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Abstract. We introduce the concept of a sum-rank saturating system and outline its correspon-
dence to a covering properties of a sum-rank metric code. We consider the problem of determining
the shortest sum-rank-ρ-saturating systems of a fixed dimension, which is equivalent to the cov-
ering problem in the sum-rank metric. We obtain upper and lower bounds on this quantity. We
also give constructions of saturating systems arising from geometrical structures.
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Introduction

Researchers have extensively explored the connections between linear codes and sets of points in finite
geometries, as evidenced by previous works such as [2,11,15,16,18,20]. The construction of a generator
matrix or parity check matrix for a linear code can be accomplished through a multiset of projective
points, with the supports of codewords corresponding to complements of hyperplanes in a fixed projective
set. The interconnection between these two domains facilitates the application of methods from one field
to the other. Notably, this approach has been employed in constructing codes with a bounded covering
radius, associated with saturating sets in projective space. Recent investigations into the geometry
of rank-metric codes codes [3, 33] reveal their correspondence to q-systems and linear sets. A similar
correspondence holds for sum-rank metric codes [29,34].

The sum-rank metric may be viewed as a hybrid of the rank and Hamming metric, extending
both notions. Sum-rank metric codes have found applications in network coding, space-time coding,
and distributed storage systems [14, 26–28]. They have been studied in terms of decoding and code-
optimality (see, e.g. [1, 12, 32]). One of the key reasons this metric has gained attention in recent years
is that sum-rank metric codes beat traditional codes in terms of the field size needed to construct codes
that meet the Singleton-like bound, due to the existence of linearized Reed-Solomon codes [25]. In this
paper, we focus on sum-rank metric codes that are Fqm-linear subspaces. While there exists a more
general description of sum-rank metric codes simply as linear spaces of matrices over Fq, this restriction
has immediate connections to geometric approaches [7, 29].

This paper focus on the covering radius. The covering radius of a code is the smallest positive integer
ρ such that the union of the spheres of radius ρ about each codeword equals the entire ambient space.
The covering radius serves as an indicator of combinatorial properties, such as maximality, and is an
invariant of code equivalence. It also provides insight into error-correcting capabilities by determining the
maximal weight of a correctable error. This essential coding theoretical parameter has been extensively
studied for codes in the context of the Hamming metric [8,13,15–19]. However, only a few papers in the
literature on rank-metric codes and sum-rank metric ones address this parameter [6,10,22,30]. Recently,
in [6], a purely geometrical approach based on saturating systems was proposed to study the covering
radius in the rank metric. This approach led to new bounds and interesting examples of covering codes
in the rank metric, see [4, 6].

In this paper, we extend these ideas to the sum-rank metric by introducing the concept of a sum-rank
saturating system, aligning it with a sum-rank metric covering code. We also provide new bounds for
covering codes in the sum-rank metric, as well as examples arising from partitions and cutting systems.

After recalling some main definitions and results in Section 1, we introduce the main object of the
paper in Section 2: we introduce the notion of a sum-rank saturating system, give equivalent char-
acterizations of such systems, and outline the connection to the rank covering radius of a sum-rank



metric code. In Section 3 we give upper and lower bounds on the minimum Fq-dimension of a sum-rank
saturating system. Finally, in 4 we provide explicit constructions of sum-rank saturating systems from
partitions of projective spaces and cutting designs.

1 Preliminaries

1.1 Vector sum-rank metric codes

Throughout this paper, we will denote by n = (n1, . . . , nt) ∈ Nt an ordered tuple with n1 ≥ n2 ≥ . . . ≥ nt

and N = n1 + . . .+ nt. We use the notation Fn
qm =

⊕t
i=1 F

ni
qm for the direct sum of vector spaces.

We recall that the rank of a vector v = (v1, . . . , vn) ∈ Fn
qm is defined as rk(v) = dimFq (⟨v1, . . . , vn⟩Fq )

and the sum-rank weight of an element x = (x1, . . . , xt) ∈ Fn
qm is w(x) =

∑t
i=1 rk(xi).

Definition 1. A sum-rank metric code C is an Fqm-subspace of Fn
qm endowed with the sum-rank dis-

tance, which is defined to be:

d(x, y) = w(x− y) =

t∑
i=1

rk(xi − yi),

for all x = (x1, . . . , xt), y = (y1, . . . , yt) ∈ Fn
qm .

Let C ⊆ Fn
qm be a sum-rank metric code. We say that C is an [n, k, d]qm/q code (or an [n, k]qm/q code)

if k is the Fqm-dimension of C and d is its minimum distance, i.e.

d = d(C) = min{d(x, y) : x, y ∈ C, x ̸= y}.

Let C ⊆ Fn
qm be a linear sum-rank metric code. A generator matrix G of C is a matrix whose lines

generate C, i.e. G = (G1|. . . |Gt) with G1, . . . , Gt ∈ Fk×ni
qm . We define C to be nondegenerate if the

columns of Gi are Fq-linearly independent for i ∈ {1, . . . , t}. Without loss of generality, in this paper
we will only consider nondegenerate codes.

1.2 q-systems

We introduce some results regarding the connections of sum-rank metric codes and sets of subspaces,
see [29] for further details.

Definition 2. For each i ∈ {1, . . . , t}, let Ui be an Fq-subspace of Fk
qm of dimension ni. If the ordered

t-tuple U = (U1, . . . ,Ut) satisfies ⟨U1, . . . ,Ut⟩Fqm
= Fk

qm then U is called an [n, k]qm/q system. We say

that U has dimension (or rank) n. A generator matrix for U is a k×
∑t

j=1 nj matrix over Fqm the form
G = [G1| · · · |Gt], where for each i, Gi is a generator matrix for the [ni, k]qm/q system Ui, i.e., such that
the Fq-span of the columns of each Gi is Ui.

For any Fq-subspace V of Fk
qm and a ∈ Fqm we write aV := {av : v ∈ V}.

Definition 3. Two sum-rank systems (U1, . . . ,Ut) and (V1, . . . ,Vt) are equivalent if there exists an
isomorphism φ ∈ GL(k,Fqm), an element a = (a1, . . . , at) ∈ (F∗

qm)t and a permutation σ ∈ St, such
that for every i ∈ {1, . . . , t}

φ(Ui) = aiVσ(i).

The following result allows us to establish a connection between systems and codes that will be very
useful later on for our scopes, see [29] for further details.

Theorem 1 ( [29, Theorem 3.1]). Let C be an [n, k, d]qm/q. Let G = (G1|. . . |Gt) be a generator

matrix of C. Let Ui ⊆ Fk
qm be the Fq-span of the columns of Gi, for i ∈ {1, . . . , t}. The sum-rank weight

of an element xG ∈ C, with x = (x1, . . . , xk) ∈ Fk
qm is

w(xG) = N −
t∑

i=1

dimFq
(Ui ∩ x⊥), (1)



where x⊥ = {y = (y1, . . . , yk) ∈ Fk
qm :

∑k
i=1 xiyi = 0}. In particular, the minimum distance of C reads

as follows

d = N −max

{
t∑

i=1

dimFq
(Ui ∩H) : H is an Fqm-hyperplane of Fk

qm

}
. (2)

So (U1, . . . ,Ut) in an [n, k, d]qm/q-system.

Moreover, it is possible to prove that there is a one-to-one correspondence between equivalence classes
of sum-rank nondegenerate [n, k, d]qm/q code and equivalence classes of [n, k, d]qm/q-systems, see [29].

1.3 Linear sets

Let us define linear sets, which were introduced by Lunardon in [24] for the construction of blocking
sets and have become a topic of significant research in recent years. A thorough discussion of linear sets
is available in [31].

Definition 4. Let V be a k-dimensional vector space over Fqm and consider Λ = PG(V,Fqm) = PG(k−
1, qm). Let U be an Fq-subspace of V of dimension n. Then the point-set

LU = {⟨u⟩Fqm
: u ∈ U \ {0}} ⊆ Λ

is called an Fq-linear set of rank n.

Definition 5. Let P = ⟨v⟩Fqm
be a point in Λ. The weight of P in LU is defined as

wLU (P ) = dimFq
(U ∩ ⟨v⟩Fqm

).

An basic upper bound on the number of points that a linear set contains is

|LU | ≤
qn − 1

q − 1
. (3)

We say that, LU is scattered if it meets this number of points, or equivalently, if all points of LU have
weight one.

2 Sum-rank saturating systems

In this section we will discuss the main object of this paper, namely, sum-rank saturating systems.
We start by recalling the definition of a ρ-saturating set.

Definition 6. Let S ⊆ PG(k − 1, qm).

(a) A point Q ∈ PG(k−1, qm) is said to be ρ-saturated by S if there exist ρ+1 points P1, . . . , Pρ+1 ∈ S
such that Q ∈ ⟨P1, . . . , Pρ+1⟩Fqm

. We also say that S ρ-saturates Q.
(b) The set S is called a ρ-saturating set of PG(k−1, qm) if every point Q ∈ PG(k−1, qm) is ρ-saturated

by S and ρ is the smallest value with this property.

The following is the main object of this paper.

Definition 7. An [n, k]qm/q system U is sum-rank ρ-saturating if LU1
∪ · · · ∪LUt

is (ρ− 1)-saturating.

As in the rank-metric case, we may get a characterisation of sum-rank saturating systems.

Theorem 2. Let U be an [n, k]qm/q system and let G be any generator matrix of U . The following are
equivalent:

(a) U is sum-rank ρ-saturating.
(b) For each vector v ∈ Fk

qm there exists λ = (λ1, . . . , λt) ∈ F1×n1
qm × . . .× F1×nt

qm with wtsrk(λ) ≤ ρ such
that

v = G(λ1, . . . , λt)
T ,

and ρ is the least integer with this property.



(c) We have

Fk
qm =

⋃
(Si:i∈[t]): Si≤FqUi,∑t

i=1 dimFq Si≤ρ

(
t⋃

i=1

⟨Si⟩Fqm

)

and ρ is the least integer with this property.

Proof. (a) =⇒ (b) Let Q = ⟨v⟩ ∈ PG(k − 1, qm). Since U is sum-rank ρ-saturating, there exist
P1, . . . , Pρ ∈ LU1 ∪· · ·∪LUt such that Q ∈ ⟨P1, . . . , Pρ⟩Fqm

. For each i, let Pi = ⟨wi⟩ for some wi ∈ Uw(i)

and w(i) ∈ [t]. Then v =

ρ∑
j=1

γjwj for some γj ∈ Fqm . For each ℓ ∈ [t], let the set Bℓ = {uℓ,1, . . . , uℓ,nℓ
}

be an Fq-basis of Uℓ. For each i, there exist τℓ,i,r ∈ Fq such that wi =

t∑
ℓ=1

nℓ∑
r=1

τℓ,i,ruℓ,r, where τℓ,i,r = 0

whenever ℓ ̸= w(i).
We may now express v as follows:

v =

t∑
ℓ=1

nℓ∑
r=1

uℓ,r

ρ∑
i=1

γiτℓ,i,r.

Define the matrices τ (ℓ) = (τℓ,i,r) ∈ Fρ×nℓ
q , and hence define:

λ = (λ1, . . . , λt) := (γ1, . . . , γρ)[τ
(1)| · · · |τ (t)] ∈ F1×n1

qm × · · · × F1×nt
qm

Each matrix τ (ℓ) has every j-th row all-zeroes if w(j) ̸= ℓ and, furthermore, there are at most ρ dis-

tinct non-zero matrices τ (ℓ). We have λj = γiτ
(j)
i , for i, j satisfying w(i) = j. It follows that wtsrk(λ) ≤ ρ.

The proofs that (b) implies (c) and (c) implies (a) are very similar to those of [6, Theorem 2.3].

Definition 8. Let U be an [n, k]qm/q system. For each positive integer ρ, we define

Sρ(U) :=
⋃

(Si:i∈[t]): Si≤FqUi,∑t
i=1 dimFq Si≤ρ

(
t⋃

i=1

(Si ⊗ Fqm)

)
.

It is immediate from Theorem 2 that U is sum-rank ρ-saturating if ρ is the least integer satisfying
Fk
qm = Sρ(U).
The following statement is the sum-rank analogue of [6, Theorem 2.5]. The proof is very similar and

hence is omitted.

Theorem 3. Let U be an [n, k]qm/q system associated to a code C. The following are equivalent.

(a) U is sum-rank ρ-saturating.
(b) ρsrk(C⊥) = ρ.

Definition 9. For i = 1, 2, let Ui be a sum-rank ρi-saturating [ni, ki]qm/q system associated with a code
Ci that has generator matrix Gi. We define the direct sum of U1 and U2, which we denote by U1 ⊕ U2,
to be the [(n1,n2), k1 + k2]qm/q system associated with the direct sum of C1 and C2, i.e. the code whose
generator matrix is

G1 ⊕G2 :=

[
G1 0
0 G2

]
.

It is straightforward to establish the following (c.f. [6]).

Theorem 4. For i ∈ [t], let Ui be a sum-rank ρi-saturating [ni, ki]qm/q system. Then U1 ⊕ · · · ⊕ Ut is
an [(n1, . . . ,nt), k1 + · · ·+ kt]qm/q system and is sum-rank ρ-saturating, for some ρ ≤ ρ1 + · · ·+ ρt.

Definition 10. A sum-rank ρ-saturating system U1 ⊕ · · · ⊕ Ut is called reducible if there exists i ∈
{1, . . . , t} such that the system U1 ⊕ · · · Ui−1 ⊕ Ui+1 · · · ⊕ Ut is sum-rank ρ-saturating. Otherwise, the
system is called irreducible.



3 Bounds on the dimension of sum-rank saturating systems

As in the case of Hamming-metric and rank-metric codes, it is interesting to know the shortest length
of any sum-rank metric code of a given dimension and covering radius ρ, or equivalently, the least rank
of any sum-rank ρ-saturating system in a given vector space.

We start with a bound which follows from the geometric characterisation of our systems. In the
proof, we will use the following well-known estimates:[

a
b

]
q

< f(q) qb(a−b), for a, b ∈ N, (4)

qe1 + . . .+ qer <
q

q − 1
qer , for ei ∈ Z, 0 ≤ e1 < . . . < er. (5)

where f(q) =
∏+∞

i=1 (1− q−i)−1.

Theorem 5. Let U be a sum-rank ρ-saturating [n, k]qm/q system. Then

qmρ
∑

s∈N ,|s|=ρ

[
n
s

]
q

≥ qmk.

In particular,
1

4t
·
∑

1≤i<j≤t

(nj − ni)
2
+

ρ(|n| − ρ)

t
+ 2t ≥ m(k − ρ). (6)

Proof. Since U is a sum-rank ρ-saturating [n, k]qm/q system, we have that Sρ(U) = Fk
qm . Therefore

qmρ
∑

s∈N ,|s|=ρ

[
n
s

]
q

≥ |Sρ(U)| = |Fk
qm | = qmk.

By (4), we have:

∑
s∈N ,|s|=ρ

[
n
s

]
q

<
∑

s∈N ,|s|=ρ

t∏
i=1

f(q)qsi(ni−si) = f(q)t
∑

s∈N ,|s|=ρ

q
∑t

i=1 si(ni−si)

We go on studying the following quantity

p(s1, . . . , st−1) :=

t−1∑
i=1

si(ni − si) +

(
ρ−

t−1∑
i=1

si

)(
nt − ρ+

t−1∑
i=1

si

)
.

Notice that
∂p

∂si
(s1, . . . , st−1) = ni − nt + 2ρ− 4si − 2

∑
j ̸=i

sj .

Since,

(t− 1)
∂p

∂si
(s1, . . . , st−1)−

∑
j ̸=i

∂p

∂sj
(s1, . . . , st−1) = (t− 1)ni −

∑
j ̸=i

nj + 2ρ− 2tsi,

and since we easily see that the maximum of p(s1, . . . , st−1) is achieved for

si =
1

2t

(t− 1)ni −
∑
j ̸=i

nj + 2ρ

 ,

we get:

p(s1, . . . , st−1) =
1

4t
·
∑

1≤i<j≤t

(nj − ni)
2
+

ρ(|n| − ρ)

t
.

Therefore, by (5), we get

q · f(q)t

q − 1
· q

 1
4t ·

∑
1≤i<j≤t

(nj−ni)
2+

ρ(|n|−ρ)
t


> qm(k−ρ).



When q > 2, since
q · f(q)t

q − 1
≤ qt, we get

1

4t
·
∑

1≤i<j≤t

(nj − ni)
2
+

ρ(|n| − ρ)

t
+ t ≥ m(k − ρ),

while if q = 2 we obtain

1

4t
·
∑

1≤i<j≤t

(nj − ni)
2
+

ρ(|n| − ρ)

t
+ 2t ≥ m(k − ρ).

Remark 1. We have that f(q) −→ 1 as q −→ ∞, and so asymptotically qf(q)t

q−1 −→ 1 as q −→ ∞. For

this reason, as q grows, we may replace (6) with

1

4t
·
∑

1≤i<j≤t

(nj − ni)
2
+

ρ(|n| − ρ)

t
≥ m(k − ρ),

for sufficiently large q. Indeed, even for relatively small values of q, qf(q)t

q−1 takes values much smaller than

q, for t not exceeding q. For example, for q = 211, t = 20, we have qf(q)t

q−1 ≈ 1.105407; for q = 111, t = 111

we have qf(q)t

q−1 ≈ 2.780617.

Remark 2. For t = 1 (the rank-metric case), the bound coincides asymptotically with the one obtained
in [6] (while for small q, in [6] the rough estimate could be avoided). For n1 = · · · = nt = n, we have:

N = tn ≥ tm

ρ
(k − ρ) + ρ− 2t2

ρ
. (7)

Lemma 1. Fix t and N . Let [n1, . . . , nt] and [n′
1, . . . , n

′
t] be such that n1 ≥ . . . ≥ nt, n

′
1 ≥ . . . ≥ n′

t and
N = n1 + . . .+ nt = n′

1 + . . .+ n′
t. Then∑

1≤i<j≤t

(nj − ni)
2 ≤

∑
1≤i<j≤t

(
n′
j − n′

i

)2
if and only if [n1, . . . , nt] ⪯ [n′

1, . . . , n
′
t] in the lexicographic ordering.

Proof. Let [n1, . . . , nt] be as stated in the hypothesis, define n0 = +∞ and nt+1 = 0 and take 1 ≤ x <
y ≤ t such that nx−1 ≥ nx + 1, ny − 1 ≥ ny+1. Let n

′
i = ni for i ̸∈ {x, y}, n′

x = nx + 1 and n′
y = ny − 1.

Since ∑
1≤i≤t,i̸∈{x,y}

(n′
x − n′

i)
2 =

∑
1≤i≤t,i ̸∈{x,y}

(nx − ni + 1)2 =
∑

1≤i≤t,i̸∈{x,y}

((nx − ni)
2 + 2(nx − ni) + 1),

∑
1≤i≤t,i ̸∈{x,y}

(n′
y − n′

i)
2 =

∑
1≤i≤t,i ̸∈{x,y}

(ny − ni − 1)2 =
∑

1≤i≤t,i̸∈{x,y}

((ny − ni)
2 − 2(ny − ni) + 1),

(n′
x − n′

y)
2 = (nx − ny + 2)2 = (nx − ny)

2 + 4(nx − ny) + 4

and the rest of terms are equal, we get that∑
1≤i<j≤t

(
n′
j − n′

i

)2 − ∑
1≤i<j≤t

(nj − ni)
2
= t(2(nx − ny) + 2) ≥ 2t.

The general case follows iterating the process.

This means that, for fixed ρ, t,N , the left hand-side of (6) takes its minimum and maximum values
for n1 = . . . = nt and for n2 = . . . = nt = 1, respectively. This gives sense to the following definition.



Definition 11. Let t be a positive integer. We define the shortest length to be

sqm/q(k, ρ, t) := min

{
t∑

i=1

dim(Ui) : Ui ≤Fq Fk
qm , (U1, . . . ,Ut) is sum-rank-ρ saturating

}
,

i.e. it is the minimal sum of the Fq-dimensions of the Ui, i ∈ {1, . . . , t}, of a sum-rank ρ-saturating
system U = (U1, . . . ,Ut) in Fk

qm .
We define the homogeneous shortest length to be

shomqm/q(k, ρ, t) := min
{
tn : Ui ≤Fq

Fk
qm ,dim(Ui) = n, (U1, . . . ,Ut) is sum-rank-ρ saturating

}
,

i.e. it is the minimal sum of the Fq-dimensions of the Ui, i ∈ {1, . . . , t}, of a sum-rank ρ-saturating
system U = (U1, . . . ,Ut) in Fk

qm , with the additional hypothesis that each Ui has the same dimension n.

Let U = (U1, . . . ,Ut) be a sum-rank saturating system with generator matrix G = [G1| · · · |Gt].
Consider the system U ′ = (U1, . . . ,Ut−2,U ′

t−1), which has generator matrix G = [G1| · · · |Gt−2|G′
t−1],

where G′
t−1 is a matrix whose columns are a union of Fq-bases of Ut−1 and Ut. Since Ut−1 + Ut = U ′

t−1

we have dimFq (U ′
t−1) ≤ dimFq (Ut−1) + dimFq (Ut), while ρ(U ′) ≤ ρ(U).

For this reason we have the following proposition.

Proposition 1 (Monotonicity in t). We have that sqm/q(k, ρ, t) ≤ sqm/q(k, ρ, t+ 1).

Lemma 2. Let U = (U1, . . . ,Ut) be a sum-rank ρ-saturating [n, k]qm/q system. Suppose for some i ∈
[t], LUi

is not scattered. Let U ′
i = ⟨ui,1, . . . , ui,ni−1⟩Fq

for some Fq-basis {ui,1, . . . , ui,ni
} of Ui such

that ui,ni
∈ λ⟨ui,1, . . . , ui,ni−1⟩Fq

for some λ ∈ Fqm . Then U ′ = (U1, . . . ,U ′
i , . . . ,Ut) is a sum-rank-ρ′-

saturating [n′, k]qm/q system satisfying ρ′ ≤ ρ+ 1 and n′ = (n1, . . . , ni − 1, . . . , nt).

Proof. The statement follows as a direct consequence of [6, Lemma 4.5], which gives that if LUi
is

scattered then U ′
i is an [ni − 1, ki]qm/q rank-ρ′i-saturating system satisfying ρ′i ≤ ρi + 1.

More generally, we have the following.

Lemma 3. Let U = (U1, . . . ,Ut) be a sum-rank ρ-saturating [n, k]qm/q system. Suppose that for each

i ∈ [t], Ui has an Fq-basis {u(i)
1 , . . . , u

(i)
ni } such that

u(t)
nt

= λ
∑
i∈S

ni∑
j=1,
j ̸=nt

a
(i)
j u

(i)
j ,

for some a
(i)
j ∈ Fq and S ⊆ [t]. Then U ′ = (U1, . . . ,Ut−1,U ′

t) is a sum-rank-ρ′-saturating [n′, k]qm/q

system satisfying ρ′ ≤ ρ+ |S| and n′ = (n1, . . . , nt−1, nt − 1).

Proof. Let v ∈ Fk
qm . As in the proof of Theorem 2, there exist γ1, . . . γρ ∈ Fqm such that

v =

t∑
ℓ=1

nℓ∑
r=1

u(ℓ)
r

ρ∑
i=1

γiτ
(ℓ)
i,r .



for some τ
(ℓ)
i,r ∈ Fq with τ

(ℓ)
i,r non-zero for at most one pair (ℓ, i) and at most ρ of the matrices τ (ℓ) :=

(τ
(ℓ)
i,r ) ∈ Fρ×nℓ

q are non-zero. Define a
(ℓ)
r := 0 for all r ∈ [nℓ] whenever ℓ /∈ S. This yields that

v =

t∑
ℓ=1

nℓ∑
r=1

u(ℓ)
r

ρ∑
i=1

γiτ
(ℓ)
i,r

=

t−1∑
ℓ=1

nℓ∑
r=1

u(ℓ)
r

ρ∑
i=1

γiτ
(ℓ)
i,r +

nt−1∑
r=1

u(t)
r

ρ∑
i=1

γiτ
(t)
i,r + λ

t∑
ℓ=1

nℓ∑
r=1,
r ̸=nt

a(ℓ)r u(ℓ)
r

ρ∑
i=1

γiτ
(t)
i,nt

=

t−1∑
ℓ=1

nℓ∑
r=1

u(ℓ)
r

(
ρ∑

i=1

γiτ
(ℓ)
i,r + a(ℓ)r λ

ρ∑
i=1

γiτ
(t)
i,nt

)
+

nt−1∑
r=1

u(t)
r

(
ρ∑

i=1

γiτ
(t)
i,r + a(t)r λ

ρ∑
i=1

γiτ
(t)
i,nt

)

=

t−1∑
ℓ=1

nℓ∑
r=1

u(ℓ)
r

(
ρ∑

i=1

γiτ
(ℓ)
i,r + a(ℓ)r γρ+1

)
+

nt−1∑
r=1

u(t)
r

(
ρ∑

i=1

γiτ
(t)
i,r + a(t)r γρ+1

)

=

t−1∑
ℓ=1

nℓ∑
r=1

u(ℓ)
r

ρ+1∑
i=1

γiτ
(ℓ)
i,r +

nt−1∑
r=1

u(t)
r

ρ+1∑
i=1

γiτ
(t)
i,r ,

=

t∑
ℓ=1

n′
ℓ∑

r=1

u(ℓ)
r

ρ+1∑
i=1

γiτ
(ℓ)
i,r

where n′
t = nt − 1, n′

ℓ = nℓ if ℓ < t; γρ+1 = λ

ρ∑
i=1

γiτ
(t)
i,nt

, and τ
(ℓ)
ρ+1,r = a

(ℓ)
r for each ℓ ∈ [t]. Then

v =

t∑
ℓ=1

G(ℓ)λT
ℓ = GλT ,

where
G = [G(1)| · · · |G(t)], G(ℓ) = [u

(ℓ)
1 , . . . , u

(ℓ)
n′
ℓ
],

(λ1, . . . , λt) = (γ1, . . . , γρ+1)[τ
(1)| · · · |τ (t)] = [γτ (1)| · · · |γτ (t)],

and τ̂ (ℓ) = (τ
(ℓ)
i,r ) for each ℓ ∈ [t]. Now consider the value of wsrk(λ) =

∑t
ℓ=1 rk(λℓ) =

∑t
ℓ=1 wrk(γτ̂

(ℓ)).

Let ℓ ∈ S. If τ (ℓ) is not the all-zero matrix, then τ̂ (ℓ) has at most 2 non-zero rows and so

wrk(λℓ) = wrk(γτ̂
(ℓ)) ≤ 2.

Otherwise λℓ = γρ+1(τ
(ℓ)
ρ+1,1, . . . , τ

(ℓ)
ρ+1,nℓ

) has rank weight at most 1. If ℓ /∈ S then wrk(λℓ) ≤ 1. It follows
that wsrk(λ) ≤ ρ+ |S|.

In particular, Lemma 2 follows as a special case of Lemma 3.
We have the following observations on the monotonicity of sqm/q(k, ρ, t). The proofs are similar to

those of [6, Theorem 4.6].

Theorem 6 (Monotonicity in ρ). Let |n| > k. The following hold.

1. sqm/q(k, ρ, t) ≤ sqm/q(k, ρ+ 1, t).
2. sqm/q(k, ρ, t) ≤ sqm/q(k + 1, ρ, t)− 1.
3. sqm/q(k + 1, ρ+ 1, t) ≤ sqm/q(k, ρ+ 1, t) + 1.

Proof. Let U = (U1, . . . ,Ut) be an [n, k]qm/q sum-rank-ρ-saturating system such that |n| = sqm/q(k, ρ, t).
Without loss of generality, we may assume that a generator matrix of a code associated to U has the
form:

G = [G1, . . . , Gt] =


Ik1 A1,1 0 A1,2 · · · · · · 0 A1,t

0 0 Ik2 A2,2 · · · · · · 0 A2,t

0 0 0 0 · · · · · · 0 A3,t

...
...

...
...

...
...

...
...

0 0 0 0 · · · · · · Ikt At,t

 (8)



We may assume that n1 > k1 ≥ 1, since otherwise we can permute the submatrices Gi and apply
arbitrary elementary row operations to the block-permuted matrix and perform Fq-linear column op-
erations within each Gi to find a matrix of the required form. Over all such choices of U and G,
let G be one such that the rightmost column of A1,1, is a vector y ∈ Fk1

qm that has minimal rank
weight. If wrk(y) = 1, then by Lemma 2, there exists an [n′, k]qm/q sum-rank-ρ′-saturating system with
|n′| = |n| − 1 and ρ′ ≤ ρ+ 1; indeed we then have ρ′ = ρ+ 1 by the minimality of |n|. In this case we
have sqm/q(k, ρ+ 1, t) ≤ sqm/q(k, ρ, t)− 1.

If wrk(y) = ℓ ≥ 2, then y =
∑ℓ

i=1 αiy
(i) for an Fq-basis {α1, . . . , αℓ} ⊆ Fqm of the Fq-span of the

coefficients of y and y(i) ∈ Fk1
q . A straightforward computation verifies that the matrix G(1) found by

replacing y in A1,1 with x(1) :=
∑ℓ−1

i=1 αiy
(i) yields an [n, k]qm/q sum-rank-ρ(1)-saturating system with

ρ(1) ≤ ρ+ 1. If ρ(1) = ρ+ 1 then the statement of the theorem holds, so suppose otherwise. If ρ(1) = ρ
then we arrive at a contradiction by the minimality of wrk(y) > wrk(x

(1)), so suppose ρ(1) ≤ ρ− 1. The

matrix G(2) found by replacing y with x(2) :=
∑ℓ−2

i=1 αiy
(i) yields an [n, k]qm/q sum-rank-ρ(2)-saturating

system with ρ(2) ≤ ρ(1)+1 ≤ ρ. As before, by the minimality of wrk(y) > wrk(x
(2)), we have ρ(2) ̸= ρ and

so ρ(2) ≤ ρ− 1. Repeated applications of the above argument lead to a sequence of [n, k]qm/q sum-rank-

ρ(i)-saturating systems with ρ(i) ≤ ρ−1 for each i ∈ [ℓ−1]. The final matrix G(ℓ−1) in this sequence has
rightmost column of A1,1 equal to x(ℓ−1) = α1y

(1), so we may apply Lemma 2 to see that deleting this
column from G(ℓ−1) results in an [n′, k]qm/q sum-rank-ρ-saturating system with |n′| = |n| − 1, giving

a contradiction. We deduce that ρ(1) = ρ + 1, in which we have sqm/q(k, ρ + 1, t) ≤ sqm/q(k, ρ, t). This
proves 1.

The proofs that 2 and 3 hold are very similar to the rank-metric case and are omitted (see [6, Theorem
4.6]).

Definition 12. For each i ∈ {1, 2}, let U (i) be an [n(i), ki]qm/q system, associated with an [n(i), ki]qm/q

sum-rank metric code Ci. Let f : Fn(1)

qm −→ Fn(2)

qm be an Fqm-linear map. The code

C := {(u, f(u) + v) : u ∈ C1, v ∈ C2}

is an [(n(1),n(2)), k1 + k2]qm/q, which we call the f -sum of C1 and C2. Its associated [(n(1),n(2)), k1 +

k2]qm/q system is called the f -sum of U (1) and U (2), which we denote by U (1) ⊕f U (2). If f is the zero

map, we write U (1) ⊕U (2), and call it the direct sum; if f is the identity map, we we write U (1) ⊕ι U (2)

and call it the Plotkin-sum of U (1) and U (2).

Proposition 2. For each i ∈ {1, 2}, let n(i) = (n
(i)
1 , . . . ,n

(i)
ti ), and let U (i) be an [n(i), ki]qm/q sum-rank-

ρi-saturating system, associated with an [ni, ki]qm/q code Ci. Let f : Fn(1)

qm −→ Fn(2)

qm be an Fqm-linear

map. Then U (1) ⊕f U (2) is an [(n(1),n(2)), k1 + k2]qm/q system that is sum-rank-ρ-saturating, where
ρ ≤ ρ1 + ρ2. In particular, if ρ1 + ρ2 ≤ min{k1 + k2,m}, then

sqm/q(k1 + k2, ρ1 + ρ2, t1 + t2) ≤ sqm/q(k1, ρ1, t1) + sqm/q(k2, ρ2, t2).

Proof. Let U ′ be the [n(2), k1]qm/q system associated with f(U). Then U1+U ′ is a sum-rank-ρ′-saturating

[(n(1),n(2)), k1]qm/q system, satisfying ρ′ ≤ ρ1. Therefore,

Fk1+k2
qm = Sρ′((U1 + U ′)⊕ 0k2

) ∪ Sρ2
(0k1

⊕ U2) = Sρ′+ρ2
(U1 ⊕f U2),

and so U1 ⊕f U2 is an [(n(1),n(2)), k1 + k2]qm/q system that is sum-rank-ρ-saturating for ρ ≤ ρ1 + ρ2.
The rest now follows by choosing each Ui to have length sqm/q(ki, ρi, ti) and applying Theorem 6.

Theorem 7. Let Fqm = Fq[α], r ≥ 1, h ≥ r and

Ah,r :=

[
Ir 0 0 · · · 0
0 Ih−r αIh−r · · · αm−1Ih−r

]
Then

Gt :=


Ah,r 0 · · · 0
0 Ah,r · · · 0
...

...
. . .

...
0 0 · · · Ah,r


︸ ︷︷ ︸

t times



generates an homogeneous sum-rank rt-saturating system. So

shomqm/q(th, tr, t) ≤ t(m(h− r) + r).

Proof. From [6, Theorem 4.4], we have that Ah,r is the generator matrix of a code associated to an
r-rank saturating [m(h − r) + r, h]qm/q system Uh,r. The matrix Gt is the generator matrix of a code
associated to the direct sum of t copies of Uh,r, which from Proposition 2 is a sum-rank ρ-saturating
[t(m(h− r) + r), th]qm/q system, with ρ ≤ tr. It is not hard to see that ρ = tr. Let v = (v(1), . . . , v(t)) ∈
Fth
qm such that each v(i) ∈ Fh

qm has its first r coefficients non-zero. Then any expression of v as an
Fqm-linear combination of the columns of Gt requires the use of all its tr columns.

Remark 3. Since
t
(m
r
(h− r) + r

)
≤ shomqm/q(th, tr, t) ≤ t(m(h− r) + r),

we see immediately that when r = 1 the lower and the upper bounds coincide, so that

shomqm/q(th, t, t) = t(m(h− 1) + 1).

4 Constructions of sum-rank saturating systems

In this final section we present some constructions of sum-rank-ρ saturating systems of small Fq-
dimension.

4.1 Sum-rank saturating systems from partitions of the projective space

We construct sum-rank saturating systems form partitions of the projective space. First observe that if
U = (U1, . . . ,Ut) is such that LU1 ∪ · · · ∪ LUt = PG(k − 1, qm), than U is sum-rank 1-saturating.

Example 1. In [23, Theorem 4.28] we get that, if (m, k) = 1, there exists a partition of PG(k − 1, qm)
into

t =
(qmk − 1)(q − 1)

(qm − 1)(qk − 1)

subgeometries PG(k − 1, q). This gives us a sum-rank 1-saturating system of total length

k · (q
mk − 1)(q − 1)

(qm − 1)(qk − 1)
.

Wemention another construction of a sum-rank ρ-saturating system based on a partition of PG(k, qm)
into subgeometries.

Proposition 3. Let P = {Pi}i∈{1,...,t} a partition of PG(k− 1, qm) into subspaces. Let ki be a positive
integer such that Pi ≃ PG(ki − 1, qm). If U is such that each Ui is rank ρ-saturating in Pi, then U is
sum-rank ρ′-saturating with ρ′ ≤ ρ.

Proof. Let P ∈ PG(k − 1, qm). Then P ∈ Pi for some i and Ui is a ρ-rank saturating system. In
particular, P is in the span of at most ρ elements of LUi . Therefore, U is sum-rank ρ′-saturating with
ρ′ ≤ ρ.

A partition of the vector space Fk
qm yields a partition of PG(k − 1, qm) into subspaces. In [9], some

necessary conditions and constructions of partitions are presented. Thanks to Proposition 3, every such
partition may be combined with other constructions.

4.2 Sum-rank (k − 1)-saturating systems from cutting designs

In this section, we introduce the concept of sum-rank metric minimal codes and we examine their
parameters. The geometry of minimal codes has been significant in constructing and establishing bounds
in both the Hamming and rank metric, through the so-called strong blocking sets. These sets, first
introduced in [16] in order to get small saturating sets, are collections of points in the projective space
such that the intersection with every hyperplane spans the hyperplane. In [21], strong blocking sets are
referred to as generator sets and are formed by unions of disjoint lines. They have recently garnered



renewed interest in coding theory, especially since [5], where they are called cutting blocking sets and
are utilized to construct minimal codes. Quite surprisingly, they have been demonstrated to be the
geometric counterparts of minimal codes [2, 35].

Minimal codes and their geometric counterparts may be introduced also in the context of the sum-
rank metric.

Definition 13. Let C be an [n, k]qm/q sum-rank metric code. A nonzero codeword c ∈ C is said minimal
if for every c′ ∈ C such that suppn(c

′) ⊆ suppn(c) then c′ = λc for some λ ∈ Fqm . We say that C is
minimal if all of its nonzero codewords are minimal.

Definition 14. A system U = (U1, . . . ,Ut) ⊂ Fk
qm is cutting if LU1

∪ . . . ∪ LUt
is a strong blocking set

in PG(k − 1, qm), that is if
⟨(LU1

∪ . . . ∪ LUt
) ∩H⟩Fqm

= H,

for every hyperplane H in PG(k − 1, qm).

The following is a generalization of the geometric characterization of minimal codes in the Hamming
and in the rank metric.

Theorem 8 ([34, Corollary 10.25]). A sum-rank metric code is minimal if and only if an associated
system is cutting.

As in the other metrics, also in the sum-rank one cutting systems give rise to saturating systems.

Theorem 9. If U is a cutting system in Fk
qm , then U is a sum-rank (k−1)-saturating system in Fk

qm(k−1) .

Proof. The system U = (U1, . . . ,Ut) is cutting in Fk
qm , so that the associated code C is minimal (by

Theorem 9). Then the associated Hamming-metric code to C defined in [34, Definition 9.26.] is minimal,
by [34, Corollary 9.27.]. Hence LU1∪. . .∪LUt is a strong blocking set in PG(k−1, qm). Then LU1∪. . .∪LUt

is a (k− 2)-saturating set in PG(k− 1, qm(k−1)) by [16]. By definition, this means that U is a sum-rank
(k − 1)-saturating system in Fk

qm(k−1) .

Example 2. In [7, Section 4], the authors provide bounds on the parameters and constructions of min-
imal sum-rank codes. These last have either one or two nonzero weights. Thanks to Theorem 9, these
constructions provide more examples of saturating systems in the sum-rank metric.

The doubly extended linearized Reed-Solomon code (see [29]) with parameters

[((m, . . . ,m︸ ︷︷ ︸
q−1 times

, 1, 1), 2]qm/q

and their geometric dual with parameters

[(m, . . . ,m︸ ︷︷ ︸
q−1 times

, 2m− 1, 2m− 1), 2]qm/q

are both minimal sum-rank codes (see [7, Remark 4.6.]). The first ones have length (q− 1)m+2, which
meets the lower bound for the length of minimal sum-rank codes, for any m and the second ones have
length (q− 1)m+4m− 2, which is minimal for m = 2. Note the parameters of these codes do not meet
our lower bound.
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27. U. Mart́ınez-Peñas and F. R. Kschischang. Universal and dynamic locally repairable codes with maximal

recoverability via sum-rank codes. IEEE Transactions on Information Theory, 65(12):7790–7805, 2019.
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