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Abstract 

Islands play a central role in understanding the ecological and evolutionary processes that shape life but are rarely used to untangle the 
processes that shape human, animal, and environmental health. Islands, with their discrete human and animal populations, and often 
well-studied ecological networks, serve as ideal natural laboratories for exploring the complex relationships that shape health across 
biomes. Relatively long coastlines and, in some cases, low lying topography also make islands sentinels for climate change. In this 
article, we examine the potential of islands as valuable laboratories and research locations for understanding the One Health nexus. By 
delving into the challenges faced in island settings, we provide valuable insights for researchers and policymakers aiming to globally 
promote and apply One Health principles. Ultimately, recognizing the interconnected health of humans, animals, and the environment 
on islands contributes to efforts aimed at promoting global health and sustainability. 
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mental health are complicated by the fact that individual species 
distributions dynamically shift over large areas (e.g., Warren et al. 
2015 ). Simply recording the number of species present at a lo- 
cation is difficult, particularly in the species rich tropics (Wiens 
2023 ). 

Although One Health principles have been applied globally, 
the unique characteristics and biota of islands provide tractable 
but underused ecosystems for exploring and implementing One 
Health approaches. Geographic isolation, land–sea interfaces, 
discrete human and animal populations with limited distri- 
butions, and (in some cases) well-studied ecological networks 
(e.g., Traveset et al. 2013 , Cunningham et al. 2018 , Harrison 
et al. 2020 , Graham et al. 2023a ) make islands ideal locations to 
better integrate environmental health with human and animal 
health. The convergence of multiple species—including humans; 
native and domestic animals; terrestrial, freshwater, and marine 
organisms—in limited space, creates opportunities for interdisci- 
plinary research and interventions to address health challenges. 
Moreover, because islands are particularly vulnerable to climate 
change because of, for example, relatively large coastlines and, 
in some cases, low elevation (Veron et al. 2019 , Leal Filho et al. 
2024 ), they represent priority areas for One Health research. 

Islands cover a broad gradient of human population sizes, 
socioeconomic development stages, and degrees of connectivity, 
from highly connected and developed countries such as the 
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he concept of One Health has gained significant attention in
ecent years as a holistic approach to address the interconnec-
ions among human, animal, and environmental health (OHHLEP
t al. 2022 ). The World Health Organization defines One Health
s a unifying approach designed to sustainably balance and en-
ance the health of humans, animals, and ecosystems (WHO
022 ). One Health approaches are increasingly used worldwide to
ddress fundamental challenges such as antimicrobial resistance,
cotoxicology, pathogen spillover, and zoonotic pathogen dynam-
cs (Mackenzie et al. 2014 ). For example, a One Health approach
dentified and controlled zoonotic schistosomiasis outbreaks in
orsica (Destoumieux-Garzón et al. 2018 ). Ecologists pinpointed
he intermediate host, hybrid status, and Senegalese origin of
he parasite; veterinarians confirmed the absence of ruminant
eservoirs; and physicians and health authorities improved diag-
ostics, addressed patient clinical characteristics, and measured
he outbreak’s extent (Boissier et al. 2016 , Destoumieux-Garzón
t al. 2018 ). However, the environmental component of the One
ealth triad is often neglected, and this impedes progress in the
eld (Destoumieux-Garzón et al. 2018 , Essack 2018 , Muhammad-
ashir and Halimah 2022 ). Successful integration of the environ-
ent in One Health requires a reliable measure of ecosystem
ealth. This is complicated because there is no generally accepted
efinition of ecosystem health (see Penn et al. 2024 ), and mea-
ures such as species richness that can be proxies for environ-
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Figure 1. Conceptual figure outlining the One Health connections across islands. (a) Some of the aspects that make islands important laboratories for 
One Health research (Illustration: BirdCircus.com) and (b) how these island features may interact with One Health management. The plus sign 
indicates positive impacts (e.g., islands assist in outbreaks being contained), and the minus sign indicates negative impacts (e.g., high pathogen 
naivety hinders outbreaks being contained). 
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nited Kingdom and Singapore to less developed but highly
opulated countries (e.g., Java) through to some of the most
emote places on Earth (e.g., the Seychelles and the Polynesian is-
ands). Broadly, islands can be classed as continental (i.e., located
n a continental shelf) or oceanic (no geological connections
o continents). Because the majority of islands have relatively
ow populations sizes compared with continental land masses
Mologni and Burns 2023 ), we focus on the less connected smaller
arine island countries or states with populations less than 2
illion people. This includes examples from both continental and
ceanic islands, as well as small island developing states in the
ropics that are identified by the United Nations as having distinct
ociodemographic and sustainability challenges (UNCD 1994 ).
ven within this subset of islands, development status and access
o health resources varies, as do the particular One Health chal-
enges (Mackenzie et al. 2014 ). Inadequate health resources, work-
orce capacity, and surveillance are key (and often linked) barriers
or One Health approaches to be operationalized in developing is-
ands and continental countries alike (Yopa et al. 2023 ). However,
he isolation of islands magnifies these difficulties, because, for
xample, communities have to use slower sea transport to receive
econdary and tertiary care (figure 1 ; Binns et al. 2010 , Nelson
t al. 2015 ). Public health difficulties such as reduced access to
ealthcare are well established (Binns et al. 2010 , Bell et al. 2022 );
owever, how the specific characteristics of islands make them
nique settings for One Health research is not often considered. 
In this article, we aim to examine the application of the One
ealth approach to islands and to highlight the potential of
slands as valuable and tractable systems for understanding
onnections across health silos. The unique attributes of islands
s geographically isolated, with relatively simple ecosystems and
igh degrees of endemism, have made them model systems in
cology, biogeography, and evolution throughout the history of
hese fields, with islands often described as tractable “natural
aboratories” (e.g., Warren et al. 2015 , Whittaker et al. 2017 ). It
as already been argued in previous work that simpler, smaller,
solated insular ecosystems provide ideal laboratories to study
rboviral emergence (Tortosa et al. 2012 ). In the present article,
e suggest that islands could represent model systems for One
ealth research. Moreover, given the ongoing and escalating
hreat of climate change, increasing One Health research and
urveillance on islands is urgently needed and has global im-
lications, with islands acting as potential sentinels as climate
hange progresses. We present examples from oceanic and con-
inental islands to exemplify the diverse One Health challenges
nd opportunities across systems. Ultimately, our framework
ontributes to the growing body of knowledge on One Health and
mphasizes the importance of understanding and preserving the
ealth of interconnected ecosystems on islands and beyond. 

slands as tractable systems for One Health 

esearch 

slands, due to their limited size and isolation, often have simpli-
ed ecological networks that we argue can be model systems for
ne Health research (figure 1 ). In particular, the relatively simple
cological networks on islands allow for the relative importance
f species in the transmission of multihost neglected zoonotic
isease, such as schistosomiasis to be better quantified and more
ffectively controlled (Webster et al. 2016 , Hewitt and Willingham
019 ). On Caribbean islands, for example, schistosomiasis has
een controlled and eliminated on many of the islands partly as a
esult of a more complete understanding of reservoirs and the key
ntermediate hosts: freshwater snails from the genus Biomphalaria
and Biomphalaria glabrata in particular; Pointier and Jourdane
000 , Hewitt and Willingham 2019 ). The comparison of islands
cross the region has enabled researchers to identify ecological
eedback loops between B. glabrata and competitor snails (e.g.,
f the Thiaridae group) that reduces B. glabrata abundance and,
hen coupled with human chemotherapy treatment, land-use
hange, and molluscicide, can interrupt the transmission and
educe the prevalence of schistosomiasis (Pointier and Jourdane
000 , Hewitt and Willingham 2019 ). 
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By understanding the ecological and evolutionary processes
hat shape island biogeography, researchers can gain insights into
he factors influencing disease dynamics and develop effective
trategies for disease prevention and control applicable to con-
inental systems. Species richness and diversity on islands are
trongly influenced by both island size and isolation (the theory
f island biogeography; Macarthur and Wilson 1967 ). Stochastic
rocesses reduce species richness on small islands, because
f the higher chance of extinction in a small area and limited
mmigration due to geographic isolation (Macarthur and Wilson
967 ). Oceans function as a strong filter on species traits limiting
ispersal capability for those able to swim, fly, or raft to an island.
he more isolated the island from other land masses, particularly
rom continents, the more limited the taxonomic lineages, result-
ng in high endemism and adaptive radiation of single lineages,
eading to assemblages with low phylogenetic diversity (figure 1 ;
rant 1968 ). The small size of islands may also limit the number
f trophic levels, whereby smaller areas of vegetation community
ypes or simplified vegetation structures do not support the
iversity and abundance of primary producers (plants) and con-
umers (herbivores) to support tertiary (apex predators) or even
econdary (predators) consumers. Therefore, trophic networks
ay also be restricted (Gravel et al. 2011 ). Although measuring
cosystem health is challenging (Penn et al. 2024 ), the simpli-
ed and tractable ecosystem dynamics allow for more robust
easures of ecosystem health through better understanding of
cological function (e.g., Fukami et al. 2006 , Warren et al. 2015 ). 
Another advantage of the discrete nature of islands is that they

re sometimes well studied, including being comprehensively
apped, facilitating One Health research (figure 1 ). For example,

he low species diversity of arbovirus (arthropod-borne virus)
ector species allow for comprehensive entomological surveys
o help uncouple local transmission from long distance spread
f viruses such as Chikungunya and Dengue virus (Tortosa et al.
012 ). Where affluent human societies live on islands, there are
ikely to be strong local scientific endeavors and institutions.
solated volcanic island chains such as the Hawaiian Islands,
hich are also affluent, being part of the United States, and
he Galapagos Islands (Ecuador) are well studied because their
xtreme isolation has given rise to unique endemic lineages
f fauna derived from limited dispersal events. Populated is-
ands offer the relatively close proximity of terrestrial (including
reshwater) ecosystems with anthropogenic land uses, including
griculture and urban areas, and unambiguous examples of
errestrial–aquatic–ecosystem links (Fukami et al. 2006 ), includ-
ng both disturbed and intact estuarine, coastal, and pelagic
cosystems. The increasing global focus on sustainability opens
ossibilities to compare traditional with regenerative practices in
quaculture, agriculture, and forestry and how these influence
uman health, as well as pathogen and antimicrobial resistance
ransmission. Well-studied islands, with detailed mapping of
nvironmental layers and human impacts, can offer ideal study
ystems to understand the dissemination of antimicrobial re-
istance, zoonotic spillover, and pathogen transmission among
ild, feral, and domestic animals. For example, although it is still
echnically challenging, high definition spatial data available in
reland allowed for mapping of antimicrobial resistance trans-
ission routes and sources, as well as bovine tuberculosis risk
cross the island (McGrath et al. 2009 , Chique et al. 2019 ). 
Another advantage of islands is the possibility of replicated

tudy—in particular, in archipelagos, where each island functions
s a discrete entity with independent ecosystems, which means
eplication can be achieved that is unattainable in other regions
(Fukami et al. 2006 ). For example, small island clusters with
varying densities of feral cats and sheep farming with different
degrees of isolation or movement of livestock, combined with
an advanced health system, could be a tractable model to study
transmission of Toxoplasma gondii and its impacts on human, live-
stock, and wildlife health, which is currently out of reach (Aguirre
et al. 2019 , Roberts et al. 2020 ). In the Caribbean, divergent rabies
reservoir dynamics (caused by the rabies virus), control efforts,
and outbreak histories enable unique interisland comparisons
that can facilitate better understanding of globally applicable
reservoir management (Seetahal et al. 2018 ). The unique ability to
do comparative One Health research across islands is underused
and can help tease apart complex One Health relationships. 

Islands as models for advancing global One 

Health research 

Islands are well established sentinels of climate change impacts
(e.g., Ansorge et al. 2014 , Kane and Fletcher 2020 ). The complex
links between changing climate and animal and human health
have been at least partly driven by increasing One Health aware-
ness (Muhammad-Bashir and Halimah 2022 ). Climate-health
feedback loops are crucial for climate change adaption; however,
knowledge of these links is geographically skewed and limited,
particularly on islands (Zinsstag et al. 2018 , Kim et al. 2022 ).
Low lying oceanic islands are particularly vulnerable and among
the first to experience the consequences of climate change (e.g.,
Kane and Fletcher 2020 ). Unprecedented anthropogenic sea level
rise, along with wave-driven flooding and salinization, poses a
significant threat to the stability and habitability of some oceanic
islands, particularly those located on coral atolls between 1–3
meters above sea level (Kane and Fletcher 2020 ). Without in-
tervention, atoll islands will face accelerating instability, a loss
of potable groundwater and agroforests, and threatened infras-
tructure, becoming permanently unstable before 2100 as sea
levels exceed late-Holocene threshold values (Kane and Fletcher
2020 ). For these islands, groundwater could be permanently lost
within a few decades (Kane and Fletcher 2020 ). The window to
understand the climate–One Health nexus is brief, but the links
between climate and health are still rarely quantified on islands
(Kim et al. 2022 ). 

Even for islands not located on atolls, the large coastlines
relative to land size makes the issues of coastal erosion, in-
undation, and the increasing frequency of large storm events
major challenges (Kulp and Strauss 2019 , Walsh et al. 2019 , Kim
et al. 2022 ). Events such as cyclones not only threaten health
infrastructure and infection control but also have One Health im-
plications, direct and indirect (Graham et al. 2023b ). Leptospirosis
is a widespread zoonosis with high morbidity rates across the
tropics, especially in tropical islands (Pappas et al. 2008 , Biscornet
et al. 2017 , Guernier et al. 2018 ). Leptospirosis outbreaks are
strongly correlated with severe weather events. In New Caledo-
nia, during periods of flooding, both rodent abundance and their
Leptospira infection rates increased, which, in turn, was linked
to higher human exposure (Perez et al. 2011 ). More indirectly,
the increasing frequency and intensity of storms can also affect
environmental health by reducing biodiversity—for example,
by increased pressure on forests through storm damage and
increased risk of invasive plants (Goulding et al. 2016 ). For island
species occupying higher altitudes, increased temperatures
threaten extinction in contrast to continents migration routes
are limited (Fernández-Palacios et al. 2021 ). To what degree these
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cosystem changes will have cascading impact on One Health
hallenges is an open question. 
Climate change will also alter arbovirus dynamics (Mordecai

t al. 2020 ), and islands in the tropics are recognized as arbovirus
otspots (Mavian et al. 2018 ). Islands in each major ocean fre-
uently experience outbreaks of infections due to arboviruses,
uch as Dengue, Zika, and Chikungunya viruses. These outbreaks
an have implications beyond the islands themselves, because
hey can facilitate the transmission of these arboviruses to ad-
acent continental areas, including, for example, from Caribbean
slands to the United States (Mavian et al. 2018 ). An island in the
orres Strait, situated between Australia and Papua New Guinea,
erved as the first site of Japanese encephalitis virus outbreaks
n Australia, with the proximity of human dwellings, domestic
igs, and environment for mosquito breeding leading to detection
Hanna et al. 1996 ). These outbreaks foreshadowed subsequent
ccurrences on continental Australia, acting as early indicators of
hifting Japanese encephalitis virus dynamics (Hanna et al. 1996 ).
Demonstrable increases in ocean warming, acidification, and

xygen loss related to climate change are occurring across ma-
ine environments (Bindoff et al. 2024 ). These affect marine life
t multiple levels, from molecular processes to organisms and
cosystems (Pörtner 2012 ) with implications for food production
nd human communities (Hoegh-Guldberg et al. 2019). Habitat
isturbances associated with climate change (e.g., coral reef
leaching, kelp forest, and seagrass meadow contractions) are
xacerbated by human activities in coastal ecosystems, such
s wetland area declines and increased nutrient runoff (Bindoff
t al. 2024 ). Consequently, food provision from oceans in many
egions is already affected and predicted to become more so in
he future (Hoegh-Guldberg et al. 2019). For example, it is likely
hat more than 50% of exploited fishes and invertebrates from
he exclusive economic zones of the Pacific Island states will
ecome locally extinct by 2100 (Asch et al. 2018 ). 

errestrial isolation and small populations 
he limited terrestrial connectivity with other regions and
heir smaller human populations makes control of One Health
hreats—and infectious diseases in general—possible. Limited
onnectivity and discrete arrival zones such as ports and airports
an help with targeted surveillance of pests, diseases, and vec-
or species and can allow for timely and focused intervention
trategies (figure 1 ). For example, rapid SARS-CoV-2 containment
easures were more effective in island nations than in the coun-

ries with shared land boundaries because of the manageable
umber of physical entry points (Murphy et al. 2020 ). Indeed,
sland states were the countries that experienced the lowest
lobal numbers of SARS-CoV-2 cases and mortalities during the
rst waves of the pandemic, in large part because their isolation
nabled more effective closures of borders (Campbell and Con-
ell 2021 , Strøm et al. 2021 ). Effective border closures allowed
ome islands, such as the Galapagos, to successfully eradicate
lassical swine fever (Freire-Paspuel et al. 2020 ). Advancing One
ealth research and increasing surveillance capacity in this area
epresents good value for money as control is possible and easier
o achieve than in similar continental regions. 
Once an exotic pathogen arrives on an island, however, the

rait of geographic isolation may be detrimental to island pop-
lations due to higher degrees of immune naivety (figure 1 ).
or example, the accidental introduction of avian malaria, Plas-
odium relictum , to the islands of Hawaii has led to catastrophic
eclines in endemic bird species (e.g., Atkinson et al. 1995 , Wood-
orth et al. 2005 , Neddermeyer et al. 2023 ). The immunological
aivety of Hawaiian birds to the mosquito-borne pathogen is one
ikely mechanism underlying the declines (Atkinson et al. 1995 ).
imilar patterns have been found in endemic rodent species
n Christmas Island with the introduction of a pathogenic try-
anosome (Pickering and Norris 1996 ). This naivety to disease of
sland species makes the introduction of disease an important
xtinction threat across taxa (Wikelski et al. 2004 ). 
Increased One Health capacity building and research efforts on

slands will benefit the human, animal, and plant populations by
itigating the impacts of climate change, population naivety to
isease and provide important global lessons for climate change
daption. Islands are already providing insights into the socio-
nd biophysical challenges of at least 1.5 degree Celsius increase
oses for humans (Albert et al. 2018 ), and increasing One Health
esearch on islands promises to help quantify health–climate
inks that are globally relevant. 

esting the dilution effect 
e argue that simplified and discrete ecological networks on

slands provide unique opportunities to explore how species
iversity shapes disease outbreaks across the One Health in-
erface via the dilution effect. The dilution effect occurs when
dding reservoir-incompetent host species to a community (e.g.,
y introductions) reduces the transmission of enzootic pathogens
aintained by competent reservoir hosts (e.g., Norman et al.
999 , Ostfeld and Keesing 2000 ). This effect reduces pathogen
bundance, decreases persistence likelihood, and has significant
mplications for public health and land management decisions
egarding biodiversity (Keesing et al. 2006 ). Conversely, disease
ould be amplified (e.g., increased prevalence) in systems such as
slands, where species diversity is low and contact between more
axonomically closely related species is high (Keesing et al. 2006 ).
his amplification effect may underlie the increased prevalence
f leptospirosis on Pacific islands and the Seychelles (Derne et al.
011 , Biscornet et al. 2017 ). Furthermore, the species that have
olonized islands recently or are introduced by humans tend to
e good dispersers and fast-lived species (i.e., species with rapid
rowth and short life spans) that may be more competent hosts
or some pathogens (e.g., Johnson et al. 2012 , Dietrich et al. 2014 ,
lbery and Becker 2021 ). In Madagascar, it has been reported
hat endemic small mammals carry Leptospira species different
rom those in introduced rats, suggesting that endemic versus
ntroduced mammal species harbor different roles in the local
pidemiology of leptospirosis (Dietrich et al. 2014 ). Experimental
nfections later suggested that endemic mammals show a strong
ost specificity to their Leptospira (Cordonin et al. 2020 ) and that
eptospira strains shed by endemic mammals in specific insular
cosystems ( Leptospira mayottensis isolated from a tenrec in May-
tte; Leptospira borgpetersenii isolated from a bat in Madagascar)
re less pathogenic than the ubiquitous Leptospira interrogans
at-borne isolate (isolated in Reunion Island, Cordonin et al.
019 ). 
Disease dynamics and the risk of spillover could be altered

y the island animal communities often consisting of phyloge-
etically related species. The high degrees of species endemism
ften found on islands may protect island faunas from disease;
owever, reduced species phylogenetic diversity on islands may
ncrease the chances of spillover between species (Fountain-
ones et al. 2018 ). Briefly, this is because closely related species
end to be more biologically similar and share similar immune
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Box 1.Migrating predato

Marine predators, including pinnipeds (seals) and marine birds, 
marine birds and mammals on islands tend to form dense aggr
conditions (Vanstreels et al. 2023 ). Following the breeding mont
seasonal migrations (Hindell et al. 2020 ), crossing hemisphere
ample, short-tailed shearwaters ( Ardenna tenuirostris ) are a pel
fly to the Northern Hemisphere to spend the boreal summer in
consumed by humans in Tasmania (Lavers and Bond 2013 ). Alth
what understudied, there is evidence for transport of various pa
Salmonella (Moré et al. 2017 ). 

Since October 2021, high-pathogenicity avian influenza (HPAI
the Americas, and Africa, resulting in the destruction of more
marine mammals (Gamarra-Toledo et al. 2023 , Klaassen and W
mortality (Klaassen and Wille 2023 ), island populations of wild
2024 ) and at least seven humans infected (three fatally in 202
of this panzootic is Australia. HPAI is a clear One Health chall
wildlife species, the emergence of HPAI has been typically link
H5N1 2.3.4.4b lineage has altered this pattern and the toll of 
take years for us to understand its long-term effects. Likewise
of HPAI in the United States (2014–2016) led to the deaths of 5
et al. 2021 ). HPAI H5N1 2.3.4.4b has been unprecedented in its
islands, largely by migratory birds (Caliendo et al. 2022 , Lv et al

rofiles and are therefore susceptibility to infectious disease
Longdon et al. 2011 ). Outbreaks of high-pathogenicity avian in-
uenza are more likely in wild bird communities with low phy-
ogenetic diversity than in more diverse communities (boxes 1 –3;
uang et al. 2019 ). Higher infectious disease burdens in wildlife
ave clear implications for human health with, for example, ar-
as of low-phylogenetic diversity of rodents in the United States
ecording more cases of Lyme disease in humans than in areas
ith higher diversity (Wang et al. 2023 ). Whether this is true in

sland ecosystems remains an open question. 

quatic connectivity 

lthough islands are physically isolated, they are connected by
he ocean. Ocean connectivity is greater than terrestrial, at least
artly because of the physical differences between water and air
McCallum et al. 2003 ). This connectivity is essential for the life
ycles of some marine animals, but it also promotes transmission
f pathogens, including those affecting both highly mobile and
essile hosts (McCallum et al. 2003 ). For example, in 1995 herpes
irus spread through mobile pilchard populations in Australia
nd New Zealand at up to 45 kilometers per day and 11,000
ilometers per year (Jones et al. 1997 , Murray et al. 2001 ) whereas
eoparamoeba invadens , an amoeba pathogenic to sea urchins,
ad a maximum rate of spread of 986 kilometers per year (Miller
nd Colodey 1983 ). Marine currents and paratenic hosts are also
mplicated in the spread of Toxoplasma gondii , a parasite with
 complex cycle involving cats and various mammals or birds,
ecause antibodies against T. gondii in over 1000 pelagic seabirds
ere detected in seabirds from cat-colonized but also cat-free

slands in the Western Indian Ocean (Poulle et al. 2021 ). Inert
aterials such as floating plastic debris provide the potential for
onnectivity between islands and have been proposed as a poten-
ial vector for pathogenic bacteria (Bowley et al. 2021 ). Although
 variety of human and animal pathogens have been identified
s part of the bacterial communities living on microplastics, their
athogenicity potential or extent to which human and animal
d the case of influenza.

otential vectors of disease in the marine environment. Breeding 
ons typically covered in excretions that provide ideal outbreak 
illions of marine birds and mammals set out on long-distance 
 participating in food webs on different continents. As an ex- 
eabird that breed on the islands of Tasmania, Australia, then 
ka, Russia, and the Bering Sea (Carey et al. 2014 ). The species is 
 the role of migratory marine birds as disease vectors is some- 
ens including Borrelia (Comstedt et al. 2011 ), Campylobacter and 

1 lineage 2.3.4.4b has swept across the Northern Hemisphere, 
 half a billion poultry and mass mortalities in wild birds and 
23 , Leguia et al. 2023 ). At least 356 species of birds experienced 
ave been decimated (Camphuysen and Gear 2022 , Knief et al. 
no et al. 2023 ). As of September 2024, the only continent free 

. Although low-pathogenicity avian influenza is maintained in 
irectly with poultry production (Gilbert et al. 2017 ). The HPAI 
anzootic on wildlife and ecosystems is enormous and it may 
economic cost is yet to be tallied, but the last major outbreak 
illion domestic birds, at a cost of at least US$1 billion (Seeger 
d spread, carried across oceans, between continents, and onto 
2 ). 

pathogen transmission occurs via this route is unknown (Bowley
et al. 2021 , Beloe et al. 2022 ). 

Islanders interact with aquatic ecosystems 

Island inhabitants often have close connections to their aquatic
environments, which occupy a prominent role in cultural and
recreational activities, as well as practical roles in transport and
food provision. This close link between island communities and
their aquatic environments provides an excellent setting for the
understanding of ecosystem changes in response to these mul-
tiple stressors. Several of the Pacific Islands have relatively large
exclusive economic zones. For example, the Pacific Island country
of Nauru controls an exclusive economic zone that is 15,000
times larger than its total landmass. Although little research has
been devoted to links between human and animal health and
the health of the aquatic environment, a One Health approach
is equally valid in this setting. Pollution, plastics (including mi-
croplastics), overfishing, aquatic pathogens, and climate change
are threats to environmental health that are relevant in a One
Health context (Norman et al. 2023 ). 

Two examples of this are Vibrio bacteria and harmful algae. Vib-
rio spp. are ubiquitous in aquatic environments and can be both
commensal organisms in marine biota (Egerton et al. 2018 ) and
common pathogens of finfish, shellfish, and shrimp capable of
causing large scale mortalities in aquaculture (Worden et al. 2022 ,
Cowan et al. 2023 ). Increases in the environmental levels of Vibrio
related to climate change are well noted (e.g., Baker-Austin et al.
2013 ). At the same time, the incidence of human vibriosis is rising
worldwide (WHO 2020 , Trinanes and Martinez-Urtaza 2021 ). Vibrio
vulnificus causes 95% of seafood related mortalities in the United
States (Oliver 2015 , Heng et al. 2017 ), and Vibrio parahaemolyticus
is a leading cause of seafood related foodborne illness in the
many areas of the world (Baker-Austin et al. 2018 , WHO 2020 ).
This is particularly important for those island communities that
rely more on seafood as a source of protein—for example, the
communities from Pacific islands (O’Meara et al. 2023 ). 
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Primary production from phytoplankton is the basis of food
hains in aquatic systems. Significant interest has been focused
n those algae able to produce marine biotoxins (Hallegraeff
t al. 2021b ), a range of lipophilic and hydrophilic metabolites
hat potentially play a role in avoiding zooplankton grazing
ressure (Turner 2014 ). These biotoxins accumulate in the food
hain—notably, amnesic, diarrhetic, or paralytic shellfish toxins
n bivalve shellfish, carnivorous mollusks, and crustacea (e.g.,
allegraeff et al. 2021b ) or ciguatoxins in finfish (Chinain et al.
020 ). Depending on the toxin group, a range of human illnesses
an result (FAO 2004 ). However, marine biotoxins can also cause
ass mortality events of marine animals across multiple trophic

evels (Starr et al. 2017 , Hallegraeff et al. 2021a , Rolton et al.
022 ) or can affect the neurological, physiological, and behavioral
esponses of bivalves (Kvitek et al. 1991 , Bricelj et al. 2011 ) and
arine invertebrates, notably affecting metabolism, immune re-
ponses, fecundity, and juvenile survival and growth (Haberkorn
t al. 2010 , Goïc et al. 2013 , Navarro et al. 2016 ) and, therefore,
lso ecosystem health. 

Box 2. Fiji: A model of One

Fiji, an archipelago nation of over 300 oceanic islands in the Sou
and environmental characteristics. Situated in a tropical climat
Fiji considers itself to be a “large ocean state” as its exclusive
more than 10,000 km2 of coral reefs. This results in a high level
mollusks and 350 species of hard coral. Comparatively, the terr
same latitude with 76 vertebrate species (including five mamm
Human Development Index (HDI) of .743, ranks among the larg
population lives in coastal zones on Viti Levu Island (Swail et a

Terrestrial ecosystems and One Health threats in Fiji 
Leptospirosis is a widespread zoonosis in the Pacific Islands, wi
that needs to be better understood (Guernier et al. 2018 ). In F
concern, attributed to its specificities, including a tropical clim
the survival and transmission of Leptospira bacteria (e.g., Lau e
prevalent in rural and periurban areas of Fiji, where agricultu
with contaminated water sources (Lau et al. 2016 ). Communit
to be a strong predictor of the risk of leptospirosis infection 
further propagate the spread of pathogenic Leptospira through
both humans and animals (e.g., Lau et al. 2010 ). Socio-economi
infection (Lau et al. 2016 ). Limited access to healthcare service
highlighting the urgent need for targeted public health interven
viruses such as Dengue, Zika, and Chikungunya viruses pose o
population density is high (Roth et al. 2014 ). Antibiotic resistance
providing valuable insights into the prevalence and distributio
areas of the Fiji Islands may experience lower levels of antim
importance of understanding regional variations in resistance 

Aquatic ecosystems and One Health threats in Fiji 
Many islanders around the world rely heavily on the health of
traditional ways of life, artisanal fishing as well as being the do
Fiji. But poisoning due to consumption of fish containing natur
with marine heatwaves (Holbrook et al. 2022 ). Thirty-four speci
the presence of tetrodotoxins, palytoxin, or ciguatoxin, particul
reservoir of antibiotic resistant genes (Hatosy and Martiny 201
life, including antibiotics, have been detected in seawater sam
Currently, there is a lack of information on ocean antimicrobial
2023 ). Similarly, there is little information on infection of fish fr
due to seafood consumption difficult. 
lth research in the Pacific.

cific, faces a myriad of One Health threats due to its geographic 
e, Fiji’s diverse ecosystems support a rich marine biodiversity. 
omic zone is 70 times larger than its landmass and includes 
odiversity with more than 12,000 species of fish, 800 species of 
l fauna is much less diverse than continental locations at the 
ecies; Pernetta and Watling 1978 ). The Republic of Fiji, with a 
conomies in the South Pacific. Approximately 75% of the Fijian 
9 ). 

me epidemiological heterogeneity within and between islands 
r example, human leptospirosis presents a significant health 
nd frequent heavy rainfall, which provide ideal conditions for 
016 , Reid et al. 2017 , Naing et al. 2019 ). The disease is notably 
ctivities are common, and individuals have frequent contact 
el exposure to livestock, especially pigs and cows, also seems 
et al. 2017 ). Flooding events, exacerbated by climate change, 
aminated water and soil, heightening the risk of infection for 
d poor living conditions have also been linked to higher risk of 
remote regions of Fiji exacerbates the impact of leptospirosis, 
s to mitigate its transmission (Lau et al. 2016 ). Mosquito-borne 
ng threats to public health, particularly in urban areas where 
so a growing concern, with antimicrobial surveillance programs 
 resistant bacteria (World Health Organization 2014 ). Remote 
ial resistance compared with urban centres, highlighting the 
rns (Robbins et al. 2024 ). 

r marine environment, especially its reefs, which are vital for 
ant source of protein in some communities. This is the case in 
xins has significantly increased in Fiji and could be associated 
 reef fish were identified as potentially toxic mostly because of 
nder warmer conditions (Lako et al. 2023 ). Also, the ocean is a 
d around Fiji, pharmaceutical residues detrimental to marine 
even in coastal areas with low population (Dehm et al. 2021 ). 
tance from Pacific Island countries (Loftus et al. 2020 , Xu et al. 
iji by zoonotic parasites, making risk assessment for zoonosis 

Growing aquaculture production is seen as an important com-
onent in world food security (Azra et al. 2021 , Garlock et al. 2022 ),
nd small island developing states are increasingly looking to
quaculture for economic development (FAO 2017 ). More broadly,
arine environmental health is essential to the health of coastal
ommunities relying on the ocean for their food, shelter, liveli-
oods, and other resources (Fleming et al. 2019 ). Mental health
nd well-being has been associated with closeness to coastal
reas as a result of lower stress, physically active lifestyles and
ocial interactions (Garrett et al. 2019 , Britton et al. 2020 , Nash
t al. 2022 ). At the same time, human activities can adversely
ffect the marine environment and, as a result, can affect human
ealth. This illustrates the interdependence of human and envi-
onmental health and the significance of a One Health approach
or investigating environmental, animal, and human health
ssues. 
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Box 3. One Health on the c

A contrasting system to Fiji, but one that also offers exceptiona
tinental island of Tasmania (situated 42 degrees south, 68,401 s
continent, Australia. Tasmania has the advantage of being a high
ing well-studied ecological networks of terrestrial mammal fau
human activity of all major land uses (agriculture, forestry, min
biota. Tasmania’s biota, both endemics and representatives of m
lation as well as frequent connection with the supercontinent of

Tasmania is climatically and environmentally diverse, and h
reserves) concentrated in the western half of the island and th
(Midlands agricultural region 87% cleared; Davidson et al. 2021 )
decline of the apex terrestrial predator and scavenger, the Tasm
feral cats (Hollings et al. 2014 , Cunningham et al. 2018 , Hamer e
dersen et al. 2017 , Hamer et al. 2021 ). Such close contact betwe
spillover and spillback. As an example of disease cascade, high c
with high prevalence of Toxoplasma gondii in the native herbivore

A warming climate is increasing spillover of several viruses
Ross River virus, Tasmania’s most significant mosquito-borne v
endemic throughout Australia, with occasional epidemics occu
polyarthritis (Harley et al. 2001 ). Although cases are presently r
are expected to facilitate an increase in the transmission of Ro
Another mosquito-borne virus, the Japanese encephalitis virus,
eastern Australia (van den Hurk et al. 2022 ). Similarly to Ross R
favor the emergence of the Japanese encephalitis virus in new
bird migrations (Brinkhoff 2023 ). 
Salmonella serotype Mississippi infections are very common 

and Kirk 2006 ). Infection sources include Tasmanian wildlife 
( Macropus giganteus tasmaniensis ), with 50% of 120 eastern quo
(Ball 1991 ). The Tasmanian reservoir of Salmonella Mississippi 
water supplies leading to sporadic human infections: Salmone
and 8.2% of 250 natural fresh water sources of which 53% were

As with most places on the globe, antimicrobial resistance 
comprehensive given the size of the island (Australian Comm
the lowest proportion of resistance in priority antimicrobial re
and Quality in Health Care 2023 ). This includes lowest report
gentamicin-, and ciprofloxacin-resistant Escherichia coli from 

antibiotic resistances reported to the CARAlert program, such 
and Acinetobacter baumanii , and an absence of Candida auris a
also mirrored in community surveillance; for example, urinar
compared with mainland Australia (Meumann et al. 2015 ). I
a function of relative isolation compared with continental A
2023 ) is unknown. Reduced resistance, however, may facilitat
environmental and animal sources (Bengtsson-Palme et al. 202

Aquatic ecosystems and One Health threats in Tasmania 
Globally, due to climate change, the marine environment is un
temperature, salinity, and acidity, with an increase in the frequ
In Tasmania, changes are occurring on the ecological level tha
Pecl et al. 2014 ), including invasions of introduced species such 
2011 ) or the loss of giant kelp habitat (Layton al. 2020 et al. 202
new health threats. During the 2016 marine heat wave, the oy
time in Tasmania, causing over $12 million in industry losses 
vibriosis associated with consumption of Tasmanian oysters w
recurrent toxic algal blooms on Tasmania east coast since 201
2017 , Seger et al. 2020 ) and several human hospitalizations (Ed
ental island of Tasmania.

ortunity to apply a One Health approach is the temperate con- 
e kilometers), part of and situated south of the world’s smallest 
 country that is exceptionally well studied and mapped, includ- 
Cunningham et al. 2018 ). It also has threats deriving from the 
fishing and aquaculture) and its high level of endemicity in the 
taxa on the adjacent mainland, reflects both its significant iso- 
ul during the glacial maxima and its proximity (240 kilometers). 
th a high proportion of intact landscapes (approximately 50% 

dest and most fragmented agricultural landscape in Australia 
 abundance of rabbits and rodents, as well as the concomitant 
 devil ( Sarcophilus harrisii ), have contributed to high densities of 
2021 ). Those herbivorous preys also feed native carnivores (An- 
ildlife, invasive and domestic species could cause for pathogen 
nsities in areas of Tasmanian devil decline have been associated 
us-bellied pademelon ( Thylogale billardierii ; Hollings et al. 2014 ). 
is temperate island Macropods and as reservoir hosts for the 
Harley et al. 2001 , Koolhof and Carver 2017 ). Ross River virus is 
 in the South Pacific, leading to manifestations of fatigue and 
nd confined to the east coast of Tasmania, rising temperatures 
ver virus by increasing mosquito survival (Shocket et al. 2018 ). 
rrently undetected on the island but is at its doorstep in south- 
 virus, climate change and increased temperature are likely to 
itories due to increased mosquito survival and changing wild 

smania, representing 80% of Australian notifications (Ashbolt 
 as skinks, eastern quolls ( Dasyurus viverrinus ) and kangaroos 
mpled infected with Salmonella, of which 97% was Mississippi 
ars to be the native animal population, which contaminates 
as detected in 1.6% of 500 reticulated drinking water sources 
issippi (Ashbolt and Kirk 2006 ). 
 important issue for Tasmania and surveillance is reasonably 
n on Safety and Quality in Health Care 2014 ). Tasmania has 
nce pathogens in Australia (Australian Commission on Safety 
tes of methicillin-resistant Staphylococcus aureus , ceftriaxone-, 
dstream infections, the lowest state notifications of critical 
rbapenem-resistant Enterobactereales, Pseudomonas aeruginosa 
ftriaxone-resistant Salmonella infections. These findings are 
herichia coli had much lower levels of antimicrobial resistance 
 lower levels of antimicrobial resistance either a product or 
alia or mediated by environment and climate (e.g., Li et al. 
re tractable analyses of antimicrobial resistance spread form 

oing measurable changes to key physical parameters such as 
 of marine heat waves and storm events (Whetten et al. 2015 ). 
 altering marine ecology (e.g., changing species distributions; 
e long-spined sea urchin Centrostephanus rodgersi (Johnson et al. 
uch ecological changes can be associated to the emergence of 
herpes virus (ostreid herpesvirus 1) was detected for the first 
gh oyster mortalities, and the first human health outbreak of 
corded (Harlock et al. 2022 ). Another example is the impact of 
using fisheries closures across multiple species (McLeod et al. 
s et al. 2018 ). 
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slands as One Health sentinels: 
urveillance opportunities 

or a genuine One Health model to succeed in any system,
aving a surveillance system that spans humans, domestic
nd wild animals, and the environment is essential. Although
ultisector coordination can be logistically simpler on islands, as
ith most One Health approaches, environmental surveillance is
he weakest component or is missing altogether (e.g., Iossa and
hite 2018 ). Such surveillance is necessary for understanding
atterns of antimicrobial resistance in environmental reservoirs
f resistance (Iossa and White 2018 , Chique et al. 2019 ). Notably,
ater bodies can facilitate the spread of antimicrobial resistance
e.g., Singh et al. 2022 ); therefore, water monitoring is important
or understanding antimicrobial resistance dynamics on islands
figure 1 ). Bacterial genera and their resistance genes are regularly
hared across biomes from air, soil, and water, so monitoring
cross systems is crucial but is rarely achieved (BIOHAZ et al.
021 , Luiken et al. 2022 ). Emerging metagenomic frameworks us-
ng Oxford Nanopore Technologies’ sequencing, such as ARGpore2
Wu et al. 2022 ), offer exciting and cost-effective possibilities for
urveillance of water, soil, and dust samples (Eltokhy et al. 2021 , Li
t al. 2021 ). Moreover, metagenomic surveillance spanning terres-
rial and marine systems promises a better understanding of the
omplex interactions that shape ecosystems (Clarke et al. 2020 ).
s small, discrete units, islands offer an ideal living laboratory
o apply a metagenomic surveillance regime that represents key
cosystems, animal species, and human population centers. Exist-
ng projects such as the World Network of Island and Coastal Bio-
phere Reserves ( https://core.unesco.org/en/project/526GLO2012)
romise to integrate strategies for ecosystem restoration that will
lso have One Health relevance. Integrated insular surveillance
ystems will not only lead to better management of health
hreats on islands but will also have implications and benefits for
arger continental areas. 
The opportunities and importance of One Health on islands

nderscore the need for geographically tailored strategies. Is-
ands, characterized by diverse connectivity and development
tatuses, can serve as tractable systems for understanding dis-
ase dynamics because of their simplified ecological networks
nd well-studied ecosystems. Reduced connectivity (in most
ircumstances) and smaller populations enhance the manage-
bility of targeted surveillance and intervention strategies, and
his can lead to successful containment measures. However, the
ffects of isolation also shape species diversity and evolutionary
elationships, contributing to the intricate interplay between
sland ecology and disease dynamics. Connectivity between
nthropogenic impacts on the land to the sea is important for
slands, given their relatively larger exclusive economic zones
ompared with their total land mass and greater reliance on
atural resource harvest from the sea for human sustenance. A
olistic approach is needed to address the interconnectedness of
uman, animal, and environmental health because of the close
elationship between island communities. 
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