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THE GEOMETRY OF INTERSECTING CODES AND APPLICATIONS TO

ADDITIVE COMBINATORICS AND FACTORIZATION THEORY

MARTINO BORELLO∗[1,2], WOLFGANG SCHMID[1], AND MARTIN SCOTTI[1]

Abstract. Intersecting codes are linear codes where every two nonzero codewords have non-
trivially intersecting support. In this article we expand on the theory of this family of codes,
by showing that nondegenerate intersecting codes correspond to sets of points (with multiplicities)
in a projective space that are not contained in two hyperplanes. This correspondence allows the use
of geometric arguments to demonstrate properties and provide constructions of intersecting codes.
We improve on existing bounds on their length and provide explicit constructions of short inter-
secting codes. Finally, generalizing a link between coding theory and the theory of the Davenport
constant (a combinatorial invariant of finite abelian groups), we provide new asymptotic bounds on
the weighted 2-wise Davenport constant. These bounds then yield results on factorizations in rings
of algebraic integers and related structures.
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Introduction

Intersecting codes are linear codes for which every two nonzero codewords have non-trivially
intersecting support. Intersecting codes are a classical object of study in coding theory introduced
in [38,44] and subsequently investigated in many articles (see for example [19,21,23,51]), but with
a primary focus on the binary case. In this case, such codes coincide with minimal codes, which
have been intensively studied in the last 20 years. Several practical applications of intersecting and
minimal codes are known: they allow communication over AND channels, they may be used in
secret sharing schemes, and they are related to other structures such as frameproof codes [13] and
(2, 1)-separating systems [50]. In this article, we primarily focus on the geometric interpretation of
intersecting codes, which has remained completely unexplored to date, and to the interactions of
these objects with other areas of mathematics, in particular additive combinatorics and algebraic
number theory.

It is well-known that a nondegenerate linear code can be associated with a set of points (with
multiplicities) in a projective space and some coding-theoretical properties can be interpreted ge-
ometrically. This view is what connects MDS codes to problems with arcs in projective spaces
(the famous MDS conjecture was initially formulated as a problem in projective geometry in [54]),
covering problems to saturating sets, minimal codes to strong blocking sets, etc. Intersecting codes
correspond to sets of points that are not contained in any pair of hyperplanes. We will refer to such
sets as non-2-cohyperplanar. This geometric interpretation of intersecting codes allows us to visual-
ize some fundamental properties, but above all, it allows for the introduction of new constructions.

It is clear from the definition of non-2-cohyperplanar sets that adding a point to these sets leaves
them non-2-cohyperplanar. Hence, it is fundamental, for constructing purposes, to investigate small
sets with this property, possibly minimal with respect to inclusion. We prove some lower bounds on
the cardinality of non-2-cohyperplanar sets and a probabilistic existence results. For some low pa-
rameters, we provide constructions of the smallest non-2-cohyperplanar sets. We revisit a property
proven in [50] regarding intersecting AG codes, along with the concatenation method, to provide ex-
plicit constructions of short intersecting codes over any finite field. Quite surprisingly, these explicit
constructions improve the probabilistic bound in many cases (more precisely, they almost always
improve it for codes over non-prime fields). Moreover, in the binary case it provides the shortest
known explicit construction of intersecting codes, which in this case are minimal. Furthermore, we
introduce an explicit construction, based on the very recent paper [7], stemming from the union
of projective lines, which employs a sufficient geometrical condition called the avoidance property
(introduced in [26]) and some expander graphs.

The last part of the paper is devoted to the interpretation of our results to additive combinatorics
and factorization theory. In particular, continuing the research along the path traced by [42,48], we
link the theory of intersecting codes to the one of weighted Davenport constants. Actually, the value
of this constant is strictly related to the function describing the length of the shortest intersecting
code for a given dimension and base field, as we will show in Theorem 5.12. We will then show the
impact of the results on this function and of the explicit constructions of the previous sections on
the knowledge of the weighted Davenport constants. Finally, we will explore the connection with
factorization theory in algebraic number fields (and more generally certain Dedekind domains and
Krull monoids). In particular, at the very end of the paper, we will explore the interplay between
problems about intersecting codes over non-prime fields and Hilbert’s ramification theory of some
particular number fields with elementary abelian class group.

Outline: In Section 1, we delve into the definition and fundamental properties of intersecting
codes. Section 2 explores the geometry of intersecting codes, particularly showcasing their corre-
spondence with non-2-cohyperplanar sets and highlighting their properties and examples. Section 3
addresses the size of small non-2-cohyperplanar sets, or equivalently, the length of short intersecting
codes, providing both lower and upper bounds. Section 4 presents constructions utilizing AG codes
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and expander graphs. Finally, the paper concludes with applications of the preceding results to the
theory of Davenport constants (Section 5) and to factorization theory (Section 6).

1. Intersecting codes: definitions and fundamental properties

Throughout the paper q will be a prime power, Fq will be a finite field of order q, and we will
endow the vector space Fn

q with the Hamming metric, defined as follows: the support of a vector
x ∈ Fn

q is

σ(x) = {i | xi ̸= 0},
and its Hamming weight is

w(x) = #σ(x).

The Hamming distance is then defined as d(x, y) = w(x− y), for x, y ∈ Fn
q .

We start with some classical fundamental definitions.

Definition 1.1. A (linear) code C over a finite field Fq is a subspace of Fn
q . We denote its dimension

k = dim(C), and its minimum distance d = d(C) = minc,c′∈C,c ̸=c′ d(c, c
′). We say that a code of

dimension k and minimum distance d over Fn
q is an [n, k, d]q-code (or an [n, k]q code if the minimum

distance is unknown).
A generator matrix of an [n, k, d]q-code C is a matrix G ∈ Fk×n

q such that C = rowsp(G). A code
is said nondegenerate if no column of G is the zero vector. A code is said projective if there are no
two linearly dependent columns in G. It is straightforward to observe that these last two properties
do not depend on the chosen generator matrix. A parity-check matrix of an [n, k, d]q-code C is a

matrix H ∈ F(n−k)×n
q such that C = {v ∈ Fn

q | HvT = 0}.
Two [n, k, d]q-codes C and C′ are equivalent if there is a linear isometry from Fn

q to itself mapping
C to C′ (actually, it is easy to prove that such an isometry should be a monomial transformation).

The Singleton bound is a fundamental concept in coding theory, which provides a relation between
the parameters of a code: if C is an [n, k, d]q code, then

d ≤ n− k + 1.

If equality holds, the code is called Maximum Distance Separable (MDS).

Definition 1.2. A family of codes F over Fq is said to be asymptotically good if there is an ε > 0
and a sequence of codes Cs ∈ F with parameters [ns, ks, ds]q such that ns → ∞, as well as both

lim inf
s→∞

ks
ns

≥ ε and lim inf
s→∞

ds
ns

≥ ε.

The main object of this paper is the following.

Definition 1.3. A code is called intersecting if for any two nonzero codewords the intersection of
their supports is nonempty.

Intersecting codes were first introduced in [38,44] and generalized in [19] to the case of two distinct
codes C1 and C2 for which all codewords c1 ∈ C1 and c2 ∈ C2 share a nonzero coordinate. They
have been further investigated in [45,51,52,55]. In [21], Cohen and Zémor provide constructions of
asymptotically good intersecting codes and they examine the case where the intersection must have
a specific size. All of these contributions focus mainly on the binary case. A study for the case
when the base field is of prime cardinality is done (implicitly) in [42]. As we will see, a particularly
relevant construction of explicit families of asymptotically good intersecting codes is provided in
[50].

It is useful to define the concatenation of two codes to construct new intersecting codes from old
ones.



4 THE GEOMETRY OF INTERSECTING CODES

Definition 1.4. Let I be an [n, k, d]q code and C be a [N,K,D]qk code. Let φ : Fk
q → Fn

q be a
linear map such that Im(φ) = I. The concatenation of I and C by φ is noted I□φC and is defined
as

I□φC = {(φ(c1), . . . , φ(cN )) | (c1, . . . , cN ) ∈ C}.

It is easy to prove that the code I□φC has parameters [Nn,Kk,≥ Dd]q, for any φ. In the
following, all considered properties will not depend on φ. Therefore, we will simply denote the
concatenation with I□C.

The following is a straightforward result, which appears also in [16, Lemma 4.1.] and which is
used implicitly in [24].

Lemma 1.5. Let C be an intersecting [N,K,D]qk code and I an intersecting [n, k, d]q code. Then
I□C is an intersecting [Nn,Kk,≥ Dd]q code.

A family directly related to intersecting codes is that of minimal codes. Let us start from their
definition.

Definition 1.6. Let C be a linear code over Fq. A nonzero codeword c ∈ C is called minimal if for
every codeword c′ ∈ C such that σ(c′) ⊆ σ(c), there exists some λ ∈ F∗

q such that c′ = λc.
A code is called minimal if all its nonzero codewords are minimal.

Minimal codewords in linear codes were initially investigated in the context of decoding algo-
rithms [36] and have been employed by Massey [43] to define the access structure in his code-based
secret sharing scheme. The work in [8] introduced what is now known as the Ashikhmin-Barg
condition, which serves as a sufficient criterion for code minimality and has been widely utilized
in code constructions. In [17], minimal codes are investigated in the context of secure two-party
computation. Recent research has particularly focused on the parameters of minimal codes, see
[3,5,17,20,40] and short constructions [7,10]. As shown in the following straightforward result, min-
imal codes constitute a subfamily of intersecting codes and they coincide in the binary case.

Lemma 1.7. Every minimal code is intersecting. Every binary intersecting code is minimal.

Proof. The first part is straightforward: if there are two codewords with non-intersecting support,
their sum is a nonzero codeword which is not minimal.
Now consider the binary case. If the code is not minimal, then there are two different nonzero
codewords c, c′ such that σ(c) ⊆ σ(c′). Hence, σ(c + c′) ∩ σ(c′) = ∅, so that the code is not
intersecting. □

Another family of related codes is that of outer minimal codes, very recently introduced in [4].

Definition 1.8. Let C be an [N,K]qk code. A nonzero codeword c ∈ C ⊆ FN
qk

is called (q-)outer

minimal, if, for all c′ ∈ C,(
σ(c′) ⊆ σ(c) ∧ ∀i ∈ σ(c), ∃λi ∈ Fq s.t. c′i = λici

)
=⇒ ∃λ ∈ Fq s.t. c′ = λc.

A code is called (q-)outer minimal if all its nonzero codewords are (q-)outer minimal.

As shown in [4], any outer minimal code concatenated with a minimal code yields a minimal
code. This allows to construct short minimal codes and prove some optimal existence results of
short minimal codes. Quite unexpectedly, the 2-outer minimal codes are precisely the intersecting
codes.

Proposition 1.9. Let C be an [N,K]2k code. Then C is 2-outer minimal if and only if it is
intersecting.

Proof. Suppose that C is intersecting. Let c, c′ ∈ C nonzero codewords such that σ(c′) ⊆ σ(c) and
c′i = ci, for all i ∈ σ(c′). Then c′ = c, otherwise their sum would be a nonzero codeword with
support disjoint from the support of c′.
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Suppose that C is 2-outer minimal. Let c, c′ ∈ C nonzero codewords such that σ(c) ∩ σ(c′) = ∅.
Then σ(c) ⊆ σ(c+ c′) and ci = ci + c′i for all i ∈ σ(c) (because c′i = 0 for these indexes). However,
c ̸= c+ c′, a contradiction. □

Let us conclude the section with a very basic and well-known sufficient condition for a code to
be intersecting. Let us remark that this condition can be seen as an analogue of the previously
mentioned Ashikhmin-Barg condition for minimal codes. Indeed, it relies exclusively on the weight
distribution of the code.

Lemma 1.10. Let C be an [n, k, d]q code. If 2d > n, then C is intersecting.

Proof. The statement follows by an elementary pigeonhole argument on the supports of codewords.
□

2. The geometry of intersecting codes

A classical approach to study linear codes is to consider their geometrical counterparts: re-
searchers have extensively utilized the connections between linear codes and point sets within pro-
jective spaces. Notably, the MDS conjecture originated from Segre’s inquiry into arcs within finite
geometry [54]. Other remarkable connections exist between covering codes and saturating sets [25],
or between minimal codes and strong blocking sets [3,56]. The aim of this section is to highlight the
geometric interpretation of intersecting codes, which is, to our knowledge, an up to now unexplored
topic.

Let us start from two basic definitions.

Definition 2.1. In Fk
q , define the equivalence relation ∼ such that x ∼ y if x and y are collinear.

The projective space PG(k − 1, q) of dimension k − 1 over Fq is then defined as

PG(k − 1, q) =
(
Fk
q \ {0}

)
/∼.

Definition 2.2. A projective [n, k, d]q system P is a finite set of n points (counted with multiplicity)
of PG(k − 1, q) that do not all lie on a hyperplane and such that

d = n− max
H hyperplane

{|H ∩ P|}.

Projective [n, k, d]q systems P and P ′ are equivalent if there exists some φ ∈ PGL(k, q) mapping P
to P ′ which preserves the multiplicities of the points.

There is a well-known correspondence between the equivalence classes of nondegenerate [n, k, d]q
linear codes and the equivalence classes of projective [n, k, d]q systems (see [57, Theorem 1.1.6])
which works as follows: let C be a nondegenerate [n, k, d]q-code, and let G be a generator matrix of
C. Since there is no zero column in G, it is possible to take the equivalence classes of the columns of
G in PG(k−1, q), say P1, . . . , Pn. It is straightforward to prove that the multiset PG = {P1, . . . , Pn}
is a projective [n, k, d]q system (see Remark 2.3). Note that if the code C is projective, all points in
PG have multiplicity 1. Varying the generator matrix results in equivalent projective systems. The
same holds by taking an equivalent code.

Remark 2.3. Consider a nondegenerate code C with parameters [n, k, d]q and let G be a generator
matrix. Let PG = {P1, . . . , Pn} be defined as above. A codeword c ∈ C is of the form xG, where
x ∈ Fk

q , and ci = 0 if and only if Pi belongs to the hyperplane corresponding to ⟨x⟩⊥ in PG(k−1, q).
From our preceding remarks it follows that the support of a codeword corresponds to the points
(with multiplicities) in the projective space that are outside the corresponding hyperplane.
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Let us introduce a general definition which will be fundamental in describing the geometry of
intersecting codes.

Definition 2.4. Let t be a positive integer. A set of points in a projective space PG(k−1, q) that is
contained in the union of t hyperplanes is called t-cohyperplanar. A set which is not t-cohyperplanar
is called non-t-cohyperplanar.

Example 2.5. The union of any t hyperplanes in PG(k − 1, q) and one point not in any of these
hyperplanes also yields a non-t-cohyperplanar set.

Non-2-cohyperplanar sets are the geometric counterpart of intersecting codes, as shown in the
following result, which is essentially a remark, but it is named theorem because of its importance
for the rest of the paper.

Theorem 2.6. Let C be a nondegenerate code over Fq of dimension k with generator matrix G.
Consider the projective system PG ⊆ PG(k−1, q) defined as above. Then PG is non-t-cohyperplanar
if and only if for any set of t codewords the intersection of their support is nonempty. In particular,
C is intersecting if and only if PG is non-2-cohyperplanar.

Proof. Let c1 = x1G, . . . , ct = xtG be t nonzero codewords of C. Let H1, . . . ,Ht be the projective
hyperplanes corresponding to ⟨x1⟩⊥, . . . , ⟨xt⟩⊥ respectively. Since σ(cj) = {i | Pi /∈ Hj}, the pointset
PG is not contained in

⋃t
j=1Hj if and only if there is an i ∈

⋂t
j=1 σ(cj). □

Since this paper is focused on intersecting codes, from now on we will only consider the case
t = 2. However, in the context of linear frameproof codes [13,34], considering the general case may
be of interest.

Let us introduce a related family of geometric structures.

Definition 2.7. A point set S in PG(k− 1, q) is called a strong blocking set if for every hyperplane
H ⊆ PG(k − 1, q) we have that

⟨S ∩ H⟩ = H.

The notion of a strong blocking set was first introduced in [25] as a means to construct saturating
sets within projective spaces over finite fields. They were later reintroduced in [14] as cutting
blocking sets, aiming to generate a family of minimal codes.

Theorem 2.8 ([3,56]). Let C be a nondegenerate code over Fq of dimension k with generator
matrix G. Consider the projective system PG ⊆ PG(k−1, q) defined as above. Then PG is a strong
blocking set if and only if C is a minimal code.

As shown in the following, strong blocking sets form a subfamily of non-2-cohyperplanar sets.

Corollary 2.9. Strong blocking sets in PG(k−1, q) are non-2-cohyperplanar. If q = 2, the converse
is also true.

Proof. This is a direct consequence of Lemma 1.7, Theorem 2.6 and Theorem 2.8. □

The result above entails that all the numerous known examples of strong blocking sets provide
examples of non-2-cohyperplanar sets. We will see, however, that apart from the binary case
(where the two concepts coincide), these examples are “larger” than necessary (in the sense that
they contain many superfluous points).

To illustrate this, let us introduce a general result on non-2-cohyperplanar sets constructed from
unions of lines. We first recall the avoidance property, introduced in [26].

Definition 2.10. Let L be a set of lines of PG(k− 1, q). We say that L has the avoidance property
if there is no projective subspace of codimension 2 that meets every line.
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In [26], it is proved that a set of lines having the avoidance property is a strong blocking set (and
hence a non-2-cohyperplanar set). However, as the next result shows, it is enough to take 3 points
on each line to get a non-2-cohyperplanar set.

Proposition 2.11. Let L be a set of lines with avoidance property and let S be a set of points
such that for every ℓ ∈ L,

|S ∩ ℓ| ≥ 3.

Then S is a non-2-cohyperplanar set.

Proof. Let H1 and H2 be two projective hyperplanes and let V = H1 ∩ H2. The subspace V is of
codimension 2, so there exists ℓ ∈ L such that ℓ ∩ V = ∅. The line ℓ cannot be contained in H1,
since otherwise ℓ would meet also H2, contradicting ℓ ∩ V = ∅. Symmetrically, ℓ also cannot be
contained in H2. This means that

|ℓ ∩H1| = |ℓ ∩H2| = 1.

Therefore, since S contains at least 3 points of ℓ, S contains at least one point outside of H1 ∪H2,
meaning that S is non-2-cohyperplanar. □

Remark 2.12. Proposition 1.9 and Theorem 2.6 imply that, when q is even, the geometric coun-
terparts of 2-outer minimal codes, that is the 2-outer strong blocking sets, are non-2-cohyperplanar.
See [4] for more details about 2-outer strong blocking sets and their geometric properties.

We will now give two examples of non-2-cohyperplanar sets of quite small size (with respect to
the projective space in which they are defined).

Example 2.13 (Arcs with at least 2k−1 points). An arc in PG(k−1, q) is a set of points with
the property that any k of them span the whole space. It is well-known that arcs in PG(k − 1, q)
correspond to MDS codes of dimension k over Fq. Any arc A with at least 2k − 1 points is non-2-
cohyperplanar: the maximum number of points of A contained in a hyperplane is k−1, by definition.
Hence, if |A| > 2(k − 1), for any couple of hyperplanes H1,H2 there is always a point of A not
contained in H1 ∪H2.

Example 2.14 (The Sparse Tetrahedron). Consider k points V1, . . . , Vk of PG(k−1, q) spanning
the whole space. For any i, j ∈ {1, . . . , k}, i < j, consider a point Pi,j on the line ⟨Vi, Vj⟩, Pi,j ̸∈
{Vi, Vj}. The set

T = {V1, . . . , Vk} ∪ {Pi,j | i, j ∈ {1, . . . , k}, i < j}
is called sparse tetrahedron. Such a set is non-2-cohyperplanar. Indeed, the intersection of T with
any hyperplane H cannot contain all V1, . . . , Vk. If T ∩ H does not contain Vi, it also does not
contain any line passing through Vi, and in particular, it does not contain any of the lines ⟨Vi, Vj⟩.
For each of these lines, there is at least a point distinct from Vi not contained in H (otherwise the
whole line would be contained in H). Therefore, we have identified a set of points not contained in
H spanning the whole space. This means that any other hyperplane H′ will not suffice to cover all
the points, guaranteeing that we have a non-2-cohyperplanar set.

We may introduce a notion of minimality.

Definition 2.15. A non-2-cohyperplanar set S is said to be minimal if there exist two hyperplanes
H1 and H2 and a point P ∈ S such that S \ {P} ⊂ H1 ∪H2.

Remark 2.16. It is easy to observe that arcs with 2k − 1 points in PG(k − 1, q) and sparse
tetrahedrons are examples of minimal non-2-cohyperplanar sets.

Let us conclude the section with a geometric property of non-2-cohyperplanar sets, with a strong
coding theoretical implication.
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Theorem 2.17. Let S be a non-2-cohyperplanar set and H be a hyperplane in PG(k− 1, q). Then

|S \ (S ∩H)| ≥ k.

Equivalently, if C is an [n, k, d]q intersecting code, then d ≥ k.

Proof. The set S \ (S ∩ H) cannot be contained in a hyperplane, since otherwise S would be 2-
cohyperplanar. Hence, it must contains at least k points. The statement about intersecting codes
is a direct consequence of Theorem 2.6. □

3. On the size of small non-2-cohyperplanar sets

While it is easy to give examples of non-2-cohyperplanar sets with many points, it is not clear
how small they can be. Moreover, if we add a point to a set that is already non-2-cohyperplanar,
it remains non-2-cohyperplanar. Hence, finding the minimum size of a non-2-cohyperplanar set in
PG(k − 1, q) is a natural problem and this is the aim of this section.

Definition 3.1. We define i(k, q) to be the size of the smallest non-2-cohyperplanar set in PG(k−
1, q) (equivalently, the length of the shortest linear intersecting code over Fq of dimension k).

3.1. Lower bounds. We start with an easy lower bound.

Theorem 3.2. Let S be a non-2-cohyperplanar set in PG(k − 1, q). Then |S| ≥ 2k − 1. Hence

i(k, q) ≥ 2k − 1.

If |S| = 2k − 1, then S is an arc.

Proof. Suppose |S| ≤ 2k − 2. Since any k − 1 points are always contained in a hyperplane, there
must exist two hyperplanes containing S, which gives a contradiction, proving the inequality.
Suppose now that |S| = 2k − 1. In coding theoretical language, this means that the corresponding
code has length n = 2k − 1. Now, its minimum distance d satisfies d ≥ k, by Theorem 2.17, and

d ≤ 2k − 1− k + 1 = k,

by the Singleton bound. Hence d = k and the code is MDS, so that S is an arc. □

Remark 3.3. Let us underline that Theorem 3.2 implies that the sets introduced in Example 2.13
are the smallest whenever arcs of cardinality 2k−1 exist. It is well-known that arcs with q+1 points
exist. The celebrated MDS conjecture, posed by Segre in [54], states that the maximal size of an
arc in PG(k− 1, q) (where 2 ≤ k ≤ q− 1) is q+ 1, up to two exceptional cases for which it is q+ 2.
Moreover, if k ≥ q, the maximal size of an arc is k + 1. The conjecture has been demonstrated
across various parameter sets q and k (see [33] for a survey). In [9], Ball achieved a significant
breakthrough by demonstrating that the MDS conjecture holds when q is a prime. In particular,
if q is a prime, he proved that every arc with q + 1 points in PG(k − 1, q), with 2 ≤ k ≤ q − 1, is
a rational normal curve (the geometric counterpart of Reed-Solomon codes). So, under the MDS
conjecture,

i(k, q) = 2k − 1

if and only if k ≤ q+2
2 (or k ≤ q+3

2 in the exceptional cases). Note that it is not necessary to invoke
the MDS conjecture to say that the bound is not tight for large k, because it is well-known that, if
2 ≤ k ≤ q − 1, arcs cannot exist for k larger than 2q − 2 (see [35, Corollary 7.4.4]).

The following result is a Plotkin-like bound.

Theorem 3.4. For 1 ≤ t ≤ k,

(1) i(k, q) ≥ k +
qt − 1

qt − qt−1
(k − t).
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Proof. Let us give a proof in coding theoretical language. Let G = (Ik | A) be a generator matrix of
an intersecting [n, k, d]q code C, and consider t rows of G. Let V be the multiset of vectors formed
by the last n − k coordinates of the nonzero vectors in the rowspan of these t rows. We aim to
compute the sum of the weights of all vectors in V, called the total weight of V and denoted w(V).
Since the t rows are linearly independent, there are qt−1 vectors in V (counted with multiplicities).
Since any codeword corresponding to a vector of V has at most t nonzero elements in the first k
coordinates, each element of V must have weight at least d − t ≥ k − t (the last inequality comes
from Theorem 2.17). This means that

w(V) ≥ (qt − 1)(k − t).

On the other hand, each vector of V has length exactly n− k, and for each coordinate there are at
most qt− qt−1 codewords of V that are nonzero at this coordinate. This yields that the total weight
is at most

w(V) ≤ (n− k)(qt − qt−1).

Combining both inequalities finishes the proof. □

Remark 3.5. Note that (1) reduces to the bound in Theorem 3.2 for t = 1. By Remark 3.3, the
case t = 1 give the best bound for small k. When q is large, the case t = 1 also gives the best
bound. So Theorem 3.4 improves on Theorem 3.2 only when k is large compared with q.

Remark 3.6. For q = 2, non-2-cohyperplanar sets coincide with strong blocking sets. In [5], it
is proved that i(k, 2) ≥ 3k − 3. This means that (1) is never tight for q = 2, k > 2 and any
t ∈ {1, . . . , k}. Note also that some structural results on non-2-cohyperplanar sets of cardinality
3k − 3 are given in [53].

3.2. Asymptotic lower bounds. After demonstrating general bounds, we now present asymptotic
bounds, which improve upon previous ones for large k (with fixed q). It is worth noting that similar
methods have also been employed for general strong blocking sets in [12,53] and for intersecting
codes over prime fields in [19,38,42].

Before stating our bound, we must define q-ary upper-bounding functions.

Definition 3.7. Let C be a code with parameters [n, k, d]q. We define its rate R = k/n and its
relative minimum distance δ = d/n. Let f : [0, 1] → [0, 1] be a continuous decreasing function. We
say that f is q-ary upper-bounding if, for any R and δ verifying R > f(δ), there is no sequence of
codes with parameters [ns, R · ns, δ · ns]q such that ns → ∞.

Example 3.8. The Singleton bound stated in Section 1 implies that the function f(δ) = 1 − δ is
q-ary upper-bounding for any q.

Notice that, by Theorem 2.17, the parameters of intersecting codes must lie in the region

{(δ,R) ∈ R2
≥0 | R ≤ δ}.

By combining this with a suitable q-ary upper-bounding function, one may deduce an upper bound
on the asymptotic rate of intersecting codes over Fq, or, equivalently, a lower bound on their length.

Theorem 3.9.

lim inf
k→∞

i(k, q)

k
≥ 2 +

1

q − 1
.

Proof. The asymptotic Plotkin bound [35, Theorem 2.10.2] corresponds to the q-ary upper-bounding
function

f(x) = 1− q

q − 1
x.

The intersection of the graphs of this function and the function g(x) = x corresponding to the

bound R ≤ δ is the point
(

q−1
2q−1 ,

q−1
2q−1

)
. This produces the upper bound on the asymptotic rate and

hence the lower bound above. □
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Remark 3.10. Note that the previous result can be also be obtained by Theorem 3.4, by letting t
grow to infinity.

By considering the MRRW bound [35, Theorem 2.10.6], instead of the Plotkin bound, one is able
to provide a stronger upper bound on the rate for small values of q.

Let Hq be the q-ary entropy function, that is

Hq(x) = −x logq

( x

q − 1

)
− (1− x) logq(1− x).

The MRRW bound states that

Mq(x) = Hq

(
1

q

(
q − 1− (q − 2)x− 2

√
(q − 1)x(1− x)

))
is a q-ary upper-bounding function. Using the same argument as above, we get stronger upper
bounds on the maximum rate of intersecting codes whenever q ≤ 17.

Table 1 summarizes the improved bounds obtained this way (some of them were already known
in the references cited above).

Table 1. Lower bound on the asymptotic length of intersecting codes

q lim infk→∞
i(k,q)
k

2 3.5276
3 2.8272
4 2.5713
5 2.4342
7 2.2862
8 2.2411
9 2.2060
11 2.1547
13 2.1185
16 2.0802
17 2.0703

Theorem 3.11. The MRRW bound yields a better upper bound on the rate of intersecting codes
than the Plotkin bound when q ≤ 17. In other words, if and only if q ≥ 19, the following holds :

Mq

(
q − 1

2q − 1

)
≥ q − 1

2q − 1
.

Proof. First we must compute A(x) = 1
q

(
q − 1− (q − 2)x− 2

√
(q − 1)x(1− x)

)
with x = q−1

2q−1 .

This yields

A

(
q − 1

2q − 1

)
=

(q − 1)(
√
q − 1)2

q(2q − 1)
.

We now want to know for what values of q it is true that

Mq

(
q − 1

2q − 1

)
≥ q − 1

2q − 1
.

Now, for simplicity, set B(q) = q(2q − 1) − (q − 1)(
√
q − 1)2, C(q) = (2q − 1)q and D(q) =

(q − 1)(
√
q − 1)2, and define g(x) = x logq(x). Note that B(q), C(q) and D(q) are all positive. By
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straightforward computations, the above inequality is equivalent to

g(B(q))− (q − 1)g

(
D(q)

q − 1

)
+ g(C(q)) ≥ q(q − 1).

Since g is a convex function, and since D(q) = C(q)−B(q), we can give the following lower bound

g(C(q))− g(B(q)) ≥ D(q)g′(B(q)) = D(q) logq(eB(q)).

Therefore it is sufficient to establish

D(q) logq(eB(q))−D(q) logq((
√
q − 1)2) ≥ q(q − 1)

and this simplifies to

(
√
q − 1)2 logq

(
eB(q)

(
√
q − 1)2

)
≥ q.

Since (
√
q − 1)2 ≤ q, in order for the above inequality to be true it is enough to have

(
√
q − 1)2 logq

(
eB(q)

q

)
≥ q

(
√
q − 1)2 logq(eq) ≥ q

q ≥ 2
√
q(ln(q) + 1)

1 +
1

2
· √q ≥ ln(q)

Writing f(x) = 1 + 1
2 ·

√
x− ln(x), it is easy to check that f is increasing as soon as x ≥ 16.

In particular, straightforward computation shows that f(144) > 0, meaning that as soon as
q ≥ 144 we have

Mq

(
q − 1

2q − 1

)
≥ q − 1

2q − 1
.

For the remaining values of q, that is for 19 ≤ q ≤ 144, the theorem can be checked by direct
computation. □

3.3. Upper bounds. The sparse tetrahedron construction, presented in the Example 2.14, yields
a non-2-cohyperplanar set of size k(k + 1)/2 in PG(k − 1, q), therefore providing an upper bound
on i(k, q), namely

i(k, q) ≤ k(k + 1)

2
.

Note that this construction correspond to codes with parameters
[
k(k+1)

2 , k, k
]
(the minimum dis-

tance can be easily obtained by a geometric argument). In particular, this is not a family of
asymptotically good codes.

The following result is an upper bound obtained from a probabilistic existence result (equivalent
to taking random points in the projective space). Let us highlight the fact that this is already
known for prime fields: for q = 2 it is due to Komlós (unpublished proof, 1983, cited in [19]), and
for the more general case when q is a prime, we know of no earlier proof than [42, Theorem 7.3].
Our proof follows the same arguments and we write it explicitly for the sake of completeness.

Let us recall that the Gaussian coefficient
[
N
K

]
q
is the number of subspace of dimension K in a

vector space of dimension N over Fq, that is[
N

K

]
q

=

K−1∏
i=0

qN − qi

qK − qi
.
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Theorem 3.12. If

n ≥ 2

logq(
q2

2q−1)
k

then an [n, k, d]q intersecting code, or equivalently, a non-2-cohyperplanar set in PG(k − 1, q) of
cardinality n, exists. Hence

lim sup
k→∞

i(k, q)

k
≤ 2

logq(
q2

2q−1)
.

Proof. We follow the classical counting arguments used, for example, in the well-know Gilbert–Var-
shamov bound (see [35, Theorem 2.10.8]). Again, we will use coding-theoretical language.

Let

Bn = {{x, y} ⊆ Fn
q | σ(x) ∩ σ(y) = ∅}.

For each coordinate i ∈ {1, . . . , n} of a pair of vectors {x, y} in Bn we have three possibilities:

(xi ̸= 0 ∧ yi = 0) ∨ (xi = 0 ∧ yi ̸= 0) ∨ (xi = 0 ∧ yi = 0).

Hence |Bn| = (2(q − 1) + 1)n = (2q − 1)n.
Let

Fn,k = {C ⊆ Fn
q | dim C = k},

whose cardinality is clearly
[
n
k

]
q
.

Now, each pairs of vectors in Bn is contained in exactly
[
n−2
k−2

]
q
elements of Fn,k. A code in Fn,k

is interesting if and only if it does not contain any element of Bn. Since there are at most

(2q − 1)n ·
[
n− 2

k − 2

]
q

codes in Fn,k which contains an element of Bn, if

(2q − 1)n ·
[
n− 2

k − 2

]
q

≤
[
n

k

]
q

then there exist intersecting codes with parameters [n, k]q. By straightforward calculations we get

that the above condition is implied by qn logq(2q−1)+2(k−n) ≤ 1, hence the statement. □

Corollary 3.13. Intersecting codes are asymptotically good.

Proof. Theorem 3.12 and Theorem 2.17 yield that a family of[
2

logq(
q2

2q−1)
k, k,≥ k

]
q

intersecting codes exist. This is an asymptotically good family. □

Remark 3.14. Even though Theorem 3.12 provides a very good upper bound (converging to the
same value as the lower bound for large q), it has the drawback of not providing guidance on how
to explicitly construct such small cardinality sets. The following section will be dedicated to such
constructions.
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Table 2. Values of i(k, q) for small q and k

q
k

2 3 4 5 6 7 8 9

2 3 6 9 13 15 20 24 26
3 3 6 9 10 13 [17, 18] [19, 21] [21, 30]
4 3 5 8 10 [12, 13] [15, 16] [17, 21] [21, 25]
5 3 5 8 10 [12, 13] [15, 17] [18, 21] [20, 25]
7 3 5 7 10 [12, 13] 14 [17, 21] [19, 25]
8 3 5 7 9 [12, 13] [14, 15] [16, 21] [19, 25]
9 3 5 7 9 12 [14, 15] [16, 21] [18, 25]

3.4. Explicit examples for low dimensions and small base fields. We end this section with a
list of explicit computations of the actual value of i(k, q) for small values of k and q. We summarize
in Table 2 all the known results, whose proof is given below. Whenever we write [n1, n2] we mean
that i(k, q) is not known but contained in this interval. The colors indicate the argument used to
prove the lower or upper bound, as we will explain at the end of this subsection.

For the first line of Table 2, we refer to [39], where these values are given in the context of minimal
codes.

Whenever 2k−1 ≤ q+1, we may take a [2k−1, k, k]q MDS code, that is 2k−1 points on an arc.
In dimension 2, it is always sufficient to take 3 distinct points.
For q = 3, the [6, 3, 3]3 code with generator matrix

G =

1 0 0 1 0 2
0 1 0 2 2 1
0 0 1 1 1 1


is intersecting and it is clearly the shortest (a [5, 3,≥ 3]3 code does not exist).

For q = 3, there is no [8, 4, 4]3 intersecting code by Magma calculations, but an intersecting
[9, 4, 4]3 exists by concatenation (see Lemma 1.5).

For q = 4, the [8, 4, 4]4 code with generator matrix

G =


1 0 0 0 0 1 1 1
0 1 0 0 1 1 1 0
0 0 1 0 1 0 1 α
0 0 0 1 0 α α2 1


(here α is a primitive element of F4) is intersecting and it is clearly the shortest (a [7, 4,≥ 4]4 code
does not exist).

For q = 5, the [8, 4, 4]5 code with generator matrix

G =


1 0 0 0 1 0 3 4
0 1 0 0 4 2 4 0
0 0 1 0 0 4 2 4
0 0 0 1 4 1 3 4


is intersecting and it is clearly the shortest (a [7, 4,≥ 4]5 code does not exist).
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For q ∈ {3, 4, 5, 7}, the [10, 5, 5]q code with generator matrix Gq equal to

G3 =


1 0 0 0 0 1 2 2 2 1
0 1 0 0 0 1 1 1 0 1
0 0 1 0 0 1 1 0 2 2
0 0 0 1 0 2 1 2 2 0
0 0 0 0 1 0 2 1 2 2

 , G4 =


1 0 0 0 0 α 0 1 α2 α
0 1 0 0 0 α α2 α α2 0
0 0 1 0 0 0 α α2 α α2

0 0 0 1 0 α2 α 1 0 α2

0 0 0 0 1 α2 1 1 α 1

 ,

G5 =


1 0 0 0 0 0 1 1 1 1
0 1 0 0 0 1 0 2 4 3
0 0 1 0 0 4 2 1 4 3
0 0 0 1 0 4 1 2 3 4
0 0 0 0 1 4 3 0 1 4

 , G7 =


1 0 0 0 0 0 1 1 1 1
0 1 0 0 0 1 3 6 6 3
0 0 1 0 0 3 4 2 5 1
0 0 0 1 0 5 5 0 4 2
0 0 0 0 1 6 1 6 6 0

 ,

is intersecting and it is clearly the shortest (a [9, 5,≥ 5]q code does not exist).
For q = 3, the [13, 6, 6]3 code with generator matrix

G =


1 0 0 0 0 0 2 1 1 0 0 2 2
0 1 0 0 0 0 2 0 2 1 0 2 1
0 0 1 0 0 0 1 1 2 2 1 1 0
0 0 0 1 0 0 0 1 1 2 2 1 1
0 0 0 0 1 0 1 2 0 1 2 0 2
0 0 0 0 0 1 2 2 0 0 1 1 2


is intersecting and it is the shortest: actually, there is no [11, 6,≥ 6]3 code and every [12, 6, 6]3 is
equivalent to the extended ternary Golay code (see [49]), which is not intersecting.

For q = 9, the [12, 6, 6]9 code with generator matrix

G =


1 0 0 0 0 0 α7 2 α6 α3 α6 0
0 1 0 0 0 0 2 α α7 α 1 α
0 0 1 0 0 0 2 α7 2 α α6 α2

0 0 0 1 0 0 α6 0 α2 1 1 α
0 0 0 0 1 0 α3 α2 1 α α6 2
0 0 0 0 0 1 α3 α6 α α α α3


is intersecting and it is clearly the shortest (a [11, 6,≥ 6]9 code does not exist).

For q = 7, the [14, 7, 7]7 code with generator matrix

G =



1 0 0 0 0 0 0 3 3 4 3 2 2 6
0 1 0 0 0 0 0 6 3 3 4 3 2 2
0 0 1 0 0 0 0 2 6 3 3 4 3 2
0 0 0 1 0 0 0 2 2 6 3 3 4 3
0 0 0 0 1 0 0 3 2 2 6 3 3 4
0 0 0 0 0 1 0 4 3 2 2 6 3 3
0 0 0 0 0 0 1 3 4 3 2 2 6 3


is intersecting and it is clearly the shortest (a [13, 7,≥ 7]7 code does not exist).

The lower bounds are all in blue and they follow from Theorem 2.17 and from the database
of the codes with the best known parameters in Magma. The upper bounds in orange (that is,
exactly for the columns corresponding to k = 8 and k = 9) may be obtained by concatenating
the shortest intersecting codes over proper extensions (see Lemma 1.5). The bounds in green come
from extensive research in Magma. This has been done by starting from an [n, k − 1, d]q optimal
intersecting code and randomly building an [n, k, d]q code from it or simply taking the codes with
the best known parameters in Magma.
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4. Small explicit constructions for large dimensions

In the previous sections we provided bounds on the size of the smallest non-2-cohyperplanar sets
in projective spaces of given dimensions, together with a non-constructive existence result. The
sets presented in Example 2.13 meet the bound for small dimensions, as we have already observed.
The aim of this section is to provide explicit constructions of small non-2-cohyperplanar sets, or
equivalently of short intersecting codes, for large dimensions.

4.1. Algebraic geometry intersecting codes. Algebraic geometry is a useful tool for construct-
ing families of codes with good parameters. These codes, called algebraic geometry codes, are a
generalization of Reed-Solomon codes: whereas Reed-Solomon codes are obtained from the evalua-
tion of polynomials of bounded degree in several points of Fq, algebraic geometry codes are obtained
by evaluating polynomials from the Riemann-Roch space of a divisor over an algebraic curve over
Fq. For a more extensive introduction to algebraic geometry codes, we refer the reader to [34, Chap-
ter 15]. The family of algebraic geometry codes provides explicit constructions of asymptotically
good codes, some of which turn out to be intersecting. In many cases however, in order to obtain
explicit constructions with maximum rate we need to concatenate algebraic geometry codes with
well-chosen intersecting codes of low dimension. For instance, when q is a prime, there are no con-
structions of asymptotically good AG codes, meaning we must concatenate intersecting AG codes
over some extension of Fq with suitable intersecting codes over Fq.

First we define the Singleton defect of a code.

Definition 4.1. Let C be a code with parameters [n, k, d]q. Its Singleton defect is the quantity

∆ = 1− k + d

n+ 1
.

Notice that a code is MDS if and only if ∆ = 0, while a code with “bad” parameters has a large
Singleton defect.

Definition 4.2. The Ihara constant of Fq is

A(q) = lim sup
g(X)→∞

n(X)

g(X)
,

where X ranges over all curves over Fq, n(X) = |X(Fq)| is the number of rational points of X and
g(X) is the genus of X.

The best possible Singleton defect attainable by AG codes is A(q)−1 ([34, Chapter 15, Corollary
15.3.14]). Note also that, provided the Singleton defect is at least A(q)−1, any choice of parameters
R and δ that sum to 1−A(q)−1 is attainable. The Drinfeld-Vladut bound [57, Theorem 2.3.22] states
that A(q) ≤ √

q − 1, which gives a lower bound on the best possible Singleton defect reachable by
AG codes. Nevertheless, there exist explicit constructions of AG codes with Singleton defect close
to this lower bound. Most notably, when q is a square it is possible to reach the Drinfeld-Vladut
bound, as first proved in [37].

In [50], the author establishes the following theorem:

Theorem 4.3 (Theorem 2, [50]). Suppose that A(q) ≥ 4. Then there exists an explicit family of
asymptotically good intersecting codes with asymptotic rate

R =
1

2
− 1

2A(q)
.

Remark 4.4. The proof of Theorem 4.3 relies on non-trivial algebraic geometric arguments. A
simpler way to construct intersecting AG codes would be to consider families of AG codes with
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δ > 1/2, which are intersecting, by Lemma 1.10. The best possible rate using this method is

R =
1

2
− 1

A(q)
.

Hence, Theorem 4.3 is an improvement over this simpler method.

Theorem 4.3 often yields the best-known explicit constructions of intersecting codes over Fq.
However, when q is small, or a prime, A(q) ≤ 4. In these cases, it is therefore necessary to use
concatenation in order to construct explicit sequences of intersecting AG codes of short length.

Remark 4.5. Before diving into the details, we make one more observation. The highest rate of
a non-trivial intersecting code is attained by a code with parameters [3, 2, 2]q (over any base field),
corresponding to three distinct points on the projective line. Moreover, an intersecting AG code
constructed with the above theorem must have rate lower than 1/2. This means that any non-trivial
concatenation of an intersecting code with intersecting AG codes must have a rate of at most 1/3.
Consequently, if over some field Fq there are intersecting AG codes that have rate larger than 1/3,
there is no construction involving concatenation that will yield a better rate.

Theorem 4.6. The following upper bounds, which stem from explicit constructions involving (pos-
sibly concatenated) AG codes, hold:

• if q is a square and q ≥ 25, then

lim sup
k→∞

i(k, q)

k
≤ 2 +

2
√
q − 2

;

• if q = p2m+1 is an uneven power of a prime (but not a prime) and q ≥ 32, then

lim sup
k→∞

i(k, q)

k
≤ 4

2− 1
pm−1 − 1

pm+1−1

,

• If q is a prime and q ≥ 11, then

lim sup
k→∞

i(k, q)

k
≤ 3 +

3

q − 2
.

For the remaining values of q, Table 3 provides the upper bounds obtained by concatenating AG
codes with suitable intersecting codes.

Table 3. Upper bounds obtained with AG codes, for exceptional values of q

q Parameters of inner code
Upper bound for

lim supk→∞ i(k, q)/k
Probabilistic bound

2 [15, 6]2 5.8334 4.8189
3 [10, 5]3 4.3561 3.7382
4 [5, 3]4 4.1667 3.3539
5 [5, 3]5 3.9025 3.1507
7 [7, 4]7 3.5745 2.9331
8 [3, 2]8 3.5 2.8666
9 [3, 2]9 3.4286 2.8148
16 [3, 2]16 3.2143 2.6266
27 [3, 2]27 3.12 2.5146

Proof. In all three cases we call Rq the largest rate reached by AG codes over Fq. Recall that we
will then obtain the asymptotic upper bound

lim sup
k→∞

i(k, q)

k
≤ R−1

q .
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• As we have already mentioned, when q is a square, there are explicit constructions of AG
codes reaching the Drinfeld-Vladut bound, that is, with Singleton defect equal to (

√
q−1)−1.

The best possible rate yielded by Theorem 4.3 is

Rq =
1

2
− 1

2(
√
q − 1)

.

For the hypotheses of Theorem 4.3 to be verified, we must have q ≥ 25. Note that Remark 4.5
tells that we do not need to concatenate, since as soon as q ≥ 25, we have R ≥ 3/8 ≥ 1/3.

• When q = p2m+1 (with m ≥ 1), a prominent result shown in [11] provides an explicit
construction of AG codes satisfying the lower bound

A(q) ≥ 2

(
1

pm − 1
+

1

pm+1 − 1

)−1

.

In order to satisfy the hypothesis of Theorem 4.3, we need A(q) ≥ 4. This is the case for
every value of q except q = 8 and q = 27. Again, in this case Remark 4.5 tells that we do
not need to concatenate.

• If q is a prime, there are no explicit constructions of asymptotically good intersecting AG
codes. Hence we need to concatenate. When q ≥ 11 it is straightforward to check that
concatenating AG codes over Fq2 whose parameters meet the Drinfeld-Vladut bound with
a [3, 2, 2]q code will always produce the shortest explicit construction. This yields

Rq ≥
2

3
·
(
1

2
− 1

2(q − 1)

)
=

1

3
− 1

3(q − 1)
.

The remaining cases are obtained by concatenation, in each case using Theorem 4.3 and the best
known lower bounds on A(q) to obtain the best possible rate for the outer code. □

Remark 4.7 (Comparison with the probabilistic bound of Theorem 3.12). The bound from Theo-
rem 4.6 outperforms the probabilistic bound exactly in the following cases:

• if q ≥ 49 is a square;
• if q ≥ 128 is an odd power of a prime.

Hence the asymptotic upper bound provided by Theorem 4.6 is best for almost all non-prime q.
Moreover, this is a constructive bound: the codes that reach it can be explicitly constructed in
polynomial time, as noted in [50].

Remark 4.8. Recall that in the binary case intersecting codes coincide with minimal codes (see
Lemma 1.7). There exist numerous short constructions of minimal codes, for instance in [7,10,21].
To the best of our knowledge, the shortest explicit construction was given in [21]. The construction
recorded in Table 3 provides an improvement and it is, to the best of our knowledge, the shortest
explicit construction of minimal codes over F2.

4.2. A construction using expander graphs. In this subsection we provide an explicit con-
struction of non-2-cohyperplanar sets using expander graphs, based on the approach used in [7] for
strong blocking sets. Even though the resulting construction will be longer than the one in the
previous subsection, we believe that it is still interesting because it provides a geometric insight
into non-2-cohyperplanar sets, as well as a link with other well-known combinatorial and geometric
objects. We will construct small sets of lines with avoidance property and we will take 3 points on
each line, obtaining a small non-2-cohyperplanar set, by Proposition 2.11.

Definition 4.9. Let G = (V,E) be a graph with n vertices, say V = {u1, . . . , un}. The adjacency
matrix AG of G is the n× n matrix with coefficients ai,j = |{edges connecting ui and uj}|.
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The matrix is clearly diagonalizable over the real field (it is symmetric). Let us call λ1(G) ≥
λ2(G) ≥ . . . ≥ λn(G) its eigenvalues. Recall that if G is t-regular, then λ1(G) = t. We also define

λ(G) = max{|λ2(G)|, . . . , |λn(G)|}.

Definition 4.10. An (n, t, λ)-graph G is a t-regular graph with n vertices such that λ(G) ≤ λ.
A t-regular graph G with λ(G) ≤ 2

√
t− 1 is called Ramanujan graph.

Theorem 4.11 (Alon-Bopanna). For an (n, t, λ)-graph,

λ ≥ 2
√
t− 1− o(1)

as n → ∞.

In [6], the author proves the following.

Theorem 4.12 (Theorem 1.3, [6]). For every degree t, every ε and all sufficiently large n ≥ n0(t, ε),
where nt is even, there is an explicit construction of an (n, t, λ)-graph with

λ ≤ 2
√
t− 1 + ε.

The following is an invariant of graphs, which will be fundamental to get our construction.

Definition 4.13. Let G = (V,E) be a simple connected graph. For any subgraph H, let κ(H)
denote the largest size of a connected component in H. The integrity of G is the integer

ι(G) = min{|S|+ κ(G − S) | S ⊆ V }.

Proposition 4.14 (Corollary 3.4, [7]). For an (n, t, λ)-graph G,

ι(G) ≥ n · t− λ

t+ λ
.

The next result, proved in [7], is the link between the theory of expander graphs and lines with
the avoidance property, and then with strong blocking sets and non-2-cohyperplanar sets.

Proposition 4.15 (Lemma 4.4, [7]). Let M = {P1, . . . , Pn} ⊆ PG(k−1, q) be a projective [n, k, d]q
system and G = (M, E) a graph. If

ι(G) ≥ n− d+ 1,

then the set of lines
L(M,G) = {⟨Pi, Pj⟩ | PiPj ∈ E}

satisfies the avoidance property.
Hence, if G is an (n, t, λ)-graph and

t− λ

t+ λ
≥ 1− δ +

1

n
,

then L(M,G) satisfies the avoidance property.

Combining Theorem 4.11, Theorem 4.12, Proposition 4.15 and Proposition 2.11, we obtain the
following result.

Theorem 4.16. Assume that there is an explicit construction of projective [n,Rn, δn]q systems
and an integer t such that

t− 2
√
t− 1

t+ 2
√
t− 1

> 1− δ.

Then there exist explicit families of non-2-cohyperplanar sets with size tending to(
1 +

t

2

)
n,

as n → ∞.
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Proof. Let ε > 0 and choose n ≥ n0(t, ε) such that nt is even. We call M the projective [n,Rn, δn]q
system. By Theorem 4.12, there is an explicit construction of a (n, t, λ)-graph with λ = 2

√
t− 1+ε.

Let us call this graph Gn,t = (Vn,t, En,t). Notice that by our assumptions it is possible to choose ε
small enough and n large enough so that

t− λ

t+ λ
≥ 1− δ +

1

n
.

Therefore, L(M,Gn,t) satisfies the avoidance property.
By Proposition 2.11, if we choose 3 points on every line of L(M,Gn,t), we get a non-2-cohyperplanar

set. In order to get the smallest such set, we choose every vertex and one point (different from the
vertices) on every edge of Gn,t. This yields n+ nt/2 points. □

Let us give one example of an application of Theorem 4.16. For simplicity’s sake, we will consider
only the case when q is a square, since this yields the best possible AG codes as well as the
simplest formula for the Singleton defect (which is nice for computations). Consider a family of AG
[n,Rn, δn]q codes such that

R+ δ = 1− 1
√
q − 1

.

Note that the size of the non-2-cohyperplanar set that we may obtain is(
1 +

t

2

)
n =

1 + t/2

R
· k,

where k is the dimension of the AG code. According to Theorem 4.16, we need t verifying

t− 2
√
t− 1

t+ 2
√
t− 1

> 1− δ = R+
1

√
q − 1

.

Setting

R(q, t) =
t− 2

√
t− 1

t+ 2
√
t− 1

− 1
√
q − 1

and

α(q, t) =
1 + t/2

R(q, t)
,

we want to minimize the value of α(q, t). Notice that since t is the degree of a vertex, t has to be
an integer, which rather limits the possibilities for optimization for a given q.

When q → ∞, the second term in the expression of R(q, t) vanishes. This yields an expression of
α(q, t) which does not depend on q, for which it is easy to check that the minimum value is reached
for t = 10. Hence we get explicit constructions of non-2-cohyperplanar sets with

R(q, 10) =
1

4
− 1

√
q − 1

and

α(q, 10) =
6

R(q, 10)
→ 24,

as q → ∞.
By computing the value of α(q, t) for integer values of t, it is possible to verify that, for q ≥ 892,

t = 10 gives the minimum value for α(q, t). For smaller values of q, the best values of t and of
α(q, t) are reported in Table 4. For q = 4 the Singleton defect is 1 so R > 0 is impossible, meaning
that our construction does not work.
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Table 4. Smallest values of α(q, t) for small square q

q t α(q, t)
32 86 299.5378
42 39 110.0490
52 27 71.8927
72 20 48.6300
82 18 43.7121
92 17 40.4255
112 15 36.2747
132 14 33.7937
162 13 31.5103

172 ≤ q ≤ 192 13 ∼ 30
232 ≤ q ≤ 272 12 ∼ 28

292 12 27.7441
312 ≤ q ≤ 322 11 ∼ 27
372 ≤ q ≤ 492 11 ∼ 26
532 ≤ q ≤ 832 11 ∼ 25

5. On the 2-wise weighted Davenport constants

In this section we investigate links between intersecting codes and zero-sum problems over finite
abelian groups, in particlar with generalizations of the Davenport constant. Zero-sum problems
over finite abelian groups have been studied since the 1960s, and the Davenport constant and its
generalizations remain a main subject in this area (see [27] for a general survey on the topic). The
coding theoretical approach to problems about zero-sum subsequences in finite abelian groups is not
new (see for example [22,41]) and an investigation of the Davenport constant with these methods
has been already done in [42,48]. However, our framework is more general: we consider intersecting
codes over any finite field and their relation with weighted Davenport constants.

5.1. The general setting. Let G be a finite abelian group.

Definition 5.1. Let a1, . . . , an ∈ G be a finite sequence of elements of G. For such a sequence,
we define a zero-sum subsequence as a sequence ai1 , . . . , air , with {i1, . . . , ir} ⊆ {1, . . . , n}, verifying∑r

k=1 aik = 0.

If a sequence is long enough, then necessarily it admits a zero-sum subsequence. Therefore, it
makes sense to ask from which threshold this occurs for all sequences.

Definition 5.2. The Davenport constant of G, noted D(G), is the smallest integer ℓ such that every
sequence of ℓ elements of G has a zero-sum subsequence.
The quantity d(G) is the largest integer ℓ such that there is a sequence of length ℓ with no zero-sum
subsequences.

Remark 5.3. The quantity d(G) is sometimes also referred to as the small Davenport constant in
the literature. This will also be the case in the present article. One has

D(G) = d(G) + 1.

Remark 5.4. Another definition of the Davenport constant (which is equivalent in this setting)
goes as follows: consider only zero-sum sequences of G, that is sequences a1, . . . , an ∈ G such that∑n

i=1 ai = 0G. Then D(G) is the length of the longest such sequence that does not split into 2 disjoint
non-trivial zero-sum subsequences. Indeed, considering a zero-sum sequence of length n > D(G),
it is possible to take the first D(G) terms, among which there will be a zero-sum subsequence by
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definition. Its complement must be a zero-sum subsequence as well. Therefore the whole zero-sum
sequence splits into 2 disjoint zero-sum subsequences. Conversely, there are sequences of length
d(G) with no zero-sum subsequence, meaning that by adding one last element in order to form a
zero-sum sequence of length exactly D(G) = d(G)+1 we get a sequence which clearly does not have
2 disjoint zero-sum subsequences.

Example 5.5. Let Cn be the (additive) cyclic group with n elements and let 1 denote a generating
element. The sequence a1 = 1, . . . , an−1 = 1 is a sequence of length n − 1 with no zero-sum
subsequence. Therefore d(Cn) ≥ n−1, which implies D(Cn) ≥ n. It is well-known that D(G) ≤ |G|.
Hence, D(Cn) = n.

The Davenport constant has been studied intensively, and in fact it has been generalized in a
number of ways, two of which we present and use here.

Let us define first the multiwise Davenport constants, a generalization introduced by Halter-Koch
in [32].

Definition 5.6. Let a1, . . . , an ∈ G be a finite sequence of elements of G and j be a positive
integer. We say that j zero-sum subsequences are disjoint if their indices belong to j disjoint
subsets of {1, . . . , n}.

The j-wise Davenport constant Dj(G) is the smallest integer ℓ such that every sequence of ℓ
elements of G has j disjoint zero-sum subsequences.

The usual Davenport constant is D1(G) = D(G). Clearly, one has

(2) D(G) ≤ Dj(G) ≤ jD(G).

The second generalization arises when considering weighted zero-sum subsequences. There are
various natural ways to introduce weights in these types of problems. The one that we recall below
received considerable attention in the last two decades since the work of Adhikari et al. [1,2].

Definition 5.7. Let a1, . . . , an ∈ G be a finite sequence of elements of G and let

∅ ≠ W ⊆ {0, 1, . . . , exp(G)− 1}.
A W -weighted zero-sum subsequence is a sequence ai1 , . . . , air , with {i1, . . . , ir} ⊆ {1, . . . , n}, veri-
fying

r∑
i=1

ε(i)aji = 0

for some ε : N → W . In case W = {1, . . . , exp(G) − 1} the sequence is called a fully-weighted
zero-sum subsequence.

The W -weighted Davenport constant DW (G) is the smallest integer ℓ such that every sequence
of ℓ elements of G has a W -weighted zero-sum subsequence.

The fully-weighted Davenport constant Df (G) is the smallest integer ℓ such that every sequence
of ℓ elements of G has a fully-weighted zero-sum subsequence.

Instead of considering subsets of {0, 1, . . . , exp(G) − 1} one could also consider subsets of the
integers, yet this is essentially equivalent.

It is also possible to examine multiwise weighted Davenport constants.

Definition 5.8. The j-wise W -weighted Davenport constant DW
j (G) is the smallest integer ℓ such

that every sequence of length ℓ of G has j disjoint W -weighted zero-sum subsequences. The j-wise

fully-weighted Davenport constant Df
j (G) is DW

j (G) with W = {1, . . . , exp(G)− 1}.

When j = 2, there is a relation between this last constant and intersecting codes over prime fields,
as remarked in [42,48]. We will explain this link in a more general scenario (see Theorem 5.12),
including intersecting codes over any finite field.



22 THE GEOMETRY OF INTERSECTING CODES

5.2. Our generalization. We are now ready to properly define our generalization of the fully-
weighted Davenport constant. Let us first recall the definition of W-weighted Davenport constant
where the set of weights W is defined as a non-empty subset of endomorphisms of G. This was first
introduced in [58]. The interested reader may also refer to [31].

Definition 5.9. Let G be a finite abelian group and let W be a non-empty set of group endo-
morphisms of G, which we call a set of weights for G. Let a1, . . . , an ∈ G be a finite sequence of
elements of G and W a set of weights for G. A W-weighted zero-sum subsequence is a sequence
ai1 , . . . , air , with {i1, . . . , ir} ⊆ {1, . . . , n}, verifying

r∑
i=1

εi(aji) = 0

for some εi ∈ W.
Let j be a positive integer. The j-wise W-weighted Davenport constant DW

j (G) is the smallest
integer ℓ such that any sequence of length ℓ of G has j disjoint W-weighted zero-sum subsequences.
Similarly, the j-wise W-weighted small Davenport constant dWj (G) is the largest integer ℓ such
that there exists a sequence of length ℓ of G that does not have j disjoint W-weighted zero-sum
subsequences.

When G is an elementary p-group, that is, when

G = Ephr = Cp ⊕ . . .⊕ Cp︸ ︷︷ ︸
hr times

,

the elementary abelian group of order phr (here p is a prime and h and r are positive integers), it is
possible to consider a group isomorphism Ephr

∼= Fr
q, where q = ph. Clearly, this concerns only the

additive part. Below we use the multiplicative structure on Fr
q to introduce a set of weights that

can be seen as a generalization of fully-weighted for elementary abelian groups.

Definition 5.10. For G = Ephr an elementary abelian group of order phr, consider a group iso-
morphism φ : Ephr → Fr

q. Define

Qh = {mx : y 7→ φ−1(xφ(y)) ∈ End(Ephr) | x ∈ Fq}

the set of weights induced by the scalar multiplication of Fq = Fph .

While the sets of weights Qh depend in principle on our choice of isomorphism φ, it is easy to
see that the value of the associated Davenport constants does not depend on this choice. This is
why we do not include φ in the notation of Qh.

Below, we study the j-wise Qh-weighted Davenport constant DQh
j (Ephr). In order to simplify the

notation, we will denote it by Dh
j (Ephr).

Remark 5.11. For an elementary abelian group Ephr of cardinality phr, let us underline that

Dh
j (Ephr) = Df

j (Ephr) if h = 1 and that Dh
j (Ephr) = Dj(Ephr) if p = 2 and h = 1. Furthermore,

when j = 1, note that Dh
j (Ephr) = r + 1 for elementary reasons of linear algebra over Fq.

The following theorem establishes the main link between these objects and the theory of inter-
secting codes.

Theorem 5.12. Let Ephr be an elementary abelian group of order phr, where p is a prime and h, r

are positive integers. Then Dh
2(Ephr) is the smallest integer n such that all [n, n − r]ph codes are

not intersecting. Therefore

Dh
2(Ephr) = min{m ≥ r + 1 | m < i(m− r, ph)}.
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Proof. Let m = Dh
2(Ephr) − 1. By definition, there exists a sequence a1, . . . , am ∈ Ephr that does

not admit two disjoint weighted zero-sum subsequences. Note that m must be greater than r by
the above remark 5.11. Via the isomorphism Ephr

∼= Fr
ph
, every ai can be seen as a (column) vector.

Let H be the matrix defined as

H =

 a1 · · · am

 .

The matrix H is full-rank, because otherwise there would be a sequence of length Dh
2(Ephr) that

does not admit two disjoint weighted zero-sum subsequences, contradicting the definition: simply
consider b /∈ ⟨a1, . . . , am⟩ and the prolonged sequence a1, . . . , am, b.

Let C be the [m,m−r]ph code defined by the parity-check matrix H. A codeword of C corresponds
to a W-weighted zero-sum subsequence of a1, . . . , am. By the above assumption, C is then an
intersecting code. Therefore

m ≥ i(m− r, ph).

Hence
Dh

2(Ephr) = max{m > r | m ≥ i(m− r, ph)}+ 1.

which is equivalent to the statement of the theorem. □

Example 5.13. Consider the elementary abelian group E16 of order 16. Let h = 1 and r = 4. The
set {m ≥ 5 | m < i(m− 4, 2)} = {8, 9, . . .} (see Table 2), so that D2(E16) = 8. On the other hand,
if h = 2 and r = 2, the set {m ≥ 3 | m < i(m − 2, 4)} = {6, 7, . . .} (see again Table 2), so that
D2

2(E16) = 6.

Example 5.14. Consider the elementary abelian group E1024 of order 1024. The set {m ≥ 11 |
m < i(m − 10, 2)} = {17, 18, . . .} (see Table 2), so that D2(E1024) = 17. On the other hand, if
h = 2 and r = 5, the set {m ≥ 6 | m < i(m − 5, 4)} = {11, 12, . . .} (see again Table 2), so that
D2

2(E1024) = 11.

Remark 5.15. Below we record the values of (r,D2(E2r)) deduced from Table 2: (1, 4), (2, 5), (3, 7),
(4, 8), (5, 10), (6, 11), (7, 12), (8, 14), (9, 16), (10, 17), (11, 18), (12, 19), (13, 21), (14, 22), (15, 23),
(16, 25), (17, 27). Any further improvement on the knowledge of i(k, 2) would allow to extend this
list.

5.3. Asymptotic bounds. Let us fix a prime p and a positive integer h. Let us denote q = ph.
We investigate the asymptotic behavior of Dh

2(Ephr) when r grows.

Lemma 5.16. Let α ≤ lim infk→∞ i(k, ph)/k, and β ≥ lim supk→∞ i(k, ph)/k. Then

lim sup
r→∞

Dh
2(Ephr)

r
≤ α

α− 1

and

lim inf
r→∞

Dh
2(Ephr)

r
≥ β

β − 1
.

Proof. Let ε > 0 and let r be large enough so that, for all m ≥ r + 1, one has both

i(m− r, ph) ≤ (β + ε) · (m− r) and i(m− r, ph) ≥ (α− ε) · (m− r).

Recall that, by Theorem 5.12,

Dh
2(Ephr) = min{m ≥ r + 1 | m < i(m− r, q)}.

Hence Dh
2(Ephr) < i(Dh

2(Ephr)− r, q) ≤ (β + ε) · (Dh
2(Ephr)− r), from which we obtain

Dh
2(Ephr) ≥ r · β + ε

β − 1 + ε
.
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The other bound follows similarly by considering that

Dh
2(Ephr)− 1 ≥ i(Dh

2(Ephr)− 1− r, q) ≥ (α− ε) · (Dh
2(Ephr)− 1− r),

from which we obtain

Dh
2(Ephr) ≤ 1 + r · α− ε

α− 1− ε
.

□

Using the above lemma we can transform our asymptotic upper and lower bounds from the
previous sections into respectively lower and upper bounds for the asymptotic value of Dh

2(Ephr),
as well as give the length of constructions of long sequences with no zero-sum subsequence.

Theorem 5.17. For all primes p and positive integers h, one has

lim sup
r→∞

Dh
2(Ephr)

r
≤ 2− 1

ph
.

Moreover, for ph ≤ 17, this bound is improved in Table 5.

Table 5. Upper bound on the asymptotic 2-wise weighted Davenport constant

p h lim supr→∞
Dh

2 (Ephr
)

r
2 1 1.3956
2 2 1.6364
2 3 1.8057
2 4 1.9257
3 1 1.5472
3 2 1.8291
5 1 1.6972
7 1 1.7774
11 1 1.8660
13 1 1.8940
17 1 1.9343

Proof. Simply apply Lemma 5.16 using α = 2 + 1
ph−1

from Theorem 3.9. As observed, α may be

improved by looking at the Table 1 and applying Lemma 5.16. □

Theorem 5.18. For every prime p and every positive integer h, the following holds:

• if h = 1 or ph ∈ {4, 8, 9, 16, 25, 27, 32, 125},

lim inf
r→∞

Dh
2(Ephr)

r
≥ 2

logph(2p
h − 1)

;

• if h = 2m is even and ph /∈ {4, 9, 16, 25}, then

lim inf
r→∞

Dh
2(Ephr)

r
≥ 2− 2

pm
;

• if h = 2m+ 1 is odd and ph /∈ {8, 27, 32, 125}, then

lim inf
r→∞

Dh
2(Ephr)

r
≥ 2− 2

2 (pm−1)(pm+1−1)
(pm+1+pm−2)

+ 1
.

Proof. Simply apply Lemma 5.16 using β from Theorem 3.12 and Theorem 4.6. □
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Remark 5.19. Whenever h = 1, we obtain the same asymptotic upper and lower bounds as in
[42].

Remark 5.20. Notice that Theorem 5.17 and Theorem 5.18 can be considered to be an improve-
ment on (2) for j = 2. Indeed, notice that (2) also holds for weighted versions of the Davenport
constant. Moreover, since Dh

1 (Ephr) = r + 1, as stated in Remark 5.11, an asymptotic weighted
version of (2) is

1 ≤ lim inf
r→∞

Dh
2(Ephr)

r
≤ 2.

Similar improvements for other values of j have been presented in [42].

Note that since Theorem 4.6 provides explicit constructions of short intersecting codes, combined
with Lemma 5.16 it can be used to construct long sequences of elements of Ephr with no 2 disjoint
weighted zero-sum subsequences. This is stated precisely in the following remark.

Remark 5.21. Let p be a prime and let h and r be positive integers. There exist explicit sequences
of elements of Ephr with no 2 disjoint weighted zero-sum subsequences of length ℓr with

• ℓ = 2− 2
pm , if p ≥ 5, h = 2m and ph ≥ 25;

• ℓ = 2− 2

2
(pm−1)(pm+1−1)

(pm+1+pm−2)
+1

, if h = 2m+ 1 and ph ≥ 32;

• ℓ = 3p−3
2p−1 , if p ≥ 11 and h = 1.

The remaining cases are summarized in Table 6.

Table 6. Values of ℓ in the exceptional cases

p h ℓ Probabilistic bound
2 1 1.206 1.261
3 1 1.297 1.365
2 2 1.315 1.424
5 1 1.344 1.464
7 1 1.388 1.517
2 3 1.4 1.535
3 2 1.411 1.551
2 4 1.451 1.614
3 3 1.471 1.660

6. Applications to factorization theory

In the following section we will illustrate the impact of the previous results on factorization in
the ring of integers of number fields. It is well-known that problems of factorization in ring of
integers of number fields and more generally in Dedekind domains and Krull monoids are related to
problems of zero-sum sequences in their class group (see [28]). We will use some notions of algebraic
number theory and we highlight their connection with the previous part of the paper. For the sake
of brevity, we will not recall all the definitions, but we refer the interested reader to [46] for more
details.
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6.1. The classic scenario. Let K be a number field, and let OK be its integer ring. It is well-
known that OK is a Dedekind domain. We can define its ideal class group

Cl(OK) = Frac(OK)/Prin(OK)

where Frac(OK) is the set of fractional ideals of OK and Prin(OK) its set of principal ideals.
For number fields it is well-known that the class group is finite and each class contains a prime

ideal. In fact, all of the following assertions remain true for Dedekind domains (or even more
generally for Krull monoids) with finite class group where each class contains a prime ideal.

Indeed, the original motivation for studying the Davenport constant stems from its connection
to factorizations; see for example [47], which already mentions the link recalled below between the
Davenport constant of Cl(OK) and factorizations in OK .

Lemma 6.1. The Davenport constant D(Cl(OK)) is the largest number of prime ideals (with
multiplicities) occurring in the factorization of the ideal generated by an irreducible element x ∈ OK .
Equivalently, the small Davenport constant d(Cl(OK)) is the largest number of prime ideals such
that their product is not divisible by a non-trivial principal ideal.

Since we will expand on this lemma, we consider it useful to provide the reader with a proof.

Proof. Let (x) = p1 · . . . · pn be the unique factorization of (x) as a product of prime ideals. The
image of this factorization in Cl(OK) (considered with additive notation) is an identity of the form

0Cl(OK) = [p1] + · · ·+ [pn]

because (x) is a principal ideal. Note that the above identity means that [p1], . . . , [pn] is a zero-sum
sequence in Cl(OK). If this zero-sum subsequence can be decomposed into 2 disjoint zero-sum
subsequences, then (x) is the product of 2 (non-trivial) principal ideals, meaning that x cannot be
irreducible. Therefore the zero-sum sequence must have length smaller than D(Cl(OK)).

Conversely, consider a zero-sum sequence in Cl(OK) of length n = D(Cl(OK)) with no 2 disjoint
zero-sum subsequences (such a sequence must exist from the definition of the Davenport constant).
Such a sequence is of the form

0Cl(OK) = [a1] + · · ·+ [an].

Every class in Cl(OK) is represented by a prime ideal in OK . Every [an] can therefore be represented
by a prime ideal, say pi. Let x ∈ OK be a generator of the principal ideal

∏n
i=1 pi. Since there are

no 2 disjoint zero-sum subsequences, x must be irreducible, and its unique factorization into prime
ideals has length D(Cl(OK)).

Therefore D(Cl(OK)) is the largest number of prime ideals contained in the factorization of an
irreducible element, as claimed. □

For every ideal I in OK , the ideal Iexp(Cl(OK)) is principal. In particular (p1 · . . . · pn)exp(Cl(OK))

is always principal.
In view of the preceding lemma, a natural question is: considering an ideal I in OK , which powers

of I are divisible by a non-trivial principal ideal? Consider for example the case

I =

n∏
i=1

pi

where the pi are prime ideals. If Ik is divisible by a non-trivial principal ideal, then there must be
a product

n∏
i=1

pαi
i

(with 0 ≤ αi ≤ k) which is a non-trivial principal ideal. This can of course be interpreted as
a {1, . . . , k}-weighted zero-sum subsequence in the ideal class group Cl(OK). The fully-weighted
Davenport constant is a particular case of this general question, namely for k = exp(Cl(OK))− 1.
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Lemma 6.2. The following interpretation of the different Davenport constants holds:

• for every k ∈ N, the weighted small Davenport constant d{1,...,k}(Cl(OK)) is the largest
number ℓ ∈ N such that there exist ℓ prime ideals p1, . . . , pℓ such that the product

(p1 · . . . · pℓ)k

is not divisible by a non-trivial principal ideal;
• the fully-weighted small Davenport constant df (Cl(OK)) is the largest number ℓ ∈ N such
that there exist ℓ prime ideals p1, . . . , pℓ such that the product

(p1 · . . . · pℓ)exp(Cl(OK))−1

is not divisible by a non-trivial principal ideal;
• the 2-wise small Davenport constant d2(Cl(OK)) is the largest number ℓ ∈ N such that there
exist ℓ prime ideals p1, . . . , pℓ such that the product

p1 · . . . · pℓ
is not divisible by a product of two non-trivial principal ideals (or equivalently, this product
is divisible only by principal ideals generated by an irreducible element);

• the 2-wise fully-weighted small Davenport constant df2(Cl(OK)) is the largest number ℓ ∈ N
such that there exist ℓ prime ideals p1, . . . , pℓ such that the product

(p1 · . . . · pℓ)exp(Cl(OK))−1

is not divisible by a product of two non-trivial principal ideals (or equivalently, this product
is divisible only by principal ideals generated by an irreducible element).

Proof. The proof is a straightforward adaptation of the arguments of the proof of Lemma 6.1, taking
into account the different definitions of the Davenport constants. □

We merely mention the 2-wise case explicitly as the preceding section focused on this case.

6.2. The elementary abelian case: multiplicative action. We are now going to focus only
on the case when Cl(OK) is an elementary abelian group Ephr . As in the previous section, writing

q = ph, we can consider a multiplicative action of Fq on Ephr . Note that there is no unique way
of defining such a multiplicative action (because there is no canonical isomorphism Fr

q
∼= Ephr).

However, our results do not depend on the choice of this isomorphism.
In this case, we have the following.

Theorem 6.3. Let p be a prime and h, r be positive integers. Let K be an algebraic number field
such that Cl(OK) = Ephr .

The 2-wise weighted small Davenport constant dh2(Cl(OK)) is the largest number ℓ ∈ N such that
there exist ℓ prime ideals p1, . . . , pℓ such that any product

ℓ∏
i=1

qi,

where qi is an ideal in the class of φi([pi]), with φi ∈ Qh, is not divisible by a product of two
non-trivial principal ideals.

Proof. Again, the proof is an adaptation of the Lemma 6.1’s proof to the definition of 2-wise weighted
Davenport constant. □

Remark 6.4. It is quite remarkable that the above property does not depend on the chosen
multiplicative action. It would be nice to have a general number-theoretical interpretation of such
an invariant. At the end of this section, we will illustrate a link to the Galois action, which holds
in some particular cases.
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Note that it is not known if every abelian group is the class group of the ring of integers of a
number field. However, it is well-established that all (finite) abelian groups are the ideal class group
of some Dedekind ring, as proved in [18]. For illustrative purposes of the results above, we use the
explicit construction presented in [30, Theorem 2], as well as explicit calculation in Magma, to
provide the following examples.

Example 6.5. Let

α = 5 · 13 · 29 · 41 · 61
and K = Q(

√
α). We have that Cl(OK) ∼= E16. By Example 5.13 we know that d2(E16) =

D2(E16)− 1 = 7, and d22(E16) = D2
2(E16)− 1 = 5. Hence there exist 7 prime ideals p1, . . . , p7 such

that their product is not divisible by a product of two non-trivial principal ideals and 5 prime ideals
p1, . . . , p5 such that any product

5∏
i=1

qi,

where qi is an ideal in the class of φi([pi]), with φi ∈ Q2, is not divisible by a product of two
non-trivial principal ideals.

Example 6.6. Let

α = 316861 · 451897 · 455333 · 476977 · 490549 · 523793 · 560641 · 724481 · 736993 · 828829 · 916621

and K = Q(
√
α). We have that Cl(OK) ∼= E1024. By Example 5.14 we know that d2(E1024) =

D2(E1024)− 1 = 16 and d22(E1024) = D2
2(E1024)− 1 = 10.

Hence there exist 16 prime ideals p1, . . . , p16 such that their product is not divisible by a product
of two non-trivial principal ideals and 10 prime ideals p1, . . . , p10 such that any product

10∏
i=1

qi,

where qi is an ideal in the class of φi([pi]), with φi ∈ Q2, is not divisible by a product of two
non-trivial principal ideals.

6.3. The elementary abelian case: Galois group action. By recent work [15, Theorem 7.1]
it is known that the monoids of norms of rings of algebraic integers of Galois number fields admit a
transfer homomorphism to monoids of weighted zero-sum sequences where the weights correspond
to the elements of the Galois group. For a generalization, see [29]. Therefore studying weighted
zero-sum problems over class groups with weights corresponding to the action of the Galois group
has an immediate motivation from the point of view of factorization theory.

It is well-known that the Galois group defines an action on the ideal class group (see Hilbert’s
Ramification Theory [46, Chapter 1,§9]). It is then interesting to determine when this action is the
same as that of Qh defined above. This will give a natural interpretation of our definition of Qh

and our notion of generalized weights. Recall that the action of Qh is the same as the multiplicative
action of Fq on Ephr . The multiplicative group of Fq is the cyclic group Cq−1, and the orbits of the
scalar action of Fq on Fr

q all have size q − 1, that is the action is free on Fr
q \ {0}. The following

theorem shows that this is actually also a sufficient condition.

Theorem 6.7. Let p be a prime, and let h and r be positive integers, and let q = ph. Let K be
a number field, with Galois group Gal(K/Q) = Cq−1 and ideal class group Cl(OK) = Ephr . If the
action of Gal(K/Q) is free on Cl(OK) \ {0}, then there exists an isomorphism φ : Ephr → Fr

q such
that the action of Gal(K/Q) on the class group is the same as that of Qh.
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Proof. First note that the action of the Galois group on the ideal class group preserves the group
addition of Cl(OK).

Let σ be a generator of the Galois group. Observe that Ephr
∼= Fhr

p as an Fp-vector space. It

is clear that σ corresponds to an endomorphism of Fhr
p , which we also write σ. Since xq − x = 0

annihilates σ and σ has order q − 1, the ring of endomorphisms Fp[σ] is isomorphic to Fq.
Since the orbit of every non-zero element v has order q − 1, the map

f(σ) = f0 + f1σ + . . .+ fh−1σ
h−1 7→ f(σ)(v) = f0v + f1σ(v) + . . .+ fh−1σ

h−1(v)

is a bijection between Fp[σ] and {0} ∪ ω(v), which is also an isomorphism of Fp-vector spaces. Via
this map, we may endow {0} ∪ω(v) with a multiplicative structure that makes it isomorphic to Fq.

Now, let v1 be a non-zero element in Cl(OK). Consider a non zero element v2 ∈ Cl(OK) \ ω(v1).
As we said, both sets {0} ∪ ω(v1) and {0} ∪ ω(v2) are isomorphic to Fq. The orbits are disjoint.
Hence W = ⟨ω(v1), ω(v2)⟩ ∼= F2

q . Moreover, W is stable under the action of the Galois group. Now,
we can continue by taking a nonzero element outside W and so on, until getting r elements, say
v1, . . . , vr. In this way, we have ⟨ω(v1), . . . , ω(vr)⟩ ∼= Fr

q. □

Remark 6.8. If p = 2 and q− 1 = 2h− 1 is a Mersenne prime, then the action of Gal(K/Q) is free
on Cl(OK)\{0}. Actually, it is well-known that any prime ℓ ∈ Z yields the following decomposition:

(ℓ) = (p1 · · · pr)e

and er divides q− 1. Hence, either e = 1 and r = q− 1, so that ℓ splits completely, or e = q− 1 and
r = 1, so that ℓ is totally ramified, or e = r = 1, so that ℓ is inert. Note in particular that when
(ℓ) = (p)q−1 (that is when ℓ is totally ramified), the ideal p is principal.

To the best of our knowledge, it is unknown in general for which values of p, h, r a number field
satisfying all the hypotheses of Theorem 6.7 exists. However, the following is an example, in the
easiest case discussed in Remark 6.8.

Example 6.9. Let p(x) = x3 − x2 − 2562x + 48969 and let K = Q[α] be the cubic number field
obtained extending Q with a root of p(x). We have that

Gal(K/Q) = C3 and Cl(OK) = E16.

Moreover, q − 1 = 3 is a Mersenne prime. In this case, as in the Example 6.5, there exist 7 prime
ideals p1, . . . , p7 such that their product is not divisible by a product of two non-trivial principal
ideals and 5 prime ideals p1, . . . , p5 such that any product

5∏
i=1

qi,

where qi is an ideal in the class of σ([pi]), with σ ∈ Gal(K/Q), is not divisible by a product of two
non-trivial principal ideals.

We conclude the paper with the following remark, which opens new perspectives for future
research.

Remark 6.10. There are number fields satisfying the hypotheses of Theorem 6.7 which are not of
prime degree, as in Remark 6.8. For example, let K = Q[α] where

α6 − α5 + 22α4 + 11α3 + 1038α2 − 1993α+ 16649 = 0.

In this case,

Gal(K/Q) = C6 and Cl(OK) = E49.

The action of Gal(K/Q) is free on Cl(OK)\{0} and the 8 orbits of order 6 are those of the following
8 classes: [pℓ] where ℓ ∈ {47, 59, 107, 127, 131, 151, 173, 193} and pℓ is a factor of (ℓ).
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It would certainly be interesting to further investigate fields that satisfy the hypotheses of The-
orem 6.7, as well as to develop the coding-theoretical implications of a non-free action. This is
certainly beyond the scope of the present paper, and it may be an interesting topic for future
researches.
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