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NUMERICAL SIMULATIONS FOR THE ARZ MODEL FOR VEHICULAR

TRAFFIC WITH GENERAL POINT CONSTRAINTS ON THE DENSITY

FLUX

C. DONADELLO, B. POLIZZI, U. RAZAFISON, J.Y. ROLLAND, AND M.D. ROSINI

Abstract. In this paper we investigate numerically the model for vehicular traffic proposed
in [B. Andreianov, C. Donadello, M.D. Rosini, A second order model for vehicular traffics
with local point constraints on the flow, Mathematical Models and Methods in Applied
Sciences 26 (4) (2016) 751-802]. The model is obtained by coupling the ARZ system with
point constraints on the density flux, and reproduces traffic behavior at bottlenecks. We
implement an adapted version of the Glimm scheme featuring a non-classical Riemann solver
at the constraint locations. We show its numerical convergence and its ability to correctly
capture the evolution of both conservative and Riemann invariant variables in all situations,
including those involving the vacuum.

Our scheme allows to conduct a number of numerical experiments to prove that the
model reproduces several typical phenomena such as capacity drop, faster is slower effect and
phantom jams. Beyond the theoretical results obtained in the aforementioned paper, we also
consider point constraints whose values are determined by a Lipschitz continuous function of
time, or depend non-locally on the solution itself.

1. Introduction

The macroscopic model developed by Andreianov, Donadello and Rosini in [4] describes
the evolution of vehicular traffic along a road when the maximal flow capacity is reduced
point-wise due to the presence of obstacles, such as toll booths, traffic lights, or construction
sites. We refer to it as the ADR model.

The ADR model consists of the classical second order Aw-Rascle-Zhang (ARZ) model
[7, 37], supplemented by local point constraint inequalities on the density flux, enforced at a
finite number of constraint locations. The conserved variables of the system are ρ and y, the
(mean) density and the generalized momentum of vehicles, respectively. However, expressing
the equations in terms of the Riemann invariant coordinates, namely the velocity v and the
Lagrangian marker w, simplifies the mathematical analysis, see Section A for more details.

In the case of a single constraint located at x = 0, the ADR model writes as a constrained
Cauchy problem for a 2× 2 hyperbolic system of conservation laws in one space dimension as
follows

(1)


ρ(v, w)t + [v ρ(v, w)]x = 0, (t, x) ∈ R+ × R,
y(v, w)t + [v y(v, w)]x = 0, (t, x) ∈ R+ × R,
(v, w)(0, x) = (v̄, w̄)(x), x ∈ R,
[v ρ(v, w)](t, 0±) ⩽ Q(t), t ∈ R+.

Here (v̄, w̄) ∈ W = {(v, w) ∈ R2
+ : v ⩽ w} represents the initial datum,

(v, w) : R+ × R → W,
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is the dependent variable, and we recover the conservative variables ρ, y : W → R+ by

ρ(v, w) = p−1(w − v), y(v, w) = w p−1(w − v).(2)

The function p in the equations above, called pressure or velocity offset in the literature,
represents the ability of drivers to anticipate the behavior of the neighboring traffic and
satisfies the following conditions:

p(0) = 0, lim
ρ↓0

[
ρ2p′(ρ)

]
= 0, lim

ρ↓0

[
ρ p′′ (ρ)

p′ (ρ)

]
< +∞,

p′(ρ) > 0 and p′(ρ) + ρ p′′(ρ) > 0 for all ρ > 0.

(3)

At last, Q : R+ → R+ prescribes the maximal density flow allowed through x = 0, and
(v, w)(t, 0−) denotes the left measure theoretic trace along x = 0, implicitly defined by

lim
ε↓0

1

ε

∫
R+

∫ 0

−ε

∥∥(v, w)(t, x)− (v, w)(t, 0−)
∥∥ ϕ(t, x) dx dt = 0, for all ϕ ∈ C∞

c (R2;R).

The right measure theoretic trace, (v, w)(t, 0+), is defined analogously.
By (2), the vacuum ρ = 0 corresponds to the half line W0 = {(v, w) ∈ W : v = w} and the

non-vacuum states ρ ̸= 0 to Wc
0 = W \W0.

The existence result established in [4] for system (1) requires that the function Q is given
beforehand and is piece-wise constant in time, see A for more details. However, data analysis,
e.g. [24, 22, 28], suggests that the capacity of toll plazas (i.e. the maximum number of vehicles
that can flow through them in a given time interval) depends non-locally on the solution.
Indeed, it may decrease under high-density conditions that occur upstream of the toll booths,
mainly due to vehicles switching or jockeying between queues before reaching the servers. This
capacity drop phenomenon leads to significant increase of travel time delay and air pollution.
Also, as a heavy congestion forms upstream of a toll plaza its efficiency reduces, accidents
become more probable due to stop-and-go behaviors, and the egress time increases (i.e. the
time gap between the passage of the first and the last vehicle through the toll booths). These
effects, strongly associated to the ability of drivers to anticipate the evolution of traffic and
estimate the queues’ length, cannot be captured by only using a given constraint function,
piece-wise constant in time.

The theoretical analysis of a more general version of the model, featuring Lipschitz in time
and possibly non-local constraint functions Q in the flavor of [2], cannot be conducted via the
approach used in [4], which relies on the combination of the wave-front tracking and operator
splitting methods, as we miss the stability estimates which guarantee the consistency of the
approximation.

The aim of this paper is to provide a number of examples showing that such generalized
ADR models qualitatively reproduce the main effects related to capacity drop, namely the
so-called Faster-Is-Slower (FIS) effect, see [20] and the references therein, the Braess’ paradox
and phantom jams, i.e. jams that arise in the absence of any obstacles, see [34] for the results
of a related empirical experiment. Notice that we apply the theory of point constraints only
as a trigger and not as the essential origin of a traffic phantom jam. Moreover, for real life
applications, the function Q, representing the upper bound of the constrained density flux,
must be deduced from empirical observations.

In the first part of the paper, we introduce an adapted version of the Glimm scheme, which
features a non-classical Riemann solver at the constraint location, and show its numerical
convergence. In Section 2, we introduce the Riemann solvers required for the ADR model
and the Glimm scheme. In Section 3, we explain why the Glimm scheme is the most suitable
choice for our problem and describe its implementation. Subsequently, we show its numerical
convergence. Initially, we assume that the value of Q is given and piecewise constant in time,
as in [4] (cf. Section 4.1). Next, in Section 4.2, we demonstrate that if the Lagrangian marker w
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is constant, the solution computed via our scheme coincides with that of the first order model
with a point constraint proposed in [3], computed using the (theoretically and numerically
convergent) finite volume scheme studied in [2]. This holds even if the constraint function
is Lipschitz continuous in time or depends non-locally in space on the solution itself. The
numerical implementation for the latter case relies on a splitting strategy, as in [1, 2], for the
first-order model proposed in [3].

In the second part of the paper, we investigate the qualitative behavior of the model.
In Section 5, we demonstrate its ability to reproduce phenomena such as phantom jams
(Section 5.1), capacity drop (Section 5.2), the FIS effect (Section 5.2.1), and Braess’ paradox
(Section 5.3). Our final simulation, in Section 5.4, inspired by a problem involving the load
capacity of a bridge, illustrates the possibility of considering constraint functions that depend
on more than one component of the solution, and fully exploits the richness of the second-order
traffic model.

Conclusions and perspectives are presented in Section 6. Finally, in the appendices, we
briefly recall analytical results on the ADR model from [4], and we include a test of numerical
convergence similar to the one proposed in Example 4.4, but for a constraint function with
jump discontinuities.

2. The Riemann solvers in the ADR model and in the Glimm scheme

In this section, we briefly review the two Riemann solvers that serve as building blocks
for the analysis of the ADR model, and discuss the minor modifications required for the
implementation of the Glimm scheme. We recall that Riemann solvers provide the physical
entropy self-similar solutions to Riemann problems, which are Cauchy problems with piecewise
constant initial conditions featuring at most one discontinuity at x = 0. Details on the
definition and the existence of entropy solutions to general Cauchy problems are provided in
A. We first present the Riemann solver RS proposed in [7] for the ARZ model, followed by
the Riemann solver RSQ introduced in [4] for the ADR model, which is used at the constraint
location to enforce the density flux limitation.

Consider the Riemann problem for the ARZ model

(4)


ρ(v, w)t + [v ρ(v, w)]x = 0, (t, x) ∈ R+ × R,
y(v, w)t + [v y(v, w)]x = 0, (t, x) ∈ R+ × R,

(v, w)(0, x) =

{
(vℓ, wℓ), if x < 0,

(vr, wr), if x ⩾ 0,
x ∈ R.

Since the first characteristic family is genuinely nonlinear and the second is linearly degenerate,
the solution to (4) consists either of a single elementary wave (shock or rarefaction of the first
family, or contact discontinuity of the second family) or of the juxtaposition of two waves,
one for each of the families, in the order. Notice that, under hypothesis (3), we can implicitly
define a function P through the equation

(5) P
(
p(ρ) + ρ p′(ρ)

)
= ρ.

Definition 2.1 (Riemann solver RS). For any Wℓ = (vℓ, wℓ),Wr = (vr, wr) ∈ W, we define
RS[Wℓ,Wr] ∈ C0

(
R+;L

1
loc(R;W)

)
as follows:

(1) For any W∗ ∈ W, RS[W∗,W∗] = W∗.
(2) If Wr ∈ Wc

0, wℓ = wr and vℓ > vr, then RS[Wℓ,Wr] consists of a shock discontinuity

S[Wℓ,Wr](ν) =

{
Wℓ, if ν < σ(Wℓ,Wr),
Wr, if ν ⩾ σ(Wℓ,Wr),

where the propagation speed is given by the Rankine-Hugoniot condition

σ(Wℓ,Wr) =
vr ρ(Wr)− vℓ ρ(Wℓ)

ρ(Wr)− ρ(Wℓ)
.
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(3) If Wℓ,Wr ∈ Wc
0, wℓ = wr and vℓ < vr, then RS[Wℓ,Wr] consists of a rarefaction wave

R[Wℓ,Wr](ν) =


Wℓ, if ν < λ1(Wℓ),

(w − p (P (w − ν)) , w) , if λ1(Wℓ) ⩽ ν < λ1(Wr),

Wr, if ν ⩾ λ1(Wr),

where P is defined in (5) and

λ1(W ) =

{
v − ρ(W ) p′ (ρ(W )) , if W ∈ Wc

0,
w, if W ∈ W0.

(4) If Wℓ,Wr ∈ Wc
0 and vℓ = vr, then RS[Wℓ,Wr] consists of a contact discontinuity

C[Wℓ,Wr](ν) =

{
Wℓ, if ν < v,
Wr, if ν ⩾ v.

(5) If Wℓ,Wr ∈ W0 and Wℓ ̸= Wr then RS[Wℓ,Wr] = Wr.
(6) If Wℓ ∈ Wc

0 and Wr ∈ W0 then RS[Wℓ,Wr] takes the form

RS[Wℓ,Wr](ν) =

{
R
[
Wℓ, (wℓ, wℓ)

]
, if ν < wℓ,

Wr, if ν ⩾ wℓ.

(7) If Wℓ ∈ W0 and Wr ∈ Wc
0, then

RS[Wℓ,Wr](ν) =

{
Wℓ, if ν < vr,
Wr, if ν ⩾ vr.

(8) If Wℓ,Wr ∈ Wc
0 and vr < vℓ < wℓ, then RS[Wℓ,Wr] is the juxtaposition of S[Wℓ,Wm]

and C[Wm,Wr], where Wm = (vr, wℓ) ∈ Wc
0.

(9) If Wℓ,Wr ∈ Wc
0 and vℓ < vr < wℓ, then RS[Wℓ,Wr] is the juxtaposition of R[Wℓ,Wm]

and C[Wm,Wr], where Wm = (vr, wℓ) ∈ Wc
0.

(10) If Wℓ,Wr ∈ Wc
0 and vℓ < wℓ ⩽ vr < wr, then

RS[Wℓ,Wr](ν) =

{
R[Wℓ,Wm](ν), if ν < vr,
Wr, if ν ⩾ vr,

where Wm = (wℓ, wℓ) ∈ W0.

We now introduce the Riemann solver corresponding to the Riemann problem for the ADR
model

(6)



ρ(v, w)t + [v ρ(v, w)]x = 0, (t, x) ∈ R+ × R,
y(v, w)t + [v y(v, w)]x = 0, (t, x) ∈ R+ × R,

(v, w)(0, x) =

{
(vℓ, wℓ), if x < 0,

(vr, wr), if x ⩾ 0,
x ∈ R,

[v ρ(v, w)](t, 0±) ⩽ Q, t ∈ R+,

where Q ∈ R+ is the constant maximal density flow allowed through x = 0. We first need

to introduce Ŵ (Q,w) = (v̂(Q,w), ŵ(Q,w)) and W̌ (Q,w) = (v̌(Q,w), w̌(Q,w)) defined for
(Q,w) ∈ R+ × R+ by

(7)

ŵ(Q,w) = w = w̌(Q,w),

v̂(Q,w) =

{
min {v ∈ (0, w) : w = v + p(Q/v)} if w ∈ [w̃(Q),∞),

w − p (ρ̇(w)) if w ∈ [0, w̃(Q)),

v̌(Q,w) =

{
max {v ∈ (0, w) : w = v + p(Q/v)} if w ∈ [w̃(Q),∞),

w − p (ρ̇(w)) if w ∈ [0, w̃(Q)),
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being ρ̇(w), ṽ(Q) and w̃(Q) implicitly defined by

w = p (ρ̇(w)) + ρ̇(w) p′ (ρ̇(w)) ,
ṽ(Q)2

Q
= p′

(
Q

ṽ(Q)

)
, w̃(Q) = ṽ(Q) + p

(
Q

ṽ(Q)

)
.

See Figure 1 for a graphical representation of ρ̇(w), v̂(Q,w), v̌(Q,w), ṽ(Q) and w̃(Q).

ρρ̂ρ̇ρ̌

q

q̇

Q

vv̌ṽv̂

w

w
w̃

Figure 1. Left: the curve q = [w − p(ρ)] ρ in the (ρ, q)-plane for a fixed
value of w. We have ρ̂ = ρ(v̂, w) and ρ̌ = ρ(v̌, w), as in (2). Right: the curve
w = v + p(Q/v) in the (v, w)-plane for a fixed value of Q.

Definition 2.2 (The constrained Riemann solver: RSQ). Fix a constant Q ∈ R+. For any
Wℓ = (vℓ, wℓ),Wr = (vr, wr) ∈ W, we define RSQ[Wℓ,Wr] ∈ C0

(
R+;L

1
loc(R;W)

)
as follows:

• if (v, w)(t, x) = RS[Wℓ,Wr](x/t) satisfies the constraint condition [v ρ(v, w)](t, 0±) ⩽
Q, then

RSQ[Wℓ,Wr] = RS[Wℓ,Wr];

• otherwise we let

RSQ[Wℓ,Wr](ν) =

{
RS[Wℓ, Ŵ (Q,wℓ)](ν), if ν < 0,
RS[W̌ (Q,wℓ),Wr](ν), if ν ⩾ 0,

where Ŵ (Q,wℓ) = (v̂(Q,wℓ), wℓ) and W̌ (Q,wℓ) = (v̌(Q,wℓ), wℓ).

Remark 2.1. The Riemann solver RS does not coincide with the one introduced in [7], but
it is tailored to meet the requirements of the numerical implementation. Indeed, the initial
conditions for cases 1, 5, 6, and 7 in Definition 2.1 are either trivial or not physically relevant,
as they involve jumps in the w variable in the vacuum. Nevertheless, these cases must be
included for completeness in our numerical solver.

In particular, this implies that the Riemann solver RSQ does not coincide with the one
introduced in [4]. However, if Wℓ ∈ W0, then (t, x) 7→ RS[Wℓ,Wr](x/t) satisfies the constraint
condition simply because RS[Wℓ,Wr](0

±) = Wℓ ∈ W0, and hence RSQ[Wℓ,Wr] = RS[Wℓ,Wr].
As a consequence, in practice, RSQ coincides with the Riemann solver introduced in [4] for
the Riemann data that activate the constraint.

3. The numerical method

In this Section, we introduce our numerical method. For all the simulations of this paper,
we consider the classical prototype for the velocity offset

(8) p(ρ) = vref

(
ρ

ρref

)γ

,

with vref , ρref and γ strictly positive parameters. In Section 5.1 we also consider

(9) p(ρ) = vref

(
ρ ρmax

ρmax − ρ

)γ

,
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which is used in [9, 8, 17].This allows to compare the effects of (8) and (9) on the dynamics.
Observe that the velocity offset in (9) is only defined for ρ ∈ [0, ρmax) and is singular at ρmax.

3.1. Glimm scheme motivation. For any given vm, wm, wM ∈ R+ such that 0 ⩽ vm ⩽
wm < wM , the domain {(v, w) ∈ W : vm ⩽ v, wm ⩽ w ⩽ wM} is an invariant domain of RS.
Therefore, the solution of any (unconstrained) Cauchy problem associated with the ARZ model
is confined for all times t ∈ R+ in the invariant region corresponding to its initial condition
x 7→ (v̄(x), w̄(x)), that is to vm = infR{v̄}, wm = infR{w̄} and, wM = supR{w̄}.

However, as observed in [11], such domains do not correspond in general to convex regions
in the plane of conservative variables, ρ and y. Therefore, conservative numerical schemes
that average ρ and y, such as the Godunov scheme, fail to satisfy the maximum principle for
the Riemann invariants of the ARZ system (and, consequently, for the ADR system as well).
Typically, one may observe spurious oscillations in the approximation of Riemann problems
whose solution consists of a single contact discontinuity (which means that the velocity v was
constant in the initial condition), see [11] for a detailed discussion. In [11] the authors propose
a transport-equilibrium scheme that overcomes this difficulty and suggests two additional ways
to obtain the same result. The first one consists in using a finite volumes scheme averaging ρ
and v but leads to complicate upgrade formulas. The second direction is to use the Glimm
scheme, which has been successfully done in [10] for the ARZ model. In particular, the results
in [10] prove that the Glimm scheme reproduces correctly the vacuum formation for the ARZ
system.

In the ARZ model, the vacuum may appear in finite time starting from non-vacuum initial
conditions, see Case 10 in Definition 2.1. We stress that the Riemann solver RS in this case
plays the special role of selection criterion, as the system of conservation laws degenerates at
the vacuum and, from the PDE’s point of view, it admits in principle two different entropy
admissible solutions, as pointed out in [7, 37]. This issue is not completely addressed in [11],
where the authors consider the ARZ model with the velocity offset p(ρ) = vref ln(ρ/ρref). Since
this function is not defined at ρ = 0, they can not explore the case of vacuum opening, see
also [10, Remark 2] for more details on this choice. However, the finite volumes numerical
scheme introduced in [6] for the ADR model, which essentially relies on [11] for the treatment
of the contact discontinuities, fails to capture the prescribed solution with a velocity offset of
the form (8).

For completeness, we recall in the next lemma the invariant domains for the constrained
Riemann solver.

Lemma 3.1. Given any triple 0 ⩽ vm ⩽ wm < wM which satisfies one of the following
conditions

(i) wM ⩽ w̃, (ii) wM > w̃ and vm ⩾ v̌(Q,wM ), (iii) wM > w̃ and vm ⩽ v̂(Q,wM ),

the set {(v, w) ∈ W : v ⩾ vm, w ∈ [wm, wM ]} is an invariant region for RSQ.

3.2. Description of the scheme. We describe here the Glimm scheme for the approximation
of the ADR model, namely the ARZ system subject to point constraints on the density flux.
We denote by N the number of mesh cells in the computational domain and let ∆x be the
space step. We introduce the points xj+1/2 = j∆x, the cells Cj = [xj−1/2, xj+1/2) and the
cell centers xj = (j − 1/2)∆x for j ∈ J1, NK. We denote by jc the index such that xjc+1/2 is
the location of the constraint. For any integer n ⩾ 0 and for any j ∈ J1, NK, the goal is to
compute Wn

j , the approximated value of W (tn, xj), where (tn)n is recursively defined by

t0 = 0, tn+1 = tn +∆tn+1,

with the time step (∆tn)n given below. We start by defining

W 0
j = (v̄(xj), w̄(xj)) .
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For a fixed integer n ⩾ 1, assuming that Wn
j is given for any j ∈ J1, NK, we define the time

step ∆tn+1 so that the following CFL condition is satisfied:

∆tn+1 =
Ccfl∆x

Sn
max

.

Above, Sn
max is the maximum wave speed (in absolute value) present in the whole domain at

time tn, and the CFL coefficient Ccfl satisfies 0 < Ccfl ⩽ 1/2. We choose Ccfl = 1/2 for all the

simulations of this paper. The next time discretization is given by tn+1 =
∑n+1

i=1 ∆ti. We use

the following procedure to compute Wn+1
j :

• As in [13, 36], we pick quasi-randomly a number θn ∈ [0, 1] by considering the van der
Corput sequence (θn)n defined by

θn =
m∑
k=0

ik 2
−(k+1),

where (i0, . . . , im), with ik ∈ {0, 1}, is the binary expansion of the integer n, namely

n =

m∑
k=0

ik 2
k.

• Define ∆νn+1 = ∆x/∆tn+1. The updated solution is then computed as follows:

Wn+1
j =

{
RS[Wn

j−1,W
n
j ] (θ

n∆νn+1) , if 0 ⩽ θn < 1/2,

RS[Wn
j ,W

n
j+1] ((θ

n − 1)∆νn+1) , if 1/2 ⩽ θn ⩽ 1,
j /∈ {jc, jc+1}

Wn+1
jc

=

{
RS[Wn

jc−1,W
n
jc
] (θn∆νn+1) , if 0 ⩽ θn < 1/2,

RSQ[W
n
jc
,Wn

jc
] ((θn − 1)∆νn+1) , if 1/2 ⩽ θn ⩽ 1,

Wn+1
jc+1 =

{
RSQ[W

n
jc
,Wn

jc+1](θ
n∆νn+1), if 0 ⩽ θn < 1/2,

RS[Wn
jc+1,W

n
jc+2]((θ

n − 1)∆νn+1), if 1/2 ⩽ θn ⩽ 1.

We observe that, on the one hand, the scheme does not introduce any numerical viscosity,
which means, in particular, that the size of jump discontinuities is computed exactly. On the
other hand, however, the location of jumps is detected “up to one cell.” The resulting error is
very small for fine meshes but is unavoidable, see Remark 5.1 for further discussion.

3.3. Remarks on the implementation of the method. In the Riemann solver implemen-
tation, we could in principle pick different pairs of variables: the physical variables (ρ, v), the
conservative ones (ρ, y), the Riemann invariants (v, w), or even (ρ, q).

This last choice would make our simulations very intuitive, but would also be very delicate
for extremely low densities because there is no definite map to recover the values of the
Riemann invariants starting from ρ = 0, q = 0.

We perform our simulations in physical variables as they are still relatively easy to compare
to available data, and can be translated into conservative variables or to Riemann invariant
coordinates in all situations. Notice, however, that in order to avoid spurious oscillations at
the constraint location, our implementation keeps track of all the state variables ρ, v, q, w
and p(ρ).

Indeed, the Riemann solver RSQ is deduced by assuming the conservation of w and the
maximization of q at the constraint location. Namely, whenever the constraint is active, q = Q.
Floating-point calculations for the estimation of physical variables may induce tiny errors in the
flux estimation, as q = ρ v. Thus, we may fail to realize the condition ρ v(t, 0−) = ρ v(t, 0+) = Q,
and this would lead the Glimm scheme to oscillate between constrained and unconstrained
Riemann solver at each time step.
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Unless otherwise specified, all the simulations presented in this paper are made by imposing
Neumann conditions at the boundary of the computational domain, and with a velocity offset
of the form (8) and parameters’ values vref = 1, ρref = 1 and γ = 4, that is

(10) p(ρ) = ρ4.

4. Validation of the numerical scheme

4.1. Numerical convergence. To validate the numerical convergence of the Glimm scheme,
we study the evolution of the relative ℓ1-error between numerical solutions and explicit exact
solutions for varying mesh sizes. The comparison is made for two constrained Riemann
problems (6), one of which leads to the appearance of the vacuum in the solution. The exact
solutions are provided by the Riemann solvers described in Section 2. In both cases, the
constraint is located at x = 0 and the upper bound for the density flux is Q = 0.1.

Using the notations introduced in Section 3.2, for any given state variable u ∈ {ρ, v, q, w, p},
we call unj the approximate value on the cell Cj at time tn of u(tn, xj). Thus the relative

ℓ1-error at time tn for u is

En
ℓ1 =

(∑
j∈Z

∣∣u(tn, xj)− unj
∣∣)/(∑

j∈Z
|u(tn, xj)|

)
.(11)

Example 4.1. Consider the Riemann problem (6) with

(ρℓ, vℓ) = (0.65, 0.10), (ρr, vr) = (0.20, 0.75).(12)

The solution consists of the juxtaposition of a rarefaction wave of negative speed, a stationary
non-classical shock induced by the flux constraint, a rarefaction wave leading to the vacuum,
and finally a contact discontinuity. The exact solution and the approximated solution obtained
using the Glimm scheme at time t = 1 are presented in Figure 2. According to this figure, the
exact solution is well captured by the Glimm scheme. The convergence rate is 0.96 for the
density and 1.00 for the velocity, see Figure 4a. We observe in Figure 2c that w in the vacuum
is computed according to the Riemann solver RS presented in Definition 2.1.

Example 4.2. Consider the Riemann problem (6) with

(ρℓ, vℓ) = (0.50, 1.10), (ρr, vr) = (0.20, 0.35).(13)
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(a) Density: ρ
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Figure 2. Comparison between the exact solution, in red, and the numerically
computed solution, in blue, at time t = 1 for the Riemann problem (6) with
velocity offset (10), initial data (12), and Q = 0.1 located at x = 0 (orange
line). The simulation using the Glimm scheme is performed using a uniform
grid of N = 256 mesh cells.
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Figure 3. Comparison between the exact solution, in red, and the numerically
computed solution, in blue, at time t = 1 for the Riemann problem (6) with
velocity offset (10), initial data (13), and Q = 0.1 located at x = 0 (orange
line). The simulation using the Glimm scheme is performed using a uniform
grid of N = 256 mesh cells.

The exact solution consists in a shock of negative speed, followed by a stationary non-classical
shock, induced by the flux constraint, then a shock of positive speed and finally a contact
discontinuity. The exact solution and the approximated solution obtained using the Glimm
scheme at time t = 1 are presented in Figure 3. According to this figure, the exact solution is
well captured by the Glimm scheme. The convergence rate is 0.90 for the density and 0.91 for
the velocity, see Figure 4b.
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(a) Glimm scheme convergence
analysis for the Riemann prob-
lem (6) with initial data (12),
and Q = 0.1. The convergence
rate is 0.96 for the density and
1.00 for the velocity.
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(b) Glimm scheme convergence
analysis for the Riemann prob-
lem (6) with initial data (13),
and Q = 0.1. The convergence
rate is 0.91 for the density and
0.90 for the velocity.

Figure 4. Convergence analysis: Relative error in ℓ1-norm (see formula (11))
for the density ρ and the velocity v with respect to the number of mesh cells N .

4.2. Partial validation of the scheme for Lipschitz continuous and non-local con-
straints. In the following examples, we consider the special situation in which the Lagrangian
marker of the initial data is constant. More specifically, the initial data are

(ρ̄, v̄)(x) =

{
(1, 1), if x ∈ [a, b],

(0, 2), otherwise,
(14)
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where [a, b] ⊂ R. Observe that w̄ = 2 everywhere, including in the vacuum. As usual we
consider the velocity offset (10). In this setting the dynamics described by the ARZ model
is the same as the one captured by the first order LWR model [27, 31] with flux function
f(ρ) = ρ (w−p(ρ)) = ρ (2−ρ4). The (theoretical and numerical) convergence of finite volumes
approximations for the constrained LWR model is well known, even when the level of the
constraint is Lipschitz continuous in time and depends non-locally on the solution itself, see
[2, 12].

This allows us to partially validate our Glimm type scheme by comparing the density
component of our solution with the solution of the constrained LWR model computed via the
convergent finite volumes type scheme in [2], for a wide range of constraints functions Q.
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Figure 5. Numerical solution obtained by the Glimm scheme of the ADR
model (1) with initial data (14) with [a, b] = [−4,−1], and time dependent con-
straint Q(t) represented in sub-Figure 5f and given by equation (15). Figures 5a
and 5b represent respectively the heat map of the density and the velocity
in space and time. Figures 5c-5e represent the densities and the velocities at
different times. Figure 5g illustrates the convergence rate toward the solution
of the constrained LWR model.
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Example 4.3. Consider the ADR model (1) with initial data (14) with [a, b] = [−4,−1] and
the time dependent constraint

Q(t) = α+ β sin

(
2πt

θ

)
with α = 0.75, β = 0.15, and θ = 0.5.(15)

For the discretization, the domain is [−5, 5] and the number of mesh cells is N = 5000. Figure 5
represents the heat maps of the numerical solution obtained by the Glimm type scheme, and
the snapshots at times t = 1, t = 2 and t = 3. The numerical convergence rate of the relative
ℓ1-error between our solution and the constrained LWR solution is 0.72, as shown in Figure 5f.
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Figure 6. Numerical solution obtained by the Glimm scheme of the ADR
model (1) with initial data (14) with [a, b] = [−3.5,−1.5]. The non-local
constraint Q(t) given by equation (16) and is a decreasing function of the
weighted averaged density in the local upstream area of the constraint, namely
on [−1, 0]. Figure 6a represents the heat map of the density in space and time.
Figure 6b represents the time evolution of the constraint. Figure 6c represents
the convergence rate for different times: at t = 1 when the constraint value is
decreasing, at t = 2 when the constraint is at its lower level, and at t = 3 when
the constraint is returning to its original level.

Example 4.4. Consider the ADR model (1) with initial data (14) with [a, b] = [−3.5,−1.5]
and the non-local constraint

Q(t) =


q0 if ξ(t) ⩽ ξ0,

α ξ(t) + β if ξ0 < ξ(t) < ξ1,

q1 if ξ(t) ⩾ ξ1,

with

{
q0 = 0.7, ξ0 = 0.5, α = q1−q0

ξ1−ξ0
,

q1 = 0.4, ξ1 = 1.5, β = q1 − q1−q0
ξ1−ξ0

ξ1,
(16)

where

ξ(t) =

∫
Ω ρ(t, x)φ(x) dx∫

Ω φ(x) dx
with Ω = [−1, 0], φ(x) = 2x+ 2.

Figure 6a represents the heat map of the numerical solution obtained by the Glimm type scheme,
and Figure 6b the evolution of the constraint level in time. Figure 6c presents the numerical
convergence rate of the relative error between our solution and the constrained LWR solution at
different times: it is 0.69 at t = 1, when the constraint value is decreasing, 0.79 at t = 2 when
the constraint is stable at its lower level, and 0.65 at t = 3 when the constraint is returning to
its original level.

Observe that Q is continuous because ρ ∈ C0
(
R+;L

1
loc(R;R+)

)
. In B we consider the case

of a non-local constraint Q that is discontinuous even in the case ρ ∈ C0
(
R+;L

1
loc(R;R+)

)
.
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5. Qualitative behavior of the ADR model

In this Section, we provide a number of numerical experiments showing that, starting
from the ADR model, we can reproduce the qualitative behavior of traffic observed in real
situations and, in particular, characteristic phenomena associated to the presence of obstacles
and bottlenecks, such as phantom jams, capacity drop, Braess’ paradox and Faster is Slower
effect.

5.1. Phantom jams. The “phantom jam” effect refers to a phenomenon empirically observed
in traffic flow, where a temporary, localized slowdown in traffic (typically, starting with a single
vehicle overbraking or changing lane unexpectedly) causes a chain reaction of deceleration and
congestion among other vehicles, creating a “phantom” traffic jam propagating backwards
through the traffic stream.

The traffic flow disruption at the origin of the “phantom jam” can be modeled by a point
constraint on the flow. Thus the ADR model is well-suited to reproduce this mechanism.

We consider a highway with heavy, not very fast traffic, and imagine that at t = t̄ a vehicle,
called B, suddenly brakes, while the vehicles around it do not modify their speed. Immediately
after, the vehicle B recovers its previous velocity and blend in the traffic flow, so that we do
not follow further its trajectory. The situation is similar to the case in which a bus or a truck
is seen as a moving obstacle in the traffic, see [18, 19, 35, 34], but only for a very short time.
For the simulation, we represent the braking vehicle by a local point constraint, which stays
active on a brief time interval.

Figure 17 represents the traffic flow dynamic heat-map in time and space associated to this
situation. In the simulation the constraint is located at x = 0 and activated for t ∈ [1.25, 1.35]
with the value Q = 0.1. The initial data consists of several blocks with a common velocity but
different densities, so that different values of w are involved

(
ρ̄(x), v̄(x)

)
=



(0.80, 1), if x ∈ [−4,−3.5],

(0.75, 1), if x ∈ [−3.5,−3],

(0.70, 1), if x ∈ [−3,−2.5],

(0.65, 1), if x ∈ [−2.5,−2],

(0.60, 1), if x ∈ [−2,−1.5],

(0.50, 1), if x ∈ [−1.5,−1],

(0, 0), otherwise.

(17)

For the discretization, the domain is [−5, 5] and the number of mesh cells is N = 5000.
According to Figure 7, a jam is created in the upstream flow during the period of constraint
activation. Then, at the front of the congestion, a rarefaction occurs whereas in the upstream
flow the “phantom jam” appears. The “phantom jam” creation begins at t = 1.35, then the
congestion propagates to each block of the initial data and reaches the tail of the group of
vehicles (i.e. the left boundary of the support of ρ(t, x)) at t = 3.25.

Figure 8 is obtained using the same setting except for the velocity offset. Instead of using
a power law, see equation (10), we consider the singular law given by (9), with vref = 0.05,
ρref = 1 and γ = 4. In this case, the “phantom jam” congestion propagates much faster.
This behavior is induced by the singularity of the velocity offset when the density reaches the
threshold ρref leading to infinite propagation speed for shocks.

5.2. Capacity drop. The capacity drop effect refers to the situation in which the empirically
measured value of the density flux on a road section is lower than expected for the given
traffic status. The flow rate reduction causes are diverse, but likely involve the density and
the velocity of vehicles in the surrounding area of the constraint. For example, the change of
line or the last-minute braking report might be involved in the capacity drop effect, see [32]
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(b) Velocity
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Figure 7. Time and space dynamics of the phantom jam created by a con-
straint at x = 0 activated for t ∈ [1.25, 1.35] with Q = 0.1. Figure 7a and
Figure 7b represent the evolution of the density and of the velocity, respectively.
The initial data is given in (17). The velocity offset is the power law, see (10).
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Figure 8. Time and space dynamics of the phantom jam created by a con-
straint at x = 0 activated for t ∈ [1.25, 1.35] with Q = 0.1. Figures 8a and 8b
represent the evolution of the density and of the velocity, respectively. The
initial data is given in (17). The velocity offset is the singular law given in (9)
with vref = 0.05, ρref = 1 and γ = 4.

for a more detailed presentation of the phenomenon and its causes. In [1, 6, 2] the capacity
drop effect is modeled by imposing a constraint Q localized at the point at which the loss of
efficiency if observed, and depending (possibly in a non-local way) on the upstream traffic
density or on the flux registered from captors over a given interval of time.

Our Glimm type scheme allows to obtain solutions for an enhanced version of the ADR
model, in which the constraint value depends non-locally on the density component of the
solution; see Example 4.4 and B for the case in which w̄ is constant. The results for more
general initial conditions are similar.
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5.2.1. Faster is Slower effect (FIS). To our knowledge, the FIS effect, also known as “freezing
by heating”, [33], was first formalized in [23] in the context of the room evacuation problem.
The authors studied the evacuation time as a function of the maximal velocity reached by
pedestrians, and they shown that there exists an optimal velocity (well lower than the highest
attainable by single pedestrians) for which the evacuation time attains a minimum. Following
the studies above, the curve representing the evacuation time as a function of the average
velocity takes a characteristic shape, see [30, Figure 1c]. Recently it has been shown how the
FIS effect takes place in a variety of phenomena, such as in vehicular traffic, see [20] and the
references therein. In this setting, a higher speed results in more pronounced breaking in the
presence of road structure modifications, such as lane merging or obstacles, and facilitates the
appearance of phantom jams.

In this section we investigate the ability of the ADR model to reproduce the FIS effect. We
focus our attention to a non-local constraint of the form (16), as the model in its original form
(with piece-wise constant in time, given constraint levels) does not suffice. This is not really
surprising, as heuristically the FIS effect is strongly connected to the capacity drop, in the
sense that it also relates to a lack of self-organization upstream the location of a bottleneck.

The spatial domain in the next numerical experiments is set to [−3.1, 0.1], and subdivided
using a uniform mesh grid made of N = 16384 mesh cells. As for other simulations, the
velocity offset is (10). The non-local constraint on the density flux is located at x = 0 and its
level is given by equations (16), with the parameters provided in Table 1.

The initial condition consists of two uniform blocks of constant density, which share the
same initial constant velocity. While the values of the density are the same over all simulations,
the common value of the initial velocity varies in [0.25, 2.5] by step of 0.01. For each of these
values we record the egress time, i.e. the first time at which the portion of the domain upstream
x = 0 is empty.

We conducted the experiment twice, permuting the order of the blocks, so that the two
initial configurations for the density are

ρ̄A(x) =


1.2, if x ∈ [−3,−2],

0.8, if x ∈ [−2,−1],

0, otherwise,

ρ̄B(x) =


0.8, if x ∈ [−3,−2],

1.2, if x ∈ [−2,−1],

0, otherwise.

(18)

Figure 9 presents the results. For both initial densities, there is an optimum initial speed,
which is v̄ = 0.75 for ρA and v̄ = 0.78 for ρB, leading to minimal egress times TA

op = 6.313

and TB
op = 6.525. Thus, even if the variation of the egress time follows similar patterns, the

computed critical values depend on the initial configuration.

Remark 5.1. Small oscillations can be observed in Figure 9. These oscillations are induced
by the random sampling used in the Glimm scheme. Using a very refined mesh grid allows for
reducing these oscillations and capturing more precisely the egress time. However, taking more
refined mesh grids significantly increases the computational time. Thus, the choice of taking
N = 16384 mesh cells allows us to keep the computational time reasonable while capturing the
egress time with sufficient accuracy to assess the impact of the initial velocity.

In Figure 10 we compare the heat-maps of three solutions corresponding to the initial
condition ρ̄A for the density, see (18), and 0.5, 0.75 and 1.13 respectively for the velocity. As
mentioned above, v̄ = 0.75 allows to attain the minimal egress time, TA

op. The other initial

velocity values are chosen as they both lead to egress time T = 105%TA
op. We can see that

the corresponding dynamics are different: The fact that the constraint reaches its lowest
value sooner and remains there for a time span about 60% longer compensates the possible
advantage coming from a higher initial velocity, enlightening the FIS effect, see also Figure 11.



NUMERICAL SIMULATIONS FOR THE ARZ MODEL WITH POINT CONSTRAINTS 15

Parameter q0 q1 ξ0 ξ1 Ω φ(x)

Value 0.75 0.25 0.5 1.0 [−1, 0] x 7→ 2x+ 2

Table 1. Settings for the non-local constraint used for the simulations in
Figure 9. The expression of the non-local constraint is given by equations (16).
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Figure 9. Illustration of the “Faster is Slower” effect with a non-local con-
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(a) Density for v̄ = 0.5
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(b) Density for v̄ = 0.75
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(c) Density for v̄ = 1.13
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(d) Velocity for v̄ = 0.5
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(e) Velocity for v̄ = 0.75

3 2 1 0
Position: x

0

1

2

3

4

5

6

7

Ti
m

e:
 t

0.0

0.5

1.0

1.5

2.0

2.5

v

(f) Velocity for v̄ = 1.13
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Figure 10. Solutions comparison in space and time for different values of
initial velocity when the initial density is ρA given by (18). The above three
columns correspond to the initial velocities v̄ = 0.5, v̄ = 0.75 (which minimizes
egress time), and, v̄ = 1.13. For the solutions in the first and the third columns,
the egress time is about 6.629 ≈ 105%TA

op.
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Figure 11. Evolution of the constraint Q(t) for different values of the initial
speed.

5.3. Braess’ paradox with a non-local constraint. This section investigates the model’s
ability to reproduce a second effect intimately related to capacity drop, which we call here
Braess’ paradox. This terminology may lead to confusion, and need some explanation. The
name “Braess’ paradox” appeared first in the description of vehicular traffic on a network,
to describe the situation in which if one of the road-branches is not accessible to the agents,
the average flow lightens in the remaining ones. In the setting of pedestrian traffic, however,
“Braess’ paradox” refers to the situation in which a (small) obstacle, located in the vicinity of
an exit, allows for faster evacuation because it prevents peaks of high density and, therefore,
reduces the capacity drop. In this paper we borrow the latter meaning, even if we are concerned
with vehicular traffic, because we limit our attention to the dynamics on a single road.

In this experiment, we consider that the level of the upstream constraint is constant and
given, while the level of the downstream constraint depends non-locally from the average
upstream weighed density of vehicles. Essentially, we try to model the situation in which the
presence of an obstacle before a toll plaza reduces the taxing behavior at the gates. Our goal
is to show that it is possible to optimize the position xQ and the level Q of the (constant)
upstream constraint so to minimize the egress time.

The computational domain for our experiences is [−0.1, 5.1] and it is subdivided inN = 10400
mesh cells. As in previous simulations, the velocity offset is given by (10). We choose initial
data consisting of two uniform blocks with different values for w

(
ρ̄(x), v̄(x)

)
=


(1.2, 1.0), if x ∈ [0, 1],

(0.8, 1.0), if x ∈ [1, 2],

(0, 0), otherwise.

(19)

The downstream constraint is placed at x = 5.0, is non-local and takes the form given by
equations (16), with the parameters in Table 2.

We perform simulations for values of Q varying in [0.2, 0.8] by step of 0.01, and locations
xQ varying in [3, 4.9] by step of 0.02. We present our results in Figure 12. To illustrate the

Parameter q0 q1 ξ0 ξ1 Ω φ(x)

Value 0.5 0.25 0.5 1.0 [4, 5] x 7→ 2x− 8

Table 2. Settings for the non-local downstream constraint used for the
simulations presented in Figure 12. The expression of the non-local constraint
is given by equations (16).

effect of the upstream constraint, Figures 12a, 12b and 12c show the percentage of gain or loss
in the egress time corresponding to different values of xQ and Q. Let Tref be the egress time
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without the upstream constraint. The quantity we represent by the colours on the heat-map
and on the vertical axes of Figures 12a and 12b, is

100
T (xQ, Q)− Tref

Tref
.

The green cross on the heat-map represents the optimum location and the value for the
upstream constraint. For this setting the optimum is reached at xQ = 4.1 and Q = 0.5.
According to this heat-map, however, there is a wide range of values and positions (i.e. dark
blue area) for which adding the upstream constraint significantly reduces the egress time.

Observe that the optimal value for the constraint corresponds to the maximal capacity
of the downstream constraint. Besides, according to Figure 12b and 12c the egress time is
more sensitive to the value of constraint Q than to its position xQ. Indeed, according to
Figure 12b, slight variations of the constraint position around the optimum have limited
impact on the percentage of gain even for constraint values that differ from the optimum.
Conversely, according to Figure 12c, slight variations of the constraint value around the
optimum significantly reduce the gain. These Figures also show that adding an upstream
constraint improves the egress time as long as Q ⩾ 0.3. In a nutshell, our model suggests that
the upstream constraint value must be carefully picked, but a good guess is to pick the value
of the maximal capacity of the downstream constraint and then the position of the upstream
constraint can be chosen more roughly.

Remark 5.2. These heuristic conclusions are obtained for a given initial data and downstream
constraint. The optimization process obviously must be carried out from scratch for different
settings and, in particular, if one want to use a different kind of downstream constraint.
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Figure 12. This figure illustrates the occurrence of Braess’ paradox as
described in Section 5.3 with initial data (19). Figure 12a shows the percentage
of efficiency gain or loss relative to the absence of the upstream constraint,
depending on the upstream constraint position xQ and level Q. Figures 12b
and 12c highlight, respectively, the effect of xQ and Q on the percentage of
efficiency gain or loss relative to the absence of the upstream constraint for
different fixed values of Q (i.e. horizontal slices of Figure 12a) and for different
positions of the constraint xQ (i.e. vertical slices of Figure 12a).

We also consider the initial data obtained by switching the two blocks present in (19), that
is

(
ρ̄(x), v̄(x)

)
=


(0.8, 1.0), if x ∈ [0, 1],

(1.2, 1.0), if x ∈ [1, 2],

(0, 0), otherwise.

(20)

The results are presented in Figure 13. We can see that in this case, even if the curves have
overall a similar shape, the dark blue region in the heat-map is thinner next to the optimal
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value, which means that the dynamics is less stable. Nevertheless, the optimum for the upsteam
constraint level is Q = 0.49, which almost corresponds to the highest level (ie. 0.5) of the
downstream constraint.
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Figure 13. This figure illustrates the occurrence of Braess’ paradox as
described in Section 5.3 with initial data (20). Figure 13a show the percentage
of efficiency gain or loss relative to the absence of the upstream constraint,
depending on the upstream constraint position xQ and level Q. Figure 13b and
Figure 13c highlight, respectively, the effect of xQ and of Q on the percentage
of efficiency gain or loss relative to the absence of the upstream constraint for
different fixed values of Q (i.e. horizontal slices of Figure 13a) and for different
positions of the constraint xQ (i.e. vertical slices of Figure 13a).

5.4. A bridge with bounded carrying capacity. One of the advantages of second order
versus first order models is that they naturally represent the co-existence in the road of different
kinds of vehicles (or drivers’ attitudes). Classically, we relate the Lagrangian marker w in
the ARZ model to the length-size of vehicles. This is possible because on the one hand the
Riemann solver does not introduce values of w which are not present in the initial data (so
that we can say that vehicles keep their initial value of w), and on the other hand each value of

w corresponds to a different maximal density: Taking p(ρ) = ρ4, we have maxv{ρ(v, w̄)} = w̄
1
4 .

Then the average “size” of vehicles associated to w = w̄ is w̄− 1
4 . Low values of w characterize

long vehicles (as their maximal density on the road is low), with low maximal velocity, whereas
high values of w characterize small vehicles with large maximal velocity.

In [26], the authors consider traffic in presence of a slow moving vehicle, which reduces the
road capacity, and assume that the effective capacity loss depends on the trace of w at the
slow vehicle’s location (local moving constraint). Here we introduce an example of non-local
constraint depending on the total weight of the upstream vehicles.

Assuming that a first evaluation of the weight of a vehicle is its volume, we can estimate
the total weight of vehicles present on a road section [a, b] ⊂ R by using the following formula:

m(t) =

∫ b

a
ρw− 3

4 dx.(21)

In this example we imagine to monitor the stretch of road upstream a bridge of limited carrying
capacity. The entrance of the bridge is located at b. Starting from equation (21), we can
consider a non-local constraint function of the following form

Q(t) =

{
qlim, if ξ(t) ⩾ ξ̄,

+∞, otherwise,
ξ(t) =

∫ b
a ρw− 3

4 φ(x) dx∫ b
a φ(x) dx

,(22)

where φ is a weight function so that vehicles closer to b have a larger impact on the constraint
activation.
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In the next numerical example, in addition to consider as usual p(ρ) = ρ4, we fix a = −0.5,
b = 0, φ(x) = 1, qlim = 0.195, ξ̄ = 0.7 and set the initial data as

ρ̄(x) =


1.21, if x ∈ [−1.5,−1.0],

0.60, if x ∈ [−1.0,−0.5],

1.03, if x ∈ [−0.5, 0.0],

0.0, otherwise,

w̄(x) =


2.5, if x < −1.0,

0.5, if x ∈ [−1.0,−0.5],

1.5, if x ∈ [−0.5, 0.0],

0.0, if x > 0.

We stress that the value of w on x > 0 is set arbitrarily in this example and does not modify
the solution. The values of the densities are chosen so that the blocks have similar initial
velocities.

The results are presented in Figure 14. The constraint activates immediately as a block
of very high density, low-w vehicles approaches the bridge. It remains active as the block of
less dense but larger vehicles is detected. The larger vehicles are much slower than the small
ones when subject to the constraint, which explains the opening of vacuum on the bridge
when they reach x = 0. The constraint being non-local, it ceases to act when the “potential
incoming weight” is back to safe values. According to the numerical results, this happens at
t ≈ 3.984, time at which we can observe the creation of a rarefaction wave starting at x = 0,
which indicates the increase in the through flow.
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Figure 14. The numerical solution is here computed when the constraint
on the flux Q is given by the non-local expression provided in equation (22).
Thus, the constraint on the flux is a decreasing function of the total vehicle
weight on a local upstream area of the constraint, namely on [−0.5, 0.0]. In this
setting, the constraint on the flux remains activated until t = 3.984. Figure 14a
represents the heat map of the density in space and time. Figures 14b and 14c
represent the heat map of the density and of the flux, respectively, in space and
time zoomed around the constraint location when the constraint deactivates.

6. Conclusions

In this paper we show that the second order ARZ model subject to local or non-local
point constraints, as it was introduced in [4], can reproduce qualitative features that are
characteristic of vehicular macroscopic phenomena at bottlenecks (capacity drop, Faster is
Slower, phantom jams). These effects are shown to be persistent for large intervals of values of
parameters.

We designed and implemented an adapted version of the Glimm scheme, featuring a non-
classical Riemann solver at the constraint locations, and we show its numerical convergence.
The results presented in this paper allow us to consider more complex models for traffic in
presence of constraints and moving obstacles, traffic models on tree shaped networks and
management problems in the same spirit of [14, 16].
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Appendices

Appendix A. Well-posedness for the ADR model

In this section we recall the existence result obtained in [4] for the ADR model (1). The
choice of using the Riemann invariants (v, w) as independent variables is very convenient in the
theoretical study of the ARZ system, in particular for the description of the Riemann solver
and the definition of entropy pairs, the latter being multi-valued in conservative variables.
Also, the total variation of solutions of the ARZ model written in Riemann invariants does not
increase in time, while it generally does when we use the conservative variables (ρ, y). This is
a fundamental ingredient toward the global existence results in [21] and [29].

Following the same approach, in [4] the authors obtained a priori bounds on the total
variation of the solution for the ADR model in the (v, w) variables, and defined suitable
entropy pairs. In this section we give a short account of their results. We stick to their
notations to facilitate the reader who may want to go deeper into the details of [4]. However,
we stress that in the next sections the outputs of our numerical simulations are expressed in
the variables ρ and v, as these quantities (mean density and velocity), together with their
product q = ρ v (density flux), are easier to compare to experimental data.

The definition of entropy solution for the constrained Cauchy problem (1) with a given
piece-wise constant in time constraint function Q is introduced in [6, Definition 4.2], see also [4,
Definition 3.3]. Such definition is obtained by adding a term that accounts for the constraint
in the classical definition of entropy solution given by Kruzhkov in [25], in analogy to what is
done for the scalar case in [5, 12, 15] and, for non-local constraints, in [3, Definition 2.1].

Definition A.1. Let (v̄, w̄) ∈ BV(R;W) and Q ∈ PC(R+;R+). We say that (v, w) is an
entropy solution to (1) if it is in L∞(R+;BV(R;W)

)
∩ C0

(
R+;L

1
loc(R;W)

)
and

(1) it satisfies the initial condition (v, w)(0, x) = (v̄, w̄)(x) for a.e. x in R;
(2) it satisfies the constraint condition [v ρ(v, w)](t, 0±) ⩽ Q(t) for a.e. t in R+;
(3) for any test function ϕ ∈ C∞

c (R+ × R;R) it satisfies

∫∫
R+×R

ρ(v, w) [ϕt + v ϕx]

(
v
w

)
dx dt =

(
0
0

)
;

(4) for any non-negative test function ϕ ∈ C∞
c (R+ × R;R) and k ∈ R+ it satisfies∫∫

R+×R
[Ek(v, w)ϕt +Qk(v, w)ϕx] dx dt+

∫
R+

Nk(v, w,Q)ϕ(t, 0) dt ⩾ 0,

where

Ek(v, w) =

0 if v ⩽ k,

1− ρ(v, w)

ρ(k,w)
if v > k,

Qk(v, w) =

0 if v ⩽ k,

k − v ρ(v, w)

ρ(k,w)
if v > k,

Nk(v, w,Q) =

[v ρ(v, w)](t, 0)

[
k

Q(t)
− 1

p−1([w(t, 0)− k]+)

]+
, if Q(t) ̸= 0,

k, otherwise.

The theorem on existence of entropy solutions to the constrained Cauchy problem (1) in [4]
needs some assumptions on p, (v̄, w̄) and Q, which we introduce now.
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Assumptions on the initial data (v̄, w̄): For every x ∈ R, the left and the right limit
values of the initial data at x belong to a domain G ⊂ W, namely

(
(v̄, w̄)(x−)
(v̄, w̄)(x+)

)
∈ G =


(
Wℓ

Wr

)
∈ W2 :

Wℓ ∈ W0

Wr ∈ W0

}
⇒ Wℓ = Wr,

Wℓ ∈ Wc
0

Wr ∈ W0

}
⇒ Wr = (wℓ, wℓ)

 .(W̄ )

Remark A.1. The assumption W̄ is important for the theoretical analysis of system (1),
because a crucial ingredient in the proof of existence is the uniform bound on the total variation
of the w component of the solution. In the implementation of our numerical scheme we need
to consider initial data in the whole W2. We refer to Section 2 for more details.

Assumptions on the initial datum w̄ and the constraint function Q: The most
delicate estimates in [4] deal with the possible increase of the total variation associated to the
interaction of waves at the constraint location and the changes in the value of the constraint.
To keep track of them the authors introduce the functional

J(Q,w) = v̌(Q,w)− v̂(Q,w) ∈ R+

for v̌(Q,w) and v̂(Q,w) defined in (7). In order to achieve the well-posedness of the constrained
Cauchy problem we need to enforce the following condition on Q and w̄

(Q)

∑
t>0 s.t.

Q(t−)̸=Q(t+)

[
sup
y∈R−

∣∣∣TV(J (Q(t−), w̄) ; (−∞, y]
)
− TV

(
J (Q(t+), w̄) ; (−∞, y]

)∣∣∣] ,
is bounded and R− ∋ x 7→ J(Q(0), w̄(x)) ∈ R+ has bounded total variation.

Theorem A.1 (Theorem 3.1 in [4]). Assume (3). Let (v̄, w̄) ∈ BV(R;W) satisfy (W̄ ),
and Q : R+ → R+ be piecewiese constant and satisfying (Q). Then the Cauchy problem (1)
with initial datum (v̄, w̄) and constraint Q admits a constrained entropy solution (v, w) ∈
C0 (R+;BV (R;W)) in the sense of Definition A.1. Furthermore, there exist two constants C
and L such that for any t, s ∈ R+

TV
(
(v, w)(t)

)
⩽ C, ∥(v, w)(t)− (v, w)(s)∥L1 ⩽ L |t− s|, ∥(v, w)(t)∥L∞ ⩽ ∥w̄∥L∞ = V0.

Appendix B. Non-local constraint depending on the upstream density
(piece-wise constant)

In this example, we consider a constraint whose value depends on the averaged mean of the
density component of the solution in an upstream neighborhood of the constraint location

Q(t) =

{
q0, if ξ(t) ⩽ ξ̄,

q1, otherwise,
where ξ(t) =

∫
Ω ρ(t, x)φ(x) dx∫

Ω φ(x) dx
.(23)

This kind of constraint has been considered in [3], in association with the LWR first-order
model, to model the capacity drop effect. See also [2] for the theoretical and numerical analysis
of first-order models featuring more general non-local constraints. In the simulation below the
constraint is located at x = 0 and we fix the numerical values of its parameters as q0 = 0.7,
q1 = 0.4, ξ̄ = 1, Ω = [−1, 0] and φ(x) = 2x+ 2. The initial condition consists of a single block
of constant density and velocity(

ρ̄(x), v̄(x)
)
=

{
(1, 1), if x ∈ [−3.5,−1.5],

(0, 0), otherwise.
(24)

The evolution of the enforced constraint value over time is represented in Figure 15b. Figure 15a
represents the heat map of the density in space and time. As in Section 4.2, there is only one
block with constant density and velocity in the initial data, therefore the Lagrangian marker is
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(a) Density
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Figure 15. The numerical solution is here computed when the initial data is
as in (24) and the constraint on the flux Q is the non-local functional provided
in equation (23). The constraint Q is a discontinuous decreasing function of
the weighted averaged density in the local upstream area of the constraint,
namely on [−1, 0]. The constraint value over time is represented in Figure 15b.
Figure 15a represents the heat map of the density in space and time. Figure 15c
represents the convergence rate toward the reference solution computed using
the numerical scheme proposed in [1] for two different times.

constant and takes the value w = 2. The model reduces to the constraint LWR model, see [1],
with density flux f(ρ) = ρ (2− ρ4). Thus, here also the reference solution used to assess the
convergence of the scheme is computed using the method presented in this paper which is
based on Godunov numerical scheme and whose convergence has been theoretically proved.
As shown in Figure 15c the convergence rate is 0.95 at t = 3 when the constraint is at its lower
level, and 0.96 at the final time when the constraint has returned to its higher level.
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(Bastien Polizzi) Université Marie et Louis Pasteur, CNRS, LmB (UMR 6623), F-25000 Besançon,
France.

Email address: bastien.polizzi@univ-fcomte.fr
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