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We demonstrate the application of machnine learning techniques to the design of magnonic neuromorphic devices. Specifically,
we show that these techniques are applicable not only to inverse-design propagating waves but to engineer the modal dynamics of
nanomagnets in such a way that these magnets solve basic classification tasks.

Index Terms—Machine learning, backpropagation, k-space computing, normal modes model, vowel classifiaction

I. INTRODUCTION

NEUROMORPHIC COMPUTING HARDWARE is usu-
ally imagined as network of spatially separated neurons.

The neurons take a number of inputs, generate a weighted a
superposition of them, and after applying a nonlinear function
to these superposition, the neural output is processed by further
layers. This is a natural approach if the network is realized as
an electrical circuit.

When neuromorphic computing functions are realized by
a dynamical physical system (such as a magnonic system)
then one may imagine a computing model that is very dif-
ferent from this neuron-based picture. For example, nonlinear
wave-interference may be used for neuromorphic computing
primitives: in this case propagating waves play the role of
interconnections and amplitude-dependent nonlinearities in the
medium subsitute the neuron nonlinearities [1].

Another approach, which we explore in detail here, assigns
the neural functions to oscillatory modes of a nanomagnet [2]
[3]. The information is processed by the time dynamics of
the modal amplitudes. In this device two signals are applied
simultaneously to the magnet: the time dependent input signal
and a time-dependent programming signal. The output of the
computation is represented by the amplitude of the normal
modes. Rather than forming a network in the real space,
computation takes place in the wavevector-space (k-space).

While substantially different from traditional neural net-
works, the k-space neural net can be trained using the same
gradient-based learning methods that determine the weights of
standard neural networks.

II. BACKPROPAGATION IN REAL SPACE AND k-SPACE

Machine learning on a dynamic system is efficiently per-
formed through the BPTT (Backpropagation through time)
method. In this procedure the ordinary differential equations
(ODEs) that describe the system are first solved by some time-
marching procedure (such as the Runge Kutta method) and
all the intermediate results are saved. Following this forward
solution, a backward differentiation step is performed, when
the derivative of a so-called loss function is calculated with

Fig. 1. Schematics of the backpropagation-based machine learning, applied to
micromagnetics. The micromagnetic model can either be based on real-space
magnetization dynamics (LLG equations) or a normal mode-based description.

respect to some physical parameters of the system. Subse-
quently, a gradient-based optimization step is performed that
adjusts the physical parameters in the direction that minimizes
the loss function. This can be done by software widely used
in the machine learning community, such as Pytorch that we
have used. The schematics of how micromagnetic ODEs are
integrated into Pytorch is sketched in Fig. 1.

Spintorch is a machine-learning enabled micromagnetic
simulator [1] that implements this procedure on the solution
of the Landau-Lifshitz-Gilbert (LLG) ODE. If the loss func-
tion describes a waveform-classification task than Spintorch
designs a magnonic system that performs this classification
via magnon interference.

Instead of solving the LLG equation, magnetization dynam-
ics can be treated by a normal mode description, where instead
of the discretized M distribution, the time evolution of ai(t)
mode amplitudes is determined. This method is well appli-
cable so small-size magnetic structures where magnetization
dynamics can be accurately described as a superposition of a
(typically) smaller number of eigenmodes (see Fig. 2).

Normal mode description [3] offers several benefits over
the LLG-based solution. Significantly fewer equations must
be solved, which makes the learning procedure much more
efficient. In addition, the number of relevant normal modes
corresponds to the degrees of freedom of this system and



Fig. 2. Normal modes in a nanoscale Permalloy magnet. The disk is
magnetized out of plane and excited by an in-plane rf field. The first five
eigenmodes are taken into account in the calculation, and the spatial profile
ot three of them are illustrated.

eventually to the amount of nodes in a functionally equivalent
neural network.

The effectiveness of the normal modes approach has been
demonstrated for systems of nano- and micro-scale systems
relevant for magnonics and spintronics [3].

Normal modes can be efficiently determined by using
frequency-domain micromagnetic methods [2] appropriately
implemented for large-scale computations. This calculation
along with evaluation of couplings between modes can be
performed once for all for a given geometry, but the normal
mode description remains valid for arbitrary (small-amplitude)
RF field excitations which are relevant for applications [3].

III. CONTROL OF MODAL AMPLITUDES
If the M0 initial magnetization of a nanomagnet is close

to its equilibrium state, and there is no external field, mode
amplitudes evolve independently from each other and decay
toward a ai = 0 equilbrium state. Higher modal amplitudes
and externally applied RF fields bring the modes into coupling
with each other. The modes are all-to-all coupled by the
physics, realizing a high-interconnection neural network.

Training on the network is performed via the BPTT al-
gorithm, following the schematics of Fig 1. Training the
programming field effectively programs the coupling weights.
The parameters of the external field waveform are optimized
toward minimizing the loss function.

IV. CLASSIFICATION EXAMPLES
We tested our algorithm on widely applied classification

algorithm: vowel recognition and character recognition on a
subset of the MNIST database. The nanomagnet and the fields
are shown in Fig. 2

Vowel recognition was performed by applying the formants
of vowels as input to the magnet. Three dominant formants
were applied with equal amplitudes, alongside a programming
signal. The programming signal was a simple sinusoidal
waveform with its amplitude and frequency being the trained

Fig. 3. Loss curve for formant-based learning - a high success rate achieved
in less than 20 steps. The time evolution of the vowel amplitudes is shown
in the inset.

parameters. The output of the classification algorithm was
the a4 mode amplitude its high or below-threshold amplitude
distinguished between the two vowels.

We found that in this simple test case, a 97.5 percent
classification accuracy was achievable - that is, the network
properly characterized all but one the 40 vowels in the training
set. This accuracy was reached in 18 training epochs (see Fig.
3).

It is worthwhile to note that that there are other approaches
toward applying nanomagnets for neuromorphic computation,
such as using them as a reservoir [4]. In this case reservoir
training is not required but a linear classifier is necessary after
read-out.

V. CONCLUSION AND OUTLOOK
In this paper we explored how machine learning techniques

can be used to program magnetization dynamics to perform
a desired function. Such techniques were recently explored
for propagating waves, but to our knowledge our work is the
first to engineer the coupling of standing-wave modes toward
computing functions.
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