing geometries need to be accounted for. Solar zenith angle and viewing zenith

angle could have greater importance when constructing machine learning models for retrieving

atmospheric composition from GEO satellites. Diurnal variations in related physical parameters

should also be captured by input variables for machine learning models for GEO composition

satellites.

Recent applications of machine learning for LEO atmospheric composition satellites have focused

on concentration estimation and the development of surrogate models. More efforts are needed in

applying machine learning to inverse modeling of emissions. Specifically, further development of

explainable machine learning models is necessary to enhance the interpretability and robustness

of emission estimates.

Despite the challenges, geostationary atmospheric composition satellites offer opportunities to

further advance innovation in future machine learning applications. For example, machine learning

is effective in anomaly detection and pattern recognition, both making it well-suited for monitoring

extreme events (e.g., wildfires and volcano eruptions). Its scalability to the high temporal and

spatial resolution of GEO composition measurements can be critical for real-time decision-making

and mitigating the impacts of extreme events.

The generalizability of machine learning is another key strength that enhances data fusion.

Recent studies indicate that integrating multi-source measurements using machine learning can

help reduce discrepancies between different datasets (Balasus et al. 2023; Oak et al. 2024; Huang

et al. 2024). Integrating LEO composition measurements can play a critical role in improving the

consistency of composition measurements made by different GEO satellites.

e. Atmospheric composition monitoring for other regions of the world

Space-borne instruments in LEO have been vital for addressing data sparsity in large parts of

the world, in particular for the African and South American continents and parts of Asia. These
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regions will continue to rely on LEO instruments, as the planned GEO satellite constellation mainly

covers the Northern Hemisphere (Paton-Walsh et al. 2022). The validation of both LEO and GEO

observations and the derived products is also rare across the tropics and Southern Hemisphere. Such

validation requires routine surface observations and aircraft campaigns to profile the troposphere

under a range of representative conditions (Tang et al. 2023).

The Sentinel-4 GEO composition instrument will observe a portion of North Africa, and the

IRS on the same platform will provide observations of infrared-absorbing compounds like CO and

NH3. CO observations over Africa will be vital for understanding inefficient combustion sources,

including biomass burning for agricultural practices in Africa (Andreae 2019), burning of waste

(Wiedinmyer et al. 2014), and from other inefficient combustion practices (Marais and Wiedin-

myer 2016; Bockarie et al. 2020). High-frequency NH3 observations are well timed to coincide

with agricultural intensification that includes the use of synthetic nitrogen fertilizer and intensive

livestock farming (Hickman et al. 2021). A demonstration of the utility of GEO observations of

NH3 and CO for informing diurnal changes in abundances, precursor emissions, and pollution

transport patterns over Africa would aid in advocating for dedicated GEO instruments over Africa

and South America. However, the long delay between mission concept and launch means missing

out on advancing understanding in regions of the world during a period of unprecedented popula-

tion growth and land use changes. An advisory committee comprising researchers, academics and

satellite instrument developers has been formed to propose GEO missions over Africa and South

America, but a greater representation of researchers from these regions is needed to inform the

development of a fit-for-purpose mission (Marais and Chance 2015).

5. Conclusions and recommendations

The implementation of GEO satellites for atmospheric composition monitoring opens new per-

spectives for air quality research. The first two GEO composition satellites over Asia and North

America have demonstrated the measurement of diurnal variation of chemical species, thereby

providing unprecedented information on the diel evolution of emissions, photochemical processes

and the effects of atmospheric dynamics over large regions. However, the development of retrievals

and the validation of these GEO satellite composition data is still ongoing, as there is still room

for improvement. Furthermore, the European component of the GEO constellation in Sentinel-4 is
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regions will continue to rely on LEO instruments, as the planned GEO satellite constellation mainly

covers the Northern Hemisphere (Paton-Walsh et al. 2022). The validation of both LEO and GEO

observations and the derived products is also rare across the tropics and Southern Hemisphere. Such

validation requires routine surface observations and aircraft campaigns to profile the troposphere

under a range of representative conditions (Tang et al. 2023).

The Sentinel-4 GEO composition instrument will observe a portion of North Africa, and the

IRS on the same platform will provide observations of infrared-absorbing compounds like CO and

NH3. CO observations over Africa will be vital for understanding inefficient combustion sources,

including biomass burning for agricultural practices in Africa (Andreae 2019), burning of waste

(Wiedinmyer et al. 2014), and from other inefficient combustion practices (Marais and Wiedin-

myer 2016; Bockarie et al. 2020). High-frequency NH3 observations are well timed to coincide

with agricultural intensification that includes the use of synthetic nitrogen fertilizer and intensive

livestock farming (Hickman et al. 2021). A demonstration of the utility of GEO observations of

NH3 and CO for informing diurnal changes in abundances, precursor emissions, and pollution

transport patterns over Africa would aid in advocating for dedicated GEO instruments over Africa

and South America. However, the long delay between mission concept and launch means missing

out on advancing understanding in regions of the world during a period of unprecedented popula-

tion growth and land use changes. An advisory committee comprising researchers, academics and

satellite instrument developers has been formed to propose GEO missions over Africa and South

America, but a greater representation of researchers from these regions is needed to inform the

development of a fit-for-purpose mission (Marais and Chance 2015).

5. Conclusions and recommendations

The implementation of GEO satellites for atmospheric composition monitoring opens new per-

spectives for air quality research. The first two GEO composition satellites over Asia and North

America have demonstrated the measurement of diurnal variation of chemical species, thereby

providing unprecedented information on the diel evolution of emissions, photochemical processes

and the effects of atmospheric dynamics over large regions. However, the development of retrievals

and the validation of these GEO satellite composition data is still ongoing, as there is still room

for improvement. Furthermore, the European component of the GEO constellation in Sentinel-4 is

expected to be launched in 2025. The exploitation of measurements conducted by GEO satellites

presents new challenges and several priority tasks can therefore be highlighted for future research.

• Retrieval algorithms need to be carefully adapted to the GEO composition observations.

Specifically, the diurnal variations of various parameters used in the retrieval, such as surface

reflectivity and vertical mixing, need to be resolved. Additionally, the viewing geometry can

present difficulties due to the large zenith angles of GEO instruments compared to nadir-

viewing satellites, hence correcting for these effects at the edges of the field of regard is

necessary.

• The hourly temporal resolution of GEO observations gives crucial information on diurnal

profiles of emissions of atmospheric pollutants. In order to leverage this aspect in emission

inversion studies and reduce the delay in the delivery of emission inventories, temporal profiles

for different sectors in emission inventories need to be provided.

• Global and regional models should be adapted to be more compatible with the GEO at-

mospheric composition satellites. Continuous model development, especially regarding the

fine-scale chemical processes, is essential for retrievals, air quality forecasting, and data

assimilation in the era of GEO satellites for atmospheric composition monitoring.

• Data assimilation methods need to be adapted to the geostationary case. Specifically, more

computationally efficient methods should be explored in order to optimally process the high

data volume. The co-existence of LEO and GEO measurements in the same area opens

possibilities to assimilate both datasets simultaneously, along with ground-based and aircraft

data. Deriving emissions from point sources from plume estimation methods also provides a

promising avenue, considering the higher temporal resolution of observations.

• The computational efficiency and generalizability of machine learning make it a valuable

area for further exploration. In addition to recent applications of machine learning in retrieval

algorithm development and surface concentration estimation, greater efforts should be directed

toward inverse modeling of emissions and the development of explainable models.

Finally, it is crucial to keep improving the accessibility of satellite measurements to agencies

in charge of air quality management, especially for regions lacking the capability to establish
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observation networks. Future GEO satellites should provide data over Africa, South America,

Southern Asia, Australia, New Zealand, and other regions not covered by the current observing

capabilities.
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observation networks. Future GEO satellites should provide data over Africa, South America,

Southern Asia, Australia, New Zealand, and other regions not covered by the current observing

capabilities.
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Coopmann, O., N. Fourrié, P. Chambon, J. Vidot, P. Brousseau, M. Martet, and C. Birman,

2023: Preparing the assimilation of the future MTG-IRS sounder into the mesoscale numerical

weather prediction AROME model. Quarterly Journal of the Royal Meteorological Society, 149,

3110–3134, https://doi.org/10.1002/qj.4548.

Crevoisier, C., and Coauthors, 2014: Towards IASI-New Generation (IASI-NG): impact of im-

proved spectral resolution and radiometric noise on the retrieval of thermodynamic, chemistry

and climate variables. Atmospheric Measurement Techniques, 7, 4367–4385, https://doi.org/

10.5194/amt-7-4367-2014.

Crippa, M., and Coauthors, 2023a: GHG emissions of all world countries. JRC134504, Publications

Office of the European Union, Luxembourg, https://doi.org/10.2760/953322.

Crippa, M., and Coauthors, 2023b: The HTAP v3 emission mosaic: merging regional and global

monthly emissions (2000–2018) to support air quality modelling and policies. Earth System

Science Data, 15, 2667–2694, https://doi.org/10.5194/essd-15-2667-2023.

Crippa, M., and Coauthors, 2024: EDGAR v8.1 Global Air Pollutant Emissions.

European Commission, Joint Research Centre (JRC), URL http://data.europa.eu/89h/

a3af16e4-21ac-420a-b98c-b78a9b7723be, [Dataset].

Dai, T., Y. Cheng, D. Goto, Y. Li, X. Tang, G. Shi, and T. Nakajima, 2021: Revealing the sulfur

dioxide emission reductions in China by assimilating surface observations in WRF-Chem. At-

mospheric Chemistry and Physics, 21, 4357–4379, https://doi.org/10.5194/acp-21-4357-2021.

Damme, M. V., L. Clarisse, T. Stavrakou, R. W. Kruit, L. Sellekaerts, C. Viatte, C. Clerbaux, and

P.-F. Coheur, 2022: On the weekly cycle of atmospheric ammonia over European agricultural

hotspots. Scientific Reports, 12, 12 327, https://doi.org/10.1038/s41598-022-15836-w.

Dechezleprêtre, A., N. Rivers, and B. Stadler, 2019: The economic cost of air pollution: Evidence

from Europe. (1584), https://doi.org/https://doi.org/https://doi.org/10.1787/56119490-en, URL

https://www.oecd-ilibrary.org/content/paper/56119490-en.

Brought to you by SORBONNE UNIVERSIT CADIST 1894 | Unauthenticated | Downloaded 02/10/25 11:24 AM UTC



35
Accepted for publication in Bulletin of the American Meteorological Society. DOI 10.1175/BAMS-D-23-0145.1.

emissions. Journal of Geophysical Research: Atmospheres, 122, 4718–4734, https://doi.org/

10.1002/2016JD025985.
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