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Veterinary Research

Deltacoronavirus HKU11, HKU13, PDCoV 
(HKU15) and HKU17 spike pseudoviruses 
enter avian DF-1 cells via clathrin-mediated 
endocytosis in a Rab5-, Rab7- 
and pH-dependent manner
Qi‑Zhang Liang1†, Chun‑Miao Ji2,3†, Bin Wang2,4, Wei Chen1, Feng Cong3*, Yu Huang1* and Yao‑Wei Huang2,4,5*   

Abstract 

Porcine deltacoronavirus (PDCoV), also known as HKU15, is a swine enteropathogenic virus that is believed to have 
originated in birds. PDCoV belongs to the genus Deltacoronavirus (DCoV), the members of which have mostly been 
identified in diverse avian species. We recently reported that chicken or porcine aminopeptidase N (APN), the major 
cellular receptor for PDCoV, can mediate cellular entry via three pseudotyped retroviruses displaying spike proteins 
from three avian DCoVs (HKU11, HKU13, and HKU17). In the present work, to better understand how avian‑origin CoVs 
may be transmitted to pigs, we investigated the unknown DCoV entry pathway in avian cells. We show that clathrin‑
mediated endocytosis is involved in the entry of these DCoV pseudoviruses into chicken‑origin DF‑1 cells. Pseudovi‑
rus entry was suppressed by means of pharmacological inhibitors, dominant‑negative mutants, and siRNAs target‑
ing various cellular proteins and signalling molecules, suggesting that PDCoV and avian DCoV pseudovirus entry 
into DF‑1 cells depends on clathrin, dynamin‑2, cathepsins and a low‑pH environment but is independent of caveolae 
and macropinocytosis. Furthermore, we found that DCoV pseudovirus entry was linked to Rab5‑ and Rab7‑dependent 
pathways. This is the first report demonstrating that these DCoVs utilize clathrin‑mediated endocytosis pathways 
to enter avian‑origin cells, providing new insights into interspecies transmission of DCoVs.
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Introduction
Coronaviruses (CoVs) exhibit a broad host range encom-
passing avian and mammalian species [1]. Within the 
genus Deltacoronavirus (DCoV), viruses have been 
identified predominantly in avian hosts [2–4], although 
porcine DCoV (PDCoV/HKU15) recently emerged as a 
globally disseminated swine enteropathogenic virus [5–
7]. Notably, three instances of PDCoV infection in pedi-
atric patients in Haiti have been reported, underscoring 
the potential public health implications of this viral 
pathogen [8]. Molecular clock analysis revealed a recent 
interspecies transmission event of PDCoV from birds to 
mammals [3, 9], revealing a close genetic relationship 
between PDCoV and sparrow CoV HKU17, with over 
90% amino acid (aa) identity across their seven conserved 
replicase domains [3, 10]. Additionally, the PDCoV S 
protein shares 69.8% and 71.2% aa similarity and has a 
conserved structure with the corresponding domains in 
bulbul CoV HKU11 and munia CoV HKU13, respectively, 
suggesting a potential common evolutionary origin [2, 
11]. In support of this deduction, we recently reported 
that aminopeptidase N (APN), one of the major receptors 
for PDCoV [12, 13], also mediates the cellular entry of 
pseudotyped retroviruses carrying the spike glycoprotein 
from avian DCoVs HKU11, HKU13 and HKU17, provid-
ing important evidence of transmission from wild birds 
to poultry and from birds to mammals [11].

Enveloped virus internalization is known to occur 
via two primary pathways; some viruses deliver their 
genomes to the cytosol by directly fusing with the 
plasma membrane, whereas others utilize the endocytic 
machinery of their host [14]. The endocytic pathways 

exploited by CoVs to gain entry into host cells include 
clathrin-mediated endocytosis (CME), caveolin/raft-
mediated endocytosis (CavME), macropinocytosis, and 
non-clathrin/non-caveolin-mediated endocytosis, as 
well as lesser-known variations in these pathways. CME 
is the most highly conserved and well-understood endo-
cytic pathway employed by viruses. Clathrin is assem-
bled on the cytoplasmic face of the plasma membrane to 
form clathrin-coated pits (CCPs). The CCPs pinch off the 
cell membrane and mature into clathrin-coated vesicles 
(CCVs), which then transfer cargo into endosomes [15]. 
Severe acute respiratory syndrome (SARS)-CoV-2 [16], 
African swine fever virus (ASFV) [17], vesicular stomati-
tis virus (VSV) [18], fowl adenovirus serotype 4 [19] and 
hepatitis C virus (HCV) [20] enter certain cells via CME. 
Another major endocytotic pathway used by several 
enveloped viruses, including HCoV-229E [21], classical 
swine fever virus (CSFV) [22] and canine respiratory CoV 
(CRCoV) [23], uses the CavME for viral internalization. 
Ebola virus [24] and Nipah virus [25] enter cells via clath-
rin-independent macropinocytosis. In addition, some 
viruses can hijack multiple endocytic pathways to enter 
host cells; porcine epidemic diarrhea virus (PEDV) enters 

Table 1 Construction of mutant plasmids 

Primer Sequence (5’–3’)

g‑DNMII‑arm‑F tccactagtccagtgtggtggaattcgccaccatggggaaccgcggcatggaggagctgatcccgctggt

g‑DNMII‑arm‑R tcagcgggtttaaacgggccctctagattacttatcgtcgtcatccttgtaatcgtcgagcagggagggct

g‑DNMII‑mut‑F tgccgcagatcgccgtggtgggcgggcagagcgcggggaagagctccgtgctggagaacttcgt

g‑DNMII‑mut‑R gaagttctccagcacggagctcttccccgcgctctgcccgcccaccacggcgatctgcggcaggt

g‑Rab5‑WT‑F atggctaatcgtggagcaacaagacccaacgggccaaat

g‑Rab5‑WT‑R cttatcgtcgtcatccttgtaatcgttactacaacatt

g‑Rab7‑WT‑F atgacttctaggaagaaagtgttact

g‑Rab7‑WT‑R cttatcgtcgtcatccttgtaatcgcagctgcagctct

g‑Rab5‑DN‑F agtctgcagttggtaaaaacagtttggtgct

g‑Rab5‑DN‑R agcaccaaactgtttttaccaactgcagact

g‑Rab7‑DN‑F gtggggaagaactcactcatgaaccagt

g‑Rab7‑DN‑R tcatgagtgagttcttccccaccccagagt

g‑Rab5‑CA‑F atacagctgggctagagcggtat

g‑Rab5‑CA‑R ataccgctctagcccagctgtat

g‑Rab7‑CA‑F atacagcaggcctagaacgattccagtct

g‑Rab7‑CA‑R agactggaatcgttctaggcctgctgtat

Table 2 siRNA sequences 

Target gene Sequence (5’–3’)

CHC (gallus) CCG CCT ACC TGT TGT TAT T

Rab5 (gallus) GCA GAT GAC AAC AGT TTA T

Rab7 (gallus) CCA GTA TGT GAA CAA GAA A

si‑Nc (gallus) TCA ATC GGC TAT GCA TAA GT
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cells via CavME- and clathrin- and caveola-dependent 
pathways [26, 27], whereas transmissible gastroenteritis 
virus (TGEV) enters cells through clathrin- and caveolin-
mediated endocytosis [28].

A previous study reported that PDCoV enters host 
cells via endocytic pathways and uses endosomal pro-
tease cathepsin L (CTSL) and cathepsin B (CTSB) for 
human cell entry, although proteases from the extracel-
lular environment may also facilitate the cell entry pro-
cess [29]. Later, Fang et  al. reported that PDCoV enters 
porcine IPI-2I intestinal epithelial cells via macropino-
cytosis and clathrin-mediated endocytosis in a pH- and 
dynamin-dependent manner [30]. Li et al. demonstrated 
that PDCoV enters PK-15 cells through the CavME [31]. 
Interestingly, PDCoV does not require the participation 
of the endosomal system in ST cells [32]. However, the 
precise mechanisms for avian-origin cell entry by PDCoV 
and avian CoVs have never been studied, leaving a criti-
cal missing link in our understanding of bird-to-pig CoV 
transmission. Therefore, examining the cell entry of 
HKU11, HKU13, HKU17 and PDCoV in the same cell 
line will provide novel knowledge of the causes of PDCoV 
infections in pigs or other mammals.

In this study, we used avian-origin DF-1 cells as a cellu-
lar model to study the entry pathways of PDCoV and cer-
tain avian DCoVs, systematically perturbing the functions 
of key factors in various endocytic routes by using chemi-
cal inhibitors, siRNA silencing, and the overexpression 
of dominant negative (DN) mutant proteins. Our results 
indicate that CME is part of the DCoV infection process 
in DF-1 cells and that dynamin-2 and low pH are spe-
cifically needed. CTSL and CTSB inhibition decreased 

the entry of DCoV pseudovirions into DF-1 cells, and a 
reduction in Rab5 and Rab7 significantly inhibited entry 
by DCoV spike-pseudotyped retroviruses. Together, our 
data not only characterize avian DCoV entry and intra-
cellular trafficking for the first time but also provide 
valuable information that can be used to evaluate the 
emerging disease potential of avian CoVs, enabling pre-
vention or control of future outbreaks of DCoVs in mam-
mals, including humans.

Materials and methods
Cells and plasmids
Chicken embryonic fibroblasts (DF-1; ATCC CRL-12203) 
and human embryonic kidney cells (HEK293T; ATCC 
CRL-11268) were individually grown in Dulbecco’s modi-
fied Eagle’s medium (DMEM) supplemented with 10% 
fetal bovine serum (Biological Industries) and 1% (w/v) 
penicillin and streptomycin (Gibco, USA). All the cells 
were grown at 37 °C with 5%  CO2.

Dominant-negative (DN) mutants and constitutively 
active (CA) mutants of dynamin 2, Rab5 and Rab7 have 
been extensively reported in previous studies of envel-
oped viruses [33–35]. The genes DNM2 (Gene ID: 
107051521), Rab5 (Gene ID: 420649), and Rab7 (Gene 
ID: 416016) were amplified via PCR from DF-1 cel-
lular cDNAs and cloned and inserted into the vec-
tor pcDNA3.1 with a C-terminal Flag tag, generating 
Dynamin2-WT-Flag, Dynamin2-DN(K44A)-Flag, Rab5-
WT-Flag, Rab5-DN(S34N)-Flag, Rab5-CA(Q79L)-Flag, 
Rab7-WT-Flag, Rab7-DN (T22N)-Flag, and Rab7-CA 
(Q67L). All primers used for plasmid construction are 
shown in Table 1.

Figure 1 HKU11, HKU13 and HKU17 pseudovirus entry requires an acidic endosomal pH. DF‑1 cells were pretreated with various 
concentrations of inhibitors at 37 °C for 2 h, and fresh DMEM with 10% FBS was added for 24 h. The optimal concentration of inhibitors for DF‑1 
cell viability was determined using a CCK‑8 kit. DF‑1 cells were preincubated with the endosomal acidification inhibitors A  NH4Cl or B Baf‑A1 
at the indicated concentrations, after which the cells were infected with selected DCoV spike‑pseudotyped retroviruses. VSV‑G pseudovirions were 
used as a control. Luciferase activity was used as a measure of cell entry efficiency after 48 h; error bars indicate SEM (two‑tailed t test, *p < 0.05, 
***p < 0.001; n ≥ 3).
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Inhibitors and antibodies
Bafilomycin A1 (Baf-A1; Abcam, USA),  NH4Cl (Sigma‒
Aldrich, USA), amantadine (Abcam, USA), nystatin 
(Sigma‒Aldrich, USA), latrunculin B (Abcam, USA), 
dynasore (Merck, USA), E-64d (Sigma‒Aldrich, USA), 
the CTSL inhibitor Z-FY-CHO (Santa Cruz Biotechnol-
ogy, USA), the CTSB inhibitor CA-074 Me (Santa Cruz 
Biotechnology, USA), the anti-dynamin-2 antibody (Ab) 
(Abcam, USA), the anti-Rab5 Ab (Beyotime Biotechnol-
ogy, China), the anti-Rab7 Ab (Beyotime Biotechnology, 
China), the anti-HIV-1 p24 antibody (Abcam, USA), 
and the anti-CHC (clathrin heavy chain) monoclonal Ab 
(Thermo Fisher, USA) were used in this study.

The optimal concentrations of inhibitors for DF-1 cell 
viability were determined using a CCK-8 kit (Beyotime 
Biotechnology, China). DF-1 cells tolerated the follow-
ing concentrations of these inhibitors at 95–100% viabil-
ity: 2 mM for NH4Cl, 50 nM for Baf-A1, 50 μM for CPZ, 
25 μM for nystatin, 100 μM for latrunculin B, 100 μM for 
dynasore, 50  μM for E64D, 50  μM for Z-FY-CHO, and 
50 μM for CA-074. Therefore, we set these values as the 

maximum concentrations for each inhibitor and estab-
lished the corresponding concentration gradients.

Knockdown
The siRNAs were designed by RayBiotech (Guangzhou, 
China; Table 2). An siRNA with a control sequence unre-
lated to all known genes (siCtrl) was also designed and 
synthesized. DF-1 cells were transfected with the appro-
priate siRNA via the Lipofectamine RNAiMAX transfec-
tion agent (Invitrogen) according to the manufacturer’s 
instructions, and the knockdown efficiencies were quan-
tified by western blotting [36]. Subsequent experiments 
were performed 24 h after transfection.

Pseudovirus cell entry assay
Retroviruses pseudotyped with S proteins from HKU11, 
HKU13, or HKU17 were packaged in 293T cells as 
described previously [11]. Briefly, pHIV-Luc (pNL4.3-
HIV-Luc) and S expression plasmids (or empty vector as 
a control) were cotransfected into 293T cells using poly-
ethylenimine (PEI). The produced pseudovirus particles 
were harvested at 48 h post-transfection. To determine 

Figure 2 CME pathways involved in HKU11, HKU13 and HKU17 pseudovirus entry into DF-1 cells. DF‑1 cells were pretreated 
with the indicated concentrations of A CPZ (CME inhibitor), B latrunculin B (macropinocytosis inhibitor), or C nystatin (CavME inhibitor) for 1 h 
and infected with retroviruses pseudotyped with selected DCoV spike proteins. The internalization of VSV‑G pseudovirions via CME was used 
as a control. D siCHC‑ or siCtrl‑transfected cells were infected with selected pseudoviruses. At 36 hpi, the cells were lysed to determine luciferase 
activity. E The expressed CHC or HIV p24 proteins were analysed by western blot; error bars indicate SEM (two‑tailed t test, *p < 0.05, ***p < 0.001; 
n ≥ 3).
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the effects of the inhibitors on pseudoviral entry, DF-1 
cells were infected with pseudoviruses pretreated with 
the inhibitors at 37 °C for 2 h. All the reporter assays 
were repeated at least three times.

Western blot assays
For western blotting, the cells were lysed in 125  µL of 
CelLytic M lysis buffer (Sigma) per  106 cells. The whole-
cell lysates (WCLs) were used for SDS‒PAGE directly. 
The samples were resolved by SDS‒PAGE and transferred 
onto a polyvinylidene difluoride (PVDF) membrane that 
was subsequently blocked with Tris-buffered saline (TBS) 
containing 3% bovine serum albumin (BSA) overnight at 
4 °C. Proteins were detected using a primary Ab followed 
by incubation with a horseradish peroxidase (HRP)-con-
jugated secondary Ab (Thermo Fisher Scientific).

Statistical analyses
The data were analysed with GraphPad Prism 9 soft-
ware, and two-tailed t tests were performed to deter-
mine significance. The data are expressed as the 
means ± standard errors of the means (SEM) of three 

independent experiments. P < 0.05 were considered sta-
tistically significant.

Results
HKU11, HKU13, HKU17 and PDCoV pseudovirus entry 
is dependent on low pH
A number of viruses require exposure to an acidified 
environment after internalization via endocytosis for 
successful penetration and infection [37–39]. To deter-
mine the effects of pH on HKU11, HKU13, HKU17 and 
PDCoV pseudovirus infectivity, DF-1 cells were treated 
with the lysosomotropic agents  NH4Cl and bafilomycin 
A1 (Baf-A1), and their effects on virus entry were evalu-
ated. The subtoxic dose of these endosome acidification 
inhibitors was confirmed by a cell viability assay to be 2 
mM  NH4Cl or 50 nM Baf-A1. As the basic mechanism 
of pH-dependent endocytosis of VSV has been well doc-
umented, VSV-infected DF-1 cells were used as a posi-
tive control [40]. Consistent with previous reports, 2 mM 
 NH4Cl or 50 nM Baf-A1 decreased the entry of VSV-G 
pseudovirions by more than 95% compared with that of 
untreated controls [40]. A greater than 90% reduction 

Figure 3 HKU11, HKU13 and HKU17 pseudovirus entry depends on dynamin-2. A DF‑1 cells were pretreated with dynasore for 1 h 
at the indicated concentrations before pseudovirus infection, and the amount of virus endocytosed was measured by measuring luciferase activity 
at 48 hpi. B DF‑1 cells were transfected with Flag‑tagged WT dynamin‑2 (DynII‑WT) or DN mutant dynamin‑2 (DynII‑DN). At 24 h post‑transfection, 
the cells were infected with selected pseudoviruses. The cell entry efficiency was measured by measuring the luciferase activity after 48 h. C The 
expression of these proteins as well as p24 was analysed via western blotting with an anti‑Flag antibody; error bars indicate the SEM (two‑tailed t 
test, *p < 0.05, ***p < 0.001; n ≥ 3).
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in transduction by DCoV pseudovirions was also shown 
when DF-1 cells were incubated with either  NH4Cl or 
Baf-A1 (Figures  1A  and B), indicating that the entry of 
HKU11, HKU13 and HKU17 pseudovirions into DF-1 
cells is pH dependent.

Clathrin-mediated endocytosis is involved in HKU11, 
HKU13, HKU17 and PDCoV pseudovirus entry
To better understand the pathway used by these DCoV 
pseudoviruses to enter DF-1 cells, we employed inhibi-
tors of different endocytic mechanisms: chlorpromazine 
(CPZ), an inhibitor of clathrin-coated pit (CCP) forma-
tion [21]; nystatin, a well-known CavME inhibitor [30]; 
and latrunculin B, which inhibits macropinocytosis by 
disrupting actin polymerization [41]. As VSV entry is 
mediated by CME, the effectiveness of these inhibitors 
was first validated in VSV-infected cells. As expected, 
VSV-G entry was inhibited by CPZ but not by latruncu-
lin B or nystatin (Figures 2A‒C). As shown in Figure 2A, 
CPZ, but not latrunculin B or nystatin, significantly 
inhibited avian DCoV pseudovirus entry, as evidenced by 
a dose-dependent reduction in luciferase activity.

Clathrin forms a triskelion shape composed of a clath-
rin heavy chain (CHC) and a light chain (CLC), and the 
former is known as a key component for the regulation 
of the formation and disassembly of the clathrin lat-
tice [15]. To further evaluate the role of clathrin in avian 
DCoV pseudovirus internalization, CHC-specific siRNA 

was used to knockdown clathrin expression in DF-1 cells, 
after which the cells were infected with HKU11, HKU13 
or HKU17 pseudovirions. A significant decrease in the 
luciferase activity of these avian DCoVs was observed in 
the siCHC-knockdown cells compared with those trans-
fected with control siRNA (Figure  2D). The knockdown 
efficiency, reflected by the CHC expression level, and 
pseudovirus entry, indicated by the expression of the 
HIV capsid protein p24 [42], were validated by western 
blot analysis (Figure  2E). Taken together, these results 
strongly suggest that efficient HKU11, HKU13, HKU17 
and PDCoV pseudovirus entry into DF-1 cells can occur 
via CME.

HKU11, HKU13, HKU17 and PDCoV pseudovirus entry 
is sensitive to dynamin-2 inhibition
Dynamin is a GTPase required for the cellular membrane 
to pinch off endosomes from the plasma membrane and 
is necessary for phagocytosis, CME and the CavME but 
is not required for macropinocytosis [43]. To determine 
whether ubiquitous dynamin-2 is involved in HKU11, 
HKU13, HKU17 and PDCoV pseudovirus entry, we first 
treated cells with the dynamin-2 inhibitor dynasore. As 
shown in Figure  3A, dynasore significantly inhibited 
pseudovirus entry, as evidenced by the notable reduction 
in luciferase activity with increasing dynasore concentra-
tions up to 100 µM (Figure 3A).

The expression of a dominant-negative (DN) mutant of 
dynamin 2 (K44A) is known to prevent normal clathrin-
mediated endocytosis [33]. Next, plasmids expressing 
wild-type (WT) and DN (K44A) dynamin-2 were trans-
fected into DF-1 cells, which were subsequently infected 
with HKU11, HKU13, HKU17 and PDCoV pseudovi-
ruses, with an empty pcDNA3.1 vector transfected as a 
control. DF-1 cells infected with VSV or PDCoV were 
used as positive controls. As shown in Figure  3B, com-
pared with the WT controls, DN (K44A) expression 
significantly inhibited the entry of avian DCoV pseudovi-
ruses into cells compared with that in the control group. 
Consistently, western blot analysis revealed that the 
expression of HIV p24 in pseudoviruses was significantly 
inhibited by the expression of DN (K44A) (Figure  3C). 
These results indicate that HKU11, HKU13, HKU17 and 
PDCoV pseudovirus entry into DF-1 cells is dependent 
on dynamin-2.

Effects of cathepsin inhibitors on HKU11, HKU13, HKU17 
and PDCoV pseudovirus entry
Concomitant with endocytosis, some viruses require 
CTSL- and/or CTSB-mediated cleavage of viral surface 
glycoproteins at various stages: before, during, or after 
fusion of the endosome with lysosomes to achieve infec-
tivity [44]. To evaluate whether HKU11, HKU13, HKU17 

Figure 4 Role of cathepsin proteases in HKU11, HKU13 
and HKU17 pseudovirus entry into DF-1 cells. DF‑1 cells 
were pretreated with the broad‑spectrum cathepsin inhibitor 
E64D, CTSL‑specific inhibitor (Z‑FY‑CHO), CTSB‑specific inhibitor 
(CA‑074), or DMSO (as a negative control) and then transduced 
with selected pseudovirions. In the same drug treatment, there 
are two adjacent bars of the same color; the bar on the left 
is treated with 5 μM, and the bar on the right is treated with 50 μM. 
Pseudoviral transduction was measured by luciferase activity at 48 h 
post‑inoculation, with VSV‑G pseudovirus used as a negative control; 
error bars indicate SEM (n ≥ 3).
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Figure 5 Rab5 and Rab7 are necessary for HKU11, HKU13 and HKU17 pseudovirus infection. A, B Cells transfected with plasmids expressing 
Flag‑tagged Rab5 and Rab7 (WT or DN constructs) were then infected with select avian DCoV pseudoviruses. C, D The expression of these proteins 
as well as p24 was analysed via western blotting with anti‑Flag antibodies. E siRab5‑ or F siRab7‑transfected cells were infected with selected 
pseudoviruses, and the cell entry efficiency was determined by luciferase activity measurement after 36 hpi. G, H The knockdown efficiency 
of the siRNAs was measured by western blotting; error bars indicate SEM (two‑tailed t test, *p < 0.05, ***p < 0.001; n ≥ 3).
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and PDCoV pseudovirus entry is also dependent on cath-
epsins, we treated DF-1 cells with increasing concentra-
tions of irreversible CTSL and the CTSB inhibitor E-64d, 
the CTSL inhibitor Z-FY-CHO, or the CTSB inhibitor 
CA-074. VSV-G pseudovirions were used as a negative 
control since virus entry mediated by VSV-G does not 
require protease activation. E64D treatment of DF-1 cells 
reduced the entry of avian DCoV pseudovirions by more 
than 90%, indicating that at least one cathepsin or cal-
pain might be required for entry (Figure 4). While CTSL 
inhibitor treatment did not markedly affect HKU11 or 
HKU17 entry, CTSB inhibition decreased the entry of 
these avian DCoV pseudovirions into DF-1 cells by more 
than 90% at a CA-074 concentration of 50 µM (Figure 4), 
suggesting that cathepsin and CTSB, in particular, may 
be essential for priming HKU11, HKU13, HKU17 and 
PDCoV S proteins for entry into DF-1 cells.

Rab5 and Rab7 are required for HKU11, HKU13, HKU17 
and PDCoV pseudovirus entry
Rab GTPases are a highly conserved family of proteins 
involved in early endosome formation and recycling, 
and Rab5 and Rab7 are known to be involved in vesicu-
lar trafficking to the early and late endosomal compart-
ments, respectively (17, 22). We employed DN mutants 
of Rab5 (S34N) and Rab7 (T22N), which are known to 

block endocytosis at specific points, to probe the role 
of endosomal transport in the pseudoviral entry pro-
cess [30]. In contrast, by overexpressing constitutively 
active (CA) mutants, the necessity of trafficking to 
early and late endosomes on avian DCoV pseudovirus 
entry could be confirmed [30, 34, 35]. DF-1 cells were 
first transfected with plasmids expressing the WT, 
DN (S34N) or CA (Q79L) forms of Rab5 as well as the 
WT, DN (T22N) or CA (Q67L) forms of Rab7. At 24 h 
post-transfection, the cells were infected with HKU11, 
HKU13, HKU17 and PDCoV pseudovirions. To ensure 
the functionality of the Rab constructs, we examined 
their effects on VSV infection. Consistent with previ-
ous reports, Rab5-DN, but not Rab7-DN, inhibited 
VSV infection (Figure 5A, B). HKU11, HKU13, HKU17 
and PDCoV S protein pseudovirus entry was signifi-
cantly inhibited in cells expressing DN Rab5/Rab7 but 
not in those expressing CA Rab5/Rab7 (Figures  5A, 
B). Accordingly, western blot analysis revealed that the 
expression of HIV p24 in pseudoviruses was signifi-
cantly suppressed by DN Rab5/Rab7 (Figures 5C, D).

To confirm these findings, Rab5 or Rab7 was knocked 
down by transfection of DF-1 cells with siRab5 or 
siRab7, followed by pseudovirus infection. As shown in 
Figures  5G  and H, compared with those in the siCtrl-
transfected cells, both Rab5 and Rab7 expression were 

Figure 6 Schematic illustrating HKU11, HKU13 and HKU17 pseudovirus entry into DF1 cells. DCoV attaches to the cell surface 
and is internalized via clathrin‑mediated endocytosis with the help of dynamin‑2. The internalized virus is taken up into early endosomes 
in a Rab5a‑dependent process. Through endosome maturation, virus‑containing endosomes acquire Rab7 and become luminal components 
of Rab7‑containing late endosomes. A low pH and cathepsin L/B are required for avian DCoV internalization and the subsequent transport steps 
to release viral genomic RNA (gRNA) into the cytoplasm.
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successfully knocked down. To validate the effects of Rab 
knockdown, we first examined the effect of Rab knockdown 
on VSV infection in DF-1 cells. As shown in Figures 5E and 
G, Rab5 knockdown reduced VSV-G pseudovirus entry, 
whereas Rab7 knockdown had no effect on VSV infec-
tion (Figures 5F and H). Measurement of luciferase activ-
ity revealed that knockdown of Rab5 or Rab7 significantly 
blocked HKU11, HKU13, HKU17 and PDCoV pseudovirus 
internalization (Figures 5E and F). Accordingly, the expres-
sion of HIV p24 in these pseudoviruses was significantly 
suppressed by siRab5 or siRab7 (Figure 5G, H). The above 
results demonstrate inefficient virus entry when the endo-
some transport pathways are disabled by the removal of 
Rab5 or Rab7.

Discussion
The emergence of new and highly pathogenic CoVs, exem-
plified by SARS-CoV-2, has clearly outlined the threat 
posed by animal CoVs to human public health [45]. DCoVs 
have been identified in 30 families and across 108 species 
of wild birds [46]. Known avian DCoVs include seven spe-
cies in three subgenera with extensive phylogenetic diver-
sity and complex host ecology. Although first described 
in 2009 [2, 3], their primary receptors remained unknown 
until our recent report showing the importance of chicken 
or porcine APN as receptors for the avian DCoVs HKU11, 
HKU13 and HKU17, as in the case of PDCoV [11–13].

As we tracked the first major part of the DCoV life cycle, 
the next question we addressed was the cellular receptor 
related to the entry pathway in avian cells. Most enveloped 
viruses are internalized via two primary pathways: some 
deliver their genomes to the cytosol by direct fusion with 
the plasma membrane, whereas others utilize the endocytic 
machinery of their host [14, 44]. Since no avian DCoVs 
have been isolated in cell culture thus far, the present study 
characterized the cellular entry of pseudotyped retrovi-
ruses displaying spike proteins from avian DCoVs HKU11, 
HKU13 and HKU17 as well as PDCoV in DF-1 cells. We 
found for the first time that these pseudoviruses utilize 
CME pathways to enter avian-origin DF-1 cells in a pro-
cess dependent on dynamin-2, cathepsins, Rab5, Rab7 and 
a low-pH environment. A proposed model for this entry 
process is shown in Figure 6.

A previous study reported that PDCoV enters swine 
cells via multiple distinct endocytic pathways [29–32]. 
The present work is the first report of the PDCoV entry 
pathway in avian-origin DF-1 cells. Unlike entry into 
certain porcine cells, PDCoV entry into DF-1 cells 
is strongly dependent on CME, similar to the path-
way used by DCoVs HKU11, HKU13 and HKU17. Rab 
GTPases are crucial regulators of endosomal trans-
port and serve as key orchestrators of various mem-
brane transport mechanisms in eukaryotic cells [47]. 

Specifically, Rab5 and Rab7 GTPases play essential 
roles in directing cargo to early and late endosomes, 
facilitating the cellular uptake of various substances 
[17]. Previous studies have shown that the transport 
of PDCoV into porcine-origin IPI-2I cells requires the 
involvement of the Rab5 and Rab7 GTPases [30]. The 
current investigation assessed the impact of Rab5 and 
Rab7 on DCoV entry into DF-1 cells by overexpress-
ing DN mutants and knocking down the expression of 
Rab5 and Rab7 using siRNA. These findings suggest 
that Rab5 and Rab7 play a role in the entry of HKU11, 
HKU13, HKU17, and PDCoV into avian-origin DF-1 
cells. The fact that all of these DCoVs also use APN as 
their primary cellular receptor may explain the similar 
cellular tropism that we reported in a previous study 
[11] and indicate a common molecular basis for inter-
species transmission of DCoVs.

Notably, treatment with a CTSL-specific inhibitor 
did not affect the entry of HKU11 or HKU17, whereas 
PDCoV and HKU13 were both more sensitive. The 
roles of CTSL and CTSB in the entry of other viruses, 
such as SARS-CoV, MERS-CoV and SARS-CoV-2, have 
been extensively studied [48, 49]. Furthermore, PDCoV 
infection can increase CTSL and CTSB expression 
in  vivo and in  vitro, and the enzyme activity of CTSB 
increases following PDCoV infection [29]. Danilo-
ski et  al. conducted a genome-wide CRISPR screen to 
determine the host factors involved in SARS-CoV-2 
infection, including CTSL, a gene with established roles 
in viral entry. Owing to its ubiquitous expression, CTSL 
is considered a promising drug target in the context of 
different viral and lysosome-related diseases. On the 
basis of the adaptability of HKU13 to CTSL, whether a 
similar scenario occurs in HKU13 and whether certain 
avian DCoVs could become the next transmission risk 
need to be further studied and evaluated.
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