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Co-prime Sampling based Gridless Time-Delay
Estimation for Ground Penetrating Radar System

with Enhanced Single Measurement Vector
Huimin Pan, Jingjing Pan, Member, IEEE, Xiaofei Zhang, and Yide Wang, Senior Member, IEEE

Abstract—Time-delay estimation (TDE) holds great signifi-
cance in pavement surveys, especially in the modern transporta-
tion system. Established on the ideal Dirac pulse and white
Gaussian noise, the performance of the existing TDE methods
may degrade in practical ground penetrating radar (GPR)
detection, where radar pulse and noise distribution are diverse.
In this letter, we develop a gridless TDE method considering
the radar pulse and noise pattern in GPR detection. Co-prime
sampling strategy is applied to reduce the number of frequency
samples compared with conventional uniform sampling. With
the prior knowledge of radar pulse and noise distribution,
an enhanced measurement vector is generated from the data
covariance matrix, thus improves the signal quality compared
with the conventional methods simply assuming ideal Dirac pulse
and white Gaussian noise. Subsequently, the time-delays are
estimated by the proposed atomic norm minimization (ANM)
method, where the complexity is further reduced compared with
the previous works using multiple measurements. Simulation
results show the advantages of the proposed method in terms
of running time, weak echo detection, and estimation accuracy.

Index Terms—Time-delay estimation (TDE), ground penetrat-
ing radar (GPR), coherent signals, radar pulse, noise pattern,
atomic norm minimization (ANM).

I. INTRODUCTION

IN transportation system, ground penetrating radar (GPR)
[1] is a non-destructive tool for pavement quality assess-

ment and road maintenance. From the GPR profile, the struc-
ture of stratified pavement can be described by means of time-
delay estimation (TDE) and amplitude estimation. Especially,
TDE provides the thickness of each layer. Significant research
has been done to estimate the time-delays of GPR echoes over
the last few decade [2], [3].

One of the main obstacles for TDE is the dense sampling
points due to the uniform sampling strategy in GPR system
with ultra wide bandwidth (UWB). To reduce the hardware
burden, researchers have developed sparse sampling strategies
[4]–[6], among which the co-prime strategy has been widely
used thanks to its efficiency in system design. From the
covariance matrix of co-prime sampled signals, the virtual
sampling is constructed with limited physical samplers in a
virtual manner. However, it is not applicable to TDE owing to
the inner coherency between the GPR echoes. Moreover, the
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“holes” in co-prime sampling also prevent the high-resolution
methods from the decoherence preprocessing techniques [7].

Compressive sensing (CS) [8], [9] provides a solution to
exploit the sparse sampling strategy in the presence of coherent
signals. The conventional CS methods, e.g., sparse Bayesian
interference (SBI) [8] and orthogonal matching pursuit (OMP)
[9], [10], always perform poorly because of basis mismatch
when the targets are off-grid. To this end, gridless methods
are proposed to reconstruct the signals in a continuous atom
set, among which atomic norm minimization (ANM) attracts
attention from researchers. ANM [11]–[14] aims to recover the
virtual covariance matrix, ignoring the “holes” and coherency
among echoes. In [12], the single measurement vector (SMV)
based ANM method has been successfully applied in line
spectrum estimation. Then in [13], the multiple measurement
vector (MMV) is proposed to enhance the reconstruction
accuracy, requiring a heavier complexity to solve the large
semi-definite programming (SDP) in ANM problem. Later, our
previous work [14] develops the MMV-ANM method for TDE
in GPR system, where the number of variables are reduced in
the two-level SDP problem.

Another difficulty comes from the radar pulse and noise
pattern in practical GPR system. In the previous work, the
radar pulse is assumed to be an ideal Dirac pulse. But in the
impulse or step-frequency system, the GPR pulse is not flat
over the selected bandwidth because of the antenna response
[1], [2], [15]. Although data whitening preprocessing [1] can
be applied to remove the non-linear exponential behaviour of
radar pulse, the noise pattern is changed, leading to a non-
Gaussian-white noise and the data model mismatch.

Driven by these observations, in this letter, we propose
a co-prime sampling based gridless TDE method for GPR
system considering the radar pulse and noise pattern. The
contributions of this letter are summarized as follows: 1) we
generate an enhanced SMV from the eigen-space of data co-
variance matrix, taking into account the radar pulse and noise
pattern; 2) the enhanced SMV also promotes the detection and
estimation performance of weak echoes compared with those
methods simply considering ideal scenarios; 3) the complexity
of proposed method is greatly reduced with a smaller SDP
scale compared with that in MMV-ANM [14].

II. DATA MODEL

Usually, the studied pavement is assumed to be horizontally
stratified, and the media are homogeneous and low-loss [1]–
[3]. Consider an pavement with K interfaces, the received
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signal by a GPR is then composed of K coherent echoes with
corresponding time shift and attenuation. The received signal
is modeled in frequency domain as [1]

r(f) =

K∑
k=1

s0αkẽ(f)e
−j2πfτk + n(f), (1)

where s0 is the emitted signal amplitude; αk and τk denote
the attenuation and arrival time corresponding to the kth
echo, respectively; ẽ(f) is the frequency response of the radar
pulse; n(f) denotes the additive noise with zero mean. In
the application of GPR detection, radar pulse ẽ(f) can be
measured by backscattered echo from a metallic plane and thus
is known beforehand as a prior knowledge in TDE problem.

In this letter, the received signal in (1) is sampled in
frequency domain using co-prime sampling strategy. As shown
in Fig. 1a, signals are sampled within f ∈ [fmin, fmax], and the
sampling points can be indicated by the following integer set

S =
{
li
∣∣i = 1, 2, · · · ,M

}
=

{
M1m

∣∣m = 0, 1, · · · , (fmax − fmin)/(M1∆f)
}

∪
{
M2m

∣∣m = 0, 1, · · · , (fmax − fmin)/(M2∆f)
}
,
(2)

where (M1,M2) is a pair of co-prime integers and M indicates
the cardinality of set S. Correspondingly, the sampling points
in frequency domain are given by fi = fmin + li∆f, li ∈ S,
with the beginning frequency f1 = fmin and the smallest inter-
val ∆f . Therefore, the co-prime sampling signal is modelled
as

r = s0ΛAα+ n (3)

with the following notations:
• r = [r(f1), r(f2), · · · , r(fM )]T ∈ CM×1 is the received

signal vector, superscript {·}T is the transpose operator;
• Λ = diag{ẽ(f1), ẽ(f2), · · · , ẽ(fM )} ∈ CM×M is a

diagonal matrix whose entries are the frequency response
of the radar pulse;

• A = [a(τ1),a(τ2), · · · ,a(τK)] ∈ CM×K is the
mode matrix, where the kth column a(τk) =
e−j2πf1τk [1, e−j2πl2∆fτk , · · · , e−j2πlM∆fτk ]T , li ∈ S is
defined as the mode vector of the kth echo; τk(k =
1, 2, · · · ,K) denotes the true arrival time of the kth echo;

• α = [α1, α2, · · · , αK ]T is the K × 1 amplitude vector
composed of attenuations of echoes; s0 denotes the
amplitude of the emitted signal;

• n = [n(f1), n(f2), · · · , n(fM )]T ∈ CM×1 is the noise
vector with zero mean and colored Gaussian distribution.

To remove the non-linear exponential behaviour caused by
radar pulse, the received signal is whiten as follows

x = Λ−1r = s0Aα+ nw, (4)

where nw = Λ−1n is the noise vector after data whitening.
Since the noise is assumed to be statistically independent of
the signal, the data covariance matrix of x can be expressed
as

R = E{xxH} = APAH +Σ, (5)

where {·}H is the conjugate transpose operator; P =
E{(s0α)(s0α)H} = s20αα

H is the source covariance matrix
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Fig. 1. Co-prime sampling strategy in frequency domain. (a) Sparse uniform
samplings with M1∆f and with M2∆f . (b) Co-prime sampling and the
“holes” in the virtual uniform sampling.

and Σ = E{nwnHw } is the covariance matrix of the colored
noise nw. In addition, conventional decorrelation methods
such as spatial smoothing preprocessing (SSP) [7] are impos-
sible for restoring the rank of P, because matrix A hasn’t a
Vandermonde structure due to the “holes”.

III. METHODOLOGY

A. Generalized Eigenvalue Decomposition

In the previous literature, the TDE methods assume the ideal
Dirac radar pulse and additive white Gaussian noise. However,
in practical GPR system, the influence from noise pattern Σ
is not negligible. Hence, the proposed method exploits the
characteristics of radar pulse and noise pattern to enhance the
signal. The GEVD between R and Σ is defined as [16]

Rum = λmΣum,m = 1, 2, · · · ,M, (6)

where λm is the mth eigenvalue, and um ∈ CM×1 is the
corresponding eigenvector. Since the echoes are coherent, only
the largest generalized eigenvalue λ1 and its corresponding
generalized eigenvector u1 are associated to the echoes. Par-
ticularly, u1 is proved to be the optimal projector, which max-
imizes the projected signal-to-noise ratio (SNR) [16] defined
as Ps(u)

Pn(u)
= uHAPAHu

uHΣu
. Then, subtract Σu1 from both sides

of Ru1 = λ1Σu1, we have

APAHu1 = (λ1 − 1)Σu1. (7)

Let g = PAHu1, an enhanced single measurement vector xS
can be formulated as

xS = Ag = (λ1 − 1)Σu1, (8)

which is a linear combination of the columns of A. In this way,
the influence of radar pulses and noise distribution is taken into
account to obtain a matched, exact, therefore enhanced signal
model. It is worth mentioning that the classical methods are
often based on the hypotheses of the ideal Dirac pulse and
white Gaussian noise, resulting in a mismatched data model.

B. Atomic Norm Minimization

Imagine that a virtual uniform sampling is obtained, shown
as Fig.1b, the sampling points are positioned by the integer
set V with successive integer elements

V = {l, 0 ≤ l ≤ L− 1}, (9)
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whose cardinality is L = max{S}. In the GPR system using
co-prime sampling strategy, the received signal is the partial
observation of the virtual uniform sampling, given by

[x̂V]li =

{
[xS]i, li ∈ S
0, li /∈ S , li = 1, 2, · · · , L , (10)

where [x̂V]li denotes the lith element of x̂V while [xS]l
represents the lth element of xS.

By filling the “holes” in (10), the corresponding single
measurement using uniform sampling is recovered as

xV = AVg, (11)

where AV = [aV(τ1),aV(τ2), · · · ,aV(τK)] ∈ CL×K is
the mode matrix of uniform sampling whose columns are
defined as aV(τk) = [1, e−j2π∆fτk , · · · , e−j2π(L−1)∆fτk ]T ∈
CL×1, k = 1, 2, · · · ,K. The source vector is denoted by
g = [g1, g2, · · · , gK ]T , and gk = e−jψkρk is its kth entry with
phase ψk and amplitude ρk > 0. Define a diagonal matrix
Γ = diag{ρ1, ρ2, · · · , ρK} ∈ RK×K and a phase vector
ψ = [e−jψ1 , e−jψ2 , · · · , e−jψK ]T , xV can be decomposed as

xV = AVΓψ. (12)

Define a selection vector q ∈ CL with the lth (∀l ∈ S)
position being 1 and the other elements being 0, we have the
relationship between observations (10) and (11) as

x̂V = xV ⊙ q, (13)

where ⊙ denotes the Hadamard product.
According to the idea of atomic norm in [12], xV can be

described by a continuous-valued atom set

A =
{
e−jψaV(τ)

∣∣τ ∈ [tmin, tmax], ψ ∈ [−π, π]
}
, (14)

where tmin and tmax denote the beginning and end of time-
delay searching range, respectively; ψ carries the phase offset
of the atom. Then, the ℓ0 atomic norm of xV is defined as

∥xV∥A,0 = inf
K

{
xV =

K∑
k=1

ρke
−jψkaV(τk), ρk ≥ 0

}
. (15)

However, solving (15) is non-convex and NP-hard. A convex
relaxation of ∥xV∥A,0 is taken into consideration

∥xV∥A =inf {t > 0 : xV ∈ t conv{A}}

=inf

{
K∑
k=1

ρk
∣∣xV =

∑K
k=1 ρke

−jψkaV(τk), ρk ≥ 0

}
(16)

with conv{A} representing the convex hull of atom set A.
Furthermore, we can equivalently express the atomic norm of
xV through the following theorem.

Theorem 1. The atomic norm ∥xV∥A is equivalent in a SDP
form as:

∥xV∥A = inf
T (z),w

{
1
2L tr(T (z) + 1

2w
}
,

subject to
[

T (z) xV
xHV w

]
⪰ 0,

(17)

where T (z) = AVΓA
H
V is a L×L Hermitian Toeplitz matrix

with its first column z ∈ CL×1; w ≥ ψHΓψ =
∑K
k=1 ρk is a

positive real value.

The proof of Theorem 1 is similar with the appendix in
[14], except that the Hermitian matrix W is replaced by a
real-valued variable w.

Considering the mismatch between the theoretical mea-
surement xV and the observed signal x̂V, the atomic norm
minimization problem to recover xV and T (z) is formulated
as

argmin
T (z),w

µ
{

1
2LTr(T (z))+1

2w
}
+ 1

2∥(xV − x̂V)⊙ q∥22,

subject to
[

T (z) xV
xHV w

]
⪰ 0,

(18)
where µ is a positive regularization to balance the atomic norm
and the fitting error term. Apparently, solution T (z) of (18)
can be interpreted as the covariance matrix of xV, removing
the correlation between echoes. After applying MUSIC or
root-MUSIC on T (z), the time-delays of GPR signals can
be estimated.

IV. PERFORMANCE ANALYSIS

A. Complexity Analysis

Computational complexity is commonly used to evaluate the
real-time processing performance of algorithms. According to
[11], the scale of SDP contributes to the major computational
complexity to solve convex optimization problems. In [14], the
MMV-ANM is to recover two Toeplitz Hermitian matrices, in-
dicating a complexity of O((L+M)2.5(M+1)2(L+M/2)2.5).
For ANM with a single measurement, the complexity is
dramatically reduced to O((L+1)2.5(2L+1)2). The proposed
method required extra O(M3) to complete GEVD but the SDP
scale is greatly reduced compared with that in MMV-ANM.
The convergence speed of OGSBI relies on the iteration times
Niter and the number of grids ng , resulting in computational
cost O(Niter(M

3 + 2M2ng + 2M2 + n2gM)). Also, the com-
plexity of the off-grid OMP (OGOMP) [9] method is given as
O(K(ngJM + 2M)) with J snapshots.

TABLE I provides the complexities of the proposed method,
MMV-ANM [14], SMV-ANM [12], OMP [10], OGOMP [9]
and OGSBI [8]. Fig. 2 compares the computational complexity
of different algorithms, where the proposed algorithm needs
far lower complexity than MMV-ANM and OGSBI.

TABLE I
THE MAXIMAL COMPLEXITY OF THE ALGORITHMS

Method Complex number multiplication times
SMV-ANM [12] O

(
M2J + L3 + (L+ 1)2.5(2L+ 1)2

)
MMV-ANM [14] O

(
M2J + L3 + (L+M)2.5(M + 1)2(L+M/2)2.5

)
OGSBI [8] O(Niter(M

3 + 2M2ng + 2M2 + n2
gM))

OMP [10] O(K(2Mng + 2M3 + 4M))
OGOMP [9] O(K(2Mng + 4M3 + 4M))
Proposed O

(
M2J +M3 + L3 + (L+ 1)2.5(2L+ 1)2

)

B. Cramér-Rao Bound

The Cramér-Rao Bound (CRB) is a widely-used standard
for assessing the performance of any unbiased estimator.
Specifically, taking into account the radar pulse and noise
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Fig. 3. Pavement configuration.

pattern, the CRB matrix for TDE of GPR echoes is given
by [17]

CRB(τ ) =
2

J

{(
∂r

∂τT

)H
Π⊥

∂r

∂ρT

∂r

∂τT

}−1

, (19)

where ∂ is the partial derivative operator; J denotes the
number of snapshots; ρ =

[
τT ,pT , σ2

n

]T
is unknown pa-

rameter vector with time-delay vector τ = [τ1, τ2, · · · , τK ]
T ,

source vector p=s0 [α1, α2, · · · , αK ]
T , and the noise power

σ2
n . The projection matrix can be calculated by Π⊥

∂r/∂ρT =

IM − ∂r/∂ρT
((
∂r/∂ρT

)H
∂r/∂ρT

)−1 (
∂r/∂ρT

)H
.

V. SIMULATION RESULTS

In the simulations, a three-layer media is tested, as shown
in Fig 3. The relative permittivities are ϵr1 = 3, ϵr2 = 8, and
ϵr3 = 9. There are 4 coherent echoes received. The arrival
time of the three primary echoes is τ1 = 6.338 ns, τ2 = 6.667
ns, and τ4 = 7.423 ns, respectively. The arrival time of the
secondary echo is τ3 = 6.996 ns. Co-prime sampling with
M1 = 3 and M2 = 5 is adopted within frequency band f ∈
[1.0, 3.5] GHz and frequency interval ∆f = 0.1 GHz. 5001
searching grids are predefined within [5, 10] ns. The SNR is
defined as the power ratio between the first echo and the noise.
Colored noise is used in the simulations, whose noise pattern
is generated as in [3] in each Monte Carlo trail, and is known
beforehand.

In the first simulation, the proposed method, MMV-ANM
[14], SMV-ANM [12], OMP [10], OGOMP [9] and OGSBI
[8] are tested with in a single run with SNR = 10 dB and
100 snapshots. The regulation parameter is µ = 0.01 in the
proposed method. Ricker and Gaussian functions are used
to simulate the radar pulses in Figs. 4 and 5, respectively.
Both MMV-ANM and SMV-ANM fail to estimate τ3 due to
the weak amplitudes and the influence of radar pulse. The
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Fig. 4. Pseudo spectra of different algorithms, Ricker wavelet and colored
noise are used, SNR = 10 dB, J = 100.
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Fig. 5. Pseudo spectra of different algorithms, Gaussian wavelet and colored
noise are used, SNR = 10 dB, J = 100.
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Fig. 6. RRMSE of TDE versus SNR with J = 100. (a) RRMSEs of echo 1,
with τ1 = 6.338 ns. (b) RRMSEs of echo 2, with τ2 = 6.667 ns.
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Fig. 7. RRMSE of the estimated thickness Ĥ2 versus SNR with J = 100.

performance of OMP and OGOMP is worse, because of their
mismatched data model. Significantly, the proposed method
successfully detects the weak echoes and yields the highest
estimation accuracy, showing its robustness with different
radar pulses and colored noise. In the following simulations,
only the first two echoes in presence of Ricker pulse are
estimated to make the results comparable.

In the second simulation, the estimation performance of
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Fig. 8. RRMSE of TDE versus the number of snapshots with SNR = 10 dB.
(a) RRMSEs of echo 1, with τ1 = 6.338 ns. (b) RRMSEs of echo 2, with
τ2 = 6.667 ns.

various methods versus SNR is tested with 500 Monte Carlo
trials. Relative root mean square error (RRMSE) [1] serves
as the evaluation metric of estimation accuracy. 100 snapshots
are observed. Although OMP, OGOMP, and OGSBI realize
efficient estimation of the first two echoes, their performance
is limited by the basis mismatch, even in the dense dictionary
matrix. Therefore, the RRMSEs of these three methods are
higher than those of the ANM methods. The performance
of the MMV-ANM method is poor at low SNR (≤ 10 dB)
because of the influence from the radar pulse. The proposed
method outperforms the competitors across all SNR levels.
Overall, the proposed approach yields the closest RRMSE to
the CRB, yet with lower computational complexity compared
with MMV-ANM. The final goal of TDE is to estimate the
thickness of layers in GPR detection. In Fig. 7, the thickness
estimation performance is evaluated, whose true value is H2 =
2.85 cm. OGSBI and OGOMP perform poorly with higher
RRMSEs than the gridless methods. Similarly, the proposed
method achieves the lowest RRMSE which highlights its
improved performance in thickness estimation.

The third simulation investigates the RRMSEs versus the
number of the snapshots with 500 Monte Carlo experiments.
The RRMSEs decline with the number of snapshots increasing,
indicating an enhanced estimation performance due to the
accumulation effect of multi-snapshots. In Fig. 8, the grid-
based methods are poorly performing due to the inevitable
basis mismatch. On the contrary, the gridless ANM methods
have a better performance. Similarly, the proposed method
consistently shows the closest performance to the CRB.

Moreover, the average running time of the algorithms is
also recorded for 500 runs using a computer with a CPU of
2.4 GHz and 32 GB RAM. By using the 12-point co-prime
sampling strategy, the average complexity of the proposed
method (0.717 s) is much lower than that of MMV-ANM
(1.102 s) and OGSBI (1.273 s).

VI. CONCLUSIONS

In this letter, we have developed a co-prime sampling based
gridless TDE method for GPR system, taking into account the
radar pulse and noise pattern. The enhanced SMV is generated
from the generalized eigenspace of data covariance and noise
pattern, promoting the detection performance of weak echoes.
The complexity of the proposed ANM method is reduced com-
pared with MMV-ANM. Simulations compare the performance
of algorithms in presence of Ricker pulse, Gaussian pulse,
and colored noise, where the proposed method outperforms its
competitors with lower computational complexity and higher
accuracy.
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