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Abstract

This paper investigates some asymptotic properties of the kernel spatial density
estimation for stationary α−mixing process on a finite-dimensional Riemannian manifold
without boundary. The results extend beyond the classical independently and identically
distributed (i.i.d.) data, focusing on the case where the manifold is known and extending
the classical theory to random fields.
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1. Introduction
Kernel density estimation (KDE) is a nonparametric method commonly used to estimate
the probability density function. While Euclidean spaces have been extensively studied
with the assumption of independent and identically distributed (i.i.d.) data, real-world
applications frequently involve spatially dependent data that don’t fit flat Euclidean structures.
This calls for extensions of KDE to more complex settings, such as random fields on
Riemannian manifolds.
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Non-Euclidean data structures naturally arise in fields like biology (e.g., protein data in
Mardia et al. (2008)), geology, medical imaging (Pennec (2006)), and computer vision,
where the data often lies on curved spaces. Applying standard Euclidean methods in such
cases can lead to significant errors due to the manifold’s curvature, motivating the need for
specialized techniques that account for the underlying geometry.

KDE on Riemannian manifolds poses unique challenges because distances and volume
elements must respect the geometry of the space. Pelletier (2005) laid the groundwork
for KDE on known Riemannian manifolds, focusing on i.i.d. data. Subsequent research
has explored various extensions, including applications to manifolds, as in Kim and Park
(2013), Berry and Sauer (2017), Cleanthous et al. (2020), Berenfeld and Hoffmann (2021),
Khardani and Yao (2022). Recently, Abdillahi et al. (2024) studied some asymptotic
properties of the Kernel density estimation for a stochastic process with values in a Riemannian
manifold. Bouzebda and Taachouche (2024) examined the strong uniform consistency
of generic kernels, including kernel density estimators, on Riemannian manifolds. The
study focused on Riemann integrable isotropic kernels distinct from those belonging to the
Vapnik-Chervonenkis class. Building on this, Bouzebda and Taachouche (2023) extended
the framework by establishing strong uniform consistency results for general kernels on
Riemannian manifolds, specifically addressing conditional U-processes with Riemann
integrable kernels. In addition, KDE for spatial data in Euclidean settings, as studied
by Carbon et al. (1997), Hallin et al. (2004), Chen (2008), Dabo-Niang et al. (2014), El
Machkouri and Reding (2021). However, to our knowledge, no prior work has addressed
the case of spatially dependent random fields on manifolds, particularly under the α−mixing
condition, which is the focus of this paper.

This paper investigates the asymptotic properties of KDE for stationary random fields
on finite-dimensional Riemannian manifolds. Our work builds upon the classical kernel
density estimation framework, extending it to handle dependencies in the data through
α−mixing condition.

The paper is structured as follows. Section 2 presents the technical background, including
key definitions and notations related to Riemannian geometry and kernel density estimation.
Section 3 provides the main results, and we give the proofs in Section 4.
2. Technical background
This study pertains to any measurable stationary spatial process

(
Xi, i ∈ NN

)
, defined on

some probability space (Ω,F ,P) with values on a Riemannian submanifold M (⊂ Rd),
where d ≥ 2.
2.1 Notations related to the structure of Riemannian submanifold
In the following, for any x ∈ M, TxM will denote the tangent space toM at x. We assume
that (M, g) is endowed with a measure (νg) and is geodesically complete and compact
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without boundary, ensuring, by the Hopf Rinow Theorem, that (M, dg) is a complete
metric space, where dg is the metric induced by g. For more details, see Gallot et al.
(2004). This allows us to define the exponential map at x, expx : TxM → M, such that
for any v ∈ TxM, expx(v) = γv(1), where γv is starting at x with velocity v. Specifically,
γv(t) = expx(tv) for t ∈ R, with γv(0) = x and γ̇v(0) = v. Its inverse, denoted by exp−1

x , is
a map from the image (Im

(
expx

)
) to TxM. Let In j(M) > 0 be the injectivity radius ofM.

For more information on these notions, we refer the reader to Gallot et al. (2004).
We will denote by 0x and µx the null vector and Lebesgue measure, respectively, in TxM.
For simplicity, we will write

∫
TxM

J(v)dv =
∫

TxM
J(v)dµx(v) for any integrable function

J defined on TxM. Let ⟨·, ·⟩ be the inner product related to g in TxM. Thus, for any
u, v ∈ TxM, we have ⟨u, v⟩ = g(u, v). The associated norm is denoted by ||.||. B (x, h) =
{y, d(x, y) ≤ h} and B (0x, h) = {u, ||u|| ≤ h} are the balls of radius h centered at x and
0x, respectively. We define h∗ = min{In j(M), π

2
√
κ
}, where κ is the supremum of sectional

curvatures ofM. We set π
2
√
κ
= +∞ when κ ≤ 0. Throughout, we only consider regular

balls inM. We recall that a ball B (x, h) is said to be regular (or convex) if h < h∗. Under
these conditions, one also has B(x, h) = expx B (0x, h). Below, we use B(h) to denote
B(0x, h).

From the previous properties, we can naturally deduce (the following property which will
be helpful for the proofs) that for any continuous function ψ : M → R with support on
B(x, h) with h < h∗, we have

νg (ψ) =
∫
M

ψ (y) dνg(y) =
∫

expx(B(h))
ψ (y) dνg(y) =

∫
B(h)

ψ
(
expx(u)

)
|gx(u)|1/2 du,

where |gx(u)|1/2 denotes the determinant of gx(u), with gx being the local expression of g in
the coordinate system (x1, ..., x1), given by gx(u) = (gi j(u)) where gi j(u) = g(∂xi, ∂x j) (or
gx =

∑
i, j gi jdxidx j). We recall that |gx(u)|1/2 = dµg

dµx

(
expx(u)

)
=

dµexp∗x g

dµx
(u) is the density of

µexp∗x g with respect to µx on Tx (M) (see, for example, Gallot et al. (2004) for more details).
We repeatedly use the expansion of |gx(u)|1/2 at any, u ∈ Tx (M) which can be found in,
for example, Karcher (1977), as follows:

|gx(u)|1/2 = 1 −
Ricx(u, u)

6
+ O

(
∥u∥3

)
,

where Ricx is the Ricci tensor at x. We assume that Xi’s are distributed as a random
variable X with an unknown stationary density f with respect to νg. Then, the transported
density of exp−1

x (X) with respect to the Lebesgue measure in TxM is given by fTx(v) =
f (expx(v)) |gx(v)|1/2 , ∀v ∈ TxM.
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Note that fTx(0x) = f (x) |gx(0x)|1/2 = f (x) since |gx(0x)|1/2 = 1.
In what follows, grad and Hess denote, respectively, the gradient and Hessian operators
2.2 Kernel density estimator for stationary random fields
Let In be a rectangular region defined as

In =
{
i = (i1, i2, ..., iN) ∈ (N∗)N , 1 ≤ ik ≤ nk, k = 1, ...,N

}
,

with n = (n1, ..., nN). As in the previous papers on spatial setting (for example, Carbon

et al. (1997)), we will write n → ∞ if min {nk} → +∞ and
∣∣∣∣∣ nl

nk

∣∣∣∣∣ < C for some 0 < C <

∞, 1 ≤ l, k ≤ N, and set n̂ = n1 × ... × nN . Throughout the paper, we will denote by

∥i∥ =
√

i2
1 + ... + i2

N , and 0 < C < ∞ will be some constants.

Now, the spatial kernel density estimator, based on the observations (Xi, i ∈ In) , is defined
by

f̂n(x) =
1
n̂

∑
i∈In

1
hd

n

1
θx(Xi)

K
(
dg(x, Xi)

hn

)
, ∀x ∈ M,

where K : R+ → R+ is a bounded integrable function, and the bandwidth hn, with hn < h∗,
tends to zero as n→ ∞.
2.3 Assumptions

To study asymptotic properties of f̂n, we assume that
(
Xi, i ∈ NN

)
satisfies the following

mixing condition: there exists a function φ(t) → 0 as t → ∞ such that, for finite sets of
sites E, E

′

⊂ NN , we have

α(B(E),B(E′)) = sup
A∈B(E),B∈B(E′)

{
|P(AB) − P(A)P(B)| , A ∈ B(E), B ∈ B(E

′

)
}

≤ s
(
Card(E),Card(E

′

)
)
φ
(
dist(E, E

′

)
)
,

where Card(E) (resp. Card(E
′

)) denotes the cardinality of E (resp. E
′

), B(E) (resp.
B(E

′

)) is the σ-fields generated by (Xi, i ∈ E) (resp. (Xi, i ∈ E′) ) for all i belonging to E
(resp. E

′

), and dist(E, E
′

) denotes the Euclidean distance between E and E
′

. The function
s is a symmetric positive function that is non-decreasing in each variable which satisfies

s(n,m) ≤ C min(n,m), ∀n,m ∈ N. (2.1)

If s(·, ·) ≡ 1, then (Xi) is called strongly mixing. We set Ψn =

√
log n̂
n̂hd

n
.

Assumption H1 (Kernel Properties):

1.
∫

K(∥x∥)dx = 1 and K satisfies a Lipschitz condition;

4



2. supp K = [0; 1];

3.
∫

xK(∥x∥)dx = 0

4.
∫
∥x∥2K(∥x∥)dx < ∞.

Assumption H2 (Mixing Conditions):

1. φ(i) ≤ Ci−θ for some θ > 0;

2.
∑+∞

i=1 iN−1(φ(i))a < ∞ for some 0 < a < 1
2 .

Assumption H3 (Bandwidth):
hn → 0, n̂hd

n → ∞ and hn <
h∗
2 as n→ ∞.

Assumption H4 (Compactness of the Manifold):

M is compact, i.e.,M =
µn⋃

k=1
B(xk, an), with an = h−

d
2
∗ h(d+1)

n Ψn and µn ≤ C(h(d+1)
n Ψn)−d.

Assumption H5 (Regularity of the Target Density):

1. The stationary density f is bounded and twice continuously differentiable at any
x ∈ M.

2. sup∥Hess f (x) ∥HS = C̃, where ∥ · ∥HS is the Hilbert Schmidt norm and 0 < C̃ < ∞ is
a positive constant.

Assumption H6: ∀i, j, the joint stationary density fi,j of (Xi, Xj) exists and satisfies

sup
i, j

sup
u,v∈M×M

∣∣∣ fi,j(u, v) − f (u) f (v)
∣∣∣ < M.

Some comments on these assumptions
We give here some remarks to highlight the assumptions above. These assumptions are
essential for deriving the asymptotic properties of the kernel density estimator and ensuring
the consistency of the results. Some assumptions are generalizations imposed for spatial
data in Euclidean space and kernel density estimation for i.i.d data in a Riemannian manifold.
More precisely,

1. Assumption H1 and Assumption H5 are classical regularity conditions on K and f
needed to derive asymptotic bias of f̂n. That is, for all h > 0 and ∥v∥ ≤ 1, we have

f (expx(hv)) = f (x) + h
〈
grad f (x), v

〉
+

h2

2
Hess f (x) (τv, τv). (2.2)

with τ ∈]0, 1[, and Hess f (x) (τv, τv) := ⟨τv,Hess f (x) τv⟩ .
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2. Assumption H2 and Assumption H6 are necessary to control the dependence structure
in spatial data.

3. Assumption H3 is the Riemannian manifold counterpart of the classical assumptions
on the bandwidth in spatial settings when the process takes values in Euclidean
space. In fact, here as mentioned in Section 2.1, we need to impose hn < h∗ to
ensure the convexity of any ball B(x, hn), x ∈ M. Nevertheless, having hn < h∗

2
ensures that x is locally a central point for fx,K (see, for example, Karcher (1977) or
Pelletier (2005) for more details).

4. Assumption H4 will be used to study the uniform convergence of a kernel density
estimator. It is the Riemannian manifold counterpart of the condition imposed in
the Euclidean case, as stated, for example, in Carbon et al. (1997). But, we need to
ensure the convexity of each ball of the covering set ofM. This is satisfied, since,
for all n,

an = h−
d
2
∗ h( d

2+1)
n

(
log n̂

n̂

) 1
2

< h∗.

3. Results
In this section, we present the asymptotic properties of the estimator f̂n(x) under the
assumptions stated earlier. Specifically, we study its consistency in terms of MSE (Mean
Squared Error), MISE (Mean Integrated Squared Error), and in probability meaning.

Proposition 3.1. Under Assumption H1 and Assumption H5(.1), we have

b(x) := E f̂n(x) − f (x) =
h2

n

2

∫
B(1)

K(∥u∥)Hess f (x)(τu, τu)du. (3.1)

Additionally, under Assumption H5(.2), ifM is compact (Assumption H4), then,

sup
x∈M
|b(x)| ≤ C̃h2

n

∫
B(1)
∥u∥2K(∥u∥)du, (3.2)

and ∫
M

b2(x)dνg(x) ≤ C̃2h4
n

(∫
B(1)
∥u∥2K(∥u∥)du

)2

Vol(M), (3.3)

where Vol(M) denotes the volume ofM, defined as Vol(M) =
∫
M

dνg(x).

6



Proposition 3.2. Under Assumptions H1 to H5

Var
(

f̂n(x)
)
=

1
n̂hd

n
f (x)

∫
B(1)

K2(∥u∥)du + o
(

1
n̂hd

n

)
. (3.4)

Consequently,

lim
n→∞

n̂hd
nVar

(
f̂n(x)

)
= f (x)

∫
B(1)

K2(∥u∥)du (3.5)

Additionally, ifM is compact, then,

sup
x∈M

∣∣∣∣Var
(

f̂n(x)
)∣∣∣∣ ≤ 2 ×max

{
∥ f ∥∞∥K∥∞, sup

x∈M
Cx

}
1

n̂hd
n
+ o

(
1

n̂hd
n

)
, (3.6)

and ∫
M

Var
(

f̂n(x)
)

dνg(x) ≤ 2 ×max
{
∥K∥∞,Vol(M)sup

x∈M
Cx

}
1

n̂hd
n
+ o

(
1

n̂hd
n

)
. (3.7)

Using the usual decomposition of MS E in terms of the squared bias and variance and the
fact that, MIS E =

∫
M

MS E(x)dνg(x), we derive the following results.

Theorem 3.1. Under Assumptions H1 to H5, for each x ∈ M, the MS E satisfies

MS E(x) := E
((

f̂n(x) − f (x)
)2
)
≤ 3 ×max

{
C̃2, ∥ f ∥∞∥K∥∞,Cx

} (
h4

n +
1

n̂hd
n

)
+ o

(
1

n̂hd
n

)
,

and the uniform bound

sup
x∈M

MS E(x) ≤ 3 ×max
{

C̃2, ∥ f ∥∞∥K∥∞, sup
x∈M

Cx

} (
h4

n +
1

n̂hd
n

)
+ o

(
1

n̂hd
n

)
,

Additionally, the MIS E satisfies

MIS E :=
∫
M

MS E(x)dνg(x) ≤ 2 ×max
{
∥K∥∞,Vol(M)sup

x∈M
Cx

} (
h4

n +
1

n̂hd
n

)
+ o

(
1

n̂hd
n

)
.

Corollary 3.1. (Optimal rate) The bandwidth which minimizes the MS E, at each point
x ∈ M, under Assumptions H1 to H6, is given by

hn,opt = C n̂
−1

d+4 ,

and the corresponding MS E is

MS E(x) = Cx, f n̂
−4

4+d + o
(̂
n
−4

d+4

)
,

where Cx, f = C4C1 + C−dC2 with C =
(
−dC2
4C1

) 1
4+d , C1 =

(∫
B(1)

Hess f (x)(τv, τv)K(∥v∥)dv
)2
,

with τ ∈]0, 1[ and C2 = f (x)
∫

B(1)
K2(∥v∥)dv.
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Next, we give pointwise and uniform rates of convergence in probability under additional
conditions.

Theorem 3.2. Under the assumptions H1, H3 and H5, if φ(i) ≤ Ci−θ with θ > 2N and if
n̂(log n̂)−1h

−dθ
2N−θ
n → ∞, then for a given x ∈ M∣∣∣∣ f̂n(x) − f (x)

∣∣∣∣ = O
(
h2

n

)
+ op (Ψn) . (3.8)

Corollary 3.2. Under Assumption H4, if θ > (d + 2)N and n̂(log n̂)−1h
d(θ+dN+2N)
θ−(d+2)N

n → ∞, then

sup
x∈M

∣∣∣∣ f̂n(x) − f (x)
∣∣∣∣ = O

(
h2

n

)
+ op (µnΨn) . (3.9)

4. Proofs
In the following, we will denote by Cg = sup

x∈M
Cg(x) with Cg(x) = sup

y∈B(x,hn)
θ−1

x (y) (we refer

the readers Pelletier (2005)(p.303)).
Proof of Proposition 3.1: For all x ∈ M,

E f̂n(x) − f (x) =
1
n̂

∑
i∈In

1
hd

n
E

(
1

θx(Xi)
K

(
dg(x, Xi)

hn

))
− f (x)

=
1
hd

n

∫
M

1
θx(y)

K
(
dg(x, y)

hn

)
f (y)dνg(y) − f (x)

=
1
hd

n

∫
M

1
θx(y)

K
(
dg(x, y)

hn

)
( f (y) − f (x)) dνg(y).

Taking the integral over BM(x, hn), we obtain

E f̂n(x) − f (x) =
1
hd

n

∫
BM(x,hn)

1
θx(y)

K
(
dg(x, y)

hn

)
( f (y) − f (x)) dνg(y)

=
1
hd

n

∫
BM(hn)

1
θx(expx(u))

K
(
∥u∥
hn

)
( f (expx(u)) − f (x)) |gx(u)|1/2 du

=

∫
B(1)

K (∥u∥) ( f (expx(hnu)) − f (x)) du.

By applying (2.2), under the assumptions H1 and H5(.1), we obtain (3.1).
On the other hand, by Assumption H5(.2) and due to the compactness of,M, we get (3.2).
Furthermore, for the same reasons provided by Pelletier (2005)(p.302), we get (3.3).
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Proof of Proposition3.2 This result is an extension of Lemma 2.2 in Tran (1990) to the
case of Riemannian manifold. For all x ∈ M, we have

Var
(

f̂n(x)
)
= Var

(
f̂n(x) − E f̂n(x)

)
= Var

1
n̂

∑
i∈In

Zi(x)

 ,
where for each i ∈ In, Zi(x) = 1

hd
n

1
θx(Xi)

K
( dg(x,Xi)

hn

)
− 1

hd
n
E

(
1

θx(Xi)
K

( dg(x,Xi)
hn

))
. Then,

Var
(

f̂n(x)
)
=

1

n̂2

∑
i∈In

Var (Zi(x)) +
1

n̂2

∑
i,j

i,j∈In

Cov
(
Zi(x),Zj(x)

)
=

1

n̂2

∑
i∈In

E
(
Z2

1(x)
)
+

1

n̂2

∑
i,j

i,j∈In

E
(
Zi(x)Zj(x)

)
:= A(x) + B(x),

where

A(x) =
1

n̂h2d
n

∫
M

1
θ2

x(y)
K2

(
dg(x, y)

hn

)
f (y)dνg(y) −

1
n̂h2d

n

(∫
M

1
θx(y)

K
(
dg(x, y)

hn

)
f (y)dνg(y)

)2

= I1,n(x) − I2,n(x).

This expression has been previously addressed in the literature, notably in Pelletier (2005),
our objective here is to give an explicit expression thereof. To start by establishing I1,n(x),
recall that for any v ∈ TxM, θx(expx(v)) = |gx(v)|

1
2 , then

I1,n(x) =
1

n̂h2d
n

∫
B(x,hn)

1
θ2

x(y)
K2

(
dg(x, y)

hn

)
f (y)dνg(y)

=
1

n̂hd
n

∫
B(1)

1

|gx(hnu)|
1
2

K2 (∥u∥) f (expx(hnu))du.

=
1

n̂hd
n

∫
B(1)

1

|gx(hnu)|
1
2

K2 (∥u∥) ( f (expx(hnu)) − f (x))du

+
f (x)
n̂hd

n

∫
B(1)

1

|gx(hnu)|
1
2

K2 (∥u∥) du.

=
f (x)
n̂hd

n

∫
B(1)

K2 (∥u∥) du +
f (x)
n̂hd

n

∫
B(1)

(
1

|gx(hnu)|
1
2

− 1
)

K2 (∥u∥) du (4.1)

+
1

n̂hd
n

∫
B(1)

1

|gx(hnu)|
1
2

K2 (∥u∥) ( f (expx(hnu)) − f (x))du (4.2)
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Since
∣∣∣∣|gx(hnu)|

−1
2 − 1

∣∣∣∣ ≤ C1,xh2
n and by (2.2), for ∥u∥ ≤ 1, we have∣∣∣∣∣∣I1,n(x) −

1
n̂hd

n
f (x)

∫
B(1)

K2 (∥u∥) du

∣∣∣∣∣∣ ≤ Cx
hn

n̂hd
n
, (4.3)

where Cx =
(
C1,x f (x) + ∥grad f (x)∥

)
∥K∥∞. Additionally, under H1 and H4, we have

sup
x∈M

n̂hd
nI1,n(x) ≤ ∥ f ∥∞∥K∥∞ + sup

x∈M
Cxhn, (4.4)

Similarly, it is easy to see that

I2,n(x) =
1

n̂h2d
n

(∫
M

1
θx(y)

K
(
dg(x, y)

hn

)
f (y)dνg(y)

)2

=
1

n̂h2d
n

(∫
B(hn)

1
θx(expx(u))

K
(
∥u∥
hn

)
f (expx(u)) |gx(u)|1/2 du

)2

=
1
n̂

(∫
B(1)

K (∥u∥) f (expx(hnu))du
)2

=
1
n̂

(∫
B(1)

K (∥u∥) ( f (expx(hnu)) − f (x))du + f (x)
∫

B(1)
K (∥u∥) du

)2

.

Hence, under Assumptions H1(.1) and H5, and using (2.2), we obtain

I2,n(x) ≤ 2
f 2(x) + (C2h2

n)2

n̂
=

f 2(x)
n̂
+ o(1) = O

(̂
n−1

)
.

Additionally, under H4, we have

sup
x∈M

n̂I2,n(x) ≤ ∥ f ∥2∞. (4.5)

Whereas, the expression

B =
1

n̂2

∑∑
(i,j)∈E1

E
(
Zi(x)Zj(x)

)
+

1

n̂2

∑∑
(i,j)∈E2

E
(
Zi(x)Zj(x)

)
= = J1,n(x) + J2,n(x)

has been studied by Tran (1990) within the context of Euclidean spaces. However, our
contribution specifically pertains to the study of J2,n(x).
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Let βn = h
−d(1−γ)

θ
n , with θ = −N − ε + (1 − γ)Na−1, and γ and ε are small positive constants.

We require that there exists a real number a, such that 0 < a < 1
2 , satisfying the condition

a−1 − (N + ε)(N(1 − γ))−1 > 1 and θ > N(1 − γ). Now, by setting

E1 := {(i, j) ∈ In × In | 0 <d(i, j) ≤ βn} and E2 := {(i, j) ∈ In × In | d(i, j) > βn} ,

we have∣∣∣∣E (
Zi(x)Zj(x)

)∣∣∣∣ ≤ ∫
B(x,hn)

∫
B(x,hn)

1
h2d

n

1
θx(y)θx(z)

K
(
dg(x, y)

hn

)
K

(
dg(x, z)

hn

)
× | fi,j(y, z) − f (y) f (z)| dνg(y)dνg(z)

≤ M
∫

B(1)

∫
B(1)

K(∥u∥)K(∥v∥)dudv
(
by Assumption H6

)
≤ M

(
by Assumption H1(.1)

)
.

Consequently, J1,n(x) ≤ Mn̂−1
βN

n . Since θ > N(1 − γ), we have

J1,n(x) ≤ Mn̂−1h
−dN(1−γ)

θ
n = o

(̂
n−1h−d

n

)
.

To bound the term J2,n(x), we set δ = 1−γ
γ

, which implies γ = 2
2+δ and δ

2+δ = 1 − γ. By
applying Lemma 2.1 in Tran (1990) with r = s = 2 + δ, h = 2+δ

δ
, we obtain

∣∣∣∣E (
Zi(x)Zj(x)

)∣∣∣∣ ≤ C E
( 1

hd
n

1
θx(Xi)

K
(
dg(x, Xi)

hn

))2+δ
γ
2

E

( 1
hd

n

1
θx(Xj)

K
(
dg(x, Xj)

hn

))2+δ
γ
2

× (s(1, 1)φ(d({i} , {j})))1−γ

≤ C
∫
M

(
1
hd

n

1
θx(y)

K
(
dg(x, y)

hn

))2+δ

f (y)dνg(y)
γ × [

φ(∥i − j∥)
]1−γ .

Consequently,

J2,n(x) ≤
C

n̂2

∑∑
i,j∈E2

∫
M

(
1
hd

n

1
θx(y)

K
(
dg(x, y)

hn

))2+δ

f (y)dνg(y)
γ × [

φ(∥i − j∥)
]1−γ

≤
C

n̂2 h−γd(1+δ)
n

∫
M

1
hd

n

(
1

θx(y)
K

(
dg(x, y)

hn

))2+δ

f (y)dνg(y)
γ ×∑∑

i,j∈E2

(φ(∥i − j∥))1−γ .
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Clearly,
∑∑
i,j∈E2

(φ(∥i − j∥))1−γ
≤ n̂

∑
∥j∥>βn

(φ(∥j∥))1−γ and then

n̂hd
nJ2,n(x) ≤ h−d(1−γ)

n

∫
BM(x,hn)

1
hd

n

(
1

θx(y)
K

(
dg(x, y)

hn

))2+δ

f (y)dνg(y)
γ × ∑

∥j∥>βn

(φ(∥j∥))1−γ

≤ h−d(1−γ)
n

(
C1+δ

g

∫
B(1)

f (expx(hnv)K (∥v∥)2+δ dv
)γ
×

∑
(φ(∥j∥))1−γ . (4.6)

Now, H2 implies iN−1(φ(i))a = o
(

1
i

)
, which leads to φ(i) = o

(
i−

N
a

)
as i → ∞ (we refer

the readers to Tran (1990). Since φ is a nonincreasing function, we have ∥i∥θ (φ(∥i∥))1−γ =

∥i∥θo
(
∥i∥

−N(1−γ)
a

)
= o

(
∥i∥−N−ε

)
, for θ = −N − ε + (1 − γ)Na−1. Thus,

+∞∑
ik=1

k=1,...,N

∥i∥θ(φ(∥i∥))1−γ < +∞. (4.7)

Combining (4.6) and (4.7) and noting that h−d(1−γ)
n β−θn = 1, we have

lim sup n̂hd
nJ2,n(x) ≤ C lim sup h−d(1−γ)

n

∑
∥i∥>βn

(φ(∥i∥))1−γ

≤ C lim sup h−d(1−γ)
n β−θn

∑
∥i∥>βn

∥i∥θ (φ(∥i∥))1−γ

≤ C lim sup
∑
∥i∥>βn

∥i∥θ (φ(∥i∥))1−γ ,

where C =
(
C1+δ

g ∥K∥
1+δ
∞ ∥ f ∥∞

)γ
. Then, lim sup n̂hd

nJ2,n tends to zero, as βn → ∞ which
completes the proof of (3.4), since

J1,n(x) + J2,n(x) = o
(̂
n−1h−d

n

)
. (4.8)

Also, we deduce (3.6) and (3.7) by using (4.4), (4.5) and (4.8).

Proof of Theorem 3.2: A key tool for this proof is Lemma 3.2 from Dabo-Niang and Yao
(2007). By (3.1), it suffices to show that∣∣∣∣ f̂n(x) − E

(
f̂n(x)

)∣∣∣∣ = op (Ψn) , (4.9)

where Ψn =

√
log n̂
n̂hd

n
.
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Let S n =
∑

i∈In

Zi(x), with E (Zi(x)) = 0 and sup
i
|Zi(x)| ≤ bh−d

n , where b = Cg(x)∥K∥∞

by Assumption H1, Let ζi(x) = Zi(x), i ∈ NN and let p be an integer. Thus, applying
Lemma 3.2 in Dabo-Niang and Yao (2007), for each εn > 0, we have

P
(∣∣∣∣ f̂n(x) − E

(
f̂n(x)

)∣∣∣∣ > εn

)
≤ 2N+1 exp

(
−ε2

n

4v2(q)
q̂
)
+

2N+2bα(p)
εn

,

where n̂ = 2N pNq̂ and v2(q) = 4
p2Nσ

2(q) + bεn, with σ2(q) = Var
( ∑

1≤ik≤p,k=1,...,N
Zi(x)

)
.

Now, from Proposition 3.2, we know that σ2(q) ≤ a
pNhd

n
, where a = a (K, || f ||∞, d) does not

depend on x. Thus, we obtain

v2(q) ≤
bεn

hd
n
+

4a
pNhd

n
.

If we choose p = [ε−1
n ], then we obtain

P
(∣∣∣∣ f̂n(x) − E

(
f̂n(x)

)∣∣∣∣ > εn

)
≤ 2N+1 exp

(
−εn

4A0
q̂hd

n

)
+

2N+2bα(p)
εnhd

n
(4.10)

where A0 is a positive constant.

Now, let εn = ηΨn with η > 0, we have α(p)
εnhd

n
=

α(p)
ηhd

nΨn
and setting p =

[
Ψ
−1
N

n

]
≤ Ψ

−1
N

n , we have

q̂ ≥ Ψnn̂
2N and since Ψn =

√
log n̂
n̂hd

n
, we have εn

A0
q̂hd

n ≥
ηΨ2

nn̂hd
n

2N A0
=

η

2N A0
log n̂, then for c = η

2N+2A0
,

we obtain

P
(∣∣∣∣ f̂n(x) − E

(
f̂n(x)

)∣∣∣∣ > εn

)
≤ C

(
cn̂ + n̂−c

)
,

with cn̂ = h−d
n s(̂n, pN)φ(p)Ψ−1

n . By Assumption H2 and the inequality (2.1), we get

cn̂ ≤ Ch−d
n pN−θΨ−1

n ∼ Ch−d
n Ψ

θ−2N
N

n = Cn̂
2N−θ

2N (log n̂)
θ−2N

2N h
−dθ
2N

n .

Consequently,

cn̂ ≤ C
(̂
n(log n̂)−1h

−dθ
2N−θ
n

) 2N−θ
2N
= o(1), (4.11)

and thus we conclude that

P
(∣∣∣∣ f̂n(x) − E

(
f̂n(x)

)∣∣∣∣ > εn

)
≤ C

(̂
n−c
+

(̂
n(log n̂)−1h

−dθ
2N−θ
n

) 2N−θ
2N

)
. (4.12)
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Since θ > 2N and n̂(log n̂)−1h
−dθ

2N−θ
n → ∞ by assumption, we have

P
(∣∣∣∣ f̂n(x) − E

(
f̂n(x)

)∣∣∣∣ > εn

)
= o(1).

Proof of Corollary 3.2: By (3.2), it suffices to show that

sup
x∈M

∣∣∣∣ f̂n(x) − E
(

f̂n(x)
)∣∣∣∣ = Op (Ψn) .

Under Assumption H4, we have

f̂n(x) − E f̂n(x) =
(

f̂n(x) − f̂n(xk)
)
+

(
E f̂n(xk) − E f̂n(x)

)
+

(
f̂n(xk) − E f̂n(xk)

)
= S 1n + S 2n + S 3n.

Therefore,
sup
x∈M
| f̂n(x) − E f̂n(x)| ≤ max

1≤k≤µn
sup

x∈B(xk ,an)
|S 1n + S 2n| + max

1≤k≤µn
|S 3n|. (4.13)

For the first term on the right-hand side, we apply the same steps as in Abdillahi et al.
(2024). As a result, we obtain

max
1≤k≤µn

sup
x∈B(xk ,an)

|S 1n + S 2n| = Op (Ψn) (4.14)

Now, using (4.12), we obtain

P
(∣∣∣∣ f̂n(x) − E

(
f̂n(x)

)∣∣∣∣ > εn

)
≤ Cµn

(̂
n−c
+

(̂
n(log n̂)−1h

−dθ
2N−θ
n

) 2N−θ
2N

)
. (4.15)

We have µn ≤ Cn̂
d
2 h−d( d

2+1)
n (log n̂)

−d
2 . Since n̂hd

n → ∞ by Assumption H3, for n large

enough, there exists C > 0 such that n̂hd
n > C. It follows that h−d( d

2+1)
n ≤ Cn̂

d
2+1
.Consequently,

µnn̂−c
≤ Cn̂d+1−c(log n̂)

−d
2 , (4.16)

which goes to 0 since c > d + 1. Next, using (4.11), we get

µncn̂ ≤ C
(̂
n(log n̂)−1h

d(θ+dN+2N)
θ−(d+2)N

n

) −θ+(d+2)N
2N

. (4.17)

The proof is then achieved since θ > (d + 2)N and n̂(log n̂)−1h
d(θ+dN+2N)
θ−(d+2)N

n → ∞.
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