
HAL Id: hal-04896499
https://hal.science/hal-04896499v1

Submitted on 20 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scoring of swine lung images: a comparison between a
computer vision system and human evaluators

Robert Valeris-Chacin, Beatriz Garcia-Morante, Marina Sibila, Albert
Canturri, Isaac Ballarà Rodriguez, Ignacio Bernal Orozco, Ramon Jordà

Casadevall, Pedro Muñoz, Maria Pieters

To cite this version:
Robert Valeris-Chacin, Beatriz Garcia-Morante, Marina Sibila, Albert Canturri, Isaac Ballarà Ro-
driguez, et al.. Scoring of swine lung images: a comparison between a computer vision system and
human evaluators. Veterinary Research, 2025, 56 (1), pp.9. �10.1186/s13567-024-01432-5�. �hal-
04896499�

https://hal.science/hal-04896499v1
https://hal.archives-ouvertes.fr


Valeris‑Chacin et al. Veterinary Research            (2025) 56:9  
https://doi.org/10.1186/s13567-024-01432-5

RESEARCH ARTICLE Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Veterinary Research

Scoring of swine lung images: a comparison 
between a computer vision system and human 
evaluators
Robert Valeris‑Chacin1, Beatriz Garcia‑Morante2,3,4, Marina Sibila2,3,4, Albert Canturri5,6, Isaac Ballarà Rodriguez7, 
Ignacio Bernal Orozco7, Ramon Jordà Casadevall7, Pedro Muñoz7 and Maria Pieters5,6,8*    

Abstract 

Cranioventral pulmonary consolidation (CVPC) is a common lesion observed in the lungs of slaughtered pigs, often 
associated with Mycoplasma (M.) hyopneumoniae infection. There is a need to implement simple, fast, and valid CVPC 
scoring methods. Therefore, this study aimed to compare  CVPC scores provided by a computer vision system (CVS; AI 
DIAGNOS) from lung images obtained at slaughter, with  scores assigned by human evaluators. In addition,  intra- 
and inter-evaluator variability were assessed and compared to  intra-CVS variability. A total of 1050 dorsal view images 
of swine lungs were analyzed. Total lung lesion score, lesion score per lung lobe, and percentage of affected lung 
area were employed as outcomes for the evaluation. The CVS showed moderate accuracy (62–71%) in discriminat‑
ing between non-lesioned and lesioned lung lobes in all but the diaphragmatic lobes. A low multiclass classification 
accuracy at the lung lobe level (24–36%) was observed. A moderate to high inter-evaluator variability was noticed 
depending on the lung lobe, as shown by the intraclass correlation coefficient (ICC: 0.29–0.6). The intra-evaluator vari‑
ability was low and similar among the different outcomes and lung lobes, although the observed ICC slightly differed 
among evaluators. In contrast, the CVS scoring was identical per lobe per image. The results of this study suggest 
that the CVS AI DIAGNOS could be used as an alternative to the manual scoring of CVPC during slaughter inspections 
due to its accuracy in binary classification and its perfect consistency in the scoring.
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Introduction
Respiratory diseases are one of the most important health 
issues associated with growing/finishing pigs, as they 
affect animal wellbeing and increase production costs 
[1, 2]. Moreover, respiratory diseases of bacterial origin 
remain one of the main reasons for the prescription of 
antibiotic treatments in pigs [3, 4]. One type of respira-
tory disorders, pneumonia,  can be observed in pigs at 
the slaughterhouse, with a reported prevalence ranging 
from 8.4% to 73.1%, depending on various factors, such 
as country, region, production system and vaccination 
status against respiratory pathogens, among others [2, 
5–9].

Cranioventral pulmonary consolidation (CVPC; [6]) 
is a common macroscopic morphologic pneumonic pat-
tern observed in swine post mortem and is often associ-
ated with Mycoplasma (M.) hyopneumoniae infection [2, 
5, 6, 8, 9]. Infections with M. hyopneumoniae are highly 
prevalent worldwide and predispose pigs to other res-
piratory pathogens, leading to chronic or polymicrobial 
diseases, namely enzootic pneumonia or the porcine res-
piratory disease complex [10]. The degree of CVPC asso-
ciated with M. hyopneumoniae infection can be scored 
and recorded at the slaughterhouse to estimate disease 
prevalence and extension, as well as the impact of imple-
mented prevention and control strategies [11]. Several 
scoring methods based on direct macroscopic observa-
tion of lung tissue have been developed to assess CVPC 
in farmed pigs (reviewed in [12, 13]). Current CVPC 
scoring methods are considered subjective and not fully 
reliable, as lung lesion evaluation may in some cases vary 
within and between evaluators [14–18]. In addition, lung 
lesion scoring can be a time-consuming and expensive 
activity, requiring the physical location of the evaluator at 
the slaughterhouse, at the specific time when a pig batch 
is processed. Thus, the development and implementa-
tion of simple, fast, valid, and easily standardisable lung 
lesions scoring approaches for reliable and consistent 
data output are highly desirable.

Recent progress in the field of artificial intelligence 
(AI) has allowed the development of high-performance 
algorithms introduced to the veterinary image analysis 
domain [19–25]. In pigs, computer vision systems (CVS) 
based on machine learning algorithms have been shown 
to identify and score pneumonia and pleurisy from digital 
images captured at slaughterhouses with high accuracy 
when compared with human operators [26–28]. How-
ever, there is a lack of information about common situ-
ations during the deployment of any CSV using CVPC 
scoring, such as comparing the CVS scoring with that of 
evaluators not involved in the system training and in the 
context of moderate inter-evaluator variability. Therefore, 
this study aimed to compare the CVPC scores on swine 

lung images assigned by a prototype CVS with the scores 
assigned by human evaluators. Additionally, the variabil-
ity in the CVPC scoring between and within the evalua-
tors, and within the CVS, was investigated.

Materials and methods
Computer vision system
A CVS developed by HIPRA Laboratories  (Girona, 
Spain), named AI DIAGNOS, was used to recognize and 
score CVPC on digital images captured from pig  lungs 
at slaughter [29]. The CVS is an Amazon SageMaker™ 
that works on two core processes; detection and classi-
fication. The general processes of detection and classifi-
cation are shown in Figure 1. In brief, a lung image first 
passes through a filter (focus detector) with the aim of 
differentiating the lung from the background. Subse-
quently, the processed image is passed through an area 
of interest detector that identifies each of the lung lobes 
visible from a dorsal view (i.e., the accessory lobe is not 
evaluated). A new filter is then applied to each lung lobe 
to check the position of the lung within the image and to 
correct possible detection errors. Thereafter, each lung 
lobe is cropped and saved separately, maintaining the 
relationship with the initial lung image. Finally, each lung 
lobe is passed through a final filter (Convolutional Neural 
Network Classifier, RestNet18), which is trained to pre-
dict the lesion score of each lung lobe based on the lung 
lesion scoring method referred to as Madec and Kobisch  
[30], which is commonly employed to evaluate CVPC.

HIPRA Laboratories  conducted the training of the 
CVS with 13  864 images scored by a total of six evalu-
ators. Two from North America  and four from Europe. 
Evaluators were eligible to participate in the CVS train-
ing based on demonstrated expertise in the scoring of 
swine lung lesions associated with M. hyopneumoniae 
infection (> 5  years evaluating lung lesions associated 
with natural and/or experimental M. hyopneumoniae 
infection). An accuracy of 85% was reported for this CVS 
during training [29]. After the training was concluded, 
new images were collected and the evaluation of the 
CVS was performed (reported in this study). Five evalu-
ators (A-E)  participated in the evaluation phase. Four 
out of these five evaluators also participated in the train-
ing phase, in total scoring 35% of the lung images of the 
training set.

Source of lung images and allocation for scoring
A total of 1050 dorsal view images of swine lungs were 
randomly selected from a larger pool taken at a slaughter-
house in Spain. The images were collected in an area duly 
separated from the slaughter line (right after the separa-
tion of lungs from the heart) and obtaining approval from 
the slaughterhouse administration. Lungs were placed 
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on a metallic table and one dorsal image per lung was 
taken with a Samsung smartphone (model SM-A21F) 
with the following settings: RGB color space, focal length 
of 4.6  mm, center-weighted average metering mode, F 
number of f/2, and exposure time of 1/50. Images were 
obtained from January to June of 2021, and were ran-
domly assigned to the following analyses (Figure 2):

(1)	 CVS evaluation: 1000 images were used to evalu-
ate the accuracy of the CVS. The images were ran-
domly assigned to five evaluators (A-E), each hav-
ing a set of 200. The scores given by the evaluators 
were used as the true score. The scores produced by 
the CVS were then compared to those of the evalu-
ators. This sample size would allow the estima-
tion of a misclassification error of 26.1% (or lower) 
assuming an overall accuracy of 70%, power of 80%, 
and 5% of significance level (power oneproportion 
function in Stata 17 [31]).

(2)	 Inter-evaluator variability: A set of 50 new images 
was assigned to all evaluators to estimate the inter-
evaluator variability. This sample size would allow 
the detection of an intraclass correlation (ICC) of 
0.7 (or greater), considering an acceptable ICC of 
0.5 (the null hypothesis), a significance level of 0.05, 
and a power of 80% [32].

(3)	 Intra-evaluator and intra-CVS variability: Three 
sets of 30 images, randomly selected from the sets 
used for the CVS evaluation (n = 1000), were used 
to measure the variability within three evaluators 
(one set per evaluator). Each image was scored five 
times by the corresponding evaluator. Addition-
ally, another 30-image set was randomly selected to 
assess the variability within the CVS. The random 
selection of the 30-image sets was conducted inde-
pendently from each other. This sample size would 
allow the detection of an ICC of 0.95 (or greater), 
considering an acceptable ICC of 0.9 (the null 
hypothesis), a significance level of 0.05, and a power 
of 80% [32].

In total, two evaluators scored 250 lung images, 
whereas three evaluators scored 370. One thousand one 
hundred and twenty images were scored by the CVS. 
Images were de-identified and their order was randomly 
shuffled prior to scoring by the evaluators. Access to 
images was individually assigned to each evaluator in 
the form of a Google sheet containing hyperlinks to each 
de-identified image, plus labelled columns (one per lung 
lobe) for adding the score.

Lung lesion scoring by evaluators
The evaluators applied the same lung lesion scor-
ing method as the CVS   (Madec and Kobisch) [30] to 
assign scores to individual lobes in the dorsal view of 
lung images. The method divides each lobe into quar-
ters and scores, each affected quarter with one point. 
Thus, the minimum score is zero (lung lobe shows no 
lesion), and the maximum is four (at least 75% of lung 
lobe is affected). The accessory lung lobe was not observ-
able in the images, and therefore, was not evaluated. 

Figure 1  Graphic representation of the image analysis 
process comprising the computer vision system. The squares 
indicate the area of lung detection by the software,  different colors 
identifying each lobe. The predicted score of each lobe is shown 
in a circle with the same color as the corresponding lung lobe.
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Consequently, the maximum total lung lesion score could 
be 24 instead of 28. Moreover, in the case that any lung 
lobe could not be scored due to incomplete visualization 
or lack of a good quality image, the written abbreviation 
for not applicable “NA” was recorded. Evaluators were 
masked to the scoring performed by the CVS and other 
evaluators.

In addition, the percentage of affected lung area (%LA) 
was calculated by multiplying the Madec and Kobisch 
score per lung lobe by a weight reflecting the area of that 
lobe in the total lung according to Christensen, Sorensen, 
and Mousing [33], adjusting for the accessory lung lobe, 
which was not evaluated. Hence, the weights were as 
follows: 0.06 for left apical lung lobe, 0.11 for right api-
cal lung lobe, 0.07 for left cardiac lung lobe, 0.12 for right 
cardiac lung lobe, 0.29 for left diaphragmatic lung lobe, 
and 0.35 for right diaphragmatic lung lobe. The final value 
was multiplied by 25 to transform it to a percentage.

Lung lesion scoring by the computer vision system
All lung images selected for the CVS evaluation were 
uploaded to the system. Lung images were uploaded in 
batches of 250 to guarantee the proper analysis by all the 
components of the CVS. Image batches were independ-
ent of the assignment to evaluators.

Statistical analysis
The preprocessing of data and the building of the mod-
els to evaluate the different types of variability were 

performed in Stata 17 [31]. The statistical significance 
level was set a priori at 0.05.

The evaluation of the CVS for lung scoring was under-
taken with three different metrics per lung lobe: bal-
anced accuracy (the average of the sensitivity for each 
class) [34], chance-adjusted balanced accuracy (e.g., a 
random classifier will have a score of 0) [34], and macro 
ROC area under curve (AUC) for multiclass classification 
(summary of the predictive power of the CVS averag-
ing the class-specific AUC values) [35] in Python 3.8.13 
and scikit-learn 1.0.2. The one-versus-rest approach was 
selected for the calculation of the macro ROC AUC (i.e., 
computing the ROC AUC for each class against the rest) 
[35]. The scores provided by the evaluators were consid-
ered the true status. Lung scores from the evaluators and 
CVS were also dichotomized (0 = score of 0; 1 = score > 0) 
per lung lobe and overall. The dichotomized scores were 
utilized in the calculation of balanced accuracy, adjusted 
balanced accuracy, and ROC AUC. The correlation coef-
ficient between the %LA estimated from the evaluator 
scoring and that from the CVS, was calculated.

In order to evaluate the inter-evaluator variability, both 
binary and multiclass accuracies were calculated between 
each pair of evaluators. The inter-evaluator variability 
was also assessed by calculating the intra-class correla-
tion (ICC) in ANOVA models with two random effects 
[36, 37]: lung image identification (ID) and evaluator ID. 
Separate ICC models were built for the lung lesion scores 
(total and per lung lobe) and %LA.

Figure 2  Graphic representation of the entire dataset used for computer vision system (CVS) evaluation (dark blue), inter-evaluator 
variability (green), and intra-evaluator and intra-CVS variability (light blue). A total of 1000 images were used to evaluate the CVS accuracy. 
A set of 50 extra images served to estimate the inter-evaluator variability. Four sets of 30 images used for CVS evaluation were randomly selected 
to assess the intra-evaluator and intra-CVS variability (three sets and one set, respectively). Each set only required the duplication of the original 
images four times, adding 120 more images per set. In total, the images in those sets were evaluated five times to assess the intra-evaluator 
and intra-CVS variability.
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The same outcomes described above were utilized in 
the estimation of the intra-evaluator variability via the 
ICC from two-way mixed-effects ANOVA models [36, 
37], in which lung image ID and order were considered 
random and fixed effects, respectively. Separate mod-
els were created for each of the three randomly selected 
evaluators. As for the intra-CVS variability, ICC values 
were calculated from one-way random-effects ANOVA 
models [36, 37] built for  lung lesion scores (total and per 
lung lobe) and %LA with lung image ID as the random 
effect.

Results
Four percent of the lung lobe scorings (238/6000) per-
formed by the evaluators were missing due to incomplete 
visualization or blurry image. The proportion of missing-
ness was not associated to any specific evaluator (Fish-
er’s exact test, p-value = 0.159), nor with the lung score 
estimated by the CVS (Fisher’s exact test, p-value = 0.2; 

Additional file  1). Missingness was the highest in the 
right apical lobe (9.1%) and the lowest in the right dia-
phragmatic lobe (1%).

The distribution of the lung scores from the evaluators 
and CVS per lung lobe is shown in Figure 3. Except for 
the right cardiac lobe, the lung scorings performed by 
the CVS were, on average, significantly lower than those 
from the evaluators (paired t tests, p-value < 0.005).

Computer Vision System evaluation
Table  1 summarizes the evaluation of the CVS, which 
showed low balanced accuracy (range = 0.24–0.36) in the 
multiclass classification setting (see Additional files 1–3). 
Conversely, in the binary classification setting, the CVS 
achieved moderate balanced accuracy (range = 0.62–
0.71) in all lung lobes except for the diaphragmatic left 
and right (see Additional files 4–6). The distribution of 
the total lung lesion scores from the evaluators and those 
from the CVS is shown in Figure 4 and the distribution 
of their differences (25% percentile = −2, median = 0, 

Figure 3  Distribution of lung lesion scores in lung lobes. Histograms of the scores by the evaluators and the computer vision system 
(CVS) are color-coded and overlaid. Data for individual lung lobes are shown in different panels: A left apical; B right apical; C left cardiac; D right 
cardiac; E left diaphragmatic; F right diaphragmatic.
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75% percentile = 1) is displayed in Figure  5. On aver-
age, the total lung lesion scores obtained from the CVS 
were significantly lower than the scores from the evalu-
ators (mean difference = −0.6; 95% CI  −0.76, −0.44; 
paired t test, p-value < 0.0001). A moderate correlation 
coefficient was observed between the total lung lesion 
scores from the evaluators and those from the CVS (cor-
relation coefficient = 0.5; percentile boostrapped 95% CI 
0.44, 0.55). The distribution of the %LA estimated from 
the evaluator scoring and that from the CVS is shown in 
Figure 6 and the distribution of their difference (25% per-
centile = −4.25%, median = 0%, 75% percentile = 2.75%) 

is displayed in Figure 7. The same general trend as with 
the lung lesion scores per lung lobe and total can be 
observed, i.e., the mean %LA derived from the CVS scor-
ing is significantly lower than that from the evaluators 
(mean difference = -1.8%; 95% CI −2.3%, −1.3%; paired 
t-test, p-value < 0.0001). The corresponding correlation 
coefficient was 0.43 (percentile bootstrapped 95% CI 
0.36, 0.5). A moderate accuracy (ROC = 0.63, balanced 
accuracy = 0.63, adjusted balanced accuracy = 0.27) was 
also observed when the total lung lesion scores were 
dichotomized (lungs with or without lesions).

Table 1  Evaluation of the lung lesion scoring by a computer vision system. 

The lung lesion scoring by human evaluators was considered the true status.

LA: left apical, RA: right apical, LC: left cardiac, RC: right cardiac, LD: left diaphragmatic, RD: right diaphragmatic, ROC AUC: Receiver Operating Characteristic Area 
Under the Curve.

Lung lobe Multiclass classification Binary classification

ROC AUC (macro) Balanced 
accuracy

Adjusted balanced 
accuracy

ROC AUC​ Balanced 
accuracy

Adjusted 
balanced 
accuracy

LA 0.54 0.24 0.05 0.62 0.62 0.25

RA 0.58 0.29 0.11 0.71 0.71 0.41

LC 0.59 0.31 0.14 0.69 0.69 0.39

RC 0.58 0.3 0.13 0.67 0.67 0.33

LD 0.53 0.36 0.04 0.54 0.54 0.08

RD 0.52 0.35 0.03 0.53 0.53 0.06
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Figure 4  Distribution of the total lung lesion scores. Histograms of the lung lesion scores from evaluators and the computer vision system (CVS) 
are color-coded and overlaid.
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Inter‑evaluator variability
A moderate inter-evaluator variability was observed in 
this study (Table 2) with high heterogeneity of the ICC 
values based on the lung lobe. A wide distribution of 
the balanced accuracy between the pairs of evaluators 

in both the binary and multiclass settings (see Addi-
tional files 7 and 8) was evidenced. High heterogene-
ity was also observed in the agreement on missingness 
among the evaluators. There was a perfect agreement 
in the right diaphragmatic lobe, followed by the left 
apical lobe (kappa = 0.86, p-value < 0.0001), and the 
right cardiac lobe (kappa = 0.49, p-value < 0.0001). The 
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Figure 5  Distribution of the difference in total lung lesion scores between the computer vision system (CVS) and evaluators. Scores 
from the evaluators were subtracted from the corresponding CVS scores to calculate the differences.
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Figure 6  Distribution of the percentage of affected lung area. Histograms of the percentage of affected lung area from all evaluators 
and the computer vision system (CVS) are color-coded and overlaid.
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missingness in the rest of the lung lobes showed very 
low agreement among  evaluators.

Intra‑evaluator and intra‑CVS variability
The intra-evaluator variability was low and similar among 
the different metrics and lung lobes (Table  3). The low-
est ICC values were obtained in the right diaphragmatic 
lobe. The observed ICC values differed among evaluators. 
By contrast, the CVS scoring was identical per lobe per 
image, obtaining an ICC of 1 in all metrics (Table 3).

Discussion
This study interrogated the accuracy of a CVS trained 
to assign CVPC scores from lung images obtained at 
slaughter, while assessing the variability between and 
within human evaluators, and within the CVS on the 
lung lesion scoring. The results of this study showed that 
the CVS was able to discriminate lung lobes affected with 
CVPC from non-affected ones, with moderate accuracy. 
However, the CVS ability to differentiate CVPC-affected 
from non-lesioned was highly variable between lung 

0

20

40

60

80

100

Pe
rc

en
t

-40 -20 0 20
Difference in percentage of affected lung area

Figure 7  Distribution of the difference in the percentage of affected lung area between the computer vision system (CVS) and 
evaluators. The percentage of affected lung area from the evaluators was subtracted from the corresponding CVS value to calculate the difference.

Table 2  Inter-evaluator variability on lung lesion scoring.

ICC: intra-class correlation coefficient (1 indicates perfect agreement between 
evaluators), LA: left apical, RA: right apical, LC: left cardiac, RC: right cardiac, LD: 
left diaphragmatic, RD: right diaphragmatic, %LA: percentage of affected lung 
area.

ICC 95% CI P value

Total lung lesion 
score

0.52 (0.35, 0.68)  < 0.001

Lesion score per lung lobe

 LA 0.29 (0.16, 0.45)  < 0.001

 RA 0.42 (0.25, 0.59)  < 0.001

 LC 0.43 (0.3, 0.58)  < 0.001

 RC 0.6 (0.47, 0.72)  < 0.001

 LD 0.43 (0.3, 0.57)  < 0.001

 RD 0.34 (0.21, 0.48)  < 0.001

 %LA 0.57 (0.42, 0.72)  < 0.001

Table 3  Intra-evaluator and intra-computer vision system 
variability on lung lesion scoring. 

Values represent the intra-class correlation coefficients. 95% Confidence 
Intervals within parentheses.

LA: left apical, RA: right apical, LC: left cardiac, RC: right cardiac, LD: left 
diaphragmatic, RD: right diaphragmatic, %LA: percentage of affected lung area.
* n/e: not estimable due to lack of variability in the lung lesion scores.

Evaluator A Evaluator C Evaluator D CVS

Total lung 
lesion score

0.96 (0.93, 0.98) 0.99 (0.98, 1) 0.86 (0.76, 0.93) 1 (n/e)

Lesion score per lung lobe

 LA 0.91 (0.85, 0.95) 0.98 (0.97, 0.99) 0.79 (0.66, 0.88) 1 (n/e)

 RA 0.9 (0.83, 0.95) 1 (n/e) 0.73 (0.59, 0.84) 1 (n/e)

 LC 0.96 (0.94, 0.98) 0.97 (0.94, 0.98) 0.82 (0.71, 0.90) 1 (n/e)

 RC 0.94 (0.91, 0.97) 0.95 (0.92, 0.97) 0.76 (0.64, 0.86) 1 (n/e)

 LD 0.66 (0.51, 0.79) 1 (n/e) 0.92 (0.87, 0.96) 1 (n/e)

 RD n/e* 0.86 (0.78, 0.92) 0.68 (0.53, 0.81) 1 (n/e)

 %LA 0.95 (0.91, 0.98) 0.98 (0.96, 0.99) 0.87 (0.78, 0.93) 1 (n/e)
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lobes. Additionally, the CVS ability to correctly assign the 
extension of pneumonia at the lung lobe level was low. 
Remarkably, the CVS showed a perfect repeatability in 
this study.

Two CVS in pigs for detecting and scoring respiratory 
lesions caused by infectious agents have been developed 
and tested [26–28]. These systems were developed to 
automatically score pleurisy associated to Actinobacil-
lus pleuropneumoniae [28], and to detect and measure 
CVPC in the slaughter processing line [26]. The average 
multiclass-classification accuracy for pleurisy was 85.5% 
[28], while the average specificity and sensitivity for the 
binary-classification of CVPC were, respectively, 95.31% 
and 99.38% [26]. In a more recent evaluation of the CVS 
for CVPC scoring in the slaughter processing line, very 
high specificity (95.55%) and high sensitivity (85.05%) 
were observed when the CVS scoring was compared with 
a skilled operator inspecting the lungs via visual inspec-
tion and palpation [27]. The rather low multiclass classi-
fication performance estimated for the CVS could have 
been influenced by one or more of the following factors: 
imbalanced training data set, the presence of artifacts, 
and a moderate inter-evaluator variability. A lower pro-
portion of lung lobes scoring 2, 3 and 4 compared with 
those scoring 0 and 1 were used to train the CVS. Indeed, 
the scorings performed by the evaluators were, in gen-
eral, significantly associated with higher lung lesion scor-
ing than the CVS. While the balanced accuracy was used 
herein to minimize the bias due to the imbalanced data 
set, this could be further addressed by increasing the 
number of observations in the training set, thus progres-
sively improving the CVS performance.

The presence of artifacts (e.g., blood inspiration, atelec-
tasis due to mechanical compression, damaged or folded 
lung lobes) or scarring due to resolved CVPC, not easily 
interpreted even by human evaluators, could have poten-
tially affected data quality. In fact, lungs entirely filled 
with blood or severely torn due to chronic pleurisy were 
not included in the CVS validation developed by [26]. In 
this context, the CVS assessed in this study could offer 
significant benefits by delivering enhanced value with 
consistent results in diverse slaughterhouse conditions.

The reported accuracy could be conceived as an aver-
age of the agreements between the CVS and each human 
evaluator. Hence, the variability observed between evalu-
ators could have had a negative impact on the CVS accu-
racy. It is worth mentioning that images were annotated 
by two evaluators in the abovementioned previous works 
[26, 28], whereas five evaluators participated in this 
study, adding greater variability in the CVS performance 
assessment.

Pathological findings for which there are different lev-
els of gradation to choose from, as pneumonia, typically 

exhibit larger variation among meat inspectors [18]. Even 
though the evaluators in this study were experts in assess-
ing CVPC from pig lungs, a moderate to high inter-evalu-
ator variability was observed depending on the lung lobe 
(i.e., ICC ranging 0.29–0.6), which agrees with results 
reported in other studies. For instance, the agreement 
among results concerning 20 plucks given by 11 veteri-
narians in Germany using Kendall’s coefficient of con-
cordance was examined [17]. The results for lung lesions  
showed a low degree of agreement (25%) among the 
meat inspectors. The detection rates of 12 meat inspec-
tors using the variance partitioning coefficient (VPC) 
were compared [18] and a moderate VPC for pneumo-
nia (0.68–2.32%) was determined. Indeed, in that study 
broad ranges of mild (3.2–26.8%), moderate (4.8–23.5%) 
and severe (1.5–16.2%) estimated pneumonia prevalence 
were reported. Moderate variations in the observation 
of pneumonia and pleuritis have been also documented 
in other studies [15, 16]. Even though the CVPC scor-
ing used in this study is not routinely performed during 
meat inspection, these previously reported results and 
our findings highlight the substantial variations between 
evaluators in scoring CVPC extension, probably due to 
systematic differences, as well as variations in anatomic-
pathologic definitions.

The lack of a standardized meat inspection process is 
also posed as one of the main causes of the low intra-
observer reliability sometimes observed [16, 18, 38]. In 
this study, the overall intra-evaluator reliability estimates 
were in general very high, although they slightly differed 
among evaluators (i.e., ICC ranging 0.89–0.99). Hence, 
the results indicate an overall high level of consistency 
within their own scoring process of CVPC, which can 
be a reflection of their expertise. Remarkably, the CVS 
scoring was identical per lobe per image, showing perfect 
consistency. This capability has the potential of effectively 
reducing the inherent variability that exists between and 
within human evaluators, addressing a crucial issue in 
current scoring methods.

One potential limitation of this study is that images, 
either evaluated by a human or by a CVS, cannot con-
vey the tactile element of the macroscopic assessment. 
The concept of CVPC is tactile in essence, based on an 
increased consistency of the pulmonary parenchyma 
that is noted by pressing with the fingers and not by 
visual inspection alone [39]. In the study by Bonicelli 
et  al. [26], all veterinarians involved in photo anno-
tations could palpate the lungs to confirm/rule out 
CVPC if necessary, which was not feasible in the pre-
sent work. Interestingly, a strong positive correlation 
(0.81) has been observed between the Madec and Kob-
isch scores (visual and palpation) and the Blaha scores 
(visual only) performed by two operators in an Italian 
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high-throughput slaughterhouse, with discrepancies 
concentrated on the discrimination between healthy 
lungs and those with minor lesions [40]. Another limi-
tation of the present CVS and the one developed by 
Bonicelli et al. [26] is that the ventral view of the lung 
was not assessed, which may underestimate the over-
all CVPC severity and extension. Notably, an image 
analysis software to score M. hyopneumoniae-associ-
ated lung lesions on digital images under experimen-
tal conditions was used by Garcia-Morante et  al. [12]. 
Such system correlated with other conventional scoring 
methods, although lesions of the accessory lobe were 
not accounted for and partially affected the Pearson’s 
coefficient [12]. Thus, simplified slaughter check proce-
dures have been suggested (e.g., based on the examina-
tion of a single lung view or half carcass) to ease the 
collection of images and to further improve the effi-
ciency of the scoring method and the implementation 
in the slaughter line [41].

The use of AI methods has revolutionized many dif-
ferent aspects of health sciences, especially by enhanc-
ing our capabilities to extract quantitative information 
from digital images that can then be used to predict the 
presence of lesions in digitized glass slides [42], radio-
graphs [43], or ultrasound images [24]. To date, few 
CVS have been developed to monitor slaughter lesions 
in pigs [26–28, 44, 45]. The prototype CVS employed 
herein is conceived as a fully automatic method for sys-
tematic detection and scoring of CVPC. The CVS deliv-
ers a well-known and broadly used lung scoring method 
in pigs  [30]. It also calculates results in reference to the 
scheme reported by Christensen, Sorensen, and Mous-
ing [33], thus providing additional value by reporting the 
total weighted percentage of affected lung. Future studies 
are expected to refine and improve the accuracy and effi-
ciency of the CVS in detecting and scoring CVPC, grant-
ing invaluable support to the swine industry.

In conclusion, under the conditions of this study, the 
CVS (AI DIAGNOS) discriminated between pneumonic 
and non-pneumonic lung lobes with moderate accuracy, 
suggesting that this CVS could be a good alternative to 
the detection of CVPC during slaughter inspections, 
especially considering its perfect consistency in the lung 
lesion scoring compared with the human evaluators. This 
prototype CVS will be further refined to correctly predict 
the degree of pneumonia. Altogether, the CVS evaluated 
in this study has the potential to automatically score M. 
hyopneumoniae-associated lung lesions and facilitate 
processing of data to aid solving problems linked to con-
ventional CVPC scoring at slaughter.
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