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Abstract

The main focus of our paper is to investigate the behavior of the kernel estimator for the regression
function between a real-valued random variable Y and a random variable X, where X takes values in a
Riemannian submanifold. The estimator is adapted from the article of Pelletier (2006). Additionally, we
study data that adheres to the α-mixing condition, which imposes valuable constraints on the dependence
structure of the observations. Specifically, we provide the rate of convergence in mean square error, enabling
us to assess the precision and efficiency of the estimator.
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1. Introduction
In the field of inferential statistics, the estimation of the regression function has been found to be a valuable tool
for fitting data that lies on Riemannian manifolds. Such data find applications across diverse scientific domains,
including medical imaging, computer vision, as exemplified by Pennec (2006), and references therein, as well
as in medicine, as discussed by Dryden and Mardia (1998). It also has applications in geography, astronomy,
biology, and more, where the goal is often to characterize objects and predict their future behavior. These ob-
jects can encompass various forms of data, such as directional data (e.g., spheres, as seen in Mardia and Jupp
(2000) and examples like animal migration directions, as shown in Jupp and Mardia (1980)), geometric trans-
formations, tensors, and shapes, among others. The analysis of data residing on manifolds requires specialized
techniques and methodologies due to their specific properties and geometric characteristics.

In the case of parametric regression estimation, noteworthy studies include those by Downs (2003) who re-
gressed points on the surface of one sphere against points on another, Huang et al. (2010) in Nonlinear Re-
gression Analysis, Hinkle et al. (2012) exploring polynomial regression estimation in Riemannian manifolds,
and Hinkle et al. (2014) who developed a framework for polynomial regression on Riemannian manifolds.
As always, these regression estimation methods require prior knowledge of the function to be estimated and
stands as the most widely adopted regression model, thanks to its simplicity and adaptability to a wide array of
phenomena. However, these techniques are limited when dealing with scenarios where the underlying function
remains unknown or proves challenging to discern.

As an alternative, nonparametric estimation has gained significant attention in the field of statistics and data
analysis in recent years. Specifically, non-parametric methods based on kernel techniques have proven to be
effective in addressing this challenge. In this context, Pelletier (2006) has focused on nonparametric estimation
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Nefzi et al. 2 PRELIMINARIES AND ESTIMATORS

of the regression function on a closed Riemannian manifold using the kernel method when the data set consists
of independent observations, drawing inspiration from its original application in density estimation Pelletier
(2005). In addition, Nilsson et al. (2007) explores regression techniques on manifolds using kernel dimension
reduction. Furthermore, Henry and Rodriguez (2009a), Henry and Rodriguez (2009b) have made significant
contributions to both kernel regression estimation and robust regression on such manifolds. All these references
concern the situations that involve independently and identically distributed (i.i.d.) observations.

To contribute to this evolving literature, this work focuses on a previously unaddressed scenario: when the
data set consists of dependent observations from a stationary Riemannian-valued stochastic process, satisfying
a strong mixing condition, with the target variable Y being real-valued. For readers interested in practical
applications of α−mixing, we recommend the book "Introduction to Strong Mixing Conditions" by Bradley
(2007).

Our contributions include explicit expressions for both bias and variance of the regression estimator. Fur-
thermore, we determine the optimal bandwidth, crucial for minimizing the mean squared error (MSE) of our
estimator, ensuring accuracy and reliability in predictions.

The rest of this paper is organized as follows: In Section 2, we present the basic assumptions of our framework
and the necessary assumptions for the results’ proofs. Section 3 presents the asymptotic results of the kernel
estimator. Finally, Section 4 provides the detailed proofs.

2. Preliminaries and estimators
2.1 Theoretical framework

We are concerned with a measurable stationary random process (Zt = (Xt,Yt), t ∈ Z) defined on a probability
space (Ω,A,P), where the Z′t s have the same distribution as (X,Y) admitting an unknown join density fX,Y . In
this process, Xt takes values on a Riemannian submanifoldM of Rd, and the Xt’s are dependent and identically
distributed as a random variable X with an unknown density function f . The variable Yt is a real-valued and
integrable variable. The relationship between Y and X is given by the following equation

Y = r(X) + ε

where, ε is the random error with E(ε) = 0, and r(.) denotes the regression function defined as

r(x) = E(Y | X = x) =
{ φ(x)

f (x) if f (x) > 0
0 otherwise

with φ :M→ R be the function that is defined as φ(x) =
∫
R

y fX,Y(x, y)dy.

In the following, we assume that (Xt) satisfies an α−mixing condition given by, for any integer n ≥ 1,

α(n) = sup
k

sup
A∈F k

1 (X), B∈F∞k+n(X)
{|P(A ∩ B) − P(A)P(B)|}

where F k
i (X) is the σ-field generated by Xi, i ≤ j ≤ k.

2.2 Geometrical setting

We consider a Riemannian submanifold (M, g) with a tangent space TxM at any point x ∈ M. The submanifold
(M, g) is endowed with a measure µg and satisfies the properties of being geodesically complete, compact, and
without a boundary. According to the Hopf Rinow Theorem, the metric space (M, dg) is complete , where dg is
the metric induce by g. To analyze distances onM effectively, we define the exponential map expx : TxM→M

at each point x. For more information, the readers are invited to refer to Khardani and Yao (2022). To ease the
reading, we will use d to refer to dg.

Next, we introduce the notation 0x to represent the null vector in the tangent space TxM. The inner product in
TxM is defined as ⟨u, v⟩ = g(u, v) for any u, v ∈ TxM, and the associated norm is denoted as ||.||. Additionally,

2



Nefzi et al. 2 PRELIMINARIES AND ESTIMATORS

we use the notation B (x, h) to represent the ball of radius h centered at x, and B (0x, h) represents the ball of
radius h centered at 0x.

We assume that the injectivity radius ofM is such that in j(M) > 0, and we only consider regular balls inM. A
regular (or convex) ball, denoted as B (x, h), satisfies h < h∗, where h∗ = min{in j(M), π

2
√
κ
}. Here, κ represents

the supremum of sectional curvatures ofM (refer to Gallot et al. (2004) for the definition). If this upper bound
is positive, we set κ = 0 otherwise. It is worth noting that B(x, h) = expx(B (0x, h)). To ease the reading, we
will use B (h) to refer to B (0x, h).

Based on the properties mentioned above, we can deduce that for any continuous function ψ : M → R with
support on B(x, h), the following equation holds

µg (ψ) =
∫
M

ψ (y) dµ(y) =
∫

expx(B(h))
ψ (y) dµ(y) =

∫
B(h)

ψ
(
expx(v)

)
|gx(v)|1/2 dv

where |gx(v)|1/2 represents the determinant of gx(v), with gx(v) is more detailed in Chavel (2006), p.18 and
Gallot et al. (2004), p.165). Alternatively, we can denote

∣∣∣gx(exp−1(y))
∣∣∣1/2 = θx(exp−1(y)), where θx(.) is called

the volume density function. In the literature, θx(y) is also denoted as θx(exp−1
x (y)) by abuse of notation (see

also le Brigant and Puechmorel (2019)).

The density of fTx with respect to the Lebesgue measure in Tx (M) is given by :

fTx(v) = f (expx(v)) |gx(v)|1/2 1Vx(v), ∀v ∈ TxM

where 1Vx is the indicator function of Vp. Note that fTx(0x) = f (x) |gx(0)|1/2 = f (x) since |gx(0)|1/2 = 1.

The study of the bias terms of the estimators below, requires some regularity condition on f , φ (assumption H5
below) and |gx(·)|1/2, for which we have the following expansion which can be found for example in Karcher
(1977), p. 191 (or Chavel (1993), p.91): for any u ∈ Tx (M)

|gx(u)|1/2 = 1 −
Ricx(u, u)

6
+ O

(
∥u∥3

)
where Ricx is the Ricci tensor at x.

In the following, we will denote by grad and Hess the gradient and the Hessian operators respectively.

2.3 The kernel estimator of interest

In this subsection, we aim to study the behavior of kernel estimator of Pelletier (2006). Let (Xi,Yi) be n
observations drawn from the process (Zt = (Xt,Yt), t ∈ Z) which is defined above. Therefore, the kernel
regression estimator is defined as follows, for each x ∈ M

rn(x) =
{ φn(x)

fn(x) if fn(x) > 0
0 otherwise

where fn(x) = 1
n

∑n

i=1

1
hd

n

1
θx(Xi)

K
(

d(x,Xi)
hn

)
and φn(x) = 1

n

∑n

i=1
Yi

1
hd

n

1
θx(Xi)

K
(

d(x,Xi)
hn

)
are respectively the kernel estimators of

f and φ. In addition, K and hn are respectively the kernel function and the bandwidth that satisfy the following
assumptions.

2.4 Assumptions

The results presented below are based on the following assumptions:

H1: K : Rd −→ R+ is a bounded and continuous map such that :

1. supp K = [0; 1],
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2.
∫

K(∥x∥)dx = 1,

3.
∫

xK(∥x∥)dx = 0 or at least the vector,
∫

xK (∥x∥) dx is orthogonal to span{grad f (x)}

4.
∫
∥x∥2K(∥x∥)dx < ∞.

H2: The mixing coefficient α(n) tends to zero at a polynomial rate, specifically α(n) = O (n−v) for some v > 2.

H3: The bandwidth hn > 0 and satisfies the following assumptions

nhd
n −→ ∞ and hn <

h∗
2 , n→ ∞.

H4:

1. The function σ2(·) = E
(
Y2

∣∣∣∣X = ·) is both continuous and bounded away from zero at x,

2. Y is bounded,

3. r is bounded and two-times continuously differentiable at x.

H5: The functions f and φ are bounded and twice continuously differentiable at any x ∈ M. Additionally,
∥Hess f (x) ∥HS < ∞ as well as ∥Hessφ (x) ∥HS < ∞.

H6: ∀1, j, the joint density f1, j of (X1, X j) exists is such that

sup
j

sup
u,v∈M×M

| f1, j(u, v) − f (u) f (v)| < M. for all j ≥ 2

for some M > 0.

2.5 comments

• Assumptions H1, H4 and H5 are considered classical to get consistency results in the context of kernel
estimation. In particular, assumption H5 allows the Taylor expansion: Let s satisfies H5 then

s(expx(u)) = s(x)+ < grads(x), u > +
1
2

Hesss(x)(u, u) + o(∥u∥2)

for all u ∈ TxM. Thus, for all h > 0 and ∥v∥ ≤ 1, we have

s(expx(hv)) = s(x) + h < grads(x), v > +
1
2

h2Hesss(x)(v, v) + o(h2). (1)

• The assumptions H2 and H6 are also classical in scenarios involving dependent data.

• Concerning H3, it is an adaptation of classical assumptions on the bandwidth in Riemannian manifolds
setting. Namely, we need the constraint hn <

h∗
2 to ensure that x is locally a central point when using the

kernel estimator (see for example Karcher (1977) and Le (2001), or Pelletier (2005) for more details).

3. Auxiliary results
Lemma 3.1. Under the assumptions H1 and H5, we have

E fn(x) − f (x) =
h2

n

2

[∫
B(1)

K(∥v∥)Hess f (x) (v, v)dv + o(1)
]

(2)

and

Eφn(x) − φ(x) =
h2

n

2

[∫
B(1)

K(∥v∥)Hessφ (x) (v, v)dv + o(1)
]

(3)
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Lemma 3.2. Under the assumptions H1, H2, H3, H5 and H6, the variance of fn(x) is given by

V ( fn(x)) =
1

nhd
n

[
f (x)

∫
B(1)

K2(||v||)dv + o(1)
]

(4)

and then
nhd

nV ( fn(x)) −→
n→∞

f (x)
∫

B(1)
K2(∥v∥)dv.

In addition, under the assumptions H1 to H6, we obtain the variance of φn(x)

V(φn(x)) =
1

nhd
n

[
f .σ2(x)

∫
B(1)

K2(||v||)dv + o(1)
]

(5)

and then
nhd

nV(φn(x)) −→
n→∞

f .σ2(x)
∫

B(1)
K2(∥v∥)dv.

where σ2(x) = E
(
Y2

∣∣∣∣X = x
)
.

4. Asymptotic results
In this section, we provide explicit expressions of the bias and variance associated with rn. Additionally, we
present the optimal bandwidth that minimizes the mean squared error of the regression estimator.

Proposition 4.1. Under the assumptions of Lemma 3.1, we can derive the following expression for the bias of
rn(x)

Ern(x) − r(x) =
h2

n

2 f (x)

(∫
B(1)

K(∥v∥)(Hessφ(x)(v, v) − r(x)Hess f (x)(v, v))dv
)
+ o

(
h2

n

)
. (6)

Furthermore, considering Lemma 3.1 and Lemma 3.2, we can establish that, for all f (x) > 0, the variance of
rn(x)

V(rn(x)) =
1

nhd
n

(
σ2(x) − r2(x)

f (x)

∫
B(1)

K2(∥v∥)dv + o (1)
)
. (7)

As Corollary of this proposition we obtain an optimal rate in MSE meaning for rn(x).

4.1 Rate of convergence in Mean Squared Error

Corollary 4.1. (Optimal bandwidth) To minimize the mean squared error (MSE) of rn, under the assumption
H1, the optimal bandwidth hn must be chosen as hn,opt = C0 n

−1
d+4 , where C is a constant. The MSE can then be

expressed as
MSE(x) = C n

−4
4+d + o

(
n
−4

4+d
)

where C = C4
0C1 +C−d

0 C2 with C0 =
(

dC2
4C1

) 1
4+d . Here, constants C1 and C2 are respectively given by

C1 =
1

4( f (x))2

(∫
B(1)

K(∥v∥)(Hessφ(x)(v, v) − r(x)Hess f (x)(v, v))dv
)

and C2 =
σ2(x)−(r(x))2

f (x)

∫
B(1)

K2(∥v∥)dv.

Theorem 4.1. Under the assumptions H1 to H6, sinceM is compact, we have

sup
x∈M
E (rn(x) − r(x))2

≤ C ×
(
h4

n +
1

nhd
n

)
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4.2 Convergence in probability

Theorem 4.2. Under the assumptions H1, to H6, for a given x ∈ M

|rn(x) − r(x)| −→ 0 in probability, (8)

and sinceM is compact by assumption, we have

sup
x∈M
|rn(x) − r(x)| −→ 0 in probability. (9)

Remark 4.1. Note that Theorem 4.2 is a consequence of Corollary 4.1 and Theorem 4.1 through Markov’s
inequality.

5. Proofs
5.1 Proof of Lemma 3.1

Proof of (2)

E fn(x) − f (x) =
1
n

n∑
i=1

1
hd

n
E

(
1

θx(Xi)
K

(
d(x, Xi)

hn

))
− f (x)

=
1
hd

n

∫
M

1
θx(y)

K
(
d(x, y)

hn

)
f (y)dµg(y) − f (x)

=
1
hd

n

∫
M

1
θx(y)

K
(
d(x, y)

hn

) [
f (y) − f (x)

]
dµg(y)

Taking the integral over B(x, hn), we obtain

E fn(x) − f (x) =
1
hd

n

∫
B(x,hn)

1
θx(y)

K
(
d(x, y)

hn

)
( f (y) − f (x)) dµg(x)

=
1
hd

n

∫
B(hn)

K
(
∥v∥
hn

) (
f
(
expx(v)

)
− f (x)

)
dv

=

∫
B(1)

K (∥v∥)
(
f
(
expx(hnv)

)
− f (x)

)
dv

Applying equation (1), under assumptions H1 and H5, we obtain

E fn(x) − f (x) =
h2

n

2

∫
B(1)

K(∥v∥)Hess f (x) (v, v)dv + o(h2
n)

Proof of (3): For all x ∈ M, we have

Eφn(x) − φ(x) = E

1
n

n∑
i=1

Yi
1
hd

n

1
θx(Xi)

K
(
d(x, Xi)

hn

) − φ(x)

=
1
hd

n
E

(
Y1

1
θx(X1)

K
(
d(x, X1)

hn

))
− φ(x)

=
1
hd

n
E

(
1

θx(X1)
K

(
d(x, X1)

hn

)
E(Y1|X1 = y)

)
− φ(x)

=
1
hd

n

∫
M

r(y)
1

θx(y)
K

(
d(x, y)

hn

)
f (y)dµg(y) − φ(x)

=
1
hd

n

∫
M

1
θx(y)

K
(
d(x, y)

hn

)
(φ(y) − φ(x))dµg(y).
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Taking the integral over B(x, hn), we obtain

Eφn(x) − φ(x) =
1
hd

n

∫
B(x,hn)

1
θx(y)

K
(
d(x, y)

hn

)
(φ(y) − φ(x)) dµg(x)

=
1
hd

n

∫
B(hn)

K
(
∥v∥
hn

) (
φ
(
expx(v)

)
− φ (x)

)
dv

=

∫
B(1)

K (∥v∥)
(
φ
(
expx(hnv)

)
− φ (x)

)
dv

Using (1) and under assumptions H1 and H5, we get

Eφn(x) − φ(x) =
h2

n

2

∫
B(1)

K(∥v∥)Hessφ (x) (v, v)dv + o(h2
n)

5.2 Proof of Lemma 3.2

Proof of (4) For all x ∈ M, we have

V ( fn(x)) = V ( fn(x) − E fn(x)) = V

 1
nhd

n

n∑
i=1

Zi(x)


where Zi(x) = 1

θx(Xi)
K

(
d(x,Xi)

hn

)
− E

(
1

θx(Xi)
K

(
d(x,Xi)

hn

))
. It is clear that the (Zi)i are dependent and identically dis-

tributed with expectation E(Zi(x)) = 0, ∀i = 1, ..., n. Therefore,

V ( fn(x)) =
1

n2h2d
n

n∑
i=1

V(Zi) +
2

n2h2d
n

∑
j,i

Cov(Zi,Z j) = A + B.

Expression of A:

A =
1

nh2d
n

V(Z1(x))

=
1

nh2d
n
E

(
Z2

1(x)
)

=
1

nh2d
n

∫
M

1
θ2

x(y)
K2

(
d(x, y)

hn

)
f (y)dµg(y) −

1
nh2d

n

(∫
M

1
θx(y)

K
(
d(x, y)

hn

)
f (y)dµg(y)

)2

= I1,n(x) − I2,n(x).

Note that for any v ∈ Tx, θx(expx(v)) = |gx(v)|
1
2 and |gx(v)|

1
2 = 1 + O(||v||2) by assumption. Then, the first term

on the right is

I1,n(x) =
1

nh2d
n

∫
B(x,hn)

1
θ2

x(y)
K2

(
d(x, y)

hn

)
f (y)dµg(y)

=
1

nh2d
n

∫
B(hn)

1
θx(expx(v))

K2
(
∥v∥
hn

)
f
(
expx(v)

)
dv

=
1

nhd
n

∫
B(1)

1

|gx(v)|
1
2

K2 (∥v∥) f
(
expx(hnv)

)
dv,

Thus, ∫
B(1)

f
θx

(expx(hnv))K2 (∥v∥) dv→ f (x)
∫

B(1)
K2 (∥v∥) dv.

7
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Hence,

nhd
nI1,n(x)→ f (x)

∫
B(1)

K2 (∥v∥) dv.

Regarding the second term, we have

I2,n(x) =
1

nh2d
n

(∫
1

θx(y)
K

(
d(x, y)

hn

)
f (y)dµg(y)

)2

=
1

nh2d
n

(∫
B(hn)

K
(
∥v∥
hn

)
f (expx(v))dv

)2

=
1
n

(∫
B(1)

K (∥v∥) f (expx(hnv))dv
)2

.

Using (1), under assumptions H1 and H5, we get

I2,n(x) =
f 2(x)

n
+ o(1) = O

(
n−1

)
.

The expression of B is as follows

B =
2

n2h2d
n

∑
j,i

Cov(Zi(x),Z j(x))

=
2

n2h2d
n

∑
j,i

E(Zi(x)Z j(x))

=
2

n2h2d
n

∑
(i, j)∈E1

E(Zi(x)Z j(x)) +
2

n2h2d
n

∑
(i, j)∈E2

E(Zi(x)Z j(x))

= J1,n + J2,n

where E1 = {(i, j) | 1 ≤ | j − i| ≤ βn} and E2 = {(i, j) | βn + 1 ≤ | j − i| ≤ n − 1} , with βn = o(n).

To compute J1,n and J2,n, we need the following control∣∣∣Cov(Zi(x),Z j(x))
∣∣∣ = ∣∣∣E(Zi(x)Z j(x))

∣∣∣
=

∣∣∣∣∣∣∣E
(

1
θx(Xi)θx(X j)

K
(
d(x, Xi)

hn

)
K

(
d(x, X j)

hn

))
− E

(
1

θx(Xi)
K

(
d(x, Xi)

hn

))2
∣∣∣∣∣∣∣

=

∣∣∣∣∣∣
∫ ∫

1
θx(y)θx(z)

K
(
d(x, y)

hn

)
K

(
d(x, z)

hn

)
f (y, z) dµg(y)dµg(z)

)
−

[∫
1

θx(y)
K

(
d(x, y)

hn

)
f (y)dµg(y))

]2
∣∣∣∣∣∣∣

=

∣∣∣∣∣∣
∫ ∫

1
θx(y)θx(z)

K
(
d(x, y)

hn

)
K

(
d(x, z)

hn

) [
f (y, z) − f (y) f (z)

]
dµg(y)dµg(z)

∣∣∣∣∣∣ .
Finally,∣∣∣Cov(Zi(x),Z j(x))

∣∣∣ = h2d
n

∣∣∣∣∫B(1)

∫
B(1)

K(∥u∥)K(∥v∥)
(
f
(
expx(hnu), expx(hnv)

)
− f

(
expx(hnu)

)
f
(
expx(hnv)

))
dvdu

∣∣∣∣ .
Thus, under assumptions H1 and H6, we obtain:

|Cov(Zi(x),Z j(x))| ≤ M h2d
n = O

(
h2d

n

)
.

8



Nefzi et al. 5 PROOFS

So that
J1,n ≤

2M
n
βn = O

(
n−1βn

)
.

For E2, we can use the modified Davydov inequality for mixing processes (see Rio (1999), p.10, formula
1.12a). This gives, for all i , j

|Cov(Zi,Z j)| ≤ cα(|i − j|).

Hence,

J2,n ≤
2c

n2h2d
n

n∑
i=1

∑
βn+1<|i− j|≤n−1

α(|i − j|) <
2c

nh2d
n

∫ n−1

βn+1
s−νds = O(n−1β1−ν

n h−2d
n ).

By choosing βn = h
−2d
ν

n under assumption H2, we obtain

J1,n + J2,n = o

 1

nh
2d
ν

n

 = 1
nhd

n
o(1)

Finally, we obtain

V ( fn(x)) =
1

nhd
n

(
f (x)

∫
B(1)

K2 (∥v∥) dv + o(1)
)

Proof of (5) For all x ∈ M, we have

φn(x) = φn(x) − E (φn(x)) + E(φn(x)) .

Therefore, we can express the variance of φn(x) as follows

V(φn(x)) = V (φn(x) − Eφn(x)) = V

 1
nhd

n

n∑
i=1

Li(x)


where Li(x) = Yi

θx(Xi)
K

(
d(x,Xi)

hn

)
− E

(
Yi

θx(Xi)
K

(
d(x,Xi)

hn

))
, for all i = 1, ..., n. It is clear that the Li’s are dependent and

identically distributed with expectation E(Li(x)) = 0. Then,

V(φn(x)) =
1

n2h2d
n

n∑
i=1

V (Li(x)) +
2

n2h2d
n

∑
j,i

Cov
(
Li(x), L j(x)

)
= D + E

Starting with the expression of D, we have

D =
1

nh2d
n
E

(
L2

1(x)
)

=
1

nh2d
n
E

(
Y2

1

θ2
x(X1)

K2
(
d(x, X1)

hn

))
−

1
nh2d

n
E2

(
Y1

θx(X1)
K

(
d(x, X1)

hn

))
= I1,n − I2,n

where

I1,n =
1

nh2d
n
E

(
Y2

1

θ2
x(X1)

K2
(
d(x, X1)

hn

))
=

1
nh2d

n
E

(
1

θ2
x(X1)

K2
(
d(x, X1)

hn

)
E

[
Y2

1 |X1 = y
])

=
1

nh2d
n

∫
M

σ2(y)
θ2

x(y)
K2

(
d(x, y)

hn

)
f (y)dµg(y)

=
1

nh2d
n

∫
BM(x,hn)

f .σ2(y)
θ2

x(y)
K2

(
d(x, y)

hn

)
dµg(y)

9
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Using the fact that for any v ∈ Tx, θx(expx(v)) = |gx(v)|
1
2 , we can rewrite I1,n as

I1,n =
1

nh2d
n

∫
B(hn)

f .σ2(expx(v))

|gx(v)|
1
2

K2
(
∥v∥
hn

)
dv

=
1

nhd
n

∫
B(1)

f .σ2(expx(hnv))

|gx(v)|
1
2

K2 (∥v∥) dv.

Note that |gx(v)|
1
2 = 1 + O(||v||2) by assumption, hence∫

B(1)

f .σ2

θx
(expx(hnv))K2 (∥v∥) dv→

∫
B(1)

f .σ2(x)K2 (||v||) dv,

which gives us

nhd
nI1,n −→ f .σ2(x)

∫
B(1)

K2 (||v||) dv.

Regarding the second term, we have

I2,n =
1

nh2d
n
E2

(
Y1

θx(X1)
K

(
d(x, X1)

hn

))
=

1
nh2d

n

(∫
B(x,hn)

1
θx(y)

K
(
d(x, y)

hn

)
φ(y)dµg(y)

)2

=
1
n

(∫
B(1)

K (∥v∥)φ(expx(hnv))dv
)2

.

Using (1) and assuming H1 and H5 , we get

I2,n =
φ2(x)

n
+ o(1) = O

(
n−1

)
.

Next, we can decompose the expression of E as follows

E =
2

n2h2d
n

n∑
(i, j)∈E1

Cov(Li(x), L j(x)) +
2

n2h2d
n

n∑
(i, j)∈E2

Cov(Li(x), L j(x)) = J1,n +J2,n

where E1 = {(i, j) | 1 ≤ | j − i| ≤ βn} and E2 = {(i, j) | βn + 1 ≤ | j − i| ≤ n − 1} .

To compute J1,n and J2,n, we need the following control∣∣∣Cov(Li(x), L j(x))
∣∣∣ = |E(Li(x)L j(x))|

= |E

(
Yi Y j

θx(Xi)θx(X j)
K

(
d(x, Xi)

hn

)
K

(
d(x, X j)

hn

))
− E

(
Yi

θx(Xi)
K

(
d(x, Xi)

hn

))
E

(
Y j

θx(X j)
K

(
d(x, X j)

hn

))
|

=
∣∣∣∣ ∫ ∫

r(y)r(z)
θx(y)θx(z)

K
(
d(x, y)

hn

)
K

(
d(x, z)

hn

)
( f (y, z) − f (y) f (z))dµg(y)dµg(z)

∣∣∣∣
Finally,

∣∣∣Cov(Li(x), L j(x))
∣∣∣ =

h2d
n

∣∣∣∣∫B(1)

∫
B(1)

r(expx(hnu))r(expx(hnv))K(∥u∥)K(∥v∥)
(
f
(
expx(hnu), expx(hnv)

)
− f

(
expx(hnu)

)
f
(
expx(hnv)

))
dvdu

∣∣∣∣ .
10
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Thus, under the assumptions H1(i), H4 and H6∣∣∣Cov(Li(x), L j(x))
∣∣∣ = O

(
h2d

n

)
.

For E1, we have

J1,n =
2

n2h2d
n

n∑
i=1

∑
1≤| j−i|≤βn

Cov(Li(x), L j(x)) ≤ 2n−1βn = O
(
n−1βn

)
.

For E2, we use the modified Davydov’s inequality for mixing processes (see Rio (1999), p.10, formula 1.12a).
For all i , j, this leads to

|Cov(Li(x), L j(x))| ≤ cα(|i − j|).

Therefore

J2,n ≤
2

n2h2d
n

∑
i=1

∑
βn+1≤ j−i≤n−1

cα(|i − j|) =
2c
h2d

n

∫ n−1

βn+1
s−νds ≤ 2c h−2d

n β1−ν
n+1 ≤

2c
1 − ν

h−2d
n β1−ν

n = O
(
h−2d

n β1−ν
n

)
.

By choosing βn = h
−2d
ν

n under the assumption H2, we have

J1,n +J2,n = o

 1

nh
2d
ν

n

 = o
(

1
nhd

n

)
.

Finally we obtain

V(φn(x)) =
1

nhd
n

[
f .σ2(x)

∫
B(1)

K2(||x||)dx + o(1)
]
.

5.3 Proof of the proposition 4.1

Proof of (6)

In order to compute the bias of the regression estimator, we use the following decomposition

rn(x) − r(x) =
φn(x)
fn(x)

−
φ(x)
f (x)
= Bn(x)

f (x)
fn(x)

where Bn(x) is given as

Bn(x) =
1

f (x)
(φn(x) − φ(x)) −

r(x)
f (x)

( fn(x) − f (x)) . (10)

Since fn converges asymptotically to f in a normal distribution, to compute Ern(x) − r(x), it is sufficient to
compute

EBn(x) =
1

f (x)
E (φn(x) − φ(x)) −

r(x)
f (x)
E ( fn(x) − f (x)) .

By using equations (2) and (3), we can straightforward obtain

Ern(x) − r(x) = EBn(x) =
h2

n

2 f (x)

(∫
B(1)

K(∥v∥)(Hessφ(x)(v, v) − r(x)Hess f (x)(v, v))dv
)
+ o

(
h2

n

)
.

Proof of (7)

Using the same decomposition (10), we obtain

V (rn(x)) = V(Bn(x)) =
1

f 2(x)
V(φn(x)) +

r2(x)
f 2(x)

V ( fn(x)) −
2r(x)
f 2(x)

Cov (φn(x), fn(x))

11
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where we can compute Cov ( fn(x), φn(x)) to obtain the desired result. We define

Cov ( fn(x), φn(x)) =
1

n2h2d
n

n∑
i=1

Cov
(

1
θx(Xi)

K
(
d(x, Xi)

hn

)
,Yi

1
θx(Xi)

K
(
d(x, Xi)

hn

))
+

1
n2h2d

n

∑
i, j

Cov
(

1
θx(Xi)

K
(
d(x, Xi)

hn

)
,Y j

1
θx(X j)

K
(
d(x, X j)

hn

))
= K1,n +K2,n

Starting with K1,n

K1,n =
1

nh2d
n

∫
M

E(Y1|X1 = y)
1

θ2
x(y)

K2
(
d(x, y)

hn

)
f (y)dµg(y)

=
1

nh2d
n

∫
BM(x,hn)

r(y)
1

θ2
x(y)

K2
(
d(x, y)

hn

)
f (y)dµg(y)

=
1

nhd
n

∫
B(1)

φ

θx
(expx(hnv))K2(∥v∥)dv,

By performing the same calculations as in the proof of I1,n, we obtain

nhd
nK1,n −→ φ(x)

∫
B(1)

K2(∥v∥)dv as n→ ∞.

For K2,n, we follow the same steps as in the proof of the expression E. Thus, we obtain

K2,n = o
(

1
nhd

n

)
.

Therefore, we have

Cov ( fn(x), φn(x)) =
1

nhd
n
φ(x)

∫
B(1)

K2(∥x∥)dx + o
(

1
nhd

n

)
.

Consequently, we obtain

V(rn(x)) =
1

nhd
n

(
σ2(x) − r2(x)

f (x)

∫
B(1)

K2(∥x∥)dx + o (1)
)
.

where o(1) is independent to x.

5.4 Proof of corollary 4.1

To establish this result, we use the conventional method of decomposing the mean squared error,

MS E(x) = E (rn(x) − r(x))2 = b2(x) + V (rn(x)) (11)

where b(x) := E(rn(x)) − r(x) is the bias of the kernel estimator.

Base on the results derived from (6) and (7), we get

MS E(x) = C1h4
n +C2

1
nhd

n
+ o

(
h4

n +
1

nhd
n

)
where C1 =

1
4( f (x))2

(∫
B(1)

K(∥v∥)(Hessφ(x)(v, v) − r(x)Hess f (x)(v, v))dv
)

and C2 =
σ2(x)−(r(x))2

f (x)

∫
B(1)

K2(∥v∥)dv.

Then, we can achieve the goal of minimizing the MSE by focusing on minimizing the term C1h4
n + C2

1
nhd

n
.

Hence, we get
hn,opt = C0 n

−1
d+4

where C0 =
(

dC2
4C1

) 1
4+d .

12
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5.5 Proof of Theorem 4.1

The MSE decomposition in (11) leads to

sup
x∈M
E (rn(x) − r(x))2

≤ sup
x∈M

b2(x) + sup
x∈M

V (rn(x))

Now, by Assumption H4 and for the same reasons provided by Pelletier (2005)(in p.302), we have, for all
v ∈ B(1), | f (expx(hnv)) − f (x) + hn

〈
grad f (x), v

〉
| ≤ Ch2

n∥v∥
2. Therefore, by H1, we have |E fn(x) − f (x)| ≤ Ch2

n.
Using the same reasons and by adding the fact that Y is bounded in H4, we get |Eφn(x) − φ(x)| ≤ Ch2

n, where
C > 0 is independent of x in both cases. Consequently, due to the compactness of M, the following bound
holds

sup
x∈M
|b(x)| ≤ Ch2

n

for some C > 0 and f (x) > 0.

Now, using the fact that o(1) is independent of x and f , σ2, r and K are bounded f (x) > 0 in (7), we get
straightforward

sup
x∈M
|V(rn(x))| ≤ C

1
nhd

n

which achieved the proof.
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