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Hydrodynamic forces on an oblate spheroid in contact with a smooth surface
in a linear shear flow

Enzo De Souza,1 Rafik Ouchene,1, a) and Lionel Thomas1

CNRS, Institut Pprime, UPR 3346, 11 Boulevard Marie et Pierre Curie, Site du futuroscope, 86073 Poitiers,
France

In this work, a computational fluid dynamics of a linear shear flow past an oblate spheroid resting on a
surface was conducted. The present study aims to compute the hydrodynamic forces experienced by oblate
spheroids in contact with a smooth surface. Using the computational results, we derive correlations for the
hydrodynamic drag, lift, and drift coefficients. These correlations are provided for an aspect ratio ranging
from 0.2 to 1, for particle Reynolds numbers up to 7. In addition, it is found that the Stokesian evolution of
the drag coefficient as a function of the orientation remains valid in the considered configuration; that is, the
drag coefficient evolves as a so-called ”square-sine” profile. Surprisingly, it was found that the lift induced
by shear was also found to evolve as ”square-sine” with respect to the spheroid orientation. Furthermore,
we found that the drift coefficient evolves as a so-called ”cosine-sine” profile with respect to the spheroid
orientation.
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I. INTRODUCTION

Understanding the complex aero- or hydro-dynamic
forces acting on non-spherical particles resting on a sur-
face is of great importance in numerous environmental
and industrial applications where particle re-suspension
occurs. Transport of sediment grains in a river1,
pollutants transport in rivers2, transport of sand by
wind3, pollutant dispersion in the environment4, pollen
transport5, incipient motion of particle from substrate6,
particle aggregation in combustion aerosols7,8, or con-
tamination in a microelectronics industry9, among oth-
ers, are the areas in which knowledge of the forces in-
volved in particle re-suspension plays a critical role. In
practice, particles in such processes can have an indefi-
nite possibility of sizes and shapes that are more often
irregular10. The intricate way in which non-spherical par-
ticles interact with the flow motivates studies of the shape
effect on particle transport and, accordingly, involves the
opening investigation of the hydrodynamic forces act-
ing on non-spherical particles. Nowadays, the modeling
of such processes using the Euler-Lagrange approach is
more and more moving towards non-spherical particles
to take into account the significant effect of the particle
shape as opposed to the common use of perfectly spher-
ical particles11–19. From a practical point of view, the
indefinite possibility of non-spherical shapes are approxi-
mated by some regular geometries such as spheroids and
cylinders. However, although the particle shapes are ap-
proximated by these regular geometries, a complete de-
scription of the behavior of these particles requires the
modeling of the hydrodynamic forces acting on the par-
ticle, taking its orientation into account, as opposed to
the spherical particle case. In the past decades, hydro-
dynamic forces acting on non-spherical particles have re-
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ceived numerous investigations20–30 which were mainly
devoted to the non-spherical particles away from the sur-
face. Thus, their use is neither accurate nor adequate
in the context of re-suspension, where the presence of a
surface can significantly affect the hydrodynamic forces.
This compact literature overview is meant to illustrate
the relevance of investigating hydrodynamic forces on
non-spherical particles, but for the sake of brevity and
clarity, details are not recalled. Interested readers are
referred to the reviews of the techniques describing the
motion of non-spherical particles, and also the numerical
and experimental methods used for measuring particle
dynamics produced by Voth & Soldati31. The readers can
also refer to the recent extensive review by Michaelides
and Feng32 on drag coefficients of non-spherical parti-
cles. The authors of the study examined the state of
knowledge of the drag coefficients of non-spherical par-
ticles based on a review of the available correlations in
the literature. General recommendations are proposed
by the authors on the use of these correlations in the
numerical simulations.

And still, despite the numerous works carried out
to quantify the impact of non-spherical shapes on the
hydrodynamic forces, they are unfortunately limited
when employed in the specific context of re-suspension,
where the presence of a surface affects substantially
these hydrodynamic forces. Moreover, particles resting
on a surface in a fluid flow are unfortunately less
investigated, thus requiring significant efforts to predict
the hydrodynamic forces in such a condition.

Many researchers have investigated particle motion in
a slow shear flow33–37. Saffman33 demonstrates that a
sphere moving with a certain velocity in a very viscous
liquid, relative to a simple shear flow, experiences a lift
force perpendicular to the flow. However, the derived
results are known to be compromised as the sphere ap-
proches the wall. Goldman et al.36 derived asymptotic
solutions for the Stokes equations to describe the transla-
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tional and rotational motion of a sphere close to a plane
wall in a viscous fluid, particularly as the gap between the
sphere and wall narrows. The issue of a linear shear flow
over a fixed spherical particle in contact with a smooth
surface was considered by O’Neill38 who derived an ex-
act solution to the linearised Stokes flow equations. The
values of the hydrodynamic force and pitching torque
acting on a sphere are determined explicitly. Similarly,
Leighton & Acrivos37 determined the lift force on a sta-
tionary sphere on a smooth plane when placed in a simple
shear flow under conditions of small Reynolds numbers
(Rep < 1). Particularly, the authors showed that the ra-
tio between the lift and drag forces is of 0.114Rep, which
indicates that the lift force is negligible at low particle
Reynolds number. For the purpose of examining the hy-
drodynamic forces acting on a finite-sized spherical par-
ticle moving in a wall-bounded shear flow, Zeng et al.39

performed numerical simulations for a limiting case of a
stationary spherical particle in a wall-bounded shear flow
at a finite Reynolds number and varying distances from
the wall. Particular attention was paid to a spherical
particle in contact with a smooth wall. The authors pro-
vided correlations for both drag and lift coefficients that
are valid in a wide range of particle Reynolds number
Rep < 250.

As far as we are aware, only a few works dealing with
the hydrodynamic forces experienced by non-spherical
particles resting on a surface are reported in the liter-
ature.

Wakiya34 provides analytical results for a spheroid in
the Couette flow, where the steady translation of one of
the two walls drives the flow presenting a case for the
analytical value of drag and torque acting on a spheroid
fixed in a shear flow depending of distance to wall. A
constant can be determined in the case of Couette shear
flow to be about 1.67 for drag force which remains vastly
different from constant found by Goldman et al.36 and
O’Neill38. Price40 examines a three-dimensional Stokes
flow where a hemispherical bump is introduced into shear
flow along a plane wall. The disturbance flow around the
bump is calculated, revealing a recirculatory motion near
the base of the hemisphere. Additionally, the force and
torque exerted on the bump were determined. El-Kareh
& Secomb41 analysed axisymmetric Stokes flow impact-
ing a spherical cap on a solid plane wall. The study pro-
vided the pressure distribution and axial force on caps of
various shapes, showing that axial force is proportional
to cap volume but less sensitive to shape flattening for a
fixed volume. Sugiyama & Sbragaglia42 further investi-
gates three-dimensional shear flow over a hemispherical
droplet on a plane wall, with solutions depending on the
viscosity ratio between the droplet and surrounding fluid.
It extends Price’s earlier work on no-slip hemispherical
bumps. Key results include expressions for the torque
and force on the droplet and the effect of surface defor-
mations at low capillary numbers. Martino et al.43 ex-
perimentally examines the onset of motion for a partially
exposed cylinder in a shear flow within a narrow chan-

nel. Positioned perpendicular to the flow in a test zone,
the cylinder’s varying exposure to the flow simulates the
effects of sediment bed constraints in natural sediment
transport. The study highlights the relationship between
particle mobility at critical conditions and the degree of
burial, showing how exposure and mechanical resistance,
defined by the static pivot angle, impact the cylinder’s
movement. Boulbene et al.44 performed numerical sim-
ulations of the laminar shear flow past a bacterial cell
attached to a plane surface. To clarify the prevailing
mechanisms involved in the detachment of model bac-
teria, the authors computed the induced hydrodynamic
forces and torque exerted on the cell. The focus was on
the prolate spheroids with an aspect ratio ranging from
1 to 2 and orientation in the interval of [0 − π/2] in the
Stokes regime flow. Particularly, from the discussion of
the drag and torque magnitude with respect to the cell
orientation, it was shown that reorientation and rolling
of spheroid-shaped cells are favored. On the other hand,
they found that rod-shaped cells tend to lie on the sur-
face and align with the flow direction. By applying a re-
solved discrete particle method, Musong et al.45 studied
the drag force on non-spherical (rod and cone) particles
in contact with a wall. They noticed that the particle’s
shape or orientation has a significant effect on the drag
force. In addition, the authors observed that particle-wall
separations as well as their length significantly affect the
drag force. To examine the mobilisation of bacteria in
turbulent wind conditions Brambilla et al.46, review the
understanding of the forces for colloidal spherical parti-
cles and extends the existing theories to rod-shaped par-
ticles. The authors re-derived the equations for the drag
and lift forces accounting for the shape of the particle.
Fillingham et al.47 conducted Direct numerical simula-
tions of a steady flow over an isolated prolate spheroid of
revolution resting on a surface parallel to their long axis.
Four aspect ratios (1.5, 2, 3 and 5) were considered in ad-
dition to the spherical case, while the particle Reynolds
number was taken up to 10. Thanks to the results of the
simulations, the authors provided correlations for drag,
lift, and torque coefficients, taking the aspect ratio, the
particle Reynolds number, and the particle orientation
into account. Ting et al.48 evaluated the drag and lift
forces acting on oblate spheroids on a smooth solid sur-
face using a numerical simulation of Couette linear shear
flow over these particles. The special cases of interest in
their investigation were the oblate spheroids of revolution
with their short axis perpendicular to the surface and as-
pect ratios of 0.025, 0.05, 0.1, 0.25, 0.5, and 1 in a Stokes
regime flow. As a main result, these authors introduced
shape-dependent corrections into traditional Stokes for-
mulae for spherical particles49. More recently, a numeri-
cal study of the hydrodynamic force exerted on a prolate
hemispheroidal particle attached to a smooth surface has
been performed by Naghashnejad et al.50. Using their
computational results, the authors provided a correla-
tion for the drag coefficient as a function of more general
descriptors of the geometry commonly used in the case of
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particles with irregular shapes. Three aspect ratios were
considered (1, 3, and 5) at only one particle Reynolds
number, Rep = 10, while two orientations were consid-
ered, namely, the pitch angle with respect to the surface
and the orientation angle with respect to the flow di-
rection. The commercial code ”COMSOL Multiphysics”
has been used by Baghat and Goswami51 to perform nu-
merical simulations of a linear shear flow past a prolate
spheroid in the vicinity of a rough wall. The focus was
on the estimation of the hydrodynamic forces and torque
at different wall separation distances and inclination an-
gles. By making use of their computational results, the
authors provide the correlations for the drag and lift coef-
ficients to describe the effect of rough surface, inclination
angles, and particle Reynolds numbers. In a recent pa-
per by Chéron et al.52, an investigation of a linear shear
flow past a rod-like (spherocylinder) particle has been
conducted by a direct numerical simulation carried out
with an immersed boundary method. The computational
data, in combination with the available expressions in the
viscous regime, are used to derive new correlations for
drag, lift, and torque coefficients for various fluid flow
regimes and velocity profiles, including locally uniform
flow and locally linear shear flow. Following this investi-
gation, Chéron & van Wachem53 presents novel correla-
tions to predict the drag, lift, and torque coefficients of
axi-symmetric rod-like particles in wall-bounded linear
shear flow. In this study the particle position and parti-
cle orientation with respect to the wall are varied in view
of analysing its influence on hydrodynamic forces. The
authors provided new correlations depending on the par-
ticle Reynolds number, orientation angle, aspect ratio,
and the dimensionless distance to the wall. Wall effects
are modeled as a multiplication factor for drag and ad-
ditional contributions for lift and torque. They further
took into account particle wall distance providing a vari-
ety of correlations for different regimes using Zeng et al.39

and provided an analysis on wall effect on drag, lift and
torque for rod-like particle. Lain et al.54 investigated by
numerical simulation the influence of simple shear flow
on resistance coefficients. Three particles shape, namely,
prolate and oblate ellipsoids and cylinders, were consid-
ered at particle Reynolds numbers of Rep = 1, 10 and 100
at only the pitch angle,ϕp ∈ [0o−180o], in addition to the
fluid spin ratio. Their physical analysis was focused on
the pressure and frictional contribution to the hydrody-
namic forces and pitching torque. Especially, one of their
main findings is that the pressure and frictional drag co-
efficients are independent of the shear flow. However,
referring to Chéron et al.52, there may exist an appar-
ent difference in shear flow cases where the flow speed is
perpendicular to the axis of symmetry because the non-
uniform effect of shear flow may rotate the particle. De-
spite the wide range of parameters analysed by Lain et
al.54, the effect of wall contact and the orientation angle
are, unfortunately, not investigated in their study.
From the investigations recounted in the previous para-
graphs, it is clearly noticeable that the present issue has

recently received more interest from researchers and fur-
ther efforts are needed to design new correlations for
the hydrodynamic coefficients, aiming at accounting for
the non-spherical particles resting on a surface. The
spheroidal shape of the particle seems to be a special
case of interest since it allows describing both elongated
(prolate) and flattened (oblate) particles. As discussed
herein before, Fillingham et al.47 investigated the case of
prolate spheroids resting on a plane. The present work is
therefore undertaken with the aim of developing accurate
and simple correlations for the drag, lift, and drift forces
acting on an isolated oblate spheroid resting on a smooth
plane. The investigation is conducted for an aspect ratio
ranging from 0.2 to 1, for a particle Reynolds number
up to 7, for an orientation angle ϕf ∈ [0o − 90o] and for
a pitch angle of ϕf = 0o. Accordingly, computational
fluid dynamics in this configuration were conducted us-
ing a body-fitted numerical method for acquiring a wide
database of these hydrodynamic coefficients and used to
reach this objective.
The rest of this document is organized as follows. The

problem is first formulated and conceptualized in a sketch
in Section 2. In Section 3, the computational methodol-
ogy is thoroughly described, along with the validation
cases. The flow visualization and the computational re-
sults are given before introducing the provided correla-
tions in Section 4. Finally, Section 5 is devoted to sum-
marizing our findings and discussing the possible per-
spectives.

II. PROBLEM FORMULATION

In this work, we follow the same approach used by
Fillingham et al.47 for the prolate spheroids, extending
this choice to the oblate spheroids. Thus, we consider an
isolated oblate spheroidal particle attached to a smooth
plane whose axis of symmetry is parallel to the plane.
It should be emphasized that, throughout the rest of
the document, this will be called spheroid-on-a-smooth-
surface. A schematic of the flow configuration, spheroid
position, and orientation is shown in Figure 1. Particles
are characterized by dimensionless parameters. The di-
mensionless shape factor is the aspect ratio, defined as
the ratio between the revolution axis and the major axis
λ = b

a . The flow orientation angle, ϕf , is the angle be-
tween the revolution axis and the flow direction, whereas
the particle pitch angle, ϕp, is the angle between the revo-
lution axis with respects to the surface (xy−plane). The

volume equivalent spherical diameter, dp = [6Vp/π]
1/3

,
taken to be the relevant characteristic length scale. Here,
Vp = 4

3πb a
2 is the volume of the considered spheroid. As

the hydrodynamic coefficients depend on the flow around
the spheroid, the particle Reynolds number at which the
hydrodynamic coefficients is commonly defined as:

Rep =
Ucdp
ν

=
2γa2λ1/3

ν
(1)
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Figure 1. Schematic diagram of an oblate spheroid-on-a-smooth-surface in linear shear flow. Top: a side-view (xy-plane) with
the velocity profile u(y); Bottom: top-view (xz-plane)with the velocity profile u(y).

where, Uc = aγ is the undisturbed fluid velocity at
the mass center of the oblate spheroid, y = a, and ν the
kinematic viscosity of the fluid. All spheroids in this work
have the same volume equivalent spherical diameter dp
= 2aλ1/3.

A. Dimensionless particle dynamic coefficients

Depending on the particle position, shape and ori-
entation, the interaction between the fluid flow and
the spheroid results in different hydrodynamic forces
experienced by the spheroid. In addition to the body
force of gravity and the adhesion force, an isolated oblate
spheroid attached to a smooth plane in a fluid flow
experiences drag and lift forces. These hydrodynamic
forces are characterized by the dimensionless coefficients,
CD and CL respectively, and are defined as a function of
the diameter of the volume equivalent sphere, dp:

CD =
8∥FD∥
ρfπd2pU

2
c

, (2)

CL =
8∥FL∥

ρfπd2pU
2
c

, (3)

Here, FD and FL, are, respectively, the drag and lift
forces experienced by the oblate spheroid-on-a-smooth-
surface immersed in a fluid with density ρf .

Moreover, in the case of spheroids (prolate or oblate),
when the axis of symmetry is neither aligned nor per-
pendicular to the flow direction (ϕf ̸= 0o and ϕf ̸= 90o),
an asymmetry of flow structure about the drag-lift plane
(xy − plane) induces a lateral force in the z-direction.
This force is so-called ”drift” force, as shown in Naghash-
nejad et al.50, Fdrift. On the other hand, due to the sym-
metry of such particle shape with respect to the drag-lift
plane (xy−plane), the drift force vanishes for the sphere
and the spheroids with an axis of symmetry aligned or
perpendicular to the flow direction.
To characterize the drift force, we defined here the drift

coefficient Cdrift as :

Cdrift =
8∥Fdrift∥
ρfπd2pU

2
c

. (4)

Dealing with flow over a single sphere-on-a-smooth-
surface and by fitting the computational results of the
drag and lift coefficient, Zeng et al.39 have obtained the
following correlation for the drag coefficient:

CD = 1.7009
24

Rep

[
1 + 0.104Re0.75p

]
, (5)

and for the lift coefficient by:

CL =
3.663(

Re2p + 0.1173
)0.22 (6)
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Figure 2. Illustration of the particles considered in the present study. Particles studied by Fillingham et al.47 are also reported
to motivate the reader.

As revealed in the literature review, there is a lack of
correlations for these hydrodynamic coefficients acting
on non-spherical particles, especially spheroids. There-
fore, the present work is devoted to providing those
coefficients for the oblate spheroid-on-smooth-surface.

The following sections outline the computational
methodology used in the present work, including the val-
idation of the computed hydrodynamic coefficients.

III. COMPUTATIONAL METHODOLOGY

In order to achieve the objective defined for this study,
the relevant physical parameters governing our investiga-
tion, namely, particle aspect ratio, particle orientation,
and particle Reynolds number, have to be selected. In
addition, the domain size, the number of mesh nodes,
the Navier-Stokes solver, and the computation of the hy-
drodynamic forces have to be assessed. Thus, this section
is devoted to exposing and validating the computational
methodology.

A. Particle parameters

In the context of this study, which deals with oblate
spheroids-on-a-smooth-surface, four parameters are con-
sidered for acquiring a helpful database for developing the
models predicting these hydrodynamic coefficients. The
range values of the dimensionless parameters considered
in the computational fluid dynamics conducted in this
study are summarized in Table I. Figure 2 was sketched
to illustrate the different types of spheroids considered in
this study. To contextualize our survey and to motivate
the reader, the prolate spheroids studied by Fillingham
et al.47 are also depicted in the same figure. It is es-
sential to highlight that we have only varied the flow
orientation, ϕf , and the pitch angle was kept constant,
ϕp = 0o, in order to be in accordance with the inves-
tigation by Fillingham et al.47. Furthermore, in some

Table I. Range values of the dimensionless parameters of the
simulations

Dimensionless Parameters Range
Aspect ratio λ 0.2, 0.4, 0.6, 0.8 and 1
Flow orientation angle ϕf 0o, 30o, 45o, 60o and 90o

Particle pitch angle ϕp 0o

Particle Reynolds number Rep 0.1, 0.2, 0.5, 1, 2, 3, 5 and 7

applications, the maximum particle Reynolds number of
small particles located within the viscous sub-layer of a
turbulent flow where a local linear shear flow exists is
overall of the order of 1047,50,55. Therefore, consistent
with this statement and to also keep a similar range of
particle Reynolds number as in Fillingham et al.47, our
simulations were performed for Rep up to 7.

B. Governing equations

In the present study, we consider a laminar, incom-
pressible and isothermal flow of a Newtonian fluid over a
single oblate spheroids-on-a-smooth-surface. In addition,
Zarghami & Padding56 showed that the flow remains
steady for a single 2D elliptical particle for Rep ≤ 50.
Furthermore, as stated by Zeng et al.39 for the sphere,
Fillingham et al.47 for the prolate spheroid and Naghash-
nejad et al.50 for the hemispheroid, the flow field around
such particle remains steady for a particle Reynolds num-
ber up to 10. Accordingly, it was deemed appropriate to
consider the flow steady, and the time-dependent term
in the Navier–Stokes equations has been neglected. The
final form of governing equations reads as:

∇ · u = 0, (7)

(u · ∇)u = − 1

ρf
∇p+ ν∆u, (8)

where p is the pressure.
The hydrodynamic forces are the components of the fluid
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forces acting on the considered particle in the three prin-
cipal directions. These forces are obtained by integrating
the total stress acting on the particle surface area:

F =

˛
S

[
−pn+ µ(∇u+∇uT) · n

]
dS. (9)

Here, the drag force FD = nx ·F is the force acting in
the x direction, FL = ny · F is the force acting in the y
direction, and Fdrift = nz · F is the force acting in the z
direction.

Simulations are performed using the Computa-
tional Fluid Dynamics (CFD) commercial software
STARCCM+© version 17.02.07. The centered scheme
is used for discretizing all the numerical fluxes in the
Navier–Stokes equations. The problem of the cou-
pling between velocity and pressure is tackled with
a Semi-Implicit Method for Pressure-Linked Equations
(SIMPLE)57.

C. Computational domain and boundary conditions

Oblate spheroids with four different aspect ratios, with
angles of inclination ϕf and ϕp were considered (see Table
I). Each spheroid was placed in the domain shown in Fig-
ure 3. Because of the asymmetry of the problem, a com-
plete 3D configuration is considered in all simulations.
The geometrical configuration is a parallelepiped fluid
box surrounding the spheroid. The simulation domain
where the length×width×height of 36dp × 12dp × 12dp
was previously reported adequate and used by Derk-
sen & Larsen58 and Ting et al.48. In the simulations
performed by Fillingham et al.47, the domain size of
D50dp×10dp×10dp

which were reported to be adequate to
capture the physical behaviour of the flow over a sphere-
on-a-surface. This domain size is tested in comparison to
two larger domains, in order to prevent any disturbance
of the flow due to the lateral boundary conditions. The
three domain sizes tested are: (D1 : 50dp × 10dp × 10dp),
(D2 : 50dp × 10dp × 15dp) and (D3 : 50dp × 10dp × 20dp).
Simulations have been performed for the case of oblate
spheroid with an aspect ratio of λ = 0.2 at Rep = 0.1
and Rep = 7 for ϕf = 45o (Tab.II and Tab.III).

Table II. Influence of varying domain size on the drag, lift and
drift coefficient for an oblate for ϕf = 45 and Rep = 0.1.

Domain CD ∆CD CL ∆CL Cdrift ∆Cdrift

D1 497.949 5.946 -102.9
D2 493.206 0.962 5.8 2.519 -101.377 1.481
D3 491.341 1.345 5.804 2.452 -100.884 1.96

The deviations in the drag, lift, and drift coefficients
obtained with the smallest domain size D1 compared to
the results for the larger domains D2 and D3 are found
to be less than 4% for both Rep = 0.1 and Rep = 7.

Table III. Influence of varying domain size on the drag, lift
and drift coefficient for ϕf = 45◦ and Rep = 7.

Domain CD ∆CD CL ∆CL Cdrift ∆Cdrift

D1 24.078 2.719 -10.624
D2 23.593 2.014 2.652 2.464 -10.321 2.852
D3 23.417 2.745 2.630 3.273 -10.216 3.840

Accordingly, it can be reasonably concluded for the do-
main D1 that the perturbation of the flow due to lat-
eral boundary conditions does not have a significant ad-
verse effect on the computational results. Therefore,
the computational domain chosen in the present work
is D1 : 50dp × 10dp × 10dp. It is worth mentioning that,
similar to Fillingham et al.47, each spheroid was modeled
with a small gap away from the surface corresponding to
0.01dp to avoid singularity at the contact point between
the spheroid and the surface, which is a challenge to mesh
generation. A linear velocity profile is imposed in the in-
let boundary u(x = 0) = γy, the upper wall is moving
at a steady velocity of u(Ly) = γLy. A pressure outlet
condition is chosen, and the no-slip Dirichlet condition is
applied at the particle surface and on the bottom chan-
nel wall, while the sidewalls are specified as symmetry
boundaries.

Figure 3. Schematic description of the computational domain
showing the particle position and indicates the boundary con-
ditions.

D. Grid independence

The body-fitted approach was used to mesh the fluid
domain. The mesh of the fluid domain consists of un-
structured polyhedral control volumes. In addition, the
surface mesh of the spheroid is kept fine enough to ensure
a precise integration of the hydrodynamic forces acting
on the surface. To reduce the overall computational cost,
a hybrid mesh is created for the domain. In particular,
the computational mesh grid is clustered in areas close to
the particle and behind the particle to capture a possible
wake. The mesh generated for the case of a sphere-on-a-
surface is shown in Figure 4.
Numerical simulation by CFD requires, at the first

step, to conduct a grid-independence study. For this pur-
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Figure 4. Computational mesh domain showing the refine-
ment around a sphere-on-a-smooth-surface and behind the
sphere used in this research.

pose, the influence of the mesh resolution is tested with
the flow around an isolated sphere-on-a-smooth-surface,
for three different meshes (coarse, medium, and fine).
This test is conducted at the particle Reynolds number,
Rep = 7, and the results are summarized in Table IV.
These relative deviations are calculated using the given
formulas:

∆CD
=

∣∣∣∣CD − CD,Ref

CD,Ref

∣∣∣∣× 100%, (10)

and

∆CL
=

∣∣∣∣CL − CL,Ref

CL,Ref

∣∣∣∣× 100% (11)

Here CD,Ref and CL,Ref correspond respectively to the
results obtained with the finest grid.

Table IV. Influence of varying CFD basecase mesh resolution
on the drag and lift coefficient for a sphere-on-surface and
Rep = 7.

Drag coefficient Lift coefficient
Resolution Number CFD ∆CD CFD ∆CL

Fine 14362588 8.564 1.582
Medium 8107542 8.560 0.05 1.580 0.126
Coarse 4458925 8.452 1.31 1.547 2.21

Even though, the coarse mesh provides a correct result,
the medium mesh was used. However, it is not necessary
to refine beyond the medium mesh. Indeed, from a quan-
titative point of view, the differences between the results
obtained from the medium grid and the finest grid, are of
0.05% for the drag coefficient and of 0.126% for the lift
coefficient. On the other hand, the differences between
the results computed by the coarse grid and the finest
grid are respectively of 1.31% and 2.21%, for the drag
and lift coefficients. These differences indicate that the
solution is grid independent with medium and fine mesh
resolution. Therefore, the best compromise between ac-
curacy and simulation duration in all cases is meshing
with a number of cells greater than 8 million cells, con-
sidering wake refinement.

E. Validation of the simulations

A comparison of the present computational results
with the literature is of practical interest since it allows
to validate the actual numerical approach for the com-
putation of the hydrodynamic forces.

10−1 100

Rep

101

102

C D
 &

 C
L

CD, Zeng et al. (2009)
CD, Present
CL, Zeng et al. (2009)
CL, Present

Figure 5. Validation of the computational approach showing
a comparison between the computed drag and lift coefficients
for a sphere-on-smooth-surface and the correlations given by
Zeng et al. Eqs.(5-6).

For this purpose, our computational results in the case
of the flow over a single sphere-on-a-smooth-surface were
compared to the corresponding values obtained from the
correlations of Zeng et al.39 (Eqs.5-6). As presented in
Figure 5, it can be observed that our computational re-
sults collapse reasonably well with the correlations from
Zeng et al.39, for both drag and lift coefficients and what-
ever the particle Reynolds number.
To quantify the differences, the computed values of

CD and CL and the corresponding values from equations
(5-6) are given in Table V, along with the relative devia-
tions between the computational results and the results
from equations (10-11), for each particle Reynolds num-
ber considered in this study. The relative deviation never
exceeds 1.5% for CD whereas the relative deviation of the
computed CL attains 8.5% at small Rep. Furthermore,
a comparison can be made with the values extracted
from the Direct numerical simulation of Zeng et al.39.
The extracted values at Rep = 2 are CD = 24.188 and
CL = 2.702 from which our results deviate respectively
by 1.21% and 0.96%. Clearly, there is a good agreement
between the computed results and both the computed
and the correlations established by Zeng et al.39.
Validation case of the simulations in the case of pro-

late spheroids was conducted by comparing the results
with the correlations provided by Filligham et al.47. Es-
pecially, comparisons were made for the drag and lift co-
efficients for two aspect ratios, λ = 1.5 and λ = 2, at the
incidence angles ϕf = 0◦ and ϕf = 90◦. The graphical
comparison, shown in Figure 6, and the mean and max-
imum relative deviations, computed in Tables (VI-VII),
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Figure 6. Validation of the computational approach showing a comparison between the computed results (symbols) and the
correlations provided by Filligham et al.47 (Dashed lines), for drag and lift coefficients in the case of prolate spheroid-on-
smooth-surface.

Table V. Drag and lift coefficients for a sphere-on-a-surface.

Drag coefficient CD Lift coefficient CL

Rep CFD Eq.5 ∆CD CFD Eq.6 ∆CL

0.1 414.88 415.77 0.21 5.360 5.765 6.93
0.2 208.45 210.46 0.96 5.035 5.502 8.50
0.5 85.90 86.69 0.92 4.237 4.566 7.20
1 44.69 45.07 0.84 3.496 3.575 2.21
2 23.90 23.98 0.35 2.728 2.683 1.69
3 16.85 16.83 0.12 2.310 2.250 2.56
5 11.10 11.00 0.86 1.844 1.802 2.31
7 8.56 8.44 1.40 1.580 1.550 1.61

illustrate the good accordance between the computed re-
sults and the correlations provided by Fillingham et al.47.

In Figure 6, we reported also the numerical results ob-
tained by Lain et al.54 at Rep = 1 and ϕp = 0◦ at the
orientation angles ϕf = 0◦ and ϕf = 90◦ and for an as-
pect ratio λ = 1.5. The extracted values at ϕf = 0◦ are
CD = 49.3 and CL = 4.63 from which our results devi-
ate respectively by 2.17% and 1.85%, and for ϕf = 90◦

are CD = 42.57 and CL = 3.1 from which our results
deviate respectively by 1.91% and 1.353%. Our results

are clearly in good agreement with the results reported
by Lain et al.54. Moreover, we have performed simula-
tion for an oblate spheroid with (Rep = 0.1, λ = 0.5,
and ϕf = 0o). To make a comparison with the analyti-
cal solution for a spheroid in the Couette flow, given by
Wakiya34, the position of the spheroid center is located at
a distance from the surface of 2a. The obtained compu-
tational result CD = 458.42 is confronted to the deduced
result from the analytical solution provided by Wakiya34

CD = 475.96. The deviation is found to be of 3.83%,
indicating an accurate estimation of the drag coefficient.

Table VI. Mean relative deviations of the CFD results from
the correlations by Fillingham et al.47.

∆CD ∆CL

ϕf = 0o ϕf = 90o ϕf = 0o ϕf = 90o

λ = 1.5 8.36 5.42 10.18 4.58
λ = 2 5.68 5.50 14.49 9.10

Given the discussion above, it is fair to summarize here
that this validation case, in combination with the distinct
computational details, the current numerical approach is
satisfactorily validated. Accordingly, this computational



9

Figure 7. Illustration of the shear flow around the four oblate spheroid-on-surface considered for Rep = 7 and ϕf = 0o. In this
illustration, the flow comes from right to left.

Table VII. Maximum relative deviations of the CFD results
from the correlations by Fillingham et al.47.

max∆CD max∆CL

ϕf = 0o ϕf = 90o ϕf = 0o ϕf = 90o

λ = 1.5 8.692 6.500 14.128 8.016
λ = 2 5.900 6.143 17.416 12.168

methodology is employed in all simulations of the flow
over an isolated spheroid-on-a-surface considered in the
present investigation, from which hydrodynamic forces
are determined.

IV. RESULTS AND DISCUSSIONS

The motivation for this investigation is the need for
correlations for the hydrodynamic coefficients in the con-
text of oblate spheroid-on-a-surface, which are encoun-
tered in many environmental and industrial processes as
discussed above. Having presented herein before a con-
vincing validation of the numerical approach, in this sec-
tion, the flow visualization and the computed hydrody-
namic coefficients are presented along with the methodol-
ogy used to develop the new correlations. Additionally,
we address some comments on the performance of the
derived predictive correlations.

A. Flow visualization

A first qualitative analysis can be done by examining
briefly the flow past the spheroids in the present config-
uration, which is of particular interest. It is obvious that

the flow structure around the particle varies depending
on the particle’s orientation relative to the flow direc-
tion. In figure 7, we display the streamlines for the four
spheroids with the symmetry axis aligned with the flow
ϕf = 0o at particle Reynolds number Rep = 7. Con-
sistent with the presence of the surface, it can be seen
that the wake structure formed behind the spheroid is
three-dimensional, whatever the aspect ratio. Thus, it
was essential to have considered a complete 3D configu-
ration for our simulations.

It can be particularly seen that the flow became more
complex in the wake of the spheroid as the aspect ratio
decreased. This behaviour is consistent with observations
by Lain et al.54 who noticed a complex structure and
massive stall flow behind the oblate ellipsoid of aspect
ratio λ = 0.2. As stated in Ouchene26, intuitively, in
view of the fact that the frontal area is circular for all
spheroids ϕf = 0o at this orientation, only the shape
(curvature) can explain this behavior. Moreover, based
on the complex structure of the wake flow noticed at this
particle Reynolds number, one may expect and anticipate
an unsteadiness of the flow at a particle Reynolds number
slightly higher than 7 in the case of a oblate spheroid with
an aspect ratio of 0.2.

B. Drag coefficient

The behavior of the drag coefficient for oblate
spheroids-on-a-surface as a function of the particle
Reynolds number is reported in Figure 8 for the different
aspect ratios considered in the present work. We first
selected and depicted the computational results at the
extremum orientation angles, ϕf = 0o and ϕf = 90o,
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Figure 8. Drag coefficient from the present CFD against particle Reynolds number for the orientation angles ϕf = 0o and
ϕf = 90o at all aspect ratios.

along with the equation (5) for comparison. Similar to
a sphere, it can be seen that, for both extremum an-
gles, CD decreases as Rep increases, whatever the aspect
ratio. In addition, the drag coefficient departs signif-
icantly from equation (5) when the axis of symmetry
is aligned with the flow direction CD,ϕf=0o compared
to the case of the symmetry axis perpendicular to the
flow direction CD,ϕf=90o , for which only a slight depar-
ture from the spherical case is noticed. Furthermore,
the simulation predicts a monotonic increase in the drag
coefficient CD,ϕf=0◦ as the aspect ratio decreases (Fig-
ure 14). However, when the shape deviates from that
of a sphere, a non-monotonic behavior in the drag coef-
ficient CD,ϕf=90◦ , is observed, irrespective of the parti-
cle Reynolds number. These observations are in accor-
dance with the earlier results reported by O’donnell and
Helenbrook59 and Ouchene26 in the case of a spheroid in
a uniform flow. Moreover, the dependence of the drag co-
efficient on the aspect ratio is seen to be more pronounced
at higher Rep. Expectedly, the effect of the aspect ratio
on the drag coefficient differs from the observation by
Fillingham et al.47 in the case of prolate spheroids. In-
deed, as the elongation increases, the frontal area A⊥ at
ϕf = 90◦ grows larger and increasingly exceeds the cir-
cular frontal area A∥. Conversely, at ϕf = 0◦, the frontal
area A⊥ decreases for oblate spheroids, gradually becom-
ing smaller than the circular frontal area A∥.Intuitively,
one can argue that such geometrical differences would be
behind the way the trend of CD departs from the spher-
ical case.

Following the methodology employed by Ouchene et
al.24,26 to derive a correlation for CD for spheroid with a
link to the spherical case, it is obvious that the predicting
model has to reduce to the correlation given by Zeng et
al.(Eq. 5). A similar approach was helpfully used by
Fillingham et al.47 in the case of prolate spheroids.

Based on the observed variations of the drag coefficient
with respect to particle Reynolds number, aspect ratio,
and incidence angle, the general form of the correlation

can be derived from previous studies as follows:

• The drag coefficients for ϕ = 0◦ and ϕ = 90◦ vary
according to the particle Reynolds number.

• The aspect ratio λ is considered the primary shape
parameter for the spheroids.

• The correlation must reduce to the Zeng et al. cor-
relation (Eq. 5) when λ = 1, corresponding to a
sphere.

Therefore, the functional form of the derived correla-
tion for CD,ϕf=0o and CD,ϕf=90o is given by :

CD = 1.7009
24

Rep

[
λd1 + 0.104λd2Re0.75p + d3(1− λ)d4Red5

p

]
(12)

The best fitting of the computational results based
on this functional form gives the fit parameters summa-
rized in Table VIII. They are provided for both parallel
and perpendicular alignment of the symmetry axis with
the flow direction. The accurate estimation of the drag
coefficient is given in the range of Rep ∈ [0.1 − 7] for
λ ∈ [0.2 − 1]. These correlations predict the drag coef-
ficient with the mean relative deviations of ∆CD,ϕf=0o

=

1.11%, and ∆CD,ϕf=90o
= 1.26%, and the maximum

relative deviations of max(∆CD,ϕf=0o
) = 3.86% and

max(∆CD,ϕf=90o
) = 5.45%. Here, the relative deviation is

calculated using equation (10) where, CD,Ref = CD,CFD

and CD correspond to the results obtained by the equa-
tion (12) at the corresponding orientation angle ϕf .
At this stage, the correlations for CD,ϕf=0o and

CD,ϕf=90o have been drawn, but the correlation account-
ing for the particle orientation remains to be determined.
In the case of uniform flow over spheroids in the Stokes
regime flow, the drag coefficient is provided by Happel &
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Figure 9. Normalized drag coefficient from the present CFD as a function of the orientation angle ϕf for Rep = 0.1, 1, 5 and
7. Equation (14) is depicted for comparison.

Table VIII. Fitting parameters for the correlation of the drag
coefficient at ϕf = 0o and ϕf = 90o (Eq.12).

d1 d2 d3 d4 d5
ϕf = 0o -0.2822 -0.6514 -0.2487 0.7853 0.1024
ϕf = 90o 0.2615 0.1201 0.6255 3.441 -0.00655

Brenner60 is given by:

CD = CD,ϕf=0o +
(
CD,ϕf=90o − CD,ϕf=0o

)
sin2(ϕf )

(13)
This formula is examined in different numerical in-

vestigations. Ouchene et al.24, Sanjeevi and Padding61,
Sanjeevi et al.25 and Ouchene26 observed that this re-
lationship performs well outside the Stokes regime flow.
Fillingham et al.47 retrieved a similar trend for prolate
ellipsoid-resting-on-a-surface. Recently, Lain et al.54 no-
ticed the same trend by varying the pitch angle, in the
configuration of linear shear flow over spheroids. At a
low particle Reynolds number, Chéron & van Wachem52

noticed in the case of rod-like particles that the profile
of the scaled drag coefficient as a function of the orien-

tation angle closely resembles that of the drag coefficient
obtained in a uniform flow. However, at higher particle
Reynolds numbers, Rep > 10, the evolution of the drag
coefficient as a function of the orientation angle scaled by
the drag coefficient in the case of uniform flow no longer
maintains its symmetry at the pitch angle ϕp = 90o. Ac-
cordingly, instead of performing a fitting of the compu-
tational results, the relevant functional form of the drag
coefficient as a function of the orientation angle is the
equation (13), which is tested in comparison with the
computational results. For the sake of clarity, orienta-
tion dependence of the drag coefficient is analyzed from
the normalized drag coefficient, which is defined as a ra-
tio between the drag coefficient at the considered angle
and the drag coefficient at the angle, ϕf = 0o:

CD

CD,ϕf=0o
= 1 +

(
CD,ϕf=90o

CD,ϕf=0o
− 1

)
sin2(ϕf ) (14)

Figure 9 shows a graphical comparison of the computa-
tional results with the theoretical normalized drag from
Happel & Brenner60 over the range of λ. The solid lines
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represent the (Eq. 14). As it can be seen, the influence
of the orientation angle is substantial and increases with
an increase in the particle Reynolds number. In addition,
diminishing the value of the aspect ratio contributes to
the increase in the influence of particle orientation. Fur-
thermore, the square sine law reported in equation (14)
matches well with the current computational results. The
mean relative deviation from computational results is of
the order of 0.5%. This means that the analytical formula
provided by Happel & Brenner60 for the evolution of the
drag coefficient as a function of the orientation likewise
remains valid in the case of an isolated oblate spheroid-
on-a-surface. Interestingly, this was also retrieved by Fill-
ingham et al.47 in the case of prolate ellipsoid-resting-on-
a-surface in the range of Rep ∈ [0.1− 10] and λ ∈ [1− 5].
Therefore, one may conclude the validity of the square
sine function in both prolate and oblate spheroids in at
least the range of Rep ∈ [0.1− 7] and λ ∈ [0.2− 5].
As a measure of the complete model accuracy, we com-

puted the mean and the maximum relative deviations be-
tween the predicted and computed values of the drag co-
efficient over the entire data set, which were found to be
of ∆CD

= 0.52% and max(∆CD
) = 5.45%, respectively.

Giving these deviations, we can conclude that the derived
correlation gives an excellent prediction of the the drag
coefficient as a function of the particle Reynolds number,
the aspect ratio and the particle orientation with respect
to the flow.

C. Lift coefficient

The variations of the lift coefficient with respect to the
particle Reynolds number is depicted in Figure 10 for
all the considered aspect ratios. Similar to the drag co-
efficient, results are displayed at extremum orientation
angles, ϕf = 0o and ϕf = 90o along with the correla-
tion given by Zeng et al.39 for comparison (Eq.6). As for
the sphere, oblate spheroids experience a non-zero lift in-
duced by the shear flow. It can be seen that, for both ex-
treme angles, the lift coefficient CL decreases as the par-
ticle Reynolds number increases, regardless of the aspect
ratio. In addition, the lift coefficient departs from the
spherical case and the differences are more pronounced
when ϕf = 90o. Especially at this orientation, a mono-
tonic decrease of the lift coefficient is observed when the
aspect ratio is diminished. In opposite, when the axis
of symmetry is aligned with the surface, the lift coeffi-
cient increases as the shape gets away from the sphere.
However, as the Reynolds particle number increases, the
effect of shape is reduced. Similar to the drag coefficient,
correlations of the lift coefficient are established at the
extremum orientation angles, ϕf = 0o and ϕf = 90o.
These correlations are linked together to achieve a gen-
eral treatment that accounts for particle orientation. At
the extremum orientation angles, the functional form of
these correlations is inspired by the correlation of the
lift coefficient provided by Zeng et al.39 in the case of a

sphere-on-a-surface. Our formulation contains the terms
for incidence angle, the Reynolds particle number, and a
stand-alone aspect ratio term. In addition, the correla-
tion must be reduced to the correlation provided by Zeng
et al.39 (Eq.6) when the aspect ratio is λ = 1 correspond-
ing a sphere. This particular choice is motivated by the
fact that Zeng et al.39 used the result by Leighton and
Acrivos37 to close their correlation predicting the lift co-
efficient of a spherical particle. Thus, the proposed corre-
lation has to reduce to the equation (Eq. 6). Specifically,
these correlations are given by:

CL(ϕf = 0o or 90o) =
3.663

[
1 + ℓ1(1− λℓ2)Reℓ3p

][
λℓ4Re2p + 0.1173λℓ5

]0.22 (15)

By making use of the same methodology employed for
the drag coefficient, a best fitting of this functional form
to the computational results is performed to obtain the
fit parameters listed in Table IX. The differences between
the derived correlation and the computational results are
evaluated through the mean and maximum relative de-
viations from the current computational results (eq.15.
Here, CL,Ref = CL,CFD and CL correspond to the re-
sults obtained by the equation (15) at the corresponding
orientation angle ϕf .
The maximum deviations are found to be

max(∆CL,ϕf=0o
) = 7.69% and max(∆CL,ϕf=90o

) = 6.7%,

and the mean deviations, ∆CL,ϕf=0o
= 2.85% and

∆CL,ϕf=90o
= 2.99%, indicating that the predicted

correlation is reliable and accurate for the estimation of
CL,ϕf=0o and CL,ϕf=90o .
We now turn our attention to the effect of the spheroid

orientation on the lift coefficient. To draw the correla-
tion of CL accounting for the spheroid orientation, we
first paid specific attention to the results by Fillingham
et al.47. The correlations established by the authors
are first based on the fitting of their computational re-
sults CL,ϕf=0o and

(
CL,ϕf=90o − CL,ϕf=0o

)
instead of fit-

ting CL,ϕf=0o and CL,ϕf=90o . According to Sanjeevi and

Padding61, the pressure distribution contributing to the
drag shows a dependence on the surface normal orienta-
tion with the incoming flow in a consistent pattern, lead-
ing to a squared sine profile. It is well known that the
shear-induced lift is mainly dependent on the pressure
distribution, which in turn exhibits a high dependence
on the orientation of the frontal area with respect to the
incoming flow. Accordingly, similar to the drag coeffi-
cient, these correlations can be linked together using the
square sine law. By making use of this observation, we
have adopted a similar function as for the drag coeffi-
cient. Therefore, instead of trying to make any further
empirical fitting for achieving a general solution, the rel-
evant functional form of the lift coefficient as a function
of the spheroid orientation to be tested reads as:

CL = CL,ϕf=0o +
(
CL,ϕf=90o − CL,ϕf=0o

)
sin2(ϕf ) (16)
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Figure 10. Lift coefficient from the present CFD against particle Reynolds number for ϕf = 0o and 90o, for all aspect ratios.
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Figure 11. Normalized lift coefficient from the present CFD as a function of the orientation angle ϕf , for different particle
Reynolds numbers. Equation (17) is plotted for comparison.

As already performed for the drag coefficient, the ori-
entation dependence of the lift coefficient is analyzed
from the normalized lift coefficient which is defined as
the ratio between the lift coefficient at the considered
orientation angle and the lift coefficient at the orienta-

tion angle of ϕf = 0o:

CL

CL,ϕf=0o
= 1 +

(
CL,ϕf=90o

CL,ϕf=0o
− 1

)
sin2(ϕf ) (17)
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Figure 11 shows a graphical comparison of the compu-
tational results of the normalized lift coefficient with the
normalized lift coefficient. The solid lines represent the
predictions (Eq. 17). It can be observed that the effect
of spheroid orientation on the normalized lift increases
with the increasing particle Reynolds number, while di-
minishing the value of the aspect ratio gives rise to the
increased influence of the particle orientation. Interest-
ingly, the square sine function matches very well with
the computational results. Nonetheless, it is clearly that
decreasing the aspect ratio combined with the increasing
of the particle Reynolds number results in an increasing
deviation from the sine-squared lift law. The deviation of
the computational results against the sine-squared curve
is particularly more pronounced at λ = 0.2 and Rep = 7.
A possible explanation for this particular behavior is that
the wake behind the spheroid has a higher lift contribu-
tion at intermediate angles. The effect of shear flow and
particle Reynolds number combined with the orientation
angle plays a key role in the location of the appearance
of the recirculating zones and subsequently influences the
shear-induced lift at the intermediate angles.

This result sheds a new light on the issue of the orien-
tation dependence of the lift coefficient since it discloses a
square sine evolution of the lift induced by shear, which
has not been reported until now in the case of oblate
spheroid. This statement in combination with the results
Fillingham et al.47 allow us to conclude the lift force co-
efficient induced by shear evolves as ”square-sine” with
respect to the spheroid orientation at least the range of
Rep ∈ [0.1− 7] and λ ∈ [0.2− 5].

Table IX. Fitting parameters for the correlation of the lift
coefficient (Eq.15).

ℓ1 ℓ2 ℓ3 ℓ4 ℓ5
ϕf = 0o -0.9712 1.561 0.01567 7.594 6.427
ϕf = 90o -0.8288 1.755 0.05219 2.947 2.245

To provide quantitative support for the accuracy of
the derived correlations, we computed the mean and the
maximum relative deviations between the predicted and
computed values of the drag coefficient over the entire
data set, which were found to be of ∆CL,

= 1.9% and
max(∆CL

) = 11.97%, respectively. On the basis of the
above discussion, we can safely conclude that the derived
correlation satisfactorily reproduces the computational
results of the lift coefficient as a function of the parti-
cle Reynolds number, the aspect ratio and the particle
orientation with respect to the flow.

D. Drift coefficient

To complete this survey, we finally examine the drift
force experienced by the considered spheroids. A thor-
ough review of the literature, particularly for the drift
force in the context of particle transport, shows that

the drift coefficient has not received enough attention
in the literature, except in the recent investigation by
Naghashnejad et al.50. These authors reported the drift-
to-drag ratio and found that this ratio increases as the
orientation angle increases to about ϕf = 45o and then
decreases to become negative with further increase in the
flow orientation angle. Such a behaviour is surprising at
this orientation ϕp = 180o. Unfortunately, there are no
sufficient details in this investigation regarding the drift
coefficient allowing the interpretation of this behaviour.

In Figure 12, the variation of the drift coefficient as a
function of the particle orientation is displayed at four
specific particle Reynolds numbers. The computed drift
coefficient is seen to decrease as the particle shape gets
closer to a sphere (the aspect ratio tends toward unity).
This was expected since the drift force is only induced
by the asymmetry of the flow structure about the drag-
lift plane as recalled above. In addition, the increase in
particle Reynolds number yields a decrease in the drift
coefficient, whatever the aspect ratio and the orientation
angle. On the other hand, remarkably, it is observed that,
regardless of the value of the aspect ratio and particle
Reynolds number, the profiles consistently display peaks
at an orientation angle of ϕf = 45o. Overall, these trends
are similar to those obtained previously by Ouchene26 in
the case of a spheroid in uniform flow, i.e., the drift coef-
ficient as a function of the orientation angle of the parti-
cle follows the so-called ”cosine-sine” profile, suggesting
that the functional form that can reproduce the effect of
orientation is:

Cdrift = F (λ,Rep) sinϕf cosϕf (18)

Once the evolution as sinϕf cosϕf is quantitatively
tested and confirmed, the function F (λ,Rep) has to be
retrieved by fitting the computational results at the ori-
entation angle ϕf = 45o. Accordingly, this tendency is
checked by plotting in the same figure our computational
results along with the function ξ, such as :

ξ = 2Cdrift,CFD(ϕf = 45o) sinϕf cosϕf (19)

On the basis of the comparison made between the com-
putational results and the function ξ plotted in Figure 12,
we are inclined to conclude that the choice of the func-
tional form of cosine-sine allows to accurately recover the
effect of the spheroid orientation on the drift coefficient.
From the above statement, we can proceed further in

deriving the correlation for the drift coefficient, account-
ing the dependence on the particle aspect ratio and the
particle Reynolds number. While the correlations for the
drag and lift coefficients were obtained on the basis of
the correlations given by Zeng et al.39, no correlation
has been found in the literature for the drift coefficient
in the case of the aforementioned configuration.
According to these observations, the method used to

derive the new formula for the drift coefficient is based
on the following points:
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Figure 12. Drift coefficient from the present CFD as a function of the orientation angle ϕf , for different particle Reynolds
numbers. ξ from equation (19) is also plotted for comparison.

• The drift coefficient exhibits a profile represented
by the function sinϕ cosϕf .

• The aspect ratio λ is considered the primary shape
parameter for the spheroids.

• The correlation must approach zero when λ = 1,
which corresponds to a sphere that does not exhibit
any drift.

Therefore, the proposed functional form of F (λ,Rep)
respects the only criterion of the correlation that reduces
to zero in the case of a sphere:

F (λ,Rep) = δ1λ
δ2(1− λδ3)Reδ4p + δ5(1− λδ6)Reδ7p (20)

Our formulation contains seven fitting parameters,
which are listed in Table X. These parameters allow to
obtain a very good agreement for the whole data set.

To evaluate the differences between the derived correla-
tion and the computational results of the drift coefficient,
we computed the mean and maximum relative deviation:

∆Cdrift
=

∣∣∣∣Cdrift,correlation − Cdrift,CFD

Cdrift,CFD

∣∣∣∣× 100% (21)

10−1 100
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100

101

102

|C
dr
ift
|

Figure 13. Drift coefficient from the present CFD as a func-
tion of Reynolds particle Rep for ϕf = 45o.

For all aspect ratios, particle Reynolds numbers and ori-
entation angles, the mean relative deviation is found of
∆Cdrift

= 2.97%, while the maximum relative deviation
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is found to be of max(∆Cdrift
) = 12.23%. Therefore, we

can conclude that the provided correlation gives a good
prediction of the drift coefficient as a function of the par-
ticle Reynolds number, the aspect ratio and the particle
orientation with respect to the flow.

Table X. Fitting parameters for the correlation of the drift
coefficient (Eq.20).

δ1 δ2 δ3 δ4 δ5 δ6 δ7
2.2202 -0.9151 2.3500 -0.1640 123.7 0.0905 -1.0688

V. CONCLUDING REMARKS

In this work, a computation of a three-dimensional,
steady Newtonian shear flow past an oblate spheroid
resting on a surface was conducted. Inspired by the
investigation by Fillingham et al.47 in the case of pro-
late spheroids, our computational simulations were per-
formed in a similar configuration in the case of oblate
spheroids. The numerical simulations were performed
varying the particle Reynolds number, Rep ∈ [0.1− 7],
the aspect ratio, λ ∈ [0.2− 1], and the orientation angle,
ϕf ∈ [0o − 90o]. The computational approach was care-
fully validated by testing the sensibility to the mesh vari-
ation and by comparing the computational results of the
drag and lift experienced by a sphere-on-a-surface with
the correlations given by Zeng et al.39 and Fillingham et
al.47 . The focus was on the derivation of correlations for
the hydrodynamic drag, lift and drift coefficients, CD,
CL and Cdrift, respectively. The major contributions of
this investigation are summarized below.

• A large database on the hydrodynamic forces act-
ing on spheroids in the considered configuration is
reported.

• Using this database, we derived predictive corre-
lations for the hydrodynamic coefficients, namely,
drag, lift, and drift coefficients. The ability of these
correlations to estimate the hydrodynamic coeffi-
cients, CD, CL and Cdrift is discussed through the
evaluation of the mean and maximum relative devi-
ations and by plotting the computed versus corre-
lated results. In particular, these correlations could
estimate CD, CL and Cdrift with the mean rela-
tive deviations from the computational results of
0.52%, 1.9% and 2.97%, respectively. It is worth
mentioning that, to our best knowledge, the drift
coefficient was not studied in the literature in the
context of particle transport, except in the recent
investigation by Naghashnejad et al.50.

In addition to this database and the derived correla-
tions, the present analysis has demonstrated the follow-
ing interesting findings that should be highlighted:

• It is found that the drag coefficient as a function of
the spheroid orientation follows a so-called ”square
sine” profile.

• Surprisingly, the lift induced by the shear as a func-
tion of the spheroid orientation also follows a so-
called ”square sine” profile.

• The drift coefficient as a function of the spheroid
orientation follows a so-called ”cosine-sine” profile.

These results have implications for improving the avail-
able models used in Euler-Lagrangian simulations of
oblate spheroids, especially, when studying the detach-
ment and/or re-suspension of such particles. However,
the present correlations are obtained by a fitting pro-
cess of computational database. Accordingly, the range
of applicability is limited to the range of the considered
parameters listed above and in the case of a steady linear
shear flow.
Further work planned includes the investigation of the

hydrodynamic torques experienced (pitching, yawing and
rolling) by the spheroids in the three directions. Ad-
ditionally, similar configurations with varying the pitch
angle is to be investigated.
Investigating the dynamics of an oblate spheroid on a

rough wall in a linear shear flow at a low Reynolds num-
ber presents an exciting issue for future research. Indeed,
while there is substantial literature available on spherical
objects on substrates, as noted in Agudo et al.62 among
others, the exploration of non-spherical shapes is still rel-
atively limited. This highlights a valuable opportunity to
expand our understanding of the behavior of such parti-
cles in different substrates.”

VI. SUPPLEMENTARY MATERIAL

The data that support the findings of this investiga-
tion are reproducible and are given in the supplementary
material.
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