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Finite-Time Stabilization of Evolution Equations
with Maximal Monotone Maps in Hilbert Space

Moussa Labbadi and Christophe Roman

Abstract—Building on the concept of exact solutions combined
with the Cauchy problem and Lyapunov functions, we investigate
a robust finite-time and fixed-time stability of abstract systems
under nonlinear feedback control laws. First, we design a
stabilizing feedback control based on a set-valued map, which
precisely rejects matched perturbations and ensures finite-time
convergence. Subsequently, an additional nonlinear power term
is incorporated to achieve fixed-time convergence. For both cases,
we analyze the well-posedness of the closed-loop system using the
theory of maximal monotone operators. Furthermore, we extend
the analysis to study partial finite-time stability for the same
class of abstract systems. The theoretical findings are applied to
derive robust partial finite-time stabilization results for the heat
equation.

Index Terms—Finite-/ Fixed-Time Stability, Nonlinear Feed-
back Control, Maximal Monotone Operators, Robust Stabiliza-
tion.

I. INTRODUCTION

In recent years, the stabilization of Partial Differential Equa-
tions (PDEs) has garnered significant attention due to their role
in modeling the spatiotemporal dynamics of complex systems,
including heat transfer, traffic flow, fluid mechanics, chemical
reactions, string vibrations, and electromagnetic phenomena.
Their infinite-dimensional nature makes PDE stabilization
both critical and challenging. While most existing techniques
focus on achieving asymptotic or exponential convergence,
finite-time stability has emerged as a key requirement for
linear, nonlinear, and infinite-dimensional systems. Finite-time
convergence ensures equilibrium within a finite-time, offering
enhanced robustness and performance for time-sensitive ap-
plications. This can be achieved through homogeneity-based
techniques with a negative homogeneity degree [1], [2], [3],
[4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17].

Expanding the scope to abstract infinite-dimensional sys-
tems, significant contributions have been made to this field,
notably in the works on linear and bilinear systems [18], [19],
[15]. In the case of the bilinear reaction-diffusion equation,
finite-time stability was established directly, with the settling
time depending on the system’s initial state [20]. Moreover,
when time-varying stabilizing feedback control is allowed,
finite-time stability can be achieved at any specified time.
Further exploration into output and global finite-time stability
for abstract bilinear and linear systems was conducted [20].
Global finite-time stabilization for bilinear control systems,
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under homogeneous state feedback laws and coercive control
operators, has also been studied [21]. Several works have
delved into the finite/fixed-time stability analysis of parabolic
and hyperbolic PDEs [22], [23], [24], [18], [15].

Another technique related to finite/fixed-time controllability
is the sliding mode control (SMC) approach, particularly
in the context of evolution systems [25], [26], [27], [28],
[29], [30], [31], [32], [33]. In distributed control, SMC has
been successfully applied to truncated finite-dimensional mod-
els, including applications to parabolic PDE systems [34],
[35], heat equations [36], wave equations [32], [37], and
Schrödinger equations [31]. Notably, in [38], the authors
discuss tracking and control for heat and wave equations using
continuous SMC approaches with fractional power techniques
to modify the signum function. Robust tracking for a dif-
fusion equation using sliding mode boundaries is addressed
in [39], while [40] achieves exponential stabilization of the
wave equation with matched perturbations. Additionally, [41]
proposes boundary control for a heat process with unbounded
matched perturbations using second-order SMC. In a model
of earthquake phenomena [42], a cascade system combining
a 1D wave equation for fault slip and wave propagation with
a 1D diffusion equation for actuator dynamics is utilized.

In the presence of matched perturbations [43], [44], [45],
[46], the problem cannot be effectively addressed by merely
relying on the power of the state [41]. Instead, the application
of set-valued boundary dynamics [47] is required to precisely
counteract these perturbations. However, the classical Filippov
well-posedness theory [48] cannot be directly applied to
prove the well-posedness of the closed-loop system, as its
framework does not fully capture the complexities inherent
in this scenario.

This paper investigates the robust finite-time and fixed-time
stability of a class of abstract systems subjected to matched
perturbations. For the proof of robust finite-time stability, we
employ exact solutions in conjunction with the Cauchy prob-
lem. In the case of robust fixed-time stability, the Lyapunov
method is utilized. Subsequently, leveraging the theory of
maximal monotone operators, we establish the well-posedness
of the closed-loop system in both scenarios and we provide
an estimation of the settling time. In the finite-time stability
case, the settling time is dependent on the initial condition,
whereas in the fixed-time stability case, it is independent of
initial conditions. Additionally, we present results on partial
finite-time stability. To illustrate the practical application of
our results, we provide an example demonstrating the partial
finite-time stabilization and disturbance rejection of the heat
equation.
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NOTATION

For any interval I ⊆ R+, let Ck(I,X), with k ∈ Z+, denote
the space of all k-times continuously differentiable functions
defined on I and taking values in a space X .

The space L2(I,R) denotes the set of square-integrable
functions f : I → R, equipped with the L2-norm

∥f∥ =

√∫
I

f2(x) dx.

Define Q(a, b) = (a, b)× (0, 1) for (a, b) ⊂ R+ (or Qt for
(a, b) = (0, t), where t ∈ R+∪{∞}). We use L∞(Q(a, b)) :=
L∞(Q(a, b),R) to denote the space of essentially bounded
functions d : Q(a, b) → R, with the norm

∥d∥L∞(Q(a,b)) = ess sup(s,x)∈(a,b)×(0,1) |d(s, x)| <∞,

abusively denoted by ∥·∥∞ in the following. Let us defined
the multivoque map sgn : X → 2X , where X is a Hilbert
space,

sgn y =


y

∥y∥ if y ̸= 0,

{z; ∥z∥ ≤ 1} if y = 0.
(1)

II. CONCEPTS AND PRELIMINARY RESULTS

A. Preliminaries on Finite-Time Concepts for PDEs

In this section, we recall some fundamental definitions of
stability for infinite-dimensional systems.

Consider the following evolution system:
d

dt
X(t) = −AX(t), (2a)

X(0) = X0, (2b)

where t ≥ t0 ≥ 0, X0 denotes the initial condition, and A :
D(A) ⊂ L2 → L2 is a (possibly unbounded) operator.

Definition 1. The origin of the system (2) is characterized as
follows:

• Stable if for every ε > 0, there exists a θ > 0 such that,
for any t0 ≥ 0 and X0 ∈ L2, the condition

∥X0∥L2 ≤ θ =⇒ ∥X(t)∥L2 ≤ ε, ∀t ≥ t0,

holds.
• Asymptotically Stable (AS) if the system is stable, and in

addition,

lim
t→+∞

∥X(t)∥L2 = 0 for all X0 ∈ L2.

• Finite-Time Stable (FnTS) if the system is stable, and
for every X0 ∈ L2, there exists a time T (X0) ≥ 0 such
that

∥X(t)∥L2 = 0 for all t ≥ T (X0).

The function T (X0) = inf{T (X0) ≥ 0 : ∥X(t)∥L2 =
0,∀t ≥ T (X0)}. T (X0) represents the settling time of
the system (2).

• Fixed-Time Stable (FxTS) if it is FnTS and

sup
X0∈L2

T (X0) < +∞.

Based on Definition 1 and the results in [49], [50], [15], the
following lemma provides some sufficient conditions for the
stability of the origin.

Lemma 1. Let V 1 : Ω ⊂ D(A) → R+ be a continuous
functional on Ω, continuously differentiable on Ω \ {0}, and
satisfy the coercivity condition, i.e., there exist two class-K∞
functions β1 and β2 such that

β1 (∥X(t)∥L2) ≤ V (t) ≤ β2 (∥X(t)∥L2) ∀t ≥ t0.

Then, the following results hold:
• If the time derivative of V along the solutions of (2)

(denoted by d
dtV (t) for simplicity in the rest of the paper)

satisfies

d

dt
V (t) ≤ 0 in Ω for all t ≥ t0,

then the origin of the system (2) is stable.
• In addition, if there exists a class−K∞ function such that

d

dt
V (t) ≤ −β3 (∥X(t)∥L2) in Ω for all t ≥ t0,

then the origin of the system (2) is asymptotically stable
[51, Proposition 3.2].

• Alternatively, if there exists 0 ≤ T (V (0)) < +∞ such
that V (t) = 0 for all t ≥ T (V (0)), then the origin of the
system (2) is FnTS, with the settling time defined by

T (V (0)) = inf {T (V (0)) ≥ 0 : V (t) = 0,∀t ≥ T (V (0))} .
In particular, if

sup
X0∈Ω

T (V (0)) < +∞,

then the origin of the system (2) is FxTS.

III. PROBLEM STATEMENT AND PRELIMINARIES

We define a Hilbert space H equipped with a scalar product
⟨·, ·⟩H and the induced norm ∥ · ∥H. We focus on the abstract
control framework for the following autonomous problems of
the form: 

d

dt
X(t) = −AX(t) + f(u(t), d(t)), (3a)

X(0) = X0 ∈ D(A) ⊂ H, (3b)

where −A : D(A) ⊂ X → X is a linear operator which is
an infinitesimal generator of a strongly continuous semigroup
denoted (etA)t≥0. This property ensures well-defined time
evolution for solutions to the homogeneous equation for each
X0 ∈ D(A).

We analyze this framework within a Hilbert space, leverag-
ing its inner product and norm properties. Our investigation
will encompass the existence, uniqueness, and regularity of so-
lutions, as well as their controllability. The interplay between
the linear operator A and the nonlinear term f(t, ·) is crucial
for designing effective control laws to achieve desired state
trajectories.

1Note that if V is continuously differentiable on Ω \ {0}, then d
dt
V (t) =〈

∂V (t)
∂X

, d
dt
X(t)

〉
L2

.
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The primary aim of this paper is to formulate a feedback
law that ensures the well-posedness of the system (3) and
achieves global finite-time or fixed-time stability. Notably, the
system can be interpreted as a cascade system, comprising
both an infinite-dimensional component, which may be rep-
resented by a partial differential equation, and an ordinary
differential equation (ODE). This approach seeks to bridge
the complexities inherent in the interaction between the PDE
and ODE, ultimately leading to robust stability characteristics.

A common context in which such a system structure
emerges is within closed-loop systems featuring control laws
that include saturation, integral action, or components that are
both time-varying and state-dependent. For example, the satu-
ration case has been studied in [52]. However, we do not make
the assumption that the operator A generates an exponentially
stable semigroup. Consequently, when the control input is set
to zero, the X component of the state may not necessarily
converge to zero. Additionally, while the integral case has
been addressed in [53], it is crucial to note that their analysis
presumes the operator A to be invertible and univoques, which
is a strong assumption that contrasts with established results.

In the following, the function f(t, ·) can be divided into
both the control input u(X) and the matched perturbations
d(t). Thus, the system (3) becomes:

d

dt
X = −AX + u(X) + d(t),

X(0) = X0,
(4)

where the perturbation satisfies the following assumptions:

Assumption 1. The disturbances are bounded, and
∥d∥∞ < +∞.

Our goal is to design a robust state feedback control uu that
ensures the system is input-to-state stable (ISS) [54], with a
finite rate of convergence. Additionally, we aim to achieve
bounded settling time convergence, meaning that the settling
time remains constant.

IV. MAIN RESULTS

In this section, we present the main results of our paper.
We begin with two results on well-posedness, followed by
two results on the convergence and robustness of the posed
systems.

A. Well-posedness

Consider the following inclusion system:
d

dt
X(t) +AX(t)− d(t) ∈ −K sgn(X(t)), (5a)

X(0) = X0. (5b)

The following result holds.

Theorem 1. The abstract evolution problem (5) is well-posed
in the case where A is maximal monotone and K is a positive
constant. In details the operator −(A+K sgn) is associated
with a C0 semigroup e−(A+K sgn)(t) on the Hilbert H, and it
holds, for all T > 0,

• ∀X0 ∈ D(A), d ∈W 1,1(0, T ; H),

X ∈ C0([0, T );D(A)), Ẋ ∈ L∞([0, T ); H). (6)

• ∀X0 ∈ D(A), d ∈ L1(0, T ; H), then

X ∈ C0([0, T );D(A)). (7)

Now, we can enhance the dynamics by incorporating a
power term into the control law. Consider the following
inclusion system:

d

dt
X(t) +AX(t) + d(t)+K2∥X(t)∥α sgn(X(t))

∈ −K sgn(X(t)),

X(0) = X0,

(8)

We present the second result on well-posedness, which incor-
porates the inclusion system with the added power term:

Theorem 2. The abstract evolution problem (8) is well-
posed in the case where A is maximal montone and K and
K2 are positive constant. In details the operator −(A +
K sgn+K2 ∥·∥α sgn) is associated with a C0 semigroup
e−(A+K sgn+K2∥·∥α sgn)(t) on the Hilbert H, and it holds, for
all T > 0,

• ∀X0 ∈ D(A), d ∈W 1,1(0, T ; H),

X ∈ C0([0, T );D(A)), Ẋ ∈ L∞([0, T ); H) (9)

• ∀X0 ∈ D(A), d ∈ L1(0, T ; H), then

X ∈ C0([0, T );D(A)). (10)

The proof of Theorem 1 is a particular case of the proof of
Theorem 2. The latter is provide in the following

Proof. First the operator sgn is maximal monotone on the
Hilbert space H, this can be draw by comments on page 251 in
[55]. The domain of ∥·∥α sgn is all H, D(sgn) = H, ∀x, y ∈ H,
one gets

⟨x, sgn(x)⟩ = ⟨x, x⟩
∥x∥ = ∥x∥ (11)

therefore

⟨x− y, ∥x∥α sgn(x)− ∥y∥α sgn(y)⟩ =
∥x∥α+1

+ ∥y∥α+1 − ⟨x, y⟩ (∥x∥α−1
+ ∥y∥α−1

) =

(∥x∥2 + ∥y∥2 − ⟨x, y⟩)(∥x∥α−1
+ ∥y∥α−1

) ≥ 0 (12)

The operator ∥·∥α sgn is monotone, now let us check the
maximality of the operator in the montone operator set. First,
let us introduce the following result

Theorem 3 (Theorem 1.3 [55] on page 45). Let X be a
reflexive Banach space and let B : X → X ∗ be a monotone
hemicontinous operator. Then B is maximal monotone in
X × X ∗.

Hence is we just need to show the hemicontinousness of
∥·∥α sgn.

Definition 2 (Definition 11.2 in [56] on page 111). F : D →
X is called hemicontinous if ∀x, y ∈ D and ∀z ∈ X then it
holds ⟨F (x+ ty), z⟩ → ⟨Fx, z⟩ as t→ 0+.
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One gets ∀x, y, z ∈ H

⟨∥x+ ty∥α sgn(x+ ty), z⟩ = ∥x+ ty∥α−1 ⟨(x+ ty), z⟩
→

t→0+
∥x∥α−1 ⟨x, z⟩ (13)

= ⟨∥x∥α sgn(x), z⟩ . (14)

By applying Theorem 3, it follows that ∥ · ∥α sgn is maximal
monotone in H. Utilizing Rockafellar’s result (Theorem 9 in
Appendix A), we establish that A+K sgn+K2∥·∥α sgn is also
maximal monotone. Finally, Brezis’ Theorem 10 (presented in
Appendix A) completes the proof.

B. Robust state feedback controls

A robust controller is essential to handle matched pertur-
bations while ensuring finite-time convergence of the system.
The following control law provides an effective solution to
this problem:

u(t) = −K sgn(X(t)), (15)

where K is a positive constant satisfying K > ∥d∥∞, with d
representing the perturbation.

We now state the first result on convergence and robustness.

Theorem 4. Assume that 0 ∈ A(0), and there exists a
positive constant η, which depends on the upper bound of the
perturbations and the parameter K, such that the operator
A + η sgn is m-accretive in X × X . Then, the control law
(15) steers X(0) = X0 ∈ D(A) to the origin in finite time,
denoted by T (X0), with an upper bound given by:

T (X0) ≤ η−1∥X0∥. (16)

For admissible perturbations satisfying Assumption 1, the
trajectory X of the closed-loop system as support on the
interval [0, T (X0)]. Specifically, we have X(t) = 0 for all
t ≥ T (X0).

Proof. The theorem extends [55, Proposition 2.3], which con-
siders the case of no disturbance. We generalize the analysis
to account for the disturbance term d(t) under the given
assumptions.

If A+K sgn is m-accretive, then the Cauchy problem (5)
admits a unique mild solution X ∈ C(R+;X ). This solution
is obtained as the uniform limit on compact intervals of the
sequence {Xε(t)}ε>0, defined by:

X(t) = lim
ε→0

Xε(t), ∀t > 0, (17)

where Xε(t) satisfies the following difference inclusion for
every t > ε:

Xε(t) + εAXε(t) + εK sgn(Xε(t))− εd(t) ∋ Xε(t− ε),
(18)

with the initial condition given as:

Xε(t) = X0, ∀t ≤ 0.

To analyze the behavior of Xε(t), multiply both sides of the
difference inclusion by a test function ψε(t) ∈ sgn(Xε(t)).
Using the properties of the multivalued operator sgn, which

ensures that ψε(t) ·Xε(t) ≥ 0, and the m-accretivity of A+
K sgn, we obtain:

∥Xε(t)∥+ ε
(
K − ∥d∥∞

)
∥ψε(t)∥ ≤ ∥Xε(t− ε)∥, ∀t ≥ ε,

where ∥d∥∞ denotes the supremum norm of the disturbance
d(t) over t ∈ R+. Define η =

(
K − ∥d∥∞

)
> 0, which

measures the effective robustness of the system against the
disturbance. From the inequality above, it follows by induc-
tion:

∥Xε(jε)∥+ jεη ≤ ∥X0∥, j = 0, 1, . . . .

This implies that the trajectory Xε(t) diminishes over time,
and for sufficiently large j:

∥Xε(jε)∥ = 0, for jε > η−1∥X0∥.

Taking the limit as ε→ 0, the uniform convergence of Xε(t)
to X(t) on compact intervals ensures:

X(t) = 0, for t > η−1∥X0∥.

Thus, the solution X(t) vanishes in finite time presented in
(16), where T (X0) depends explicitly on the initial condition
and the robustness parameter η. This completes the proof of
the finite-time convergence of the solution to zero under the
stated conditions.

Remark 1. By using the Lyapunov function V (t) = ∥X(t)∥2,
we can readily demonstrate the finite-time stability of the
system (5).

It can be observed that the settling time depends on the
initial conditions, meaning that it is unbounded. In addition to
finite-time convergence, this subsection presents an alternative
solution for handling matched perturbations while ensuring
fixed-time convergence of the system. Specifically, the design
of an appropriate control law is crucial in achieving the desired
robustness and convergence properties. Below, we present the
following controller.

u(t) = −K sgn(X(t))−K2∥X(t)∥α sgn(X(t)), (19)

where K > ∥d∥∞ is a positive constant ensuring robust-
ness against the perturbation d(t), which represents external
matched disturbances. K2 and α > 1 are additional tuning
parameters in u(t) for enhancing convergence rates and ad-
dressing matched perturbations.

We now present the second result.

Theorem 5. If K2 > 0, K − ∥d∥∞ > 0, and α > 1, assume
that 0 ∈ A(0), and that the operator A + (K − ∥d∥∞) sgn
is m-accretive in H × H. Under these conditions, the control
law (19) guarantees that the system state X(t), initialized as
X(0) = X0 ∈ D(A), is steered to the origin in fixed time,
independent of the initial conditions. The settling time satisfies
the following bound:

T (X0) ≤ Tmax,

where:

Tmax =
1

K2(α− 1)
+

1

K − ∥d∥∞
. (20)
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Proof. Consider the following Lyapunov function:

2V (t) = ∥X(t)∥2 = ⟨X(t), X(t)⟩ , (21)

whose time derivative is computed as:

d

dt
V = ⟨X(t),

d

dt
X(t)⟩. (22)

Substituting

d

dt
X(t) ∈ −AX(t) + d(t)−K2∥X(t)∥α sgn(X(t))

−K sgn(X(t)). (23)

into d
dtV , we obtain:

d

dt
V ∈ ⟨X(t),−AX(t) + d(t)−K2∥X(t)∥α sgn(X(t))

−K sgn(X(t))⟩, (24)
d

dt
V = −⟨X(t), AX(t)⟩+ ⟨X(t), d(t)⟩ −K2∥X(t)∥α+1

−K∥X(t)∥⟩. (25)

The following inequalities hold:

−⟨X(t), AX(t)⟩ ≤ 0, (26)

since A is m-accretive and 0 ∈ A(0). Using Cauchy-Schwartz
and Holder inequalities it holds

⟨X(t), d(t)⟩ ≤ ∥X(t)∥∥d(t)∥ ≤ ∥X(t)∥∥d∥∞, (27)

where ∥d∥∞ represents the upper bound of d(t).
Using these inequalities, the time derivative of V (t) can be

estimated as:
d

dt
V ≤ −K2∥X(t)∥α+1 − (K − ∥d∥∞) ∥X(t)∥ (28)

= −K2V (t)
α+1
2 − (K − ∥d∥∞)V (t)

1
2 . (29)

Applying Lemma 1 under the conditions K2 > 0, K −
∥d∥∞ > 0, and α+1

2 > 1, the closed-loop system is fixed-
time stable and the settling time satisfies (20).

V. PARTIAL STABILITY EXTENSIONS

In this section, we provide several conditions for achieving
partial finite-time stability. First, we analyze the system under
feed-forward compensation to mitigate disturbances. Next, we
address the scenario with a bounded uncontrolled part, offering
solutions to ensure stability within a finite time.

Let us consider A a maximal monotone operator and B a
closed linear relation, such that

d

dt
X(t) +AX(t) ∈ −Bd(t) +BU(t), (30a)

X(0) = X0 ∈ D(A) ⊂ H, (30b)

We consider two cases. In the first, we directly compensate
for the influence of the uncontrolled part on the controlled
part using a feedforward term. In the second, the result relies
on the fact that the influence of the uncontrolled part can be
bounded by the controlled part, making direct compensation
avoidable under the bounded hypothesis.

A. Feed-forward compensation

Let us consider (30) together with the following feedback
law

U(t) =−Bk2∥BX(t)∥α sgn(BX(t))−Bk sgn(BX(t))

−BAX(t). (31)

Here, the use of B highlights that the control is associated with
the sgn operator, and the disturbance affects only part of the
state. The computations performed above remain applicable,
ensuring finite-time stabilization of the partial state defined by
B(0), which corresponds to the kernel (null space) of B−1.
This extension is of practical interest. In order words, we
look at the equation of the quotient space H/N(B), which
we established that this is a Hilbert space. Our feedforward
term is BAX(t) but we can also take

BX(t)
⟨AX(t), BX(t)⟩

∥X∥2H/N(B)

(32)

as feedforward term similarly like it is done in [57]. We have
the following result

Theorem 6. Considering the abstract problem (30) together
with the feedback law (31). If K2 > 0, K − ∥d∥∞ > 0, and
α > 1, assume that A is m-accretive with 0 ∈ A(0) and B a
linear closed relation, which satisfy

∀x, y ∈ X, ⟨x, Bx⟩ ≥ 0, (33)
⟨x, By⟩ = ⟨Bx, y⟩ , (34)

BB = B (35)

∀x ∈ D(A), ⟨Ax, Bx⟩ ≥ −c ∥x∥2 (36)

and BA − cI be maximal monotone then under these condi-
tions, solution of the equation exist in the sens of Theorem 2,
and

∀X0 ∈ D(A), ∥X(t)∥X/N(B) →
t→T

0. (37)

The settling time T satisfies the following bound:

T (X0) ≤ Tmax =
1

k2(α− 1)
+

1

k1 − ∥d∥∞
, (38)

Definition 3. A linear relation T is a map from X → 2X , (or
a set valued map) which has the following property

∀x, y ∈ X,α ∈ R T (x+ αy) = T (x) + αT (y). (39)

A linear relation is positive if

∀x ∈ X, ⟨x, Tx⟩ ≥ 0. (40)

A more detail exposition of linear relation is given in [58].

Lemma 2. Consider that B is a closed linear relation, which
is also positive and auto-adjoint. The bilinear product

⟨y, x⟩H/N(B) = ⟨y, Bx⟩ , (41)

is a scalar product of the Hilbert space H/N(B), which is H

quotient by the kernel of B, i.e., N(B). The associated semi-
norm in H

∥x∥2H/N(B) = ⟨x, x⟩H/N(B) , (42)
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is a norm of the quotient space H/N(B).

Proof. First as B is a closed linear relation in H×H we get that
N(B) is closed linear subspace of H× H ([58] Corollary I.2.4
on page 7 and comments on page 43). Using Theorem 8 in
appendix one gets that the quotient space H/N(B) is a Banach
space. Now

∀x ∈ H, ⟨x, Bx⟩ = 0 ⇔ x = 0 or x = N(B), (43)

therefore

∀x ∈ H/N(B), ⟨x, Bx⟩ = 0 ⇔ x = 0. (44)

The remaining property positivity, bilinearity, and symmetry
of the bilinear product are directly checked which completes
the proof.

Lemma 3. Consider B is a linear closed relation where B2 =
B and B = B∗. The operators H ∋ x → B sgn(Bx) and
H ∋ x → B ∥Bx∥ sgn(Bx) are maximal monotone in the
Hilbert space H.

Proof. One gets that

⟨x− y, B sgn(Bx)−B sgn(By)⟩ (45)
= ⟨B(x− y), B sgn(Bx)−B sgn(By)⟩ (46)
+ ⟨(1−B)(x− y), B(sgn(Bx)− sgn(By))⟩ , (47)

it holds

⟨B(x− y), B sgn(Bx)−B sgn(By)⟩ (48)
= ⟨Bx, sgn(Bx)⟩+ ⟨By, sgn(By)⟩ (49)
− ⟨Bx, sgn(By)⟩ − ⟨By, sgn(Bx)⟩ (50)

≥∥Bx∥+ ∥By∥ − ∥Bx∥ − ∥By∥ (51)
≥0. (52)

Using ⟨Bx, y⟩ = ⟨x, By⟩ and the fact that (B − 1)B =
B2 −B = 0 one gets

⟨x− y, B sgn(Bx)−B sgn(By)⟩ ≥ 0, (53)

and so H ∋ x → B sgn(Bx) is monotone. Similarly one can
obtain the monotonicity of H ∋ x → B ∥Bx∥ sgn(Bx). For
establishing that H ∋ x→ B sgn(Bx) is maximal in the set of
monotone operator we check the range condition, ∀y, f ∈ H

y +B sgn(By) ∋ f, (54)

we can still decomposed the problem into two orthogonal part

By +B sgn(By) ∋ Bf, (55)
(1−B)y = (1−B)f. (56)

Following comments in page 251 in [55], we can show that
the solution

yf =

{
Bf(∥Bf∥−1)

∥Bf∥ + (1−B)f if ∥f∥ > 1,

(1−B)f otherwise ,
(57)

exist and is unique

∥yf − yg∥ ≤ ∥f − g∥ , ∀f, g ∈ H. (58)

This concludes the proof.

Now, the proof of Theorem 6 can be stated as follows:

Proof. The proof follows the same step of the proof of
Theorem 5, replacing in the Lyapunov analysis the norm and
the scalar product by the one defined in Lemma 2. The key
point is using B2 = B on (24) where for system (6) with
feedback (78) one gets

2V (t) = ⟨X(t), BX(t)⟩ . (59)

The derivative of V along the solution is

d

dt
V ∈ ⟨BX(t),−AX(t) +Bd(t)

−BK2∥BX(t)∥α sgn(BX(t))

−BK sgn(BX(t)) +BAX(t)⟩, (60)
d

dt
V ∈ ⟨X(t), B(−AX(t) + d(t)

−K2∥BX(t)∥α sgn(BX(t))

−K sgn(BX(t)) +BAX(t))⟩, (61)
d

dt
V ∈ ⟨BX(t), d(t)−K2∥BX(t)∥α sgn(BX(t))

−K sgn(BX(t))⟩. (62)

The last equation is similar to (24), and the remaining follow.

d

dt
V (t) ≤− k2 ∥X(t)∥α+1 − (k1 − ∥d∥∞) ∥X(t)∥ (63)

=− k2V (t)
α+1
2 − (k1 − ∥d∥∞)

√
V (t). (64)

This concludes the proof for the finite-time convergence
component. It is worth noting that (36) is not utilized in the
convergence analysis, but it serves as a sufficient condition to
establish well-posedness. The reasoning is based on the fact
that if A− ωI is monotone, then A is the generator of a C0-
semigroup, as discussed in Chapter 4 of [55].

Primarily, (36) gives to the monotonicity of BA + cI .
Furthermore, by Zorn’s lemma, any monotone operator can
always be extended to a maximal monotone operator (see
Corollary 2.1 in [59]). Noting that D(BA) = D(A), we apply
Theorem 9 to establish that the solution is well-posed.

B. Bounded uncontrolled part

In this section, we no longer rely on the boundedness of
the uncontrolled part to establish finite-time convergence and
perturbation rejection. Instead, we consider the feedback law

U(t) =− k2∥BX(t)∥α sgn(BX(t))− k sgn(BX(t)), (65)

we have the following result

Theorem 7. Considering the abstract problem (30) together
with the feedback law (31). If k2 > ω2, k1 − ω1 −∥d∥∞ > 0,
and α > 1, assume that A is m-accretive with 0 ∈ A(0) and
B a linear closed relation, which satisfy

∀x, y ∈ X, ⟨x, Bx⟩ ≥ 0, (66)
⟨x, By⟩ = ⟨Bx, y⟩ , (67)

BB = B. (68)
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∀x ∈ D(A), ⟨−Ax, Bx⟩ ≤ ω1 ∥Bx∥α+1
+ ω2 ∥Bx∥ ,

(69)

then under these conditions, solution of the equation exist in
the sens of Theorem 2, and

∀X0 ∈ D(A), ∥X(t)∥X/N(B) →
t→T

0. (70)

The settling time T satisfies the following bound:

T (X0) ≤ Tmax =
1

(k2 − ω2)(α− 1)
+

1

k1 − ω1 − ∥d∥∞
.

(71)

Proof. The proof follows the same step of the proof of
Theorem 5, replacing in the Lyapunov analysis the norm and
the scalar product by the one defined in Lemma 2. The key
point is using B2 = B on (24) where for system (6) with
feedback (78) one gets

2V (t) = ⟨X(t), BX(t)⟩ . (72)

The derivative of V along the solution is

d

dt
V (t) ∈ ⟨BX(t),−AX(t) +Bd(t)

−Bk2∥BX(t)∥α sgn(BX(t))

−Bk1 sgn(BX(t))⟩, (73)

d

dt
V (t) ∈ ⟨BX(t), −AX(t)⟩+ ⟨BX(t), Bd(t)

−Bk2∥BX(t)∥α sgn(BX(t))

−Bk1 sgn(BX(t))⟩ (74)

≤ω1 ∥BX(t)∥α+1
+ ω2 ∥BX(t)∥

− k2 ∥BX(t)∥α+1 − (k1 − ∥d∥∞) ∥BX(t)∥ (75)

=− (k2 − ω2)V (t)
α+1
2

− (k1 − ω1 − ∥d∥∞)
√
V (t). (76)

The finite-time convergence is thus established, and the well-
posedness follows directly from Theorem 2 and Lemma 2.

The requirement in Theorem 6 for BA− cI to be maximal
monotone imposes a significant constraint on the feedforward
control law. In [57], with the use of the feedforward term
(32), the well-posedness was established by leveraging the fact
that this term is Lipschitz and associated with BA− cI being
monotone. In Theorem 7, the condition shifts to requiring that
the uncontrolled part can be bounded by the controlled part,
which, while also a stringent assumption, represents a different
type of constraint.

VI. TOY EXAMPLE

To illustrate the method, we apply the results to a heat
equation.

A. Heat equation with Neumann’s boundary


ut(t, x)− (a(x)ux(t, x))x + d(t) ∈ U(t), (77a)
ux(t, 0) = 0, (77b)
ux(t, 1) = 0. (77c)

The input is defined as

U(t) =− k1 sgn(X(t))− k2 ∥X(t)∥α sgn(X(t)), (78)

in which

X(t) = [u(t, ·)], (79)

and

∥X(t)∥2 =

∫ 1

0

u2dx. (80)

The operator A is defined as

∀z ∈ D(A), Az = (az′)′, (81)

with

D(A) = {H2, z′(0) = 0, z′(1) = 0}. (82)

Obtaining that A is a maximal monotone operator in H1 is
quite direct and can be found in classical book [60]. Therefore
Theorem 2 applied and we get that

∀X0 ∈ D(A), ∥X(t)∥X/N(B) →
t→T

0. (83)

The settling time T satisfies the following bound:

T (X0) ≤ Tmax =
1

k2(α− 1)
+

1

k1 − ∥d∥∞
. (84)

B. Numerical scheme

The operator Az = z′′ is discretized in space by

Ad =



−1 1 0 0 0 0 0
1 −2 1 0 0 0 0
0 1 −2 1 0 0 0

0 0
. . . . . . . . . 0 0

0 0 0 1 −2 1 0
0 0 0 0 1 −2 1
0 0 0 0 0 1 −1


1

∆x2
. (85)

The space discretization model is

u̇d(t) = Adud(t) + Ud(t) + d(t), (86)

where

Ud(t) = −k1 sgn(ud(t))− k2 ∥ud(t)∥α sgn(ud(t)), (87)

∥ud(t)∥2 = ⟨ud(t), ud(t)⟩ . (88)

We then employed the Crank-Nicolson method for time dis-
cretization.

ud[k + 1]− ud[k] = (Aud[k] + U [k] + d[k])∆t, (89)
ud[k + 1]− ud[k] = (Aud[k + 1] + U [k] + d[k])∆t, (90)
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ud[k + 1] =(2−∆tA)−1[(2 + ∆tA)ud[k]

+ 2U [k]∆t+ 2d[k]∆t]. (91)

The following numerical results are presented under various
parameters listed in Table I. Figures 1, 2, and 3 illustrate,
respectively, the distributed state u(t, ·), the distributed control
law U(t, ·), and the control objective log(∥u(t, ·)∥) for the
finite-time case. Specifically, when k2 = 0, the state converges
to zero in finite time, which depends on the initial condition.
Once the state has converged, the control law matches the
disturbance, as shown in Figure 2. Furthermore, the norm of
the distributed state decreases to 10−10, which can be inter-
preted as a numerical zero or explained by the approximation
of the sign function used in the numerical simulation. Indeed,
the set-valued map has been reformulated as a discontinuous
single-valued map.

Symbol value 1 value 2 value 3
N 100 · ·
tend 10 · ·
∆t 10−3 · ·
a(x) 1 · ·
d(t) sin(t) · ·
k1 3 · ·
k2 0 20

9
20
9

α 1.1 · ·
u(0, ·) [1, ...., 1] [1, ...., 1] [100, ...., 100]

Tmax < +∞ 5 5
Table I

PARAMETER VALUES FOR THE SIMULATION.

Figure 1. Distributed state u(t, ·) for values 1

Figure 2. Distributed control U(t, ·) for values 1

0 1 2 3 4 5
time t

−10

−5

0
log(∥X(t)∥)

1Figure 3. Objective log(∥X∥ (t)) for values 1

Figures 4, 5, and 6 depict, respectively, the distributed state
u(t, ·), the distributed control law U(t, ·), and the control
objective log(∥u(t, ·)∥) for the fixed-time case, where the fixed
time is set to Tmax = 5. Specifically, when k1 = 3, k2 = 20/9,
and α = 1.1, the state converges to zero within a fixed time
that is independent of the initial conditions. After convergence,
the control law aligns with the disturbance, as illustrated
in Figure 5. Moreover, the norm of the distributed state
decreases to 10−10 more rapidly compared to the previous
case, primarily due to the additional dissipation introduced
into the dynamics. This decrease can still be interpreted as
numerical zero or attributed to the approximation of the sign
function employed in the numerical simulation.

Figure 4. Distributed state u(t, ·)for values 2
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Figure 5. Distributed control U(t, ·) for values 2

0 1 2 3 4 5
time t

−10

−5

0
log(∥X(t)∥)

1Figure 6. Objective log(∥X∥ (t)) for values 2

In the final case presented in Table I, the differences
between Figures 4, 5, 6 and Figures 7, 8, 9 lie in the initial
conditions. Although the system converges more slowly in this
scenario, it still achieves convergence within the fixed time.

Figure 7. Distributed state u(t, ·) for values 3

Figure 8. Distributed control U(t, ·) for values 3

0 1 2 3 4 5
time t

−10

0 log(∥X(t)∥)

1Figure 9. Objective log(∥X∥ (t)) for values 3

C. Comparison of fixed-time and finite-time stabilization for
the objective function

In this section, we present numerical results to highlight
the distinction between finite-time and fixed-time stabilization.
Figure 10 illustrates the evolution of the norm ∥X(t)∥ over
time on a logarithmic scale for a range of initial conditions,
X0 ∈ {1, 5, 10, 50, 100, 500, 1000}. The results reveal that
the settling time is dependent on the magnitude of the initial
condition. Specifically, larger initial values of X0 lead to a
longer convergence time, which is indicative of finite-time
stabilization, where the convergence rate is influenced by the
initial perturbation. In contrast, when applying fixed-time con-
trol, as depicted in Figure 11, we observe that the settling time
is upper-bounded by a constant. This constant settling time
is independent of the initial conditions, thereby demonstrating
that the convergence time is invariant with respect to the initial
state. This behavior is characteristic of fixed-time stabilization,
where the convergence time is designed to be constant and
independent of the initial conditions.

0 1 2 3 4 5
time t

−10

0

lo
g(

∥X
(t
)∥
) u(0, ·) = 1

u(0, ·) = 5

u(0, ·) = 10

u(0, ·) = 50

u(0, ·) = 100

u(0, ·) = 500

u(0, ·) = 1000

1Figure 10. Finite time with k1 = 3, k2 = 0 and several initials conditions
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0 1 2 3 4 5
time t

−10

0
lo
g(

∥X
(t
)∥
) u(0, ·) = 1

u(0, ·) = 5

u(0, ·) = 10

u(0, ·) = 50

u(0, ·) = 100

u(0, ·) = 500

u(0, ·) = 1000

1Figure 11. Fixed time Tmax = 5 with k1 = 3, k2 = 20/9, α = 1.1 and
several initials conditions

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we investigate the finite-time stabilization
of a class of abstract systems. We extend our results to
fixed-time stabilization, where the settling time is bounded.
Both analyses are conducted in the presence of matched
persistence (L∞) perturbations. For finite-time stabilization,
we employ exact solutions in conjunction with the abstract
Cauchy problem, while for fixed-time stabilization, we apply
a Lyapunov approach, analogous to methods used for finite-
dimensional systems associated with norm in functional space.
We establish the well-posedness of the closed-loop system in
both cases using the theory of maximal monotone operators. A
theoretical and numerical example based on the heat equation
is provided to illustrate the results.

For future work, we plan to explore more complex abstrac-
tions, including the incorporation of nonlinearities in boundary
control, and specific case of partial stabilization.
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APPENDIX

Theorem 8 ([61, Theorem 1.41 (d)]). Let S be a closed
subspace of a topological vector space X . If X is a Banach

space, then the quotient space X/S is also a Banach space.

Theorem 9 (Theorem 1.5 in [55] ). Let H be a reflexive
Banach space, and let A and B be maximal monotone subset
of H ×H∗. If it holds

(intD(A)) ∩ D(B) ̸= ∅, (92)

then A+B is maximal monotone.

Theorem 10 (Theorem 21 and following Remark in [62]). Let
us consider H being a Hilbert space, A a maximal monotone
operator, and f ∈ W 1,1(0, T ; H), then for all X0 ∈ D(A),
there exists a unique X(t) : R+ → H such that ∀t ≥ 0

• X(t) ∈ D(A).
• d+

dt X(t) ∈ L∞(0, T ; H) .
• d

dtX(t) +AX(t) ∋ f and X(0) = X0.
• X is differentiable from the right ∀t ∈ [0, T ) and

d+

dt X(t) + (AX(t)− f(t))
o
= 0. Moreover, |d+

dt X(t)| ≤
|d+

dt X(0)|+
∫ t

0
| dfds (s)|ds.

• the mapping (X0, f) 7→ X can be extended by continuity
from D(A)× L1(0, T ; H) into C(0, T ;D(A)). Moreover,
in the case where f = 0, the mapping X0 7→ X(t) defines
a nonlinear contraction C0-semigroup.
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