
HAL Id: hal-04896094
https://hal.science/hal-04896094v1

Submitted on 19 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A theoretically-consistent parallel enrichment strategy
for Bayesian active learning reliability analysis
Tong Zhou, Tong Guo, Xujia Zhu, Masaru Kitahara, Jize Zhang

To cite this version:
Tong Zhou, Tong Guo, Xujia Zhu, Masaru Kitahara, Jize Zhang. A theoretically-consistent parallel
enrichment strategy for Bayesian active learning reliability analysis. Computer Methods in Applied
Mechanics and Engineering, In press. �hal-04896094�

https://hal.science/hal-04896094v1
https://hal.archives-ouvertes.fr


A theoretically-consistent parallel enrichment strategy for Bayesian active
learning reliability analysis

Tong Zhoua, Tong Guob, Xujia Zhuc, Masaru Kitaharad, Jize Zhanga,∗

aDepartment of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong
bSchool of Civil Engineering, Southeast University, Nanjing 210098, China

cLaboratoire des signaux et systèmes, Université Paris-Saclay, CNRS, CentraleSupélec, Gif-sur-Yvette 91190, France
dDepartment of Civil Engineering, The University of Tokyo, Tokyo 113-8656, Japan

Abstract

Although parallel active learning reliability analysis is promising and has been widely studied, there remains an
open question regarding how to achieve better theoretical consistency and avoid reliance on empirical practices
heavily. A new parallel Bayesian active learning reliability method is developed in this study. First, in Bayesian
failure probability estimation, a metric called integrated probability of misclassification (IPM) is defined from
the upper bound of mean absolute deviation of failure probability. Then, a multi-point learning function called
k-point integrated probability of misclassification reduction (k-IPMR) is proposed to guide the selection of a
batch of k(≥ 1) new samples that maximize the expected reduction of IPM. To further reduce the computational
overhead, fast k-IPMR-guided parallel Bayesian active learning reliability analysis is conducted through four
key workarounds. (i) The k-IPMR is substituted by its theoretically analogous but computationally cheaper
variant. (ii) A stepwise maximization of k-IPMR is deployed to replace the cumbersome direct maximization
approach. (iii) The number of new samples added per iteration is identified in an adaptive manner. (iv) A
hybrid convergence criterion is specified according to the actual reduction of IPM at each iteration. Owing to
the core role of IPM, we fuse the three major ingredients, i.e., Bayesian inference of failure probability, multi-
point enrichment process, and convergence criterion, in a theoretically consistent way. The performance of the
proposed method is testified on four examples of varying complexity. The results indicate that the proposed
approach needs a fewer number of iterations than those existing ones and thus is more computationally efficient,
particularly when dealing with time-intensive complex reliability problems.

Keywords: Multi-point learning function, Parallel enrichment, Stepwise maximization, Theoretical
consistency, Bayesian active learning, Reliability analysis

Nomenclature

AK–MCS Adaptive Kriging – Monte Carlo simula-
tion

ALR Active learning reliability
BALR Bayesian active learning reliability
CDF cumulative distribution function
CV coefficient of variation
ED experimental design
EM ensemble of metamodels
IPM integrated probability of misclassifica-

tion

IPMR integrated probability of misclassifica-
tion reduction

MCS Monte Carlo simulation
PABQ parallel adaptive Bayesian quadrature
PDEM probability density evolution method
PDF probability density function
PM probability of misclassification
SUR stepwise uncertainty reduction
UBVC upper-bound variance contribution
VAIS variance-amplified importance sampling

1. Introduction

In probabilistic reliability analysis, a major task is to compute the probability of failure of an engineering
system, taking into account various sources of uncertainty inherent in its physical properties, external loads,
operating conditions, etc [1]. Basically, those uncertainties can be represented through a vector of d random
variables X = {X1, . . . , Xd} ∈ X ⊂ Rd, with a known joint probability density function (PDF) fX(x). Here, X
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is assumed to be a standard Gaussian vector, and a transformation (e.g., isoprobabilistic, Nataf, or Rosenblatt
transformation) can be employed to project the original random vector to a standard Gaussian one, if necessary.
Then, the state of an engineering system is encoded by the so-called performance function G

(
x
)
: Rd → R1.

Conventionally, the system is assumed to be in a failure state (resp. safe state) when G
(
x
)
≤ 0 (resp. G

(
x
)
> 0).

Then, the failure probability Pf can be defined as [1]

Pf = P
(
G
(
X
)
≤ 0
)
=

∫
X
1G (x) fX(x)dx, (1)

where P (·) denotes the probability measure; 1G (x) is the failure indicator function, expressed as

1G (x) =

{
1, G

(
x
)
≤ 0,

0, otherwise.
(2)

Eq. (1) generally has no analytical solution in realistic scenarios, and a variety of numerical reliability
methods have been developed in the past decades. They can be basically categorized into the following five
groups. (i) Approximation methods, such as the first-/second-order reliability methods [2, 3]. (ii) Sampling
methods, comprising the well-known Monte Carlo simulation (MCS) and those variance reduction techniques,
e.g., importance sampling [4], subset simulation [5], and line sampling [6]. (iii) Moment methods, consisting of
integer moment-based and fractional moment-based methods [7, 8]. (iv) Probability preservation-based methods,
including probability density evolution method (PDEM) [9, 10] and its variants, e.g., direct probability integral
method [11]. (v) Active learning reliability (ALR) methods [12, 13], which have recently gained increasing
popularity due to their unique advantage of offering substantial savings in computational budget. Two pioneering
contributions in this category are the efficient global reliability analysis [14] and the Adaptive Kriging – Monte
Carlo simulation (AK–MCS) [15]. This is also the main focus of this study.

The ALR paradigm mainly consists of four key ingredients, namely surrogate model, reliability estimation
algorithm, learning function, and convergence criterion [13]. (i) Commonly-used surrogate models include
Kriging [16, 17], polynomial chaos expansion [18], support vector regression [19], radial basis function [20, 21],
and ensemble of metamodels (EM) [22], to name just a few. Kriging is arguably the most popular one, owing
to its exact interpolation property and the inherent ability to quantify epistemic uncertainty over predictions.
(ii) Simulation methods [15, 23] and PDEM [24, 25] are often advocated to be used with a surrogate model
to provide the failure probability estimate, owing to their fair guarantee of accuracy. (iii) Learning functions
act as an “engine” of the ALR paradigm, distinguishing it from other categories of reliability methods. Typical
Kriging-based learning functions include the U function [15], the expected feasibility function [14], the margin
probability function [26], and so on. Essentially, those learning functions are designed in a spirit of achieving a
pointwise trade-off between the exploitation (closeness of Kriging mean to the limit state) and exploration (high
Kriging variance). Hence, they are collectively called pointwise learning functions in [27]. (iv) Convergence
criterion is often defined according to the maximum/minimum value of a pointwise learning function. However,
this practice is often too conservative [28] due to the fact that a pointwise learning function only reflects local
uncertainty of failure probability. Then, some convergence criteria are defined with a direct link to the failure
probability estimate, such as those defined based on the confidence bound or stabilization of failure probability
estimate [28, 13, 25]. The readers are referred to [12, 13] for a comprehensive review of recent advances in the
ALR framework.

More recently, Bayesian active learning reliability (BALR) method [29, 30], acting as a sub-category of the
general ALR framework, has emerged as a promising approach. By treating Kriging-based failure probability
estimation as a Bayesian inference problem, it seeks to infer the posterior statistics of failure probability. The
posterior mean is a natural estimate of failure probability, while the posterior variance acts as a global measure
of residual uncertainty about failure probability. Such a residual uncertainty can guide the design of both
learning function and stopping condition. Obviously, a fair fusion of Bayesian inference and active learning
distinguishes the BALR methods from other traditional ALR methods [31]. Initially, a learning function called
stepwise uncertainty reduction (SUR) [29] was proposed with the direct aim of reducing the posterior variance of
failure probability. Unfortunately, both the posterior variance of failure probability and the SUR are expressed
as analytically-intractable double integral; hence, they remain too computationally demanding to use in practice
[32]. To alleviate such heavy computational burden, some alternative measures of residual uncertainty of failure
probability were proposed, expressed as computationally cheaper single integrals. Typical ones include the
integrated Bernoulli variance [32], the integrated probability of misclassification [33], the integrated margin
probability [34], and the limit-state margin volume [35], etc.

According to those residual uncertainty measures above, the basic principles of designing a learning func-
tion in the literature can be mainly classified into the following three categories. (i) The integrand approach.
The learning function is simply defined as the integrand of a residual uncertainty measure, with an intuitive
belief that adding the point with the maximum integrand will contribute the most to reducing this residual
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uncertainty measure. Typical ones include the upper-bound variance contribution (UBVC) [30], the expected
misclssification probability contribution [33], and the left-/right-shifted contribution [34]. In essence, they be-
long to the category of pointwise learning functions. Hence, this intuitive approach loses the power of explicitly
quantifying the reduction of residual uncertainty of failure probability due to adding a new sample. (ii) Plain
double integral approach. The learning function is defined as the expected reduction of a residual uncertainty
measure incurred by adding a new sample and is crudely expressed as a double integral. Typical ones include
the expected uncertainty reduction [36], the expected integrated error reduction [37], and the sampling-based
expected uncertainty reduction [38]. Due to analytical intractability, those learning functions have to be numer-
ically computed as a nested summation, which is very computationally cumbersome. (iii) Look-ahead approach.
Similar to the second category, the look-ahead learning function is designed to select a new sample that reduces,
at most, a specific residual uncertainty measure of failure probability in expectation. With the help of Kriging
update formulas, the look-ahead learning function could be reduced to a single integral. Typical ones comprise
the second version of SUR [32], the expected margin volume reduction [35], the integrated probability of mis-
classification reduction [39], the stepwise margin reduction [40], the SUR-Bichon function [41], etc. Obviously,
those look-head learning functions come with much lower computational cost than those in the second category.
However, those aforementioned learning functions are generally applicable to the single-point scenario.

With the widespread availability of distributed computing facilities, parallel (B)ALR methods have gained
increasing attention in the past decade. They intend to select a batch of new training samples at which
to evaluate the costly performance function in parallel, so as to maximize the resource utilization and save
the total computational time. Those pointwise learning functions have difficulty in extending their analytical
expressions to multi-point scenario, due to their point-to-point nature. Hence, existing parallel (B)ALR methods
are often implemented by combining a single-point learning function with some additional multi-point selection
strategies. Those additional strategies can be grossly grouped into the following four categories. (i) Clustering
approach, e.g., the K-means clustering method [28, 42, 30] or the K-medoids clustering method [43, 23]. (ii)
Kriging retraining approach, such as Kriging believer strategy [44, 45], or constant liar strategy [46]. (iii) Pseudo
learning function approach, e.g., the kernel function-based methods [47, 48, 49]. (iv) EM-based approach, such
as [50, 22]. Notably, the number, K, of new samples added per iteration has to be prescribed in those strategies,
and it is very challenging to specify a rational value of K a priori. Due to the inherent flaw of pointwise learning
functions, such practice is also unable to quantify the potential reduction of residual uncertainty measure of
failure probability brought by a batch of new samples. Hence, the resulting batch of new samples is not optimal
for reducing the residual uncertainty measure to some extent [31]. By comparison, the look-ahead learning
functions have the potential of directly measuring the impact of adding a batch of new samples on reducing the
residual uncertainty measure of failure probability. Hence, it is feasible to conduct the multi-point enrichment
process through a multi-point learning function directly, eliminating the need for additional batch selection
strategies. If so, the parallel BALR framework will be more theoretically consistent and numerically elegant.

To fill in the research gap, a new parallel Bayesian active learning reliability method is proposed. It is devoted
to developing a multi-point look-ahead learning function based on a computationally cheap residual uncertainty
measure of failure probability, whereby the parallel enrichment process can be efficiently implemented. The
main contributions of this study are summarized as follows.

• The metric integrated probability of misclassification (IPM) is rigorously proved as the upper bound of
mean absolute deviation of failure probability within Bayesian inference. Hence, it can be viewed as a
global measure of residual uncertainty of failure probability and is much computationally cheaper than
the posterior variance of failure probability.

• A multi-point learning function called k-point integrated probability of misclassification reduction (k-
IPMR) is proposed. It enables quantifying the gain of adding a batch of k(≥ 1) new samples on reducing
the IPM in expectation.

• The multi-point enrichment process can be conducted based on the k-IPMR solely. Moreover, an adaptive
scheme is proposed to specify the rational number of new samples added per iteration, instead of the
traditional prescribed manner.

• A hybrid stopping condition is developed from the actual reduction of IPM. Thanks to the central role
of IPM, the three key ingredients, i.e., Bayesian inference of failure probability, learning function (and
parallel enrichment), and stopping condition, are fused in a theoretically consistent way.

The remainder of this paper is structured as follows. Section 2 revisits several related studies. Section 3
devotes to both theoretical derivation and numerical computation of a multi-point learning function k-IPMR.
Section 4 details how to efficiently conduct the k-IPMR-guided multi-point enrichment process. The proposed
approach is illustrated in Section 5 through four distinct examples. This paper closes with some concluding
remarks in Section 6.
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2. Preliminaries

Section 2.1 reviews Bayesian inference of failure probability. Then, Section 2.2 outlines the multi-point
Kriging update formulas.

2.1. Bayesian inference of failure probability
Treating the performance function G

(
x
)

as one sample path of Kriging Ĝn
(
x
)
∼ GP (µn (x) , cn (x,x

′)), we
can infer the epistemic uncertainty of 1̂n (x) and further P̂f,n arising from the lack of exact knowledge of G

(
x
)
,

as enclosed by the yellow box in Fig. 1. Further, to reduce the epistemic uncertainty of P̂f,n, two key ingredients
in the ALR, i.e., learning function and convergence criterion, can be designed in a goal-oriented manner, as
visualized by the red arrows in Fig. 1. Obviously, Bayesian inference and active learning are well fused in the
BALR framework.

Bayesian inference

Start
Experimental

design
Dn = {Xn,Yn}

Learning
function

D∗
K = {X ∗

K ,Y∗
K}

Convergence
criterion End

NDn

⋃
D∗

K Y

Ĝn
(
x
)
∼

GP (µn(x), cn(x,x
′))

1̂n (x) ∼
GBP

(
µ1̂n

(x), c1̂n
(x,x′)

) P̂f,n{
µP̂f,n

, σ2
P̂f,n

(or Hn)
}

Kriging

1̂n (x) =

{
1, Ĝn

(
x
)
≤ 0

0, otherwise P̂f,n =
∫
X 1̂n (x)fX(x)dx

Guide

Figure 1: Basic workflow of Bayesian active learning reliability analysis

For brevity, the basics of Kriging are given in Appendix A. When providing an experimental design (ED)
of size n, denoted as Dn = {Xn,Yn} =

{(
x(i), y(i)

)
, i = 1, . . . , n

}
, a Kriging Ĝn

(
x
)

can be trained, with its
mean µn(x), variance σ2

n(x), and covariance cn (x,x
′) given by Eqs. (A.7), (A.8), and (A.9), respectively. Then,

substituting the Kriging Ĝn
(
x
)

to Eq. (2), the failure indicator function 1G (x) is recast as

1̂n (x) =

{
1, Ĝn

(
x
)
≤ 0,

0, otherwise,
(3)

which follows a generalized Bernoulli process, that is, 1̂n (x) ∼ GBP
(
µ1̂n

(x), c1̂n
(x,x′)

)
, with its mean µ1̂n

(x),
variance σ2

1̂n
(x), and covariance c1̂n

(x,x′) expressed as [33]

µ1̂n
(x) = Φ

(
−µn(x)

σn(x)

)
, (4)

σ2
1̂n
(x) = Φ

(
−µn(x)

σn(x)

)
Φ

(
µn(x)

σn(x)

)
, (5)

c1̂n
(x,x′) = Φ2

([
0
0

]
;

[
µn(x)
µn(x

′)

]
,

[
σ2
n(x) cn(x,x

′)
cn(x

′,x) σ2
n(x

′)

])
− Φ

(
−µn(x)

σn(x)

)
Φ

(
−µn(x

′)

σn(x′)

)
, (6)

respectively, where Φ (·) denotes the cumulative distribution function (CDF) of a standard Gaussian variable;
Φ2 (·;µ, C) represents the joint CDF of a bivariate Gaussian vector with mean vector µ and covariance matrix
C. Note that Φ2 (·; ·, ·) has no analytical solution and needs numerical calculation.

Further, substituting Eq. (3) into Eq. (1), the failure probability is estimated as

P̂f,n =

∫
X
1̂n (x) fX(x)dx, (7)

which is still a random variable through 1̂n (·). Although the exact distribution of P̂f,n is unavailable, its mean
µP̂f,n

and variance σ2
P̂f,n

can be obtained as [33]

µP̂f,n
=

∫
X
Φ

(
−µn(x)

σn(x)

)
fX(x)dx, (8)

σ2
P̂f,n

=

∫∫
X×X

Φ2

([
0
0

]
;

[
µn(x)
µn(x

′)

]
,

[
σ2
n(x) cn(x,x

′)
cn(x,x

′) σ2
n(x

′)

])
fX(x)fX(x′)dxdx′ − µ2

P̂f,n
, (9)
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respectively. Then, µP̂f,n
is a natural estimate of P̂f,n, while σ2

P̂f,n
can be viewed as a measure of residual

uncertainty of P̂f,n.
Generally, both µP̂f,n

and σ2
P̂f,n

have no analytical solution and require numerical integration. Take the
variance-amplified importance sampling (VAIS) method for example, µP̂f,n

can be numerically computed as

µP̂f,n
=

∫
X
Φ

(
−µn(x)

σn(x)

)
fX(x)

hX(x)
hX(x)dx ≈ 1

Q1

Q1∑
q=1

Φ

(
−
µn

(
x(q)

)
σn

(
x(q)

)) fX
(
x(q)

)
hX

(
x(q)

) = µ̃P̂f,n
, (10)

where hX (x) denotes the importance sampling density function and can be simply specified as ϕ(x;0, α2Id),
with ϕ(·) the joint PDF of a d-variate Gaussian vector, Id an identity matrix of size d× d, α the amplification
coefficient and taken as 1.5 here [30]; XQ1

=
{
x(q), q = 1, . . . , Q1

}
denotes a set of Q1 quadrature points drawn

from hX (x). Moreover, the sample variance of µ̃P̂f,n
is expressed as

Var
[
µ̃P̂f,n

]
=

1

Q1 × (Q1 − 1)

Q1∑
q=1

[
Φ

(
−
µn

(
x(q)

)
σn

(
x(q)

)) fX
(
x(q)

)
hX

(
x(q)

) − µ̃P̂f,n

]2
, (11)

then, the sample coefficient of variation (CV) is given by CV
[
µ̃P̂f,n

]
=

√
Var
[
µ̃P̂f,n

]
/µ̃P̂f,n

. Basically, the sample
size Q1 is considered sufficient when CV

[
µ̃P̂f,n

]
≤ εQ, with the tolerance εQ set as 5% here.

Unlike µP̂f,n
, σ2

P̂f,n
is expressed as a double integral of the bivariate Gaussian CDF Φ2 (·; ·, ·). Its calculation

is very computationally demanding, due to the complexity and non-analytical nature of Φ2 (·; ·, ·). To this end,
a computationally cheaper alternative of σ2

P̂f,n
will be proposed in Section 3.

2.2. Multi-point Kriging update formulas
To define a learning function that quantifies the epistemic uncertainty reduction of failure probability, we

need to explicitly measure the impact of adding a batch of new samples on the posterior of Kriging. This can
be realized through the so-called Kriging update formulas [51].

Specifically, suppose that a batch of k new samples X+
k =

{
x
(1)
+ , . . . ,x

(k)
+

}
and their model responses

Y+
k =

{
y
(1)
+ , . . . , y

(k)
+

}
are added into the ED Dn, the Kriging update formulas are expressed as [51]

µn+k(x) = µn(x) + cn
(
x,X+

k

)⊤ (C+k )−1 (Y+
k −µn

(
X+

k

))
, (12)

σ2
n+k(x) = σ2

n(x)− cn
(
x,X+

k

)⊤ (C+k )−1
cn
(
x,X+

k

)
, (13)

cn+k (x,x
′) = cn (x,x

′)− cn
(
x,X+

k

)⊤ (C+k )−1
cn
(
x′,X+

k

)
, (14)

which are referred to as the look-ahead mean, variance, and covariance of Kriging, respectively. cn
(
x,X+

k

)
:=[

cn
(
x,x

(1)
+

)
, . . . , cn

(
x,x

(k)
+

)]⊤
is a k×1 vector of covariances between x and all new points in X+

k , C+k :=[
cn
(
x
(i)
+ ;x

(j)
+

)]
1≤i,j≤k

is a k×k matrix of covariances among all new points in X+
k .

Clearly, µn+k(x), σ2
n+k(x), and cn+k (x,x

′) are directly obtained from some matrix manipulations on the
current posterior of Kriging, without re-optimizing its kernel parameters θ [35]. Hence, the look-ahead posterior
of Kriging is much computationally cheaper than the retraining of Kriging. Thanks to both analytical tractability
and low computational cost of Kriging update formulas, a theoretically sound and computationally fast multi-
point learning function will be proposed in Section 3.

3. A multi-point learning function k-IPMR

Section 3.1 outlines a measure of residual uncertainty of failure probability estimated by Kriging. On this
basis, a multi-point learning function called k-IPMR is defined in Section 3.2 and its upper bound is then given
in Section 3.3. Subsequently, Section 3.4 presents the setting of single numerical evaluation of k-IPMR. Finally,
Section 3.5 elucidates the significant computational burden faced by the direct k-IPMR-guided multi-point
enrichment process.
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3.1. A residual uncertainty measure of failure probability
Proposition 1. Denote the integrated probability of misclassification (IPM) as

Hn = EX [πn(x)] =

∫
X
πn(x)fX(x)dx, (15)

where EX [·] stands for the expectation with respect to X; πn(x) is called probability of misclassification (PM),
expressed as

πn(x) = Φ

(
−|µn(x)|

σn(x)

)
, (16)

which denotes the probability of mis-classifying the failure/safe state at x according to the Kriging mean µn(x),
as illustrated in Fig. 2.

Then, the mean absolute deviation of P̂f,n satisfies

En

[∣∣∣P̂f,n − µP̂f,n

∣∣∣] ≤ 2Hn, (17)

where En [·] denotes the expectation with respect to Ĝn
(
x
)
.

The proof of Proposition 1 is given in Appendix B. Notably, πn(x) is exactly the theoretical underpinning
of the well-known U function [15, 28]. Although similar definitions to the IPM (but different names) were
empirically given in [33, 49], a rigorous proof that it acts as a global residual uncertainty measure of failure
probability has not been provided yet.

( ) 0nm <x ( ) 0nm >x

0 0

(

(
(

)
)

)n

n
np

m

s

æ ö÷ç ÷ç= F - ÷ç ÷÷çè ø

x
x

x

PDF PDF ( )2( ), ( )n nm s x x

Figure 2: Schematic representation of the PM πn(x)

Proposition 1 indicates that when the well-defined IPM Hn → 0, µP̂f,n
converges to the actual failure

probability Pf in expectation. Hence, similar to the variance σ2
P̂f,n

, the IPM Hn can be viewed as an epistemic

uncertainty measure of P̂f,n. More importantly, the Hn is only expressed as a single integral of Φ (·) and is
much computationally cheaper than σ2

P̂f,n
. Similarly, the VAIS-based estimation of Hn can be given as

Hn =

∫
X
πn(x)

fX(x)

hX(x)
hX(x)dx ≈ 1

Q2

Q2∑
q=1

πn

(
x(q)

) fX
(
x(q)

)
hX

(
x(q)

) = H̃n, (18)

where XQ2
=
{
x(q), q = 1, . . . , Q2

}
denotes a set of Q2 samples drawn from hX(x). Further, the CV

[
H̃n

]
can

be computed, and the sample size Q2 is then considered sufficient when CV
[
H̃n

]
≤ εQ.

According to the definition of IPM Hn, a learning function can be designed to select a sequence of new
samples that reduce, at most, the IPM in expectation, which will be detailed in Section 3.2.

3.2. Basic definition of the learning function k-IPMR

Suppose that a batch of k new samples and their G-function responses, i.e.,
{
X+

k ,Y
+
k

}
=
{(

x
(i)
+ , y

(i)
+

)
, i = 1, . . . , k

}
,

are added into the current ED Dn, the look-ahead mean µn+k(x), variance σ2
n+k(x) and covariance cn+k (x,x

′)
of Kriging are given by Eqs. (12), (13) and (14), respectively.

Then, owing to the addition of
{
X+

k ,Y
+
k

}
, the look-ahead IPM Hn+k

(
X+

k ,Y
+
k

)
can be expressed as

Hn+k

(
X+

k ,Y
+
k

)
= EX

[
πn+k

(
x;X+

k ,Y
+
k

)]
, (19)
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where the look-ahead PM πn+k

(
x;X+

k ,Y
+
k

)
is given as

πn+k

(
x;X+

k ,Y
+
k

)
= Φ

(
−|µn+k(x)|

σn+k(x)

)
,

= Φ

−
∣∣∣µn(x) + cn

(
x,X+

k

)⊤ (C+k )−1 (Y+
k −µn

(
X+

k

))∣∣∣
σn+k(x)

 ,

= Φ

(
−

∣∣∣∣∣ µn(x)

σn+k(x)
+

cn
(
x,X+

k

)⊤ (C+k )−1

σn+k(x)

(
Y+

k −µn

(
X+

k

))∣∣∣∣∣
)
,

= Φ
(
−
∣∣a(x) + b(x)⊤ U+

k

∣∣) ,

(20)

where a(x) = µn(x)
σn+k(x)

and b(x) =
(C+

k )
−1

cn(x,X+
k )

σn+k(x)
are a scalar quantity and a k × 1 vector independent of Y+

k ,
respectively; then, U+

k = Y+
k −µn

(
X+

k

)
is a k × 1 vector hinging on Y+

k .
Since the responses Y+

k cannot be known exactly without evaluating the actual G-function on X+
k , the

πn+k

(
x;X+

k ,Y
+
k

)
in Eq. (20) and the Hn+k

(
X+

k ,Y
+
k

)
in Eq. (19) are unknown as well. To this end, the

responses Y+
k are replaced by the Kriging predictions evaluated on X+

k , i.e., Y +
k =

(
Ĝn
(
x
(1)
+

)
, . . . , Ĝn

(
x
(k)
+

))⊤
∼

Nk

(
µn

(
X+

k

)
, C+k

)
. Then, the Hn+k

(
X+

k ,Y
+
k

)
in Eq. (19) becomes a function of X+

k solely, that is,

Hn+k

(
X+

k

)
= EX

[
Πn+k

(
x;X+

k

)]
, (21)

where Πn+k

(
x;X+

k

)
is expressed as

Πn+k

(
x;X+

k

)
= Φ

(
−
∣∣a(x) + b(x)⊤U+

k

∣∣) , (22)

with U+
k = Y +

k −µn

(
X+

k

)
∼ N

(
0, C+k

)
following a d-variate centered Gaussian distribution with the covariance

matrix C+k .
In this way, the possible reduction of IPM brought by X+

k is given as

∆Hn+k

(
X+

k

)
= Hn −Hn+k

(
X+

k

)
, (23)

which is actually a random quantity through U+
k and still cannot be a deterministic criterion.

To this end, the learning function is defined by taking the expectation of ∆Hn+k

(
X+

k

)
with respect to U+

k ,
that is,

IPMRn+k

(
X+

k

)
= EU+

k

[
∆Hn+k

(
X+

k

)]
,

= Hn − EU+
k

[
EX

[
Πn+k

(
x;X+

k

)]]
,

= EX

[
πn(x)− EU+

k

[
Πn+k(x;X+

k )
]]

,

= EX

[
Γn+k(x;X+

k )
]
,

(24)

where Γn+k(x;X+
k ) = πn(x)−EU+

k

[
Πn+k(x;X+

k )
]

corresponds to the reduction of PM at any point x brought
by X+

k in expectation.
In essence, Eq. (24) can be interpreted as the average reduction of IPM brought by X+

k , conditional on the
Kriging assumption of their G-function responses. Hence, a batch of k best next points X ∗

k =
{
x(n+1), . . . ,x(n+k)

}
can be selected as

X ∗
k = argmax

X+
k ∈XC

IPMRn+k(X+
k ), (25)

where XC =
{
x(i), i = 1, . . . , C

}
denotes a candidate pool of size C.

As more and more batches of k best next samples are sequentially added by Eq. (25), the IPM will be reduced
step by step. Hence, the learning function in Eq. (24) is called k-point integrated probability of misclassification
reduction (k-IPMR) here.

Eq. (24) indicates that IPMRn+k(·) consists of two integrals, i.e., the inner integral of U+
k and the outer

integral of X. Then, the computation of IPMRn+k(·) will be further detailed in Section 3.3.

3.3. Analysis and bound establishment for k-IPMR
Proposition 2. In IPMRn+k(X+

k ), its inner integral Γn+k(x;X+
k ) is analytically expressed as

Γn+k

(
x;X+

k

)
= Φ

 − |µn(x)|
σn(x)

ρn+k

(
x,X+

k

)
− 2Φ2

([ |µn(x)|
σn(x)

− |µn(x)|
σn(x) /ρn+k(x,X+

k )

]
;

[
0
0

]
,

[
1 −ρn+k

(
x,X+

k

)
−ρn+k

(
x,X+

k

)
1

])
,

(26)
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which is a function of both |µn(x)|
σn(x)

and ρn+k

(
x,X+

k

)
. Then, the ρn+k

(
x,X+

k

)
is given by

ρn+k

(
x,X+

k

)
=

√
cn
(
x,X+

k

)⊤ (C+k )−1
cn
(
x,X+

k

)
σn(x)

∈ [0, 1], (27)

which can be interpreted as the correlation coefficient between Ĝn
(
x
)

and the subspace spanned by the random
vector Ĝn

(
X+

k

)
=
{
Ĝn
(
x
(1)
+

)
, . . . , Ĝn

(
x
(k)
+

)}
. The closer between x and X+

k is, the greater ρn+k

(
x,X+

k

)
will be,

and vice versa.

The proof of Proposition 2 is provided in Appendix C, and the geometrical interpretation of ρn+k(x,X+
k )

has been proved in [52].

Proposition 3. The lower and upper bounds of Γn+k

(
x;X+

k

)
, denoted as Γn+k

(
x;X+

k

)
and Γn+k

(
x;X+

k

)
,

are expressed as 
Γn+k

(
x;X+

k

)
= 0,

Γn+k

(
x;X+

k

)
= Φ

 − |µn(x)|
σn(x)

ρn+k

(
x,X+

k

)
 .

(28)

The proof of Proposition 3 is given in Appendix D. Then, according to Proposition 3, there exists

0 = Γn+k

(
x;X+

k

)
≤ Γn+k

(
x;X+

k

)
≤ Γn+k

(
x;X+

k

)
≤ πn(x), (29)

which indicates that πn(x) is a looser upper bound of Γn+k

(
x;X+

k

)
.

Fig. 3 illustrates the comparison between Γn+k

(
x;X+

k

)
and Γn+k

(
x;X+

k

)
under different combinations

of |µn(x)|
σn(x)

and ρn+k

(
x,X+

k

)
. Clearly, Γn+k

(
x;X+

k

)
inflates the expected reduction of PM at point x when

compared with Γn+k

(
x;X+

k

)
, particularly in the vicinity of

{
x ∈ X : |µn(x)|

σn(x)
= 0
}

. Despite that, the global

trend of Γn+k

(
x;X+

k

)
agrees well with that of Γn+k

(
x;X+

k

)
.

Figure 3: Comparison between Γn+k

(
x;X+

k

)
and Γn+k

(
x;X+

k

)
in IPMRn+k

(
X+

k

)
Substituting Eq. (26) into Eq. (24), IPMRn+k

(
X+

k

)
finally reduces to a single integral, that is,

IPMRn+k

(
X+

k

)
= EX

[
Γn+k

(
x;X+

k

)]
,

= EX

Φ
 − |µn(x)|

σn(x)

ρn+k

(
x,X+

k

)
− 2Φ2

([ |µn(x)|
σn(x)

− |µn(x)|
σn(x) /ρn+k(x,X+

k )

]
;

[
0
0

]
,

[
1 −ρn+k

(
x,X+

k

)
−ρn+k

(
x,X+

k

)
1

]) .

(30)
Besides, as per Eq. (28), the upper bound of IPMRn+k

(
X+

k

)
is given as

IPMRn+k

(
X+

k

)
= EX

[
Γn+k

(
x;X+

k

)]
= EX

Φ
 − |µn(x)|

σn(x)

ρn+k

(
x,X+

k

)
 . (31)

Then, according to Eq. (29), there holds

0 ≤ IPMRn+k

(
X+

k

)
≤ IPMRn+k

(
X+

k

)
≤ Hn. (32)
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3.4. Numerical evaluation of k-IPMR
Since IPMRn+k

(
X+

k

)
(Eq. (30)) generally has no analytical solution, its VAIS-based estimation can be

expressed as

IPMRn+k

(
X+

k

)
≈ 1

Q3

Q3∑
q=1

Γn+k

(
x(q);X+

k

) fX
(
x(q)

)
hX

(
x(q)

) , (33)

where XQ3 =
{
x(q), q = 1, . . . , Q3

}
denotes a set of Q3 quadrature points drawn from hX(x). Intuitively, the

sample size Q3 can be determined according to the sample CV value for each X+
k , i.e., CV

[
IPMRn+1

(
X+

k

)]
.

However, when selecting X ∗
k from the candidate pool XC according to Eq. (25), the IPMRn+k(·) has to be

evaluated on all possible choices of X+
k in XC, i.e., IPMRn+k

(
X+

k

)
,∀X+

k ∈ XC. Such a great amount of
candidate choices make it infeasible to specify different values of Q3 for distinct choices of X+

k ∈ XC. To this
end, a tractable solution is developed as follows.

Recall that in each iteration of BALR (Fig. 1), a total of 3 single integrals need to be numerically com-
puted based on the VAIS, consisting of µP̂f,n

in Eq. (10), Hn in Eq. (18), and IPMRn+k(·) in Eq. (33). Unlike
IPMRn+k(·), the former two only need to be computed once per iteration. Hence, for ease of numerical imple-
mentation, the sizes, Q1, Q2, Q3, of their quadrature point sets can be jointly specified as

Q1 = Q2 = Q3 = Q, (34)

where the Q is determined according to{
CV
[
µ̃P̂f,n

]
≤ εQ

}⋂{
CV
[
H̃n

]
≤ εQ

}
. (35)

Obviously, Eq. (35) ensures the integral precision of µ̃P̂f,n
and H̃n readily; then, Eq. (32) shows that the Hn

is the upper bound of IPMRn+k(X+
k ), and the promising batches are naturally those with greater values of

IPMRn+k(X+
k ), that is, being closer to Hn. Hence, the quadrature point set XQ sufficient to Hn shall also

suffice for the computation of IPMRn+k(·) on those promising candidate batches, justifying the rationality of
Eq. (34).

Remark 1. In the BALR’s workflow, the Q value at each iteration can be customized based on Eq. (35) such
that Q = Qinit +Qadd×nadd, where Qinit denotes the initial size and is taken as the size of the final quadrature
point set in the previous iteration; Qadd and nadd are the number of quadrature points added per step and the
number of steps to be needed, respectively. Here, Qadd is set as 2× 105, and nadd is determined by sequentially
adding Qadd quadrature points to X init

Q until satisfying Eq. (35). Generally, after several initial iterations, the Q
value remains the same in the subsequent iterations, which avoids frequently tuning the quadrature set of BALR
to great extent.

Remark 2. With three distinct integrals to be numerically computed in the BALR, the numerical integration
methods shall be as efficient and robust as possible. Clearly, the optimal importance distributions for the three
integrals are different from each other and are totally unknown a priori. Then, the VAIS can be viewed as an
advanced varient of MCS. When the amplification coefficient α = 1, the VAIS is exactly the crude MCS. When
α is too significant, e.g., α ≥ 2, certain improper samples are prone to be generated. Hence, the rational value
of α shall be in [1, 2]. The setting of α = 1.5 has been justified in the existing literature [33, 34] and is adopted
in this study. More advanced numerical integration methods will be explored in the future study.

3.5. Computational challenge of the direct k-IPMR-guided multi-point enrichment process
The quadrature point set XQ (Eq. (34)) will serve as the candidate pool XC, i.e., XC = XQ, in each iteration

of BALR. Intuitively, the multi-point enrichment can be easily conducted through selecting a batch of k best
next samples X ∗

k from XC via maximizing IPMRn+k(·), as per Eq. (25). However, intensive computational
burden will be encountered in this crude multi-point enrichment process, owing to the following two issues.

• A single evaluation of IPMRn+k(·) (Eq. (33)) can be costly due to it entailing a total of Q calls to
Γn+k(·;X+

k ) point by point, as visualized as the boxes in the horizontal direction in Fig. 4(a). Note that
the computational burden primarily lies on the evaluation of Φ2 (·; ·, ·), whose evaluation is complex and
can not be easily vectorized.

• When carrying out the maximization in Eq. (25), a total of
(
Q
k

)
evaluations of IPMRn+k(·) are involved,

as visualized as the boxes in the vertical direction in Fig. 4(a). The many-queries nature (up to
(
Q
k

)
×Q

calls to Γn+k(·;X+
k )) renders the direct maximization of k-IPMR very time-consuming, even resorting to

parallel computing.

To this end, great endeavors will be made in Section 4 to alleviate such heavy computational burden.
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(a) Direct maximization of IPMRn+k(·) (b) IPMRn+k(·) vs. IPMRn+k(·)

Figure 4: Illustration of the intensive computational burden of k-IPMR

4. Efficient k-IPMR-guided multi-point enrichment process

To reduce the overhead of k-IPMR-based multi-point enrichment process, three effective workarounds are
sequentially developed here. Section 4.1 elucidates the fast single evaluation of k-IPMR. Section 4.2 details
the efficient stepwise maximization of k-IPMR. Section 4.3 discusses the identification of rational size of batch
of new samples per iteration. Finally, Section 4.4 summarizes the workflow of the proposed parallel Bayesian
active learning reliability method.

4.1. Fast single evaluation of k-IPMR
To accelerate a single evaluation of k-IPMR, the following two steps are conducted. (i) Substitute IPMRn+k(X+

k )
by its upper bound IPMRn+k(X+

k ), avoiding the evaluation of Φ2 (·; ·, ·); (ii) Prune XQ in the computation of
IPMRn+k(X+

k ), alleviating the computer memory issue.
First, similar to Eq. (33), the VAIS-based estimation of IPMRn+k(X+

k ) can be expressed as

IPMRn+k

(
X+

k

)
≈ 1

Q

Q∑
q=1

Γn+k

(
x(q);X+

k

) fX
(
x(q)

)
hX

(
x(q)

) . (36)

where
{
Γn+k

(
x(q);X+

k

)}Q
q=1

(Eq. (28)) can be cheaply computed in a vectorized manner, getting rid of the point-
wise evaluation of Φ2 (·; ·, ·). Obviously, in comparison with IPMRn+k(·) in Eq. (33), IPMRn+k(·) in Eq. (36)
also reflects the impact of adding X+

k on the reduction of IPM, but comes with much lower computational cost.
Second, Eq. (36) implies that the relative contributions of x(q), q = 1, . . . , Q, to IPMRn+k

(
X+

k

)
are different

from each other. Hence, the XQ can be pruned to a subset of QP(≪ Q) quadrature points with greatest values
of Γn+k

(
x;X+

k

) fX(x)
hX(x) . However, since Γn+k

(
x;X+

k

)
relies on X+

k , the resulting pruned quadrature point set
will vary with X+

k ∈ XC. To specify an identical pruned quadrature point set for any batch X+
k ∈ XC, the

pruning criterion shall avoid the presence of X+
k .

Therefore, the pruning criterion is specified according to πn(x)
fX(x)
hX(x) , rather than Γn+k

(
x;X+

k

) fX(x)
hX(x) itself.

First, the XQ is sorted in decreasing order of πn(x)
fX(x)
hX(x) , resulting in

{
x(qj), j = 1, . . . , Q

}
, where qj denotes

the index of the point with the j-th greatest value. Then, only the first QP (≪ Q) quadrature points in XQ are
collected, that is,

XQP
=
{
x(qj), j = 1, . . . , QP

}
, (37)

with the size QP specified as

QP = min

Q ∈ N :

∑Q
j=1 πn

(
x(qj)

) fX(x(qj))
hX(x(qj))∑Q

j=1 πn

(
x(qj)

) fX(x(qj))
hX(x(qj))

≥ εP

 , (38)

where the threshold εP is set as 99% here.
In this way, the IPMRn+k(X+

k ) in Eq. (36) further reduces to

IPMRn+k

(
X+

k

)
≈ 1

Q

QP∑
j=1

Γn+k

(
x(qj);X+

k

) fX
(
x(qj)

)
hX

(
x(qj)

) . (39)
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Then, the X ∗
k can be selected as

X ∗
k = argmax

X+
k ∈XC

IPMRn+k

(
X+

k

)
. (40)

For illustration, Fig. 5 shows the pruning of XQ in a single iteration (the turbine blade example in Sec-
tion 5.3). First, the size, Q, of XQ is determined as 4 × 105 in this iteration, as per Remark 1. Then, only a
small fraction of quadrature points have significant values of πn(·) fX(·)

hX(·) ; see the left panel of Fig. 5. According
to Eq. (38), the size, QP, of XQP

is determined as 3473, and there holds QP

Q = 0.87%; see the right panel of
Fig. 5. Obviously, such small value of QP makes the single evaluation of IPMRn+k(·) very fast.

Figure 5: Illustration of the pruning of XQ

Remark 3. The rationale of Eq. (39) can be justified from Fig. E.16. Comparison between Figs. E.16(c),
(f), and (i) shows that the local region with greater values of Γn+k(·;X+

k )
fX(x)
hX(x) is always enclosed by that with

greater values of πn(x)
fX(x)
hX(x) , regardless of promising or unpromising batches. Hence, the XQP shall suffice for

the computation of IPMRn+k(·), especially for those promising candidate batches.

4.2. Efficient stepwise maximization of k-IPMR
The maximization problem of dimension k × d in Eq. (40) is still expensive-to-run, due to vast number of

candidate choices of X+
k . To this end, the following two steps are implemented. (i) Prune the candidate pool

XC, reducing the number of possible candidate batches. (ii) Replace the direct maximization approach with a
stepwise maximization treatment, alleviating the remaining computational burden.

First, the characteristic of a promising candidate batch X+
k within XC is explored in Appendix E. Briefly,

the promising batch is prone to be in the local area endowed with great value of πn(x)
fX(x)
hX(x) ; see Fig. E.16.

Hence, the entire candidate pool XC can be pruned to a subset of CP candidate points with greatest values of
πn(x)

fX(x)
hX(x) , that is,

XCP
=
{
x(qj), j = 1, . . . , CP

}
, (41)

where the size CP is specified as 103 here.
Second, given that the number of candidate batches in the direct maximization approach, say

(
CP

k

)
, is still

intensive, a stepwise maximization approach is developed here. It starts by maximizing the 1-point IPMR to
select the 1-st best next point x(n+1); then, maximize the 2-point IPMR (keeping x(n+1) as the fixed argument)
to select the 2-nd best next point x(n+2); this process iterates until a pertinent stopping condition is satisfied.

Specifically, when k = 1, the 1-point IPMR is expressed as

IPMRn+1 (x+) ≈
1

Q

QP∑
j=1

Γn+1

(
x(qj);x+

) fX
(
x(qj)

)
hX

(
x(qj)

) , (42)

where Γn+1 (·;x+) acts as a reminder that it is a function of x+ solely. In this way, the 1-st best next point
x(n+1) can be selected as

x(n+1) = argmax
x+∈XCP

IPMRn+1 (x+) , (43)

then, X ∗
1 =

{
x(n+1)

}
, and XCP = XCP \

{
x(n+1)

}
.
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When k ≥ 2, assume that the former (k−1) best next points X ∗
k−1 =

{
x(n+1), . . . ,x(n+k−1)

}
have been

selected and are taken as the fixed arguments. Then, the k-point IPMR is recast as

IPMRn+k

(
X ∗

k−1,x+

)
≈ 1

Q

QP∑
j=1

Γn+k

(
x(qj);X ∗

k−1,x+

) fX
(
x(qj)

)
hX

(
x(qj)

) , (44)

where Γn+k(·;X ∗
k−1,x+) acts as a reminder that it is also a function of x+ solely. In this way, the k-th best

next point x(n+k) is selected as

x(n+k) = argmax
x+∈XCP

IPMRn+k

(
X ∗

k−1,x+

)
, (45)

then, X ∗
k = X ∗

k−1

⋃{
x(n+k)

}
, and XCP = XCP \

{
x(n+k)

}
.

Obviously, the original maximization problem of dimension k×d in Eq. (40) is transformed to k consecutive
maximization problems of dimension d in Eqs. (43) and (45). By doing so, the number of candidate choices
reduces from

(
CP

k

)
to CP×k, which is much smaller to handle.

4.3. Adaptive new sample batch size identification per iteration
Another key issue in the multi-point enrichment process is how to specify the rational size, K, of batch of

new points added per iteration. Traditionally, the K is set as a fixed value a priori ; then, sequentially increasing
k until K will give rise to X ∗

K =
{
x(n+k), k = 1, . . . ,K

}
readily. This is the so-called prescribed scheme.

By contrast, an adaptive scheme that specifies automatically the K value in each iteration is developed here.
Specifically, according to Eqs. (43) and (45), the individual gain Gn+k of adding x(n+k) in terms of reducing
the IPM can be quantified as

Gn+k =

{
IPMRn+k (X ∗

k)− IPMRn+k−1

(
X ∗

k−1

)
, k ≥ 2,

IPMRn+1 (X ∗
1) , k = 1,

(46)

which generally decreases with the increase of k. When the Gn+k itself or the ratio Gn+k

Gn+1
becomes very small,

it implies that adding x(n+k) is not useful to further reduce the IPM, and the sequential increase of k can be
stopped. Hence, the rational value of K in each iteration can be taken as

K = min {K1,K2, ncore} , (47)

where K1 = min {k ∈ N : Gn+k ≤ 0}; K2 = min
{
k ∈ N : Gn+k

Gn+1
≤ εG

}
; ncore is the number of available CPU

cores; the threshold εG is set as 0.1.

Remark 4. The setup of the adaptive scheme totally relies on the peculiar ability of k -IPMR to quantify the
expected reduction of IPM brought by each new sample in the batch. Obviously, this adaptivity is unlikely to be
achieved by the traditional practice of combining a pointwise learning function with some additional multi-point
selection strategies, due to their inherent flaws.

Algorithm 1 summarizes the fast k -IPMR-based multi-point enrichment process in a single iteration. No-
tably, computing IPMRn+k

(
X ∗

k−1,x+

)
,∀x+ ∈ XCP

(the ‘for-loop’ in Lines 7-11) can be conducted in parallel
to accelerate this process. Clearly, the k -IPMR can be readily substituted by the cumbersome k -IPMR in
Algorithm 1. Note that the running time of Algorithm 1 is mainly consumed by the K × CP × QP times of
evaluation of Γ̄n+k(·; ·) or Γn+k(·; ·). Recall that CP is fixed as 103 and K is pre-assigned in the prescribed
scheme, the running time is actually dominated by QP, thereby it varying with iterations in the workflow of
BALR.

Fig. 4(b) compares the running time between k -IPMR and k -IPMR in a single iteration, with the prescribed
batch size K = 20 and the QP = 8970 (the truss example in Section 5.2). It is observed that k -IPMR consumes
approximately 30 = 1.5 × 20 seconds, which is much smaller than that of k -IPMR, say 180 = 9 × 20 seconds.
As a result, k -IPMR comes with much less running time than k -IPMR.

Remark 5. Algorithm 1 is conducted based on k -IPMR itself, eliminating the need for additional parallel
enrichment strategies. Moreover, the resulting batch X ∗

K is optimal for reducing the IPM. By comparison, most
of the existing parallel (B)ALR methods do not explicitly measure the impact of adding a batch of new samples,
let alone ensure the optimality of the resulting batch of new samples. Hence, the proposed k -IPMR is more
theoretically sound than those existing methods.

Remark 6. An existing learning function called SUR is outlined in Appendix F, consisting of two different
forms. They are expressed either as a double integral of Φ2 (·; ·, ·) or as a single integral of Φ2 (·; ·, ·), both
of which are expensive-to-evaluate. By comparison, the proposed k -IPMR is conceptually similar but is only
expressed as a single integral of Φ (·), coming with a much lower computational burden. Comparison between
them will be made in Section 5.
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Algorithm 1 The fast k -IPMR-guided multi-point enrichment process in a single iteration

Input: The Kriging Ĝn
(
x
)
, the K value in the prescribed scheme, or the εG value in the adaptive scheme.

1: Compute µ̃P̂f,n
and H̃n, together with the values of CV

[
µ̃P̂f,n

]
and CV

[
H̃n

]
. ▷ Eqs. (10), (18)

2: Specify the size, Q, of XQ according to CV
[
µ̃P̂f,n

]
and CV

[
H̃n

]
; then, let XC = XQ. ▷ Eq. (35)

3: Obtain a pruned quadrature point set XQP =
{
x(qj), j = 1, . . . , QP

}
from XQ. ▷ Eqs. (37), (38)

4: Obtain a pruned candidate pool XCP
=
{
x
(i)
+ , i = 1, . . . , CP

}
from XC. ▷ Eq. (41)

5: Let k ← 1, and X ∗
0 = {}.

6: while true do
7: for i = 1, . . . , CP do

8: Compute
{
ρn+k

(
x(qj);X ∗

k−1,x
(i)
+

)}QP

j=1
at XQP

. ▷ Eq. (27)

9: Compute
{
Γn+k

(
x(qj);X ∗

k−1,x
(i)
+

)}QP

j=1
at XQP . ▷ Eq. (28)

10: Compute IPMRn+k

(
X ∗

k−1,x
(i)
+

)
. ▷ Eqs. (42), (44)

11: end for
12: Select the k-th best next point x(n+k) from XCP according to IPMRn+k(·). ▷ Eqs. (43), (45)
13: Identify the rational value of K in the adaptive scheme. ▷ Eqs. (46), (47)
14: if k ≥ K then
15: Break.
16: else
17: X ∗

k = X ∗
k−1

⋃{
x(n+k)

}
, XCP = XCP \

{
x(n+k)

}
, and k ← k + 1.

18: end if
19: end while
Output: A batch of K best next samples X ∗

K =
{
x(n+k), k = 1, . . . ,K

}
selected in this iteration.

4.4. Workflow of efficient k-IPMR-guided parallel Bayesian active learning reliability analysis
Fig. 6 presents the flowchart of the proposed parallel Bayesian active learning reliability method. The main

steps are summarized as follows.

Step 1: Initial experimental design.
To obtain an initial Kriging model with fair accuracy, the initial ED prefers to be as space-filling as
possible. According to the ‘four-sigma’ rule, the sampling domain Xs is defined by

Xs =

d∏
l=1

[−4, 4], (48)

and generate a set of n0 uniform samples in the Xs, denoted as Xn0
=
{
x(i), i = 1, . . . , n0

}
with

n0 = max(d + 1, 10), using the Latinized centroidal Voronoi tessellation sampling method [53]. Then,
evaluate the G-function on Xn0

to obtain their responses Yn0
=
{
y(i), i = 1, . . . , n0

}
. In this way, the

initial ED is collected as Dn0 = {Xn0 ,Yn0}. Finally, let n = n0.
Step 2: Kriging calibration.

Train a Kriging Ĝn
(
x
)

based on the current ED Dn, offering the posterior mean µn(x), variance σn(x),
and covariance cn (x,x

′); see Eqs. (A.7), (A.8) and (A.9).
Step 3: Failure probability estimation.

According to the VAIS, compute both the mean failure probability µ̃P̂f,n
(Eq. (10)) and the IPM H̃n

(Eq. (18)) based on a quadrature point set XQ =
{
x(q), q = 1, . . . , Q

}
, with the size Q determined as

per Remark 1. Besides, the XQ will be taken as the candidate pool XC in Step 5.
Step 4: Hybrid convergence criterion.

A hybrid convergence criterion that combines two different ones is developed here. First, recall that
the IPM Hn acts as a global measure of residual uncertainty of µ̃P̂f,n

, the H̃n

µ̃P̂f,n

is a natural metric to

check the convergence of BALR, expressed as

H̃n

µ̃P̂f,n

≤ εH, (49)

where the setting of εH shall consider the distinction between static and dynamic reliability problems.
Hence, εH = 0.2×max

i≤n

H̃i

µ̃P̂f,i

(resp. 0.6×max
i≤n

H̃i

µ̃P̂f,i

) in static (resp. dynamic) problem.

13



Second, the stabilization of µ̃P̂f
between consecutive iterations is also a common metric to check the

convergence of BALR, expressed as

∆µ̃P̂f,n
=

∣∣∣µ̃P̂f,n
− µ̃P̂f,n−1

∣∣∣
µ̃P̂f,n

≤ εS, (50)

where the tolerance εS is set as 0.1 here.
Finally, if Eq. (49) and (50) are satisfied simultaneously, skip to Step 7; otherwise, continue to Step 5.

Step 5: Multi-point learning function.
According to the learning function k -IPMR, select a batch of K best next points X ∗

K =
{
x(n+k), k = 1, . . . ,K

}
from the candidate pool XC, with the batch size K identified via either the prescribed scheme or the
adaptive scheme, as elucidated in Algorithm 1.

Step 6: Enrichment and update.
Evaluate the G-function on X ∗

K in parallel, resulting in Y∗
K =

{
y(n+k), k = 1, . . . ,K

}
; then, conduct

the following updates: Dn+K = Dn

⋃
{X ∗

K ,Y∗
K}, n← n+K, niter ← niter + 1, and return to Step 2.

Step 7: Termination.
The final results of three performance metrics are recorded at the end of this algorithm, i.e., the failure
probability estimate µ̃P̂f,n

, the total number of iterations niter, and the total number of performance
function evaluations neval.

Start

Initialization. Generate an initial ED Dn0
= {Xn0

,Yn0
} of size n0.

Kriging. Train a Kriging Ĝn
(
x
)

based on the current ED Dn.

Failure probability. According to the VAIS, compute both µ̃P̂f,n
and H̃n

based on a quadrature point set XQ, with its size Q specified as per Remark 1.

Convergence criterion.
Eqs. (49) and (50)

Learning function. Select a batch
of K new points X ∗

K =
{
x(n+k)

}K
k=1

,
according to Algorithm 1.

Enrich & update.
Y∗

K = G
(
X ∗

K

)
,

Dn+K = Dn

⋃
{X ∗

K ,Y∗
K} .

Finalization. The results of
µP̂f

, neval, and niter are recorded
at the end of this algorithm.

End

niter ← 1, n← n0

XC ← XQ

N

niter ← niter + 1, n← n+K

Y

Figure 6: The proposed parallel Bayesian active learning reliability method

Remark 7. When the prescribed scheme is adopted in Fig. 6, the relationship between ncall and niter is easily
expressed as ncall = n0 +K × (niter − 1). By contrast, since the size K varies with iterations in the adaptive
scheme, there is no analytical formulation between ncall and niter, but they can be directly recorded in Fig. 6.

5. Illustrative examples

The proposed method is testified on four examples of varying complexity. Both the prescribed scheme (K
= 5, 10, 15, 20) and the adaptive scheme (ncore = 20, εG = 0.1) are considered. Besides, the two learning
functions k -IPMR and k -IPMR are conducted for comparison.

The MCS is conducted to provide an estimate of failure probability P̂MCS
f for reference. Some other existing

parallel (B)ALR methods are also conducted for comparison, including the ALR module in UQLab [13], the
parallel adaptive Bayesian quadrature (PABQ) [30], as well as the second form of SUR. The ingredients of the
ALR module in UQLab are set in default [13]: the Kriging, the subset simulation, the U function, the stopping
condition based on the confidence bound of reliability index, and the K-means clustering strategy. The PABQ
comprises the following ingredients [30]: the Kriging, the Bayesian inference of failure probability, the pointwise
learning function UBVC, and the K-means clustering strategy. Since the numerical computation, candidate
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pool, and convergence criterion of SUR were not detailed in [32], the settings of quadrature point set, the
pruning rule, and convergence criterion in Section 4 are customized to the SUR here. Contrary to the proposed
IPMR, the three aforementioned reliability methods only support the prescribed scheme. Besides, the results
from some other reliability methods will be listed in the tables, if available in the literature.

All those reliability methods are run on an Intel i9-14900KF CPU processor equipped with 3.2 GHz, 64 GB
RAM, and 20 physical cores. Then, three performance metrics, i.e., µP̂f

, neval, and niter, are recorded for each

method. Further, the relative error of µP̂f
with respect to P̂MCS

f is computed as

δP̂f
=

∣∣∣µP̂f
− P̂MCS

f

∣∣∣
P̂MCS
f

× 100%. (51)

Those (B)ALR methods are repeated 10 times to account for the randomness from both the initial ED
and/or sampling. Due to computational cost consideration, the maximum value of neval is set as 300. Then,
both the average values of the four performance metrics, i.e., E[µP̂f

], E
[
neval

]
, E
[
niter

]
, and E[δP̂f

], and the CV
of µP̂f

, i.e., CV
[
µP̂f

]
, are calculated. Moreover, the average value of the total computational time tc is provided

in the last three engineering examples for comparison.

5.1. A four-branch function
The first example addresses the well-known four-branch function, which is a typical benchmark in the

reliability literature [15, 28, 12]. The performance function is expressed as [15]

G
(
X
)
= min



a+ 0.1(X1 −X2)
2 − X1 +X2√

2

a+ 0.1(X1 −X2)
2 +

X1 +X2√
2

(X1 −X2) +
b√
2

(X2 −X1) +
b√
2


, (52)

where X1 and X2 are two independent standard Gaussian variables; the two constants a and b are set as 3 and
6, respectively.

Fig. 7 illustrates a single run of the proposed k -IPMR (adaptive scheme) in the four-branch function. Except
for the first iteration, the remaining batches of new samples added by the k -IPMR are mostly located in the
vicinity of the actual limit state, as plotted as the colored markers in Fig. 7(a). Then, informed by the k -IPMR,
the expected gain Gn+k brought by the k-th new sample in each iteration is shown in Fig. 7(b). Basically,
the Gn+k reduces with the increasing of k at each iteration, justifying the rationality of identifying the batch
size K via the adaptive scheme. Fig. 7(c) presents the resulting size, K, of batch of new samples identified in
each iteration, which gradually increases during the active learning process. Finally, Figs. 7(d) and (e) show
the convergence performance of this algorithm. The Hn

µP̂f,n

reduces dramatically with the sequential addition of

batches of new samples; then, the µP̂f,n
converges gradually to the reference value P̂MCS

f .
Table 1 lists the results of different reliability methods for the four-branch function. In the existing parallel

(B)ALR methods, the niter generally reduces with the increasing of K. The proposed k -IPMR requires fewer
iterations, while providing smaller values of the relative error δP̂f

, i.e., better accuracy of failure probability
estimate. Further, in the prescribed scheme of k -IPMR, the niter decreases slowly, or even rises, with the
increasing of K. This implies that it is unwise to blindly increase the batch size K in the prescribed scheme.
By comparison, the adaptive scheme identifies automatically the rational value of K in each iteration, avoiding
the excessive increase of neval effectively.

5.2. A 23-bar planar truss under vertical loads
The second example tackles with a 23-bar planar truss subjected to vertical concentrated loads, as geomet-

ically illustrated in Fig. 8. It is also a typical benchmark in the existing reliability literature [28, 12].
The 23 bars are categorized into two groups: the first group consists of 11 horizontal bars, with Young’s

modulus E1 and cross-sectional area A1; the second group comprises 12 diagonal bars, with Young’s modulus
E2 and cross-sectional area A2. Then, the vertical loads applied on the upper nodes from left to right are
denoted as P1, . . . , P6. Hence, a total of 10 independent random variables are considered in this truss example,
i.e., {E1, E2, A1, A2, P1, . . . , P6}. Table 2 lists the statistical information of those random variables.
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(a) batch of new samples added per iteration (b) expected gain Gn+k of x(n+k) per iteration

(c) batch size K per iteration (d) convergence of Hn
µ
P̂f,n

(e) convergence of µ
P̂f,n

Figure 7: The k -IPMR (adaptive scheme) in the four-branch function

Table 1: Reliability results in the four-branch function

Method E
[
niter

]
E
[
neval

]
E
[
µP̂f

]
CV
[
µP̂f

]
E
[
δP̂f

]
Reference

MCS - 106 4.416× 10−3 - - [15]

AK-MCS K = 1 62.2 73.2 4.457× 10−3 1.50 % - [28]
K = 6 15.4 98.4 4.458× 10−3 1.50 % - [28]

PABQ
K = 6 6.6 43.6 4.440× 10−3 2.53 % - [30]
K = 10 5.2 52 4.400× 10−3 2.22 % - [30]
K = 15 4.6 64.7 4.440× 10−3 1.35 % - [30]

RBIK
K = 6 17.7 110 4.429× 10−3 0.07 % - [43]
K = 8 13.7 111.9 4.428× 10−3 0.07 % - [43]
K = 10 12.1 121.4 4.429× 10−3 0.07 % - [43]

P-AK-MCS K = 4 15.6 70.4 4.490× 10−3 - - [48]
K = 8 8.8 74.4 4.560× 10−3 - - [48]

AK-KB K = 3 22.5 74.6 4.419× 10−3 - - [54]
K = 6 11.5 73.1 4.411× 10−3 - - [54]

ALR in
UQLab

K = 5 20.3 106.5 4.571× 10−3 1.42 % 3.51 % -
K = 10 10.2 102 4.581× 10−3 2.22 % 3.74 % -
K = 15 8 115 4.541× 10−3 2.49 % 2.99 % -
K = 20 6.9 128 4.539× 10−3 1.78 % 2.79 % -

k -IPMR

K = 5 6.9 39.5 4.401× 10−3 1.20 % 1.36 % -
K = 10 5.5 55 4.406× 10−3 1.33 % 1.12 % -
K = 15 4.7 64 4.415× 10−3 0.92 % 0.67 % -
K = 20 5 90 4.410× 10−3 0.83 % 0.63 % -
Adaptive 6.3 44 4.405× 10−3 0.99 % 0.87 % -

The mid-span deflection of this planar truss is of concern, expressed as [55]

u(X) =
2
√
2P1 + 6

√
2P2 + 10

√
2P3 + 10

√
2P4 + 6

√
2P5 + 2

√
2P6

E2A2

+
36P1 + 100P2 + 140P3 + 140P4 + 100P5 + 36P6

E1A1
,

(53)16
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Figure 8: A 23-bar planar truss under vertical loads

Table 2: Random variables in the 23-bar planar truss [28]

Variable Unit Distribution Mean Standard deviation

E1 − E2 Pa Lognormal 2.1× 1011 2.1× 1010

A1 m2 Lognormal 2.0× 10−3 2.0× 10−4

A2 m2 Lognormal 1.0× 10−3 1.0× 10−4

P1 − P6 N Gumbel 5× 104 7.5× 103

and the maximum allowable deflection is set as 12 cm. In this way, the performance function G
(
X
)

is given by

G
(
X
)
= 12− u(X) (54)

(a) expected gain Gn+k of x(n+k) per iteration (b) selection index of x(n+k) per iteration

(c) batch size K per iteration (d) convergence of Hn
µ
P̂f,n

(e) convergence of µ
P̂f,n

Figure 9: The k -IPMR (adaptive scheme) in the 23-bar planar truss example

Fig. 9 presents the performance of one run of the proposed k -IPMR (adaptive scheme) for the 23-bar planar
truss example. A total of 6 iterations are needed in the whole multi-point enrichment process, as shown in
Fig. 9(a). Meanwhile, the resulting size, K, of batch of new samples added per iteration increases gradually
during the multi-point enrichment process, see Fig. 9(c). Notably, Fig. 9(b) shows that most of the selection
indexes of x(n+k) in each iteration are far less than CP, justifying the rationale of the pruning of candidate pool
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in Eq. (41). Finally, the IPM Hn is reduced remarkably, and the mean failure probability µP̂f
achieves a good

agreement with P̂MCS
f ; see Figs. 9(d) and (e).

Table 3 lists the results of different reliability methods for the 23-bar planar truss example, where the total
computational time tc is also provided for comparison. All the parallel (B)ALR methods provide relatively
accurate estimates of failure probability. Then, both the SUR and the proposed IPMR (k -IPMR and k -IPMR)
need fewer iterations than other existing methods. However, due to repeated evaluations of the bivariate
Gaussian CDF Φ2(·) in both SUR and k -IPMR (Eqs. (33) and (F.4)), they entail much more computational time.
By comparison, the k -IPMR avoids the time-intensive evaluation of Φ2(·) and only consumes approximately
30% - 50% of computational time of k -IPMR. Admittedly, since the running time of k -IPMR is generally
greater than that of traditional practice (e.g., the learning function U + the K-means clustering approach), the
advantage of k -IPMR in terms of niter is not sufficiently transformed to that of tc.

Table 3: Reliability results in the 23-bar planar truss example

Method E
[
niter

]
E
[
ncall

]
E
[
µP̂f

]
CV
[
µP̂f

]
E
[
δP̂f

]
E
[
tc
]
(s) References

MCS - - 106 1.550× 10−3 - - - [28]

AK-MCS K = 1 272 283 1.520× 10−3 - 1.94 % - [28]
K = 6 26 162 1.530× 10−3 - 1.29 % - [28]

ALR in
UQLab

K = 5 14.6 79 1.558× 10−3 1.87 % 1.51 % 148.3 -
K = 10 7.4 75 1.574× 10−3 2.46 % 1.99 % 29.2 -
K = 15 6.3 90.5 1.568× 10−3 2.12 % 1.82 % 31.8 -
K = 20 4.8 87 1.589× 10−3 3.04 % 2.77 % 29.2 -

PABQ

K = 5 14.9 79.5 1.360× 10−3 5.55 % 12.24 % 230.1 -
K = 10 8.2 82 1.377× 10−3 3.30 % 11.17 % 119.6 -
K = 15 6 85 1.427× 10−3 4.49 % 8.31 % 89.1 -
K = 20 5.1 92 1.428× 10−3 6.36 % 9.34 % 79.1 -

SUR

K = 5 9.5 53.5 1.548× 10−3 1.17 % 0.81 % 455.2 -
K = 10 6.2 63 1.551× 10−3 0.93 % 0.62 % 388.1 -
K = 15 5 71 1.546× 10−3 0.99 % 0.72 % 418.6 -
K = 20 4.1 73 1.545× 10−3 0.90 % 0.64 % 447.9 -

k -IPMR

K = 5 9.3 52.5 1.555× 10−3 1.55 % 1.26 % 445.3 -
K = 10 6.2 63 1.552× 10−3 1.59 % 1.35 % 366.4 -
K = 15 5 71 1.550× 10−3 0.71 % 0.58 % 374.3 -
K = 20 4.2 75 1.554× 10−3 1.26 % 1.15 % 413.1 -
Adaptive 5.4 63.5 1.553× 10−3 1.65 % 0.76 % 404.3 -

k -IPMR

K = 5 9.5 53.5 1.549× 10−3 1.40 % 0.86 % 178.6 -
K = 10 6.1 62 1.549× 10−3 1.33 % 0.89 % 125.9 -
K = 15 5 71 1.554× 10−3 1.13 % 0.87 % 126.4 -
K = 20 4.2 75 1.555× 10−3 0.68 % 0.71 % 155.7 -
Adaptive 6.7 61.2 1.552× 10−3 1.09 % 0.91 % 162.9 -

5.3. A jet engine turbine blade under both pressure loading and thermal stress
The third example considers the turbine blade of a jet engine under both the pressure load of surrounding

gases and the thermal expansion. The finite-element model of this blade is built using the PDE toolbox in
MATLAB, with a maximum mesh size of 0.01 m; see Fig. 10(a).

(a) finite-element mesh (b) temperature effect (c) typical deformation and stress

Figure 10: A jet engine turbine blade under both pressure and thermal effects
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The turbine blade is made of nickel-based alloy material, with Young’s modulus E, Poisson’s ratio ν, coeffi-
cient of thermal expansion cte, and thermal conductivity κ. Then, the face of the root that is in contact with
other metal is fixed. The pressure loads due to surrounding gas are applied on the pressure and suction sides
of the blade, denoted as p1 and p2, respectively. In this way, a total of 6 independent random parameters are
considered in this system, i.e., {E, ν, cte, κ, p1, p2}. The statistical information of those random variables are
given in Table 4.

Table 4: Random variables in the turbine blade example

Variable Unit Description Distribution Mean COV

E Pa Young’s modulus Lognormal 2.27× 109 0.1
ν - Poisson’s ratio Lognormal 0.27 0.1
cte 1/K Coefficient of thermal expansion Lognormal 1.27× 10−5 0.1
κ W/m/K Thermal conductivity Lognormal 11.5 0.1
p1 Pa Pressure load Gumbel 5× 105 0.15
p2 Pa Pressure load Gumbel 4.5× 105 0.15

The convective heat transfer between the surrounding fluid and the faces of the blade defines the boundary
conditions of thermal expansion, as shown in Fig. 10(b). Finally, the typical stress and deformation of the blade
due to the combination of thermal and pressure effects is displayed in Fig. 10(c).

The maximum von Mises stress σ(X) of the turbine blade is of concern, and the associated threshold is set
as 1.15 GPa. Hence, the performance function G

(
X
)

is expressed as

G
(
X
)
= 1.15− σ(X). (55)

Fig. 11 shows a single run of the proposed k -IPMR (adaptive scheme) in the turbine blade example. The
proposed method converges with 3 iterations of multi-point enrichment process, and the corresponding batch
size K in each iteration is displayed in Fig. 11(a). Then, the IPM Hn

µP̂f

is sequentially reduced with the addition

of batch of new samples (Fig. 11(b)) and the µP̂f,
finally achieves a good agreement with P̂MCS

f , as illustrated
in Fig. 11 (c).

(a) batch size K in each iteration (b) convergence of Hn
µ
P̂f,n

(c) convergence of µ
P̂f,n

Figure 11: The k -IPMR (adaptive scheme) in the turbine blade example

Table 5 lists the results of different reliability methods in the turbine blade example. Both the ALR module
in UQLab and the PABQ provide relatively accurate estimates of failure probability µP̂f

. Then, both the
SUR and the k -IPMR need smaller values of niter, but their total computational time tc are inversely greater.
In contrast, the k -IPMR needs comparable values of niter but much smaller values of tc, highlighting the
advantage of k -IPMR in terms of computational time savings. Further, in the prescribed scheme of k -IPMR,
the niter reduces slowly and stagnates as the prescribed batch size K increases. Then, the resulting value of
tc increases with K, indicating that the blind increase of K does not always bring gain of reducing tc. By
contrast, the adaptive scheme effectively achieves a good balance between the resource consumption (neval) and
the computational time tc.

5.4. A reinforced concrete frame subjected to fully-nonstationary ground motion excitation
The final example considers a 3-bay, 6-storey planar reinforced concrete frame subjected to fully nonsta-

tionary stochastic ground motion excitation. Fig. 12 illustrates both geometric information and reinforcement
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Table 5: Reliability results in the turbine blade example

Method E[niter] E[neval] E[µP̂f
] CV[µP̂f

] E[δP̂f
] E[tc](s)

MCS - 1× 106 1.679× 10−4 - - 6.21× 106

ALR in
UQLab

K = 5 13.4 72 1.753× 10−4 3.99 % 5.35 % 320.8
K = 10 7 70 1.796× 10−4 2.89 % 6.95 % 207.6
K = 15 5.1 71.5 1.812× 10−4 2.38 % 7.90 % 180.1
K = 20 4.7 84 1.810× 10−4 2.15 % 7.79 % 219.6

PABQ

K = 5 5.1 30.5 1.712× 10−4 3.22 % 2.95 % 136.7
K = 10 4.4 44 1.706× 10−4 2.19 % 2.10 % 137.3
K = 15 3.8 52 1.740× 10−4 2.56 % 3.83 % 146.6
K = 20 3.8 66 1.729× 10−4 2.00 % 3.21 % 155.8

SUR

K = 5 4.1 25.5 1.661× 10−4 1.29 % 1.44 % 250.7
K = 10 3.8 38 1.665× 10−4 1.14 % 1.26 % 228.5
K = 15 3.4 46 1.660× 10−4 0.39 % 1.15 % 187.6
K = 20 3.3 56 1.660× 10−4 0.31 % 1.15 % 293.2

k -IPMR

K = 5 4.4 27 1.654× 10−4 1.83 % 2.03 % 191.4
K = 10 3.5 35 1.666× 10−4 1.35 % 1.27 % 182.9
K = 15 3.3 44.5 1.654× 10−4 0.82 % 1.49 % 212.3
K = 20 3.3 56 1.664× 10−4 0.55 % 0.95 % 275.8
Adaptive 4.1 42.1 1.655× 10−4 0.30 % 1.47 % 203.4

k -IPMR

K = 5 4.2 26 1.667× 10−4 0.90 % 0.86 % 76.1
K = 10 3.3 33 1.656× 10−4 0.94 % 1.45 % 66.3
K = 15 3.2 43 1.655× 10−4 0.54 % 1.45 % 79.3
K = 20 3.2 54 1.657× 10−4 0.56 % 1.35 % 102.5
Adaptive 4 29.5 1.665× 10−4 1.03 % 1.55 % 78.8

details of this structure. Finite-element analysis of this frame is conducted with the OpenSees software [56, 57].
Both beams and columns are modeled by the force-based elements with fiber-discretized section. The uniaxial
relationships of concrete and rebar are described by the Concrete-01 and Steel-01 material models, respectively.
The concrete slab on each floor is 100 mm thick, and the weight of the slab is then applied to those beams under
it. Rayleigh damping is considered, with the damping ratio 5%. The related material parameters are regarded
as random variables, with their statistical information given in Table 6.

Figure 12: A planar reinforced concrete frame

A fully-nonstationary stochastic ground motion model, referred to as the modulated filtered white-noise
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Table 6: Material parameters in the reinforced concrete frame

Variable Unit Description Distribution Mean COV

fcc MPa Maximum strength of confined concrete Lognormal 35 0.1
εcc - Strain at maximum strength of confined concrete Lognormal 0.005 0.05
fcu MPa Crushing strength of confined concrete Lognormal 25 0.1
εcu - Strain at crushing strength of confined concrete Lognormal 0.02 0.05
fc MPa Maximum strength of unconfined concrete Lognormal 27 0.1
εc - Strain at maximum strength of unconfined concrete Lognormal 0.002 0.05
fu MPa Crushing strength of unconfined concrete Lognormal 10 0.1
εu - Strain at crushing strength of unconfined concrete Lognormal 0.006 0.05
fy MPa Yielding strength of rebar Lognormal 400 0.1
E0 GPa Young’s modulus of rebar Lognormal 200 0.1
b - Strain-hardening ratio of rebar Lognormal 0.007 0.05

process model [58, 59], is considered to generate seismic accelerogram üg(t), formulated as

üg(t; Ω) = q (t; Ω)

{
1

σh(t)

∫ t

0

h [t− τ,λ(τ ; Ω)]w(τ)dτ

}
(56)

with a set of parameters Ω. Here, q(t; Ω) is a time-modulating function; w(τ) is a white noise process;
h [t− τ,λ(τ ; Ω)] stands for the impulse response function of a filter with time-varying parameters λ(τ ; Ω);
σ2
h(t) =

∫ t

0
h2[t − τ,λ(τ ; Ω)]w(τ)dτ is the variance of the filtered white noise process. Hence, the quantity in

the curved bracket has a unit variance, and q(t; Ω) equals the standard deviation of process. In this way, q(t; Ω)
defines the temporal feature of üg(t), while h[t− τ,λ(τ ; Ω)] defines the spectral characteristic of üg(t).

The ‘Gamma’ modulating function is adopted as [59]

q (t; Ω) = α1t
α2−1 exp

(
− t

α3

)
, (57)

where α1, α2, α3 control the intensity, shape, and duration of the process, respectively. The three parameters
can be identified from the following three physical quantities related to the ground motion [59]: the expected
Arias intensity Ia, the D5−95 that stands for the time interval between the instants when the 5% and 95% of
Ia are reached, and the tmid that represents time instant when the 45% of Ia is reached.

The h[t − τ,λ(τ ; Ω)] adopts the pseudo-acceleration response of a single-degree-of-freedom linear oscillator
such that [59]

h [t− τ,λ(τ ; Ω)] =


ωf (τ)√
1−ζ2

f (τ)
· exp [−ζf (τ)ωf (τ)(t− τ)] · sin

[
ωf (τ)

√
1− ζ2f (τ)(t− τ)

]
, t ≥ τ,

0, otherwise,
(58)

where λ(τ ; Ω) = [ωf (τ), ζf (τ)]. Then, the time-varying circular frequency ωf (τ) and damping ratio ζf (τ) of
filter are given as

ωf (τ) = ωmid + ω′ (τ − tmid) , (59)
ζf (τ) = ζf , (60)

where ωmid and ω′ denote the circular frequency and the rate of change of frequency at the instant tmid; ζf is
a time-invariant damping ratio. Besides, to ensure zero residual velocity and displacement at the end of the
accelerogram, the acceleration process in Eq. (56) is passed through the Butterworth high-pass filter, with the
cutoff frequency fc = 0.5π. Given that ω′ has a negligible effect on structural response, it is taken as a constant.
Then, the statistical information of the remaining 5 parameters is listed in Table 7.

Fig. 13 shows the acceleration, velocity, and displacement time histories of three generated ground mo-
tion accelerograms. Clearly, the nonstationary characteristics in both temporal and spectral domains are well
observed. Besides, zero residual velocity and displacement are fairly secured.

To summarize, a total of 16 random variables are involved, i.e., {fcc, εcc, fcu, εcu, fc, εc, fu, εu, fy, E0, b, Ia, D5−95, tmid, ωmid, ζf}.
Figs. 14(a) and (b) present the typical stress-strain curves of concrete and rebar at the end section of the leftmost
bottom column, when those random variables take their means. Then, Fig. 14(c) illustrates the relationship of
restoring force vs. deformation at the bottom floor. Clearly, both material- and structure-level nonlinearity are
well observed.

The inter-story drift Ui(X, t), i = 1, . . . , 6, between the i-th and (i − 1)-th floor is of interest. Then, the
maximum allowable drift is set as 66 = 3300× 1/50 mm. Hence, the failure probability of this dynamic system
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Table 7: Random variables in the stochastic earthquake model [60]

Variable Unit Distribution Parameters*

Ia m/s Lognormal 1.9 0.3
D5−95 s Lognormal 2.21 0.23
tmid s Lognormal 1.698 0.21
ωmid/2π Hz Uniform 2.8 4.8
ζf - Uniform 0.25 0.45

* Parameters of the random variables, rather than statistical moments.

(a) (b) (c)

Figure 13: Generation of three typical fully-nonstationary seismic accelerograms

(a) hysteretic curve of concrete (b) hysteretic curve of rebar (c) hysteretic curve of column

Figure 14: Nonlinear behaviors of the reinforced concrete frame

is defined as [61]

Pf = P

(
6⋃

i=1

(∃t ∈ [0, 20s], 66− |Ui(X, t)| ≤ 0)

)
, (61)

which can be recast as the standard form in Eq. (1), with the performance function G
(
X
)

expressed as [62]

G
(
X
)
= 66− max

1≤i≤6

(
max

t∈[0,20s]
|Ui(X, t)|

)
. (62)

Fig. 15 illustrates a single run of the proposed k -IPMR (adaptive scheme) in the reinforced concrete frame
example. First, the convergence of this algorithm is achieved by a total of 9 iterations of multi-point enrichment
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process, with the corresponding batch size K per iteration shown in Fig. 15(a). Except for the first two iterations,
at least 12 new samples are added in each iteration. Fig. 15(b) shows that the IPM Hn

µP̂f

is significantly reduced.

Consequently, the µP̂f
converges gradually to P̂MCS

f ; see Fig. 15(c).

(a) batch size K in each iteration (b) convergence of Hn
µ
P̂f,n

(c) convergence of µ
P̂f,n

Figure 15: The k -IPMR (adaptive scheme) in the reinforced concrete frame example

Table 8 gives the comparative results of different reliability methods in the reinforced concrete frame example.
First, both the ALR module in UQLab and the PABQ produce great values of δP̂f

at the cost of more than 300
runs of finite-element analysis of this frame. By contrast, both the SUR and the IPMR (k -IPMR and k -IPMR)
achieve better accuracy of failure probability estimate with much fewer evaluations, say approximately 50% -
65%. However, both the SUR and the k -IPMR entail more computational time tc, due to the time-intensive
computation of themselves. Conversely, the k -IPMR produces comparable accuracy of µP̂f

with much less
computational time tc, say around 10 %.

Table 8: Reliability results in the reinforced concrete frame example

Method E[niter] E[neval] E[µP̂f
] CV[µP̂f

] E[δP̂f
] E[tc](s)

MCS - - 1.2× 106 7.493× 10−4 - - 1.08× 107

ALR in
UQLab

K = 5 > 58 > 300 6.423× 10−4 4.74 % 12.02 % > 1173.7
K = 10 > 30 > 300 6.728× 10−4 17.01 % 13.91 % > 882.5
K = 15 > 20 > 300 6.471× 10−4 9.33 % 11.36 % > 892.7
K = 20 > 16 > 300 6.246× 10−4 9.47 % 15.03 % > 947.3

PABQ

K = 5 > 58 > 300 2.803× 10−4 60.37 % 61.61 % > 3.23× 103

K = 10 > 30 > 300 3.300× 10−4 50.96 % 56.10 % > 1.83× 103

K = 15 > 20 > 300 4.161× 10−4 37.15 % 43.07 % > 1.54× 103

K = 20 > 16 > 300 3.743× 10−4 46.08 % 51.81 % > 1.34× 103

SUR

K = 5 29.9 161.5 7.545× 10−4 7.72 % 6.54 % 6.51× 103

K = 10 17.5 182 7.420× 10−4 9.14 % 7.10 % 6.89× 103

K = 15 13.7 207.5 7.737× 10−4 5.28 % 5.12 % 8.01× 103

K = 20 13.1 259 7.654× 10−4 3.41 % 3.40 % 9.42× 103

k -IPMR

K = 5 27 147 7.411× 10−4 9.04 % 5.73 % 6.23× 103

K = 10 14.9 156 7.552× 10−4 7.54 % 4.63 % 7.02× 103

K = 15 11.6 176 7.876× 10−4 11.40 % 9.94 % 7.93× 103

K = 20 9.4 185 7.741× 10−4 6.74 % 7.53 % 8.52× 103

Adaptive 10 175.2 7.375× 10−4 7.17 % 5.93 % 7.34× 103

k -IPMR

K = 5 26.2 143 7.575× 10−4 9.15 % 7.18 % 684.3
K = 10 15.8 166 7.724× 10−4 8.59 % 7.74 % 782.7
K = 15 10.9 165.5 7.532× 10−4 9.01 % 4.42 % 776.8
K = 20 10.3 203 7.851× 10−4 3.45 % 5.31 % 941.6
Adaptive 10.5 181 7.573× 10−4 7.29 % 5.98 % 905.2

5.5. Discussions
Two critical discussions are made here to clarify the critical contributions of this study. First, the k -IPMR is

always advantageous over those existing (B)ALR methods in terms of niter. Admittedly, the inherent overhead
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of k -IPMR itself per iteration is much less than that of SUR and k -IPMR, but is still greater than that of
pointwise learning functions, e.g., the U function in the ALR module in UQLab and the UBVC in PABQ.
Hence, in the k -IPMR, whether its advantage of niter can be converted to that of tc or not depends on the
evaluation time of performance function G

(
·
)

being considered. If a single evaluation of G
(
·
)

is very expensive,
its evaluation time will dominate the running time of each iteration of BALR, and the benefit of reducing niter

will be readily converted to that of reducing tc. In the last three examples, the evaluation time of G-function
gradually increases. Hence, the advantage of k -IPMR in terms of tc becomes more and more prominent.

Second, a parallel active learning strategy is developed in the framework of PDEM in previous study [63].
Then, the similarities and differences between this study and previous study are outlined as follows.

• Similarities. Both of them adhere to a similar logical framework, i.e., multi-point look-ahead paradigm,
to build the critical ingredients of parallel active learning workflow.

• Differences. (i) Their global measures of epistemic uncertainty of failure probability differ from each other,
due to different inherent philosophies between PDEM and Bayesian inference of failure probability. (ii)
The number of representative points in PDEM is only O(103). Hence, there is no need for the pruning
of sample set in previous study. (iii) The PDEM is known to work well in dynamic reliability problems
but degrade in small failure probabilities, say Pf ≤ O(10−4). By contrast, good performance of Bayesian
inference of failure probability has been verified in relatively small failure probabilities [33, 30] and is also
testified in this study. Hence, it is necessary to develop efficient parallel enrichment strategy for Bayesian
active learning reliability analysis, which is exactly the main motivation of this study.

In summary, the proposed parallel enrichment strategy is totally goal-oriented, so as to be as efficient as
possible.

6. Concluding remarks

A new parallel Bayesian active learning reliability method is developed in this study. Starting by a well-
defined global measure of residual uncertainty of failure probability, a multi-point learning function called
k -IPMR is developed to select a sequence of new samples that reduce the IPM dramatically. Besides, an
adaptive scheme is devised to identify the rational size of batch of new samples added in each iteration. Clearly,
the multi-point enrichment process is implemented based on the k -IPMR itself, without resorting to additional
parallel selection procedures. Thanks to the low computational costs of both IPM and k -IPMR, the proposed
approach comes with better theoretical consistency and higher computational efficiency. Some concluding
remarks are summarized as follows.

• In the Bayesian inference of failure probability, the IPM is rigorously proved to be the upper bound of
mean absolute deviation of failure probability, and it can be thus viewed as a computationally cheaper
alternative of the posterior variance of failure probability.

• Guided by reducing the IPM, a multi-point learning function k -IPMR is analytically derived as a single
integral. Besides, a hybrid convergence criterion is developed according to the actual reduction of IPM in
each iteration.

• The multi-point enrichment process is efficiently performed based on three key workarounds, i.e., fast
single evaluation of k -IPMR, stepwise maximization of k -IPMR, and adaptive scheme of identifying the
batch size of new samples per iteration.

• Thanks to the core role of IPM, the three main ingredients, i.e., Bayesian inference of failure probability,
multi-point learning function, and convergence criterion, are fused in a compatible and consistent way.

Admittedly, in comparison with the exact posterior variance of failure probability, the IPM is still a relatively
looser metric. A much tighter residual uncertainty measure of failure probability and the resulting learning
function will be further explored in the near future.
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Appendix A. Basics of Kriging

The Kriging assumes the response of G
(
x
)

as one possible realization of an underlying Gaussian process,
expressed as [16]

G
(
x
)
≈ Ĝn

(
x
)
= β⊤f(x) + σ2W(x), (A.1)

where the trend function β⊤f(x) = β0+
∑d

l=1 βlxl, with f(x) = {1, x1, . . . , xd} a set of basis functions, and β =
{β0, β1, . . . , βd} a set of unknown coefficients. σ2 is the variance of Gaussian process; W(x) ∼ GP (0, R (x,x′))
is a stationary Gaussian process with zero mean, unit variance and a known correlation function R (x,x′;θ).
The Matern-5/2 correlation function is expressed as [16]

R (x,x′;θ) =

d∏
l=1

(
1 +
√
5
|xl − x′

l|
θl

+
5

3

(
|xl − x′

l|
θl

)2
)
exp

(
−
√
5
|xl − x′

l|
θl

)
, (A.2)

where the kernel parameters θ = {θl > 0}dl=1.
When providing an ED of size n, denoted as Dn = {Xn,Yn} =

{(
x(i), y(i)

)
, i = 1, . . . , n

}
, both β and σ2

can be estimated as

β̂ =
(
F⊤R−1F

)−1
F⊤R−1 Yn, (A.3)

σ̂2 =
1

n
(Yn−Fβ)

⊤
R−1 (Yn−Fβ) , (A.4)

where F :=
[
fj
(
x(i)

)]
1≤i≤n,1≤j≤d+1

is the information matrix; R :=
[
R
(
x(i),x(j);θ

)]
1≤i,j≤n

is the matrix of

correlations between all samples in the Xn. Both β̂ and σ̂2 depend on θ, which can be then estimated as [16]

θ̂ = argmin
θ∈Θ

σ̂2 |R|
1
n , (A.5)

where Θ is the feasible domain of θ.
Finally, the Kriging Ĝn

(
x
)

conditional on Dn is still a Gaussian process, that is,

Ĝn
(
x
)
∼ GP (µn(x), cn (x,x

′)) , (A.6)

with its mean µn(x), variance σ2
n(x) and covariance cn (x,x

′) are expressed as [16]

µn(x) = f(x)⊤β̂ + r(x)⊤R−1
(
Yn−F β̂

)
, (A.7)

σ2
n(x) = σ̂2

(
1− r(x)⊤R−1r(x) + u(x)⊤

(
F⊤R−1F

)−1
u(x)

)
, (A.8)

cn (x,x
′) = σ̂2

(
R(x,x′)− r(x)⊤R−1r(x′) + u(x)⊤

(
F⊤R−1F

)−1
u(x′)

)
, (A.9)

where r(x) =
[
R
(
x,x(1)

)
, . . . , R

(
x,x(n)

)]⊤
, and u(x) = F⊤R−1r(x)− f(x).
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Appendix B. Proof of Proposition 1

Proof. First, the mean absolute deviation of P̂f,n satisfies the following inequality

En

[∣∣∣P̂f,n − µP̂f,n

∣∣∣] = En

[∣∣∣∣∫
X
1̂n (x) fX(x)dx−

∫
X
µ1̂n

(x)fX(x)dx

∣∣∣∣] ,
= En

[∣∣∣∣∫
X

(
1̂n (x)− µ1̂n

(x)
)
fX(x)dx

∣∣∣∣] ,
≤ En

[∫
X

∣∣∣1̂n (x)− µ1̂n
(x)
∣∣∣ fX(x)dx

]
,

=

∫
X
En

[∣∣∣1̂n (x)− µ1̂n
(x)
∣∣∣] fX(x)dx,

= EX

[
En

[∣∣∣1̂n (x)− µ1̂n
(x)
∣∣∣]] ,

(B.1)

where En

[∣∣∣1̂n (x)− µ1̂n
(x)
∣∣∣] denotes the mean absolute deviation of 1̂n (x).

Then, there exists

∣∣∣1̂n (x)− µ1̂n
(x)
∣∣∣ =


∣∣∣1− Φ

(
−µn(x)

σn(x)

)∣∣∣ , Ĝn(x) ≤ 0∣∣∣0− Φ
(
−µn(x)

σn(x)

)∣∣∣ , otherwise
=

Φ
(

µn(x)
σn(x)

)
, Ĝn

(
x
)
≤ 0,

Φ
(
−µn(x)

σn(x)

)
, otherwise,

(B.2)

hence, En

[∣∣∣1̂n (x)− µ1̂n
(x)
∣∣∣] can be computed as

En

[∣∣∣1̂n (x)− µ1̂n
(x)
∣∣∣] = ∫ 0

−∞
Φ

(
µn(x)

σn(x)

)
fŶ (ŷ)dŷ +

∫ +∞

0

Φ

(
−µn(x)

σn(x)

)
fŶ (ŷ)dŷ,

= Φ

(
µn(x)

σn(x)

)
Φ

(
−µn(x)

σn(x)

)
+Φ

(
−µn(x)

σn(x)

)
Φ

(
µn(x)

σn(x)

)
,

= 2Φ

(
µn(x)

σn(x)

)
Φ

(
−µn(x)

σn(x)

)
.

(B.3)

Further, given that

Φ

(
µn(x)

σn(x)

)
Φ

(
−µn(x)

σn(x)

)
≤ min

{
Φ

(
µn(x)

σn(x)

)
,Φ

(
−µn(x)

σn(x)

)}
= Φ

(
−|µn(x)|

σn(x)

)
= πn(x), (B.4)

there exits
En

[∣∣∣1̂n (x)− µ1̂n
(x)
∣∣∣] ≤ 2πn(x). (B.5)

Finally, substituting Eq. (B.5) into Eq. (B.1) proves the inequality in Eq. (17), that is,

En

[∣∣∣P̂f,n − µP̂f,n

∣∣∣] ≤ 2EX [πn(x)] = 2Hn. (B.6)

Appendix C. Proof of Proposition 2

Proof. First, by definition of Φ (·), the term EU+
k

[
Πn+k

(
x;X+

k

)]
in Eq. (24) can be expressed as

EU+
k

[
Πn+k

(
x;X+

k

)]
=

∫
Rk

Φ
(
−
∣∣a(x) + b(x)⊤ U+

k

∣∣) fU+
k
(U+

k )dU
+
k ,

=

∫
Rk

P
(
Λ ≤ −

∣∣a(x) + b(x)⊤ U+
k

∣∣) fU+
k
(U+

k )dU
+
k ,

= P
(
Λ ≤ −

∣∣a(x) + b(x)⊤U+
k

∣∣) ,
= P (Λ + |W | ≤ 0) ,

= P (Λ +W ≤ 0,W ≥ 0) + P (Λ−W ≤ 0,W < 0) ,

= P (Λ +W ≤ 0,−W ≤ 0)︸ ︷︷ ︸
1○

+P (Λ−W ≤ 0,W < 0)︸ ︷︷ ︸
2○

,

(C.1)
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where Λ ∼ N (0, 1) is a standard Gaussian variable independent of U+
k ; then, W = a(x) + b(x)⊤U+

k is a
Gaussian variable, with its mean µW and variance σ2

W given by
µW = E

[
a(x) + b(x)⊤U+

k

]
= a(x) + b(x)⊤0 = a(x) =

µn(x)

σn+k(x)
,

σ2
W = E

[
a(x) + b(x)⊤U+

k

]
= b(x)⊤ C+k b(x) =

cn
(
x,X+

k

)⊤ (C+k )−1

σn+k(x)
C+k

(
C+k
)−1

cn
(
x,X+

k

)
σn+k(x)

=
σ2
n(x)

σ2
n+k(x)

− 1.

(C.2)

Then, the vector
[
Λ +W
−W

]
in 1○ follows bivariate Gaussian distribution, with the components of their mean

vector and covariance matrix given as
E
[
Λ +W

]
= 0 + µW = µW ,

Var
[
Λ +W

]
= 1 + Var

[
W
]
= 1 + σ2

W ,

Cov [Λ +W,−W ] = −Cov [Λ,W ]− Cov [W,W ] = −σ2
W .

(C.3)

In this way,
[
Λ +W
−W

]
∼ N2

([
µW

−µW

]
,

[
1 + σ2

W −σ2
W

−σ2
W σ2

W

])
, and the 1○ is equivalent to

1○ = Φ2

([
0
0

]
;

[
µW

−µW

]
,

[
1 + σ2

W −σ2
W

−σ2
W σ2

W

])
= Φ2

[ −µW√
1+σ2

W
µW

σW

]
;

[
0
0

]
,

 1 − σW√
1+σ2

W

− σW√
1+σ2

W

1

 ,

= Φ2


 −µn(x)

σn(x)
µn(x)√

cn(x,X+
k )

⊤
(C+

k )
−1

cn(x,X+
k )

 ;

[
0
0

]
,

 1 −
√

cn(x,X+
k )

⊤
(C+

k )
−1

cn(x,X+
k )

σn(x)

−
√

cn(x,X+
k )

⊤
(C+

k )
−1

cn(x,X+
k )

σn(x)
1


 ,

= Φ2

([
−µn(x)

σn(x)
µn(x)
σn(x)/ρn+k(x,X+

k )

]
;

[
0
0

]
,

[
1 −ρn+k

(
x,X+

k

)
−ρn+k

(
x,X+

k

)
1

])
,

(C.4)
where ρn+k

(
x,X+

k

)
is defined as

ρn+k

(
x,X+

k

)
=

√
cn
(
x,X+

k

)⊤ (C+k )−1
cn
(
x,X+

k

)
σn(x)

∈ [0, 1]. (C.5)

Similarly, the vector
[
Λ−W
W

]
in 2○ follows bivariate Gaussian distribution, with the components of their

mean vector and covariance matrix expressed as
E
[
Λ−W

]
= 0− µW = −µW ,

Var
[
Λ−W

]
= 1 + Var

[
W
]
= 1 + σ2

W ,

Cov [Λ−W,W ] = Cov [Λ,W ]− Cov [W,W ] = −σ2
W .

(C.6)

In this regard,
[
Λ−W
W

]
∼ N2

([
−µW

µW

]
,

[
1 + σ2

W −σ2
W

−σ2
W σ2

W

])
, and the 2○ is recast as

2○ = Φ2

([
0
0

]
;

[
−µW

µW

]
,

[
1 + σ2

W −σ2
W

−σ2
W σ2

W

])
,

= Φ2

([
µn(x)
σn(x)

−µn(x)
σn(x)/ρn+k(x,X+

k )

]
;

[
0
0

]
,

[
1 −ρn+k

(
x,X+

k

)
−ρn+k

(
x,X+

k

)
1

])
.

(C.7)

Substitute Eqs. (C.4) and (C.7) into Eq. (C.1), giving rise to

EU+
k

[
Πn+k

(
x;X+

k

)]
= Φ2

([
−µn(x)

σn(x)
µn(x)
σn(x)/ρn+k(x,X+

k )

]
;

[
0
0

]
,

[
1 −ρn+k

(
x,X+

k

)
−ρn+k

(
x,X+

k

)
1

])
,

+Φ2

([
µn(x)
σn(x)

−µn(x)
σn(x)/ρn+k(x,X+

k )

]
;

[
0
0

]
,

[
1 −ρn+k

(
x,X+

k

)
−ρn+k

(
x,X+

k

)
1

])
,

(C.8)
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which is a function of µn(x)
σn(x)

and ρn+k

(
x,X+

k

)
. Further, Eq. (C.8) implies that EU+

k

[
Πn+k

(
x;X+

k

)]
is an even

function with respect to µn(x)
σn(x)

. Hence, Eq. (C.8) can be rewritten as

EU+
k

[
Πn+k

(
x;X+

k

)]
= Φ2

([
− |µn(x)|

σn(x)
|µn(x)|
σn(x) /ρn+k(x,X+

k )

]
;

[
0
0

]
,

[
1 −ρn+k

(
x,X+

k

)
−ρn+k

(
x,X+

k

)
1

])
,

+Φ2

([
|µn(x)|
σn(x)

− |µn(x)|
σn(x) /ρn+k(x,X+

k )

]
;

[
0
0

]
,

[
1 −ρn+k

(
x,X+

k

)
−ρn+k

(
x,X+

k

)
1

])
.

(C.9)

Recall that [64]

Φ2

([
−h1

−h2

]
;

[
0
0

]
,

[
1 r
r 1

])
= Φ2

([
h1

h2

]
;

[
0
0

]
,

[
1 r
r 1

])
− Φ (h1)− Φ (h2) + 1, (C.10)

then, Eq. (C.9) can be recast as

EU+
k

[
Πn+k

(
x;X+

k

)]
= 2Φ2

([
|µn(x)|
σn(x)

− |µn(x)|
σn(x) /ρn+k(x,X+

k )

]
;

[
0
0

]
,

[
1 −ρn+k

(
x,X+

k

)
−ρn+k

(
x,X+

k

)
1

])
− Φ

− |µn(x)|
σn(x)

ρn+k

(
x,X+

k

)
− Φ

(
|µn(x)|
σn(x)

)
+ 1,

= Φ

(
−|µn(x)|

σn(x)

)
− Φ

− |µn(x)|
σn(x)

ρn+k

(
x,X+

k

)
+ 2Φ2

([
|µn(x)|
σn(x)

− |µn(x)|
σn(x) /ρn+k(x,X+

k )

]
;

[
0
0

]
,

[
1 −ρn+k

(
x,X+

k

)
−ρn+k

(
x,X+

k

)
1

])
.

(C.11)
Finally, substituting Eq. (C.11) into Eq. (24) proves the analytical expression of Γn+k

(
x;X+

k

)
in Eq. (26),

that is,

Γn+k

(
x;X+

k

)
= πn(x)− EU+

k

[
Πn+k

(
x;X+

k

)]
,

= Φ

(
−|µn(x)|

σn(x)

)
− Φ

(
−|µn(x)|

σn(x)

)
+Φ

 − |µn(x)|
σn(x)

ρn+k

(
x,X+

k

)


− 2Φ2

([
|µn(x)|
σn(x)

− |µn(x)|
σn(x) /ρn+k(x,X+

k )

]
;

[
0
0

]
,

[
1 −ρn+k

(
x,X+

k

)
−ρn+k

(
x,X+

k

)
1

])
,

= Φ

 − |µn(x)|
σn(x)

ρn+k

(
x,X+

k

)
− 2Φ2

([
|µn(x)|
σn(x)

− |µn(x)|
σn(x) /ρn+k(x,X+

k )

]
;

[
0
0

]
,

[
1 −ρn+k

(
x,X+

k

)
−ρn+k

(
x,X+

k

)
1

])
,

(C.12)
which is a function of both |µn(x)|

σn(x)
∈ [0,+∞) and ρn+k

(
x,X+

k

)
∈ [0, 1].

Appendix D. Proof of Proposition 3

Proof. The upper bound Γn+k

(
x;X+

k

)
is a direct consequence of removing the second term in Eq. (26). Then,

we will focus on the lower bound in the sequel.
Given the definition of πn(x) in Eq. (16), it can be expressed as

πn(x) = min
{
P
(
Ĝn
(
x
)
≤ 0
)
,P
(
Ĝn
(
x
)
> 0
)}

= min
{
P
(
Ĝn
(
x
)
≤ 0
)
, 1− P

(
Ĝn
(
x
)
≤ 0
)}

, (D.1)

where Ĝn
(
x
)
∼ N

(
µn(x), σ

2
n(x)

)
denotes the Kriging prediction at x conditional on the current ED Dn.

Then, let us define an auxiliary function

J(s) = min{s, 1− s}, s ∈ [0, 1], (D.2)

which is concave, due to the fact that for any s, t ∈ [0, 1] and for any λ ∈ [0, 1], there holds

λJ(s) + (1− λ)J(t) = min{λs, λ(1− s)}+min{(1− λ)t, (1− λ)(1− t)},
≤ min{λs+ (1− λ)t, λ(1− s) + (1− λ)(1− t)},
= J(λs+ (1− λ)t).

(D.3)
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With the help of J(·), we could rewrite πn(x) and πn+k

(
x;X+

k ,Y
+
k

)
(Eq. (20)) as

πn(x) = J
(
P
(
Ĝn
(
x
)
≤ 0
))

,

πn+k

(
x;X+

k ,Y
+
k

)
= J

(
P
(
Ĝn+k

(
x | X+

k ,Y
+
k

)
≤ 0
))

,
(D.4)

respectively.
Following Jensen’s inequality, there exists

EY +
k

[
Πn+k

(
x;X+

k

)]
= EY +

k

[
J
(
P
(
Ĝn+k

(
x | X+

k ,Y
+
k = Y+

k

)
≤ 0
))]

,

≤ J
(
EY +

k

[
P
(
Ĝn+k

(
x | X+

k ,Y
+
k = Y+

k

)
≤ 0
)])

,

∗
= J

(
P
(
Ĝn
(
x
)
≤ 0
))

,

= πn(x),

(D.5)

where the equality ∗
= follows the law of total probability.

Consequently, Γn+k

(
x;X+

k

)
in Eq. (24) is non-negative, i.e.,

Γn+k

(
x;X+

k

)
= πn(x)− EY +

k

[
Πn+k

(
x;X+

k

)]
≥ 0, (D.6)

hence, Γn+k

(
x;X+

k

)
= 0.

Appendix E. Characteristic of a promising candidate batch informed by k-IPMR

Eqs. (30) and (31) indicate that the k -IPMR is a function of EX [·], |µn(x)|
σn(x)

, and ρn+k

(
x,X+

k

)
. Here, EX [·]

specifies the quadrature points and their weights; |µn(x)|
σn(x)

reflects the relative position of a quadrature point x

to others; ρn+k

(
x,X+

k

)
encodes the impact of adding a new batch X+

k . Hence, the former two can be viewed
as fixed arguments, while the latter one is taken as a variable argument of k -IPMR. In this way, it is feasible
to unveil how the k -IPMR varies when X+

k roams through the input space.
For illustration, let’s consider a toy G-function such that

Y = 3− 1√
2
(X1 +X2) +

1

10
(X1 −X2)

2
, (E.1)

where X1, X2 ∼ N (0, 1). The Latin hypercube sampling technique is used to generate an ED Dn = {Xn,Yn}
of size n = 9, as marked as black squares in Fig. E.16. Then, the VAIS’s weight fX(x)

hX(x) and the PM πn(x) are
shown in Figs. E.16(a) and E.16(b), respectively. Further, the following two different cases of X+

k are considered
for comparison.

• The X+
k is a batch of 3 new samples around

{
x ∈ X : |µn(x)|

σn(x)
→ 0

}
, which are marked as the green

diamonds in Figs. E.16(d) - (f).

• The X+
k is a batch of 3 new samples far away from

{
x ∈ X : |µn(x)|

σn(x)
→ 0

}
, which are plotted as the green

diamonds in Figs. E.16(g) - (i).

In the former case, great values of ρn+k(·,X+
k ) are observed around X+

k , i.e., the local region with small
value of |µn(x)|

σn(x)
in Fig. E.16(d). Then, the resulting values of Γn+k(·;X+

k ) are only significant in this area, but
are nearly 0 in other regions, as exemplified by two magenta circles in Fig. E.16(e). Further, when considering
the VAIS’s weight, great values of Γn+k(x;X+

k )
fX(x)
hX(x) are only shown in the local region with small |µn(·)|

σn(·) but

great fX(·)
hX(·) , as shown in Fig. E.16(f).

In the latter case, significant values of ρn+k(·,X+
k ) are only in the local region with great values of |µn(x)|

σn(x)
in

Fig. E.16(g), but the values of Γn+k(·;X+
k ) are close to 0 in most of input space, with its maximum value only

0.1 in Fig. E.16(h). Further, when considering the VAIS’s weight, the resulting values of Γn+k(x;X+
k )

fX(x)
hX(x) are

still very trivial, with its maximum value only 0.01 in Fig. E.16(i).
Finally, according to k -IPMR, the X+

k in the former case is more promising than that in the latter case.
Obviously, the promising batch X+

k is prone to be located in the local region featuring smaller |µn(·)|
σn(·) but greater

fX(·)
hX(·) . In this way, the large-sized candidate pool XC can be pruned to some extent.
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0 0.5 1 1.5 2

(a) fX (x)
hX (x)

in the input space

0 0.1 0.2 0.3 0.4 0.5

(b) πn(x) in the input space

0 0.02 0.04 0.06 0.08 0.1

(c) πn(x)
fX (x)
hX (x)

in the input space

(d) ρn+k(x,X+
k ) for promising batch (e) Γn+k(x;X+

k ) for promising batch (f) Γn+k(x;X+
k )

fX (x)
hX (x)

(g) ρn+k(x,X+
k ) for unpromising batch (h) Γn+k(x;X+

k ) for unpromising batch (i) Γn+k(x;X+
k )

fX (x)
hX (x)

Figure E.16: Illustration of a promising candidate batch informed by k -IPMR

Appendix F. Stepwise uncertainty reduction (SUR)

In the learning function SUR [29, 32], two different forms were developed and are called SUR(1)(·) and
SUR(2)(·) here, respectively.

First, by quantifying the impact of adding X+
k on the reduction of the posterior variance σ2

P̂f,n
(Eq. (9)),

the SUR(1) is eventually expressed as [32]

SUR(1)
(
X+

k

)
= γn −

∫∫
X×X

Φ2

([
−µn(x)

σn(x)

−µn(x
′)

σn(x′)

]
;

[
0
0

]
,

[
1 ωn+k

ωn+k 1

])
, (F.1)
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where γn =

∫∫
X×X

Φ2

([
−µn(x)

σn(x)

−µn(x
′)

σn(x′)

]
;

[
0
0

]
,

[
1 ρn(x,x

′)
ρn(x,x

′) 1

])
fX(x)fX(x′)dxdx′ is a quantity independent

of X+
k ; then, only ωn+k =

cn
(
x,X+

k

)⊤ (C+k )−1
cn
(
x′ X+

k

)
σn(x)σn(x′)

encodes the impact of adding X+
k in SUR(1)

(
X+

k

)
.

In this way, the batch of k best next points X ∗
k is selected as

X ∗
k = argmin

X+
k ∈X

SUR(1)
(
X+

k

)
. (F.2)

Since both σ2
P̂f,n

and SUR(1)
(
X+

k

)
are expressed as double integrals of Φ2 (·; ·, ·), they are too computationally

demanding to use in practice.
To this end, the SUR(2)(·) is defined from the following residual uncertainty measure of failure probability

IBVn = EX

[
σ2
1̂n
(x)
]
=

∫
X
Φ

(
−µn(x)

σn(x)

)
Φ

(
−µn(x)

σn(x)

)
fX(x)dx, (F.3)

which is called the integrated Bernoulli variance and acts as the upper bound of σ2
P̂f,n

, according to Cauchy-

Schwarz inequality. Notably, the IBVn is only a single integral of Φ (·) and is much cheaper than σ2
P̂f,n

.

Then, by measuring the potential reduction of IBVn brought by X+
k , the SUR(2)

(
X+

k

)
is finally expressed

as [32]

SUR(2)
(
X+

k

)
=

∫
X
Φ2

([
a(x)
−a(x)

]
;

[
0
0

]
,

[
c(x) 1− c(x)

1− c(x) c(x)

])
fX(x)dx, (F.4)

where a(x) = µn(x)
σn+k(x)

and c(x) =
σ2
n(x)

σ2
n+k(x)

.
Then, the X ∗

k is selected as
X ∗

k = argmin
X+

k ∈X
SUR(2)

(
X+

k

)
. (F.5)

Clearly, in comparison with SUR(1)(·), the SUR(2)(·) is only a single integral. However, due to the presence
of Φ2 (·; ·, ·), carrying out the minimization in Eq. (F.5) is still very expensive.
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