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Abstract

This manuscript presents a novel Bayesian active learning reliability method integrating both Bayesian failure
probability estimation and Bayesian decision-theoretic multi-point enrichment process. First, an epistemic
uncertainty measure called integrated margin probability (IMP) is proposed as an upper bound for the mean
absolute deviation of failure probability estimated by Kriging. Then, adhering to the Bayesian decision theory,
a look-ahead learning function called multi-point stepwise margin reduction (MSMR) is defined to quantify
the possible reduction of IMP brought by adding a batch of new samples in expectation. The cost-effective
implementation of MSMR-based multi-point enrichment process is conducted by three key workarounds: (a)
Thanks to analytical tractability of the inner integral, the MSMR reduces to a single integral. (b) The remaining
single integral in the MSMR is numerically computed with the rational truncation of the quadrature set. (c) A
heuristic treatment of maximizing the MSMR is devised to fastly select a batch of best next points per iteration,
where the prescribed or adaptive scheme is used to specify the batch size. The proposed method is tested on two
benchmark examples and two dynamic reliability problems. The results indicate that the adaptive scheme in the
MSMR gains a good balance between the computing resource consumption and the overall computational time.
Then, the MSMR fairly outperforms those existing leaning functions and parallelization strategies in terms of
the accuracy of failure probability estimate, the number of iterations, as well as the number of performance
function evaluations, especially in complex dynamic reliability problems.

Keywords: Multi-point stepwise margin reduction, Bayesian active learning, Bayesian decision theory,
Prescribed and adaptive schemes, Parallel computing, Reliability analysis

Nomenclature

AK-MCS adaptive Kriging - Monte Carlo simula-
tion

ALR active learning reliability
BALR Bayesian active learning reliability
CDF cumulative distribution function
CV coefficient of variation
ED experimental design
EM ensemble of metamodels
EMVR expected margin volume reduction
IMP integrated margin probability

IPMR integrated probability of misclassifica-
tion reduction

MCS Monte Carlo simulation
MFWNP modulated filtered white-noise process
MSMR multi-point stepwise margin reduction
PABQ parallel adaptive Bayesian quadrature
PDF probability density function
SMR stepwise margin reduction
SUR stepwise uncertainty reduction
VAIS variance-amplified importance sampling

1. Introduction

In probabilistic reliability analysis, a primary task is to compute the failure probability of an engineering
system in the presence of various uncertainties associated with physical properties, environmental loads, and
operating conditions, etc. This uncertainty can be modeled by a set of d random variables X = {X1, . . . , Xd} ∈
X ⊂ Rd, with the joint probability density function (PDF) fX(x). Without loss of generality, the X is
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assumed to be a standard Gaussian vector. If other probabilistic distributions are considered, an iso-probabilistic
transformation that maps the original space to the standard Gaussian space can be employed, e.g., Nataf or
Rosenblatt transform. The state of the system can be defined by a so-called performance function y = G (x) :
Rd 7→ R, where the system is in a failed state when G (x) ≤ 0. Then, the failure probability Pf can be defined
as [1]

Pf = P (G (x) ≤ 0) =

∫
X
1G (x) fX(x)dx, (1)

where P (·) denotes the probability measure; the failure indicator function 1G (x) is expressed as

1G (x) =

{
1, G(x) ≤ 0,

0, otherwise.
(2)

The analytical solution to Eq. (1) is practically intractable in most real-world scenarios due to the complex
and implicit expression of G (·). In recent decades, a variety of numerical reliability methods have been developed
and can be generally divided into the following four categories. (a) Stochastic simulation methods, such as Monte
Carlo simulation (MCS) [2], importance sampling [3], and subset simulation [4]; (b) Analytical approximation
methods, e.g., first- and second-order reliability methods [5, 6]; (c) Numerical integration-based methods, such as
moment methods [7, 8], and probability density evolution method [9, 10]; (d) Surrogate model-assisted methods,
which consist in substituting the expensive-to-run performance function by a cheap-but-accurate surrogate
model, and the failure probability can be then estimated by performing some classical reliability algorithms on
the well-trained surrogate model. Commonly-used surrogate models in this context include polynomial chaos
expansions [11, 12], Kriging [13], radial basis function [14], support vector regression [15], and ensemble of
metamodels (EM) [16], to name just a few. Particularly, the active learning reliability (ALR) methods [17, 18],
where surrogate models are used with an adaptive experimental design scheme, have received increasing attention
during the last two decades. Specifically, guided by a well-defined learning function, a surrogate model can be
refined by sequentially adding new performance function evaluations to its experimental design (ED); this
sequential process is continued until it meets an appropriate convergence criterion related to the accuracy of
failure probability estimate. Obviously, the main modules in the ALR framework comprise a surrogate model,
a reliability estimation algorithm, a learning function, and a convergence criterion [18]. Among those existing
surrogate models, Kriging is particularly prevalent, owing to its exact interpolation property and Bayesian
interpretation ability [19]. Two pioneering contributions in this context are the efficient global reliability analysis
[20] and the adaptive Kriging - Monte Carlo simulation (AK-MCS) [13]. The interested readers are referred to
[17, 18] for a comprehensive review.

More recently, the Bayesian active learning reliability (BALR) methods [21], serving as one subcategory of
the ALR framework, have surged in the literature. These methods consist in treating the Kriging-based failure
probability estimation as a Bayesian inference problem, giving rise to the posterior statistics of failure proba-
bility, e.g., posterior mean and variance [21]. The posterior mean is a favorable estimate of failure probability,
while the posterior variance can be viewed as an epistemic uncertainty measure of failure probability, due to
only a limited number of performance function evaluations in the ED. Naturally, the posterior variance can be
reduced by adding new training samples, introducing a framework to build learning functions. Unfortunately,
the exact posterior variance is expressed as a double integral, whose numerical solution suffers from an intensive
computational burden. In this way, several computationally cheap alternatives that only involve a single inte-
gral have been well developed, such as the upper bounding- [22], partial- [23], or semi- [24] posterior variance
of failure probability. Then, learning functions are simply defined as the integrand of those epistemic uncer-
tainty measures, whereby the best next point is selected as the one achieving the maximum learning function
value. Typical learning functions include the upper-bound posterior variance contribution [22], the expected
misclassification probability contribution [21, 24], and the left- or right-shifted contribution [23], etc.

Unlike those aforementioned learning functions, a family of look-ahead learning functions has recently
emerged from the Bayesian decision-theoretic framework [25, 26]. They feature the ability to explicitly quantify
the potential impact of adding a new point(s) on reducing those well-defined epistemic uncertainty measures.
Different epistemic uncertainty measures give rise to distinct expressions of look-ahead learning functions.
Typical ones comprise the stepwise uncertainty reduction (SUR) [25], the expected margin volume reduction
(EMVR) [27], the expected integrated error reduction [28], the integrated probability of misclassification re-
duction (IPMR) [19], the SUR-Bichon criterion [29], and the stepwise margin reduction [30], etc. Note that a
single-point enrichment process is often used with those learning functions, rendering the overall computational
time of reliability analysis still very intensive.

To alleviate this drawback, the parallel (B)ALR methods have gained increasing popularity in the structural
reliability community due to its potential to accelerate the overall computation and make the most of available
computing facilities [31, 32]. This goal is often achieved by combining a single-point learning function with some
additional multi-point enrichment strategies, whereby a batch of best next points can be added per iteration.
Those existing multi-point enrichment strategies can be broadly categorized into the following four groups. (a)
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The clustering strategy. This category is the most widely-used one in the literature, consisting of the K-means
clustering techniques [33, 34, 35, 22] and the K-medoids clustering techniques [36, 37]. Basically, the centroids
of K clusters of the candidate pool (weighted by the learning function values) are selected as the batch of K
best next points per iteration. However, it remains challenging to specify a rational value of K. (b) Pseudo
learning function-based strategy [38]. After selecting the 1-st new point via the initial learning function, the
next new points are sequentially selected by the pseudo learning function. It approximates the real updated
learning function via multiplying the initial one by an influence function of newly added points [24]. (c) Kriging
believer or constant liar strategy [39]. Once the 1-st new point is selected via the initial learning function, the
Kriging is updated by the 1-st new point and the predictive mean of Kriging on it [34, 40] or a constant fixed
by the user [41]; then, the learning function is recomputed to select the 2-nd new point. This updating process
is repeated K times to add a batch of K new points per iteration. (d) EM-based strategy [39]. The EM is a
weighted average model that combines K diverse metamodels (or surrogate models). Then, every individual
metamodel, along with the same learning function, could provide one new point, giving rise to a batch of K new
points, at most, per iteration (removing duplicates). Obviously, the batch size per iteration is limited by the
number of individual metamodels in the EM [16]. Although those existing (B)ALR methods assisted by various
additional parallel enrichment strategies yield favorable empirical results, a theoretically sound and numerically
simple approach is still desirable for practitioners.

In this study, we develop a new parallel Bayesian active learning reliability method by proposing a cost-
effective look-ahead learning function called multi-point stepwise margin reduction (MSMR). Particularly, the
multi-point enrichment process can be conducted based on the MSMR itself, without needing additional batch
enrichment strategies. Besides, the batch size can be either prescribed or adaptively identified per iteration.
The critical contributions of this study are three-fold.

• In the Bayesian inference of failure probability, the integrated margin probability (IMP) is proved as
an upper bound of the mean absolute deviation of failure probability. In comparison with the exact
posterior variance, the IMP is a much computationally cheaper measure of epistemic uncertainty of failure
probability.

• The learning function MSMR is defined to quantify the expected gain on reducing the IMP induced by
adding a batch of new samples, and it is formulated as a double integral. Analytical expression of the
inner integral is obtainable, owing to the desirable form of IMP; then, the remaining outer integral is
numerically computed by truncating the quadrature set.

• The multi-point enrichment process is cheaply conducted via the heuristic treatment of maximizing the
MSMR, together with the truncation of candidate pool. Furthermore, both prescribed and adaptive
schemes are devised to specify the size of batch of new samples added per iteration.

The remainder of this paper is organized as follows. Section 2 reviews the BALR methods. Section 3 is
devoted to the proposed learning function MSMR. Then, multi-point Bayesian active learning reliability analysis
based on the MSMR is elucidated in Section 4. The proposed approach is testified in Section 5. Finally, some
concluding remarks are given in Section 6.

2. Preliminaries

This section provides an overview of the BALR methods. Section 2.1 reviews Bayesian inference of failure
probability. Then, Section 2.2 discusses the existing learning functions and parallelization implementations, as
well as their shortcomings.

2.1. Bayesian inference of failure probability
The BALR framework starts by considering the performance function G(x) as a sample path of Kriging

Ĝn
(
x
)
∼ GP (µn(x), cn(x,x

′)) in a probability space (Ω,F ,P) (Appendix A). Then, the posterior distribution
of the failure indicator function 1̂n(·) and further the posterior statistics of the failure probability P̂f,n can be
readily derived. In this way, both learning function and convergence criterion in the workflow of ALR can be
built accordingly, as illustrated in Fig. 1.

Specifically, suppose that an ED Dn = {Xn,Yn} of size n is provided, a Kriging Ĝn(x) can be trained,
with the posterior mean µn(x), variance σ2

n(x), and covariance cn(x,x′) given by Eqs. (A.6), (A.7) and (A.8),
respectively. The subscript n is a reminder of conditioning on Dn. Then, by substituting Ĝn(x) into Eq. (2),
the failure indicator function 1̂n(x) is expressed as [21]

1̂n (x) ∼ GBP
(
µ
1̂n

(x), c
1̂n

(x,x′)
)
, (3)
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Bayesian inference

Start
Experimental

design
Dn

Ĝn
(
x
)
∼

N
(
µn(x), cn(x,x

′)
) 1̂n (x) ∼
GBP

(
µ
1̂n

(x), c
1̂n

(x,x′)
) P̂f,n{

µP̂f,n
, σ2
P̂f,n

}

Convergence
criterion

Learning
function

x∗ = arg
x∈X

LF(x)

G-function
evaluations
y∗ = G (x∗)

End

1̂n (x) =

{
1, Ĝn(x) ≤ 0

0, otherwise P̂f,n =
∫
X 1̂n (x)fX(x)dx

N Y

Figure 1: Basic workflow of Bayesian active learning reliability analysis

which follows a generalized Bernoulli process, with its mean µ
1̂n

(x), variance σ2
1̂n

(x), and covariance c
1̂n

(x,x′),
respectively, expressed as

µ
1̂n

(x) = Φ

(
−µn(x)
σn(x)

)
, (4)

σ2
1̂n

(x) = Φ

(
−µn(x)
σn(x)

)
Φ

(
µn(x)

σn(x)

)
, (5)

c
1̂n

(x,x′) = Φ2

([
0
0

]
;

[
µn(x)
µn(x

′)

]
,

[
σ2
n(x), cn(x,x

′)
cn(x

′,x), σ2
n(x

′)

])
− Φ

(
−µn(x)
σn(x)

)
Φ

(
−µn(x

′)

σn(x′)

)
, (6)

where Φ(·) is the cumulative distribution function (CDF) of a standard Gaussian random variable; Φ2 (·;µ,C)
is the joint CDF of a bivariate Gaussian random vector with mean vector µ and covariance matrix C. Note
that Φ2 (·; ·, ·) has no closed-form expression and thus needs to be numerically computed.

Finally, substituting Eq. (3) into Eq. (1), the failure probability P̂f,n conditional on Dn is expressed as

P̂f,n =

∫
X
1̂n (x) fX(x)dx. (7)

Although the exact distribution of P̂f,n is intractable, its mean µP̂f,n
and variance σ2

P̂f,n
are given as [21]

µP̂f,n
=

∫
X
Φ

(
−µn(x)
σn(x)

)
fX(x)dx, (8)

σ2
P̂f,n

=

∫
X

∫
X
Φ2

([
0
0

]
;

[
µn(x)
µn(x

′)

]
,

[
σ2
n(x), cn(x,x

′)
cn(x

′,x), σ2
n(x

′)

])
fX(x)fX(x′)dxdx′ − µ2

P̂f,n
, (9)

respectively, which encapsulate our probabilistic belief regarding the Pf in light of the current ED Dn.
Eqs. (8) and (9) generally have no analytical solution and thus need to be computed with some numerical

integration methods. For example, the variance-amplified importance sampling (VAIS) expresses Eq. (8) as

µP̂f,n
=

∫
X
Φ

(
−µn(x)
σn(x)

)
fX(x)

hX(x)
hX(x)dx ≈ 1

Q1

Q1∑
q=1

[
Φ

(
−
µn
(
x(q)

)
σn
(
x(q)

)) fX
(
x(q)

)
hX

(
x(q)

)] = µ̃P̂f,n
, (10)

where hX(x) denotes the importance sampling density function, and it usually takes the joint PDF of a d-
variate Gaussian vector with mean vector 0 and covariance matrix α2Id. The amplification coefficient α is set
as 1.5 in this paper [21, 19]. XQ1

=
{
x(q), q = 1, . . . , Q1

}
denotes a set of Q1 samples drawn from hX(x),

and the Halton low-discrepancy sequence is used here. Further, the sample variance of µ̃P̂f,n
is computed as

Var
[
µ̃P̂f,n

]
= 1

Q1(Q1−1)

∑Q1

q=1

[
Φ
(
−µn(x

(q))
σn(x(q))

)
fX(x(q))
hX(x(q))

− µ̃P̂f,n

]2
, and the associated coefficient of variation (CV)

is expressed as CV
[
µ̃P̂f,n

]
=
√

Var
[
µ̃P̂f,n

]/
µ̃P̂f,n

. Then, the sample size Q1 in Eq. (10) is considered sufficient
when CV

[
µ̃P̂f,n

]
≤ εQ, where the tolerance εQ can be specified as 5% here.

The µP̂f,n
is often taken as a favorable estimate of P̂f,n, while the σ2

P̂f,n
serves as a rational measure of

epistemic uncertainty of P̂f,n, due to only a limited number of G-function evaluations in the Dn. Then, in the
BALR (Fig. 1), the convergence criterion can be specified such that the σ2

P̂f,n
falls below a prescribed tolerance.

To secure the precision of µP̂f,n
, the σ2

P̂f,n
shall be reduced as much as possible by adding new samples. Hence,
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the learning function can be designed to suggest where to make the next G-function evaluation(s) to reduce the
σ2
P̂f,n

at most. Obviously, both Bayesian inference of failure probability and the ingredients of the ALR are
fairly fused in the BALR framework.

2.2. Existing learning functions, parallelization strategies, and the associated problems
Eq. (9) indicates that the σ2

P̂f,n
is computationally intensive due to the non-analytical form of Φ2 (·; ·, ·). To

alleviate this hurdle, some computationally cheap alternatives have been proposed in the literature. Then, the
resulting learning functions and the associated parallelization strategies are listed in Table 1. However, those
existing practices suffer from three potential bottlenecks as follows.

• The existing learning functions are mainly defined as the integrand of certain epistemic uncertainty mea-
sures, e.g., the PABQ, the PBALC3, and the SBALQ in Table 1. They design a single-point learning
function based on a plain belief that the point with the maximum integrand value contributes the most to
reducing the associated epistemic uncertainty measure. Essentially, this practice only considers the indi-
vidual effect of adding a new sample itself, without explicitly accounting for its impact on any other point
around it and further on reducing the epistemic uncertainty measure [26]. Hence, it is very challenging
for those single-point learning functions to accurately quantify the expected gain of adding a new point
on the reduction of the associated epistemic uncertainty measures.

• It is a common practice to combine a single-point learning function with some additional multi-point
enrichment strategies to favor parallel computing. As the single-point learning function based on the
integrand of the uncertainty measure serves as a basis, this practice still suffers from the first drawback.
Moreover, this combination practice makes the analysis of reducing the overall uncertainty measure more
complex. For example, although the clustering strategy used in the PABQ [22] could avoid the overlap
between a batch of new samples, it is difficult to justify their optimality of reducing the associated epistemic
uncertainty measures.

• The existing look-ahead learning functions could quantify the influence of adding a new point(s) on
reducing certain epistemic uncertainty measures and are generally expressed as a single integral, such as
the EMVR [27], the IPMR [19], and the SUR [42] in Table 1. However, they are faced with the lack of
computationally cheap multi-point analytical expressions. For example, both the EMVR and the IPMR
have difficulty in obtaining multi-point analytical expressions. In contrast, the SUR has the multi-point
analytical expression but is a function of Φ2 (·; ·, ·); see Eq. (F.2). Due to the necessity of repeatedly
evaluating Φ2 (·; ·, ·) in an element-wise manner, maximizing the SUR is very time-consuming.

Table 1: Existing epistemic uncertainty measures, learning functions, and parallelization strategies

Methods Epistemic uncertainty metrics Learning functions Parallelization

PA-BFPL [21] σ2
P̂f,n

Φ
(
− |µn(x)|

σn(x)

)
Clustering

PABQ [22] EX

[
σ
1̂n

(x)
]

σ
1̂n

(x) Clustering
PBALC [23] EX

[
Φ
(
−µn(x)
σn(x)

+ b
)
− Φ

(
−µn(x)
σn(x)

)] [
Φ
(
−µn(x)
σn(x)

+ b
)
− Φ

(
−µn(x)
σn(x)

)]
-

SBALQ [24] EX

[
Φ
(
− |µn(x)|

σn(x)

)]
Φ
(
− |µn(x)|

σn(x)

)
Pseudo function

EMVR [27] EX [1[−βσn(x) ≤ µn(x) ≤ βσn(x)]] EX

 Φ
(

σn(x+)
|cn(x,x+)| (µn(x) + βσn+1(x))

)
−Φ

(
σn(x+)

|cn(x,x+)| (µn(x)− βσn+1(x))
) -

IPMR [19] EX

[
Φ
(
− |µn(x)|

σn(x)

)]
EX

[
Φ

(
− |µn(x)|

σn(x)

|ρn(x,x+)|

)]
-

SUR [42] EX

[
σ2
1̂n

(x)
]

Eq. (F.2) Eq. (F.3)

To address the drawback of those existing methods, we will develop a theoretically sound and numerically
simple multi-point learning function in Section 3.

3. The proposed multi-point look-ahead learning function

In the BALR, the sequential experimental design process essentially corresponds to sequential decision-
making under uncertainty, which can be addressed from the Bayesian decision-theoretic perspective [43]. Sec-
tion 3.1 reviews Bayesian decision theory in the context of reliability analysis, serving as a theoretical underpin-
ning of the proposed learning function. Then, Section 3.2 presents the associated loss function considered in this
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paper. Section 3.3 presents the basic definition of the resulting learning function, called multi-point stepwise
margin reduction (MSMR). The computational challenges of the MSMR-based multi-point enrichment process
are discussed in Sections 3.4 and 3.5. Finally, the associated workarounds are elucidated in Sections 3.6, 3.7,
and 3.8.

3.1. A short reminder of Bayesian decision theory for reliability analysis
As shown in Fig. 1, Bayesian inference of failure probability allows reasoning about the uncertainty in the

failure probability, in light of the available ED, via its posterior statistics (Eqs. (8) and (9)). Then, the BALR
entails a sequence of decisions of where to perform the next G-function evaluation under our posterior belief.
More precisely, the decision policy is defined as XN : G 7→ XN (G) = (X1(G), . . . , XN (G)) ∈ XN , and the
corresponding estimate µP̂f,N

is defined in Eq. (8), where N is the budget of G-function evaluations.
From the Bayesian decision-theoretic perspective, the best decision policy is the one achieving or getting

close to the Bayes risk defined as [44]

RB = inf
XN

E
[
L
(
µP̂f,N

, P̂f,N
)]
, (11)

where inf{·} denotes the infimum of a set; L
(
µP̂f,N

, P̂f,N
)

is a loss function reflecting the error of the final failure
probability estimate µP̂f,N

; E [·] denotes the expectation with respect to all the uncertainty in the sequence of
decisions.

The optimal policy for Eq. (11) can be formally gained via the dynamic programming, which unfortunately
suffers from the “curse of dimensionality” [44, 19]. A sub-optimal but effective way is to build a one-step
look-ahead policy as follows:

x(n+1) = argmin
x∈X

E
[
L
(
µP̂f

, P̂f
)
| X n,Yn,x

]
= argmin

x∈X
En
[
L
(
µP̂f,n+1

, P̂f,n+1

)
|X(n+1) = x

]
. (12)

which essentially treats each decision as a termination decision.
Obviously, the Bayesian risk involved in Eq. (12) can be seen as a global measure of uncertainty of P̂f .

In this paper, we select the absolute error of µP̂f
, i.e.,

∣∣∣P̂f − µP̂f

∣∣∣, as the loss function, thereby the learning
function is generally expressed as

Jn+1(x) = En
[∣∣∣P̂f,n+1 − µP̂f,n+1

∣∣∣ |X(n+1) = x
]
, (13)

and the best next point x(n+1) is then the one minimizing the Jn+1(x).
However, due to no closed-form expression of Eq. (13), we attempt to explore an upper-bounding metric of

Eq. (13) in Section 3.2. On this basis, a multi-point learning function will be defined in Section 3.3.

3.2. An epistemic uncertainty measure of failure probability
First, the mean failure domain F̂n can be defined as

F̂n = {x ∈ X : µn(x) ≤ 0}. (14)

Then, given the Gaussian assumption of Kriging Ĝn
(
x
)
, we introduce two auxiliary regions

F̂−
n = {x ∈ X : µn(x) ≤ 0− βσn(x)} , (15)

F̂+
n = {x ∈ X : µn(x) ≤ 0 + βσn(x)} , (16)

and there holds F̂
−
n ∈ F̂n ∈ F̂

+

n . The coefficient β(> 0) represents the confidence level for limit state estimation.
In this way, the margin between F̂

−
n and F̂

+

n , denoted as M̂n, is given by [45]

M̂n = {x ∈ X : −βσn(x) ≤ µn(x) ≤ βσn(x)} , (17)

and the margin probability πn(x) can be then calculated as [30]

πn(x) = P
(
Ĝn(x) ∈ M̂n

)
= P

(
Ĝn(x) ∈ F̂

+

n

)
−P
(
Ĝn(x) ∈ F̂

−
n

)
= Φ

(
−µn(x)
σn(x)

+ β

)
−Φ

(
−µn(x)
σn(x)

− β
)
, (18)

which stands for the probability that the point x falls into the limit-state margin M̂n.
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Proposition 1. Define the integrated margin probability (IMP) as

Hn = EX [πn(x)] =

∫
X
πn(x)fX(x)dx, (19)

where EX [·] is the expectation with respect to X. When β ≥ Φ−1( 58 ) ≈ 0.3186, we have

En
[∣∣∣P̂f,n − µP̂f,n

∣∣∣] ≤ 2Hn, (20)

where En [·] is the expectation with respect to Kriging Ĝn
(
x
)
.

The proof of Proposition 1 is given in Appendix B. Obviously, when β = Φ−1( 58 ) in πn(x), the 2Hn is
the upper bound of the mean absolute deviation of P̂f,n. Then, when Hn → 0, the µP̂f,n

converges to the
actual failure probability Pf in expectation. Therefore, the IMP Hn can be viewed as an epistemic uncertainty
measure of P̂f,n.

Similar to the VAIS-based estimate of µP̂f,n
in Eq. (10), the Hn can be estimated as

Hn ≈ H̃n =
1

Q2

Q2∑
q=1

[
πn

(
x(q)

)
· fX(x(q))

hX(x(q))

]
, (21)

where XQ2 =
{
x(q), q = 1, . . . , Q2

}
denotes a set of Q2 samples drawn from hX(x). Then, the sample CV

CV
[
H̃n

]
can be computed readily, and the sample size Q2 is considered sufficient when CV

[
H̃n

]
≤ εQ, as

depicted in Section 2.1.

3.3. Basic expression of the learning function MSMR
According to the IMP Hn defined in Eqs. (19) and (20), the Bayesian decision-theoretic learning function

in Eq. (13) can be reformulated as

Jn+1(x) = En
[
Hn+1 |X(n+1) = x

]
, (22)

where Hn+1 denotes the future IMP due to adding x to the current ED Dn. Further, a multi-point enrichment
scenario is considered here, where the potential impact of adding a batch of new samples on the IMP needs to
be explored.

Specfically, assume that a batch of k new points and their G-function responses
{
X+
k ,Y

+
k

}
=
{(

x
(r)
+ , y

(r)
+

)}k
r=1

are added into the current ED Dn, the look-ahead posterior of Kriging is provided by the Kriging update for-
mulas (Appendix C), with its look-ahead mean µn+k (x), variance σ2

n+k (x), and covariance cn+k (x,x′) given
by Eqs. (C.1), (C.2) and (C.3), respectively.

Then, the future IMP Hn+k due to the addition of
{
X+
k ,Y

+
k

}
can be expressed as

Hn+k

(
X+
k ,Y

+
k

)
:= EX

[
πn+k

(
x;X+

k ,Y
+
k

)]
, (23)

which is a function of both X+
k and Y+

k . The πn+k
(
x;X+

k ,Y
+
k

)
is defined as

πn+k
(
x;X+

k ,Y
+
k

)
= Φ

(
βσn+k(x)− µn+k(x)

σn+k(x)

)
− Φ

(
−βσn+k(x)− µn+k(x)

σn+k(x)

)
,

= Φ

(
βσn+k(x)− µn(x)

σn+k(x)
+
−cn(x,X+

k )
⊤ (C+k )−1

σn+k(x)

(
Y+
k −µn(X

+
k )
))

− Φ

(
−βσn+k(x)− µn(x)

σn+k(x)
+
−cn(x,X+

k )
⊤ (C+k )−1

σn+k(x)

(
Y+
k −µn(X

+
k )
))

,

= Φ
(
a1(x) + b(x)⊤ U+

k

)
− Φ

(
a2(x) + b(x)⊤ U+

k

)
,

(24)

where a1(x) =
βσn+k(x)− µn(x)

σn+k(x)
, a2(x) =

−βσn+k(x)− µn(x)
σn+k(x)

, and b(x) =
−
(
C+k
)−1

cn(x,X+
k )

σn+k(x)
are three

quantities independent of Y+
k ; then, U+

k = Y+
k −µn

(
X+
k

)
is a vector of size k × 1 depending on Y+

k .
Unfortunately, since the responses Y+

k are not exactly known without evaluating the actual G-function on
X+
k , the πn+k(x;X+

k ,Y
+
k ) in Eq. (24) and the Hn+k(X+

k ,Y
+
k ) in Eq. (23) are unknown at all. To address this
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bottleneck, the responses Y+
k are replaced by the Kriging predictions evaluated on X+

k , i.e., Y +
k =

{
Y

(r)
+ =

Ĝn
(
x
(r)
+

)}k
r=1
∼ Nk

(
µn(X+

k ), C
+
k

)
. Then, Eq. (23) is reformulated as

Hn+k(X+
k ) = EX

[
Πn+k(x;X+

k )
]
, (25)

which becomes a function of X+
k solely. The integrand Πn+k

(
x;X+

k

)
is expressed as

Πn+k
(
x;X+

k

)
= Φ

(
a1(x) + b(x)⊤U+

k

)
− Φ

(
a2(x) + b(x)⊤U+

k

)
, (26)

which is very similar to Eq. (24), but the involved term U+
k is replaced by U+

k , with U+
k = Y +

k − µn(X
+
k ) ∼

Nk
(
0, C+k

)
following a k-variate centered Gaussian distribution.

Finally, the potential gain on reducing the IMP, due to adding X+
k , can be expressed as

∆Hn+k
(
X+
k

)
= Hn −Hn+k

(
X+
k

)
. (27)

Since Hn+k(X+
k ) is a random quantity through U+

k , the gain ∆Hn+k(X+
k ) is also a random variable, failing to

be a deterministic criterion.
Analogous to Eq. (22), the learning function is defined by taking the expectation of ∆Hn+k(X+

k ), that is,

MSMRn+k(X+
k ) = EU+

k

[
∆Hn+k

(
X+
k

)]
,

= Hn − EU+
k

[
EX

[
Πn+k(x;X+

k )
]]
,

= EX [πn(x)]− EX

[
EU+

k

[
Πn+k(x;X+

k )
]]
,

= EX

[
πn(x)− EU+

k

[
Πn+k(x;X+

k )
]]
,

= EX

[
In+k(x;X+

k )
]
,

(28)

where In+k(x;X+
k ) = πn(x)− EU+

k

[
Πn+k(x;X+

k )
]
.

In this way, a batch of k best next points at this iteration is selected as the candidate batch achieving the
maximum expected gain, i.e.,

X ∗
k =

{
x(n+1), . . . ,x(n+k)

}
= argmax

X+
k ∈XC

MSMRn+k
(
X+
k

)
, (29)

where XC =
{
x(i), i = 1, . . . , C

}
is a candidate pool of size C. Obviously, the X ∗

k is exactly the one minimizing
the future IMP. Hence, Eqs. (22) and (28) are self-consistent.

As more and more batches of new points are added by Eq. (29), the IMP Hn is expected to be reduced step
by step. Hence, the learning function in Eq. (28) is called multi-point stepwise margin reduction (MSMR) here.

3.4. Inner integral in the MSMR
Eq. (28) shows that MSMRn+k(X+

k ) involves two nested integrals. Then, the inner integral of MSMRn+k(X+
k )

is analytically derived as follows.

Proposition 2. In MSMRn+k(X+
k ), the inner integral In+k(x;X+

k ) can be analytically expressed as

In+k(x;X+
k ) = Φ

(
−µn(x)
σn(x)

+ β

)
− Φ

(
−µn(x)
σn(x)

− β
)
− Φ

(
−µn(x)
σn(x)

+ β
σn+k(x;X+

k )

σn(x)

)
+Φ

(
−µn(x)
σn(x)

− β
σn+k(x;X+

k )

σn(x)

)
,

(30)
where σn+k(x;X+

k ) acts as a reminder of conditioning on X+
k . As per Eq. (C.2), the term σn+k(x;X+

k )

σn(x)
can be

further expressed as

σn+k(x;X+
k )

σn(x)
=

√
1−

cn(x,X+
k )

⊤(C+k )−1cn(x,X+
k )

σ2
n(x)

=
√

1− ρ2n+k(x,X
+
k ) ≥ 0, (31)

where ρn+k(x,X+
k ) is given by

ρn+k(x,X+
k ) =

√
cn(x,X+

k )
⊤(C+k )−1cn(x,X+

k )

σn(x)
∈ [0, 1], (32)

which can be interpreted as the correlation coefficient between Ĝn
(
x
)

and the space spanned by Ĝn
(
X+
k

)
.

Besides, the lower and upper bounds of In+k(x;X+
k ) are given as{

ILn+k(x;X
+
k ) = 0,

IUn+k(x;X
+
k ) = πn(x).

(33)
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The proof of Proposition 2 is provided in Appendix D. Then, the geometrical interpretation of ρn+k(x,X+
k )

is given in Appendix E. Basically, the closer between x and X+
k , the greater the ρn+k(x,X+

k ).
Eqs. (30) and (32) indicate that In+k(x;X+

k ) is a function of both µn(x)
σn(x)

and ρn+k(x,X+
k ). The former

specifies the relative location of x in the input space, while the latter encodes the impact of adding a batch
of new points X+

k . Given that In+k(x;X+
k ) is an even function with respect to µn(x)

σn(x)
, Fig. 2 only shows

the behavior of In+k(x;X+
k ) for µn(x)

σn(x)
> 0. Obviously, In+k(x;X+

k ) gets close to its upper bound πn(x) when
ρn+k(x,X+

k )→ 1. Further, In+k(x;X+
k ) achieves its greatest value only when µn(x)

σn(x)
→ 0 and ρn+k(x,X+

k )→ 1.

(a) (b)

Figure 2: Illustration of the inner integral In+k(x;X+
k ) in the MSMR

3.5. Outer integral in the MSMR
By substituting Eq. (30) into Eq. (28), MSMRn+k(X+

k ) reduces to a single integral, that is,

MSMRn+k
(
X+
k

)
= EX

[
In+k(x;X+

k )
]
,

= EX

[
Φ

(
−µn(x)
σn(x)

+ β

)
− Φ

(
−µn(x)
σn(x)

− β
)
− Φ

(
−µn(x)
σn(x)

+ β
σn+k(x)

σn(x)

)
+Φ

(
−µn(x)
σn(x)

− β σn+k(x)
σn(x)

)]
,

(34)
which generally has no analytical expression. Besides, according to Eq. (33), there holds

0 ≤ MSMRn+k(X+
k ) ≤ Hn, (35)

which means that MSMRn+k(·) is non-negative but is always less than Hn.
Further, the VAIS-based estimation of MSMRn+k(X+

k ) is given by

MSMRn+k
(
X+
k

)
≈ 1

Q3

Q3∑
q=1

[
In+k

(
x(q);X+

k

) fX (x(q)
)

hX
(
x(q)

)] , (36)

where XQ3 =
{
x(q), q = 1, . . . , Q3

}
denotes a set of Q3 samples drawn from hX(x).

In the BALR’s workflow, a total of 3 single integrals need to be numerically computed by the VAIS at each
iteration, i.e., the µP̂f,n

in Eq. (10), the Hn in Eq. (21), and the MSMRn+k(X+
k ) in Eq. (36). Unlike both µP̂f,n

and Hn that are only computed once per iteration, the computation of MSMRn+k(·) has to be repeated on all
possible candidate batches in the XC, i.e., MSMRn+k(X+

k ), ∀X
+
k ∈ XC. The large number of candidate batches

makes it infeasible to specify different values of Q3 for distinct batches X+
k ∈ XC, according to their respective

CV values. Hence, the same value of Q3 is preferable to MSMRn+k(·), regardless of different candidate batches
X+
k .

To this end, the settings of the sizes of their quadrature sample sets, i.e., Q1, Q2, and Q3, are specified as
follows. First, let Q1 = Q2 = Q, where the Q is specified according to the following hybrid criterion(

CV
[
µ̃P̂f,n

]
≤ εQ

)⋂(
CV
[
H̃n

]
≤ εQ

)
, (37)
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which will secure the integral precision of both µ̃P̂f,n
and H̃n readily. Then, since the Hn is the upper bound of

MSMRn+k(·) (Eq. (35)), the values of MSMRn+k(·) at those promising batches shall be very close to Hn. In
this way, the size of quadrature point set sufficient for H̃n shall be also favorable for MSMRn+k(·), particularly
for those promising candidate batches. Hence, it is desirable to specify that Q1 = Q2 = Q3 = Q.

Further, the XQ will be taken as the candidate pool XC in Eq. (29). Then, selecting the best next batch
X ∗
k from the XC by maximizing MSMRn+k(·) may encounter the following two critical bottlenecks.

• Computer memory issue. According to Eq. (36), a single evaluation of MSMRn+k(·) entails computing{
In+k

(
x(q);X+

k

)}Q
q=1

, or equivalently
{
ρn+k

(
x(q),X+

k

)}Q
q=1

. Then, according to Eq. (32), the following
matrix operation is intrinsically involved{

cn(x
(q),X+

k )
⊤(C+k )

−1cn(x
(q),X+

k )
}Q
q=1

= diag
(
cn
(
XQ,X+

k

)⊤ (C+k )−1
cn
(
XQ,X+

k

))
, (38)

where diag(·) returns the diagonal elements of a matrix. Obviously, this matrix operation has to store a
matrix of size Q × Q. If the sample size Q is significant (e.g., O(105−6)), it will raise serious computer
memory issue, which will be addressed in Section 3.6.

• Vast size of candidate pool. According to Eq. (29), maximizing MSMRn+k(·) entails iterating over all
possible choices of X+

k ∈ XC, giving rise to a total of
(
C
k

)
calls to MSMRn+k(·). For example, if C = 2×105

and k = 10, there are
(
C
k

)
= 2.82 × 1046 possible choices, making it computationally intractable. This

challenge will be handled in Sections 3.7 and 3.8.

3.6. Truncation of quadrature set in the MSMR
To avoid storing the large-sized matrix in Eq. (38), two effective workarounds are developed in turn as

follows.
First, instead of direct matrix manipulation, Eq. (38) can be equivalently computed in the form of ‘sum (A. ∗ (B \A), 1)’

in MATLAB, where \ denotes the matrix division; .∗ denotes the element-wise multiplication; sum(·, 1) returns
the sum of each column in a matrix. In this way, the maximum size of matrix to store will reduce from Q×Q
to Q× k.

Second, to further reduce the maximum size of matrix, the quadrature set XQ in the numerical computation
of MSMRn+k(X+

k ) can be truncated greatly. Obviously, it is natural to only retain those quadrature points
with significant values of In+k(x;X+

k )
fX(x)
hX(x) in Eq. (36). However, the In+k(x;X+

k ) depends on the specific
location of X+

k and thus varies among the XC. For simplicity, the truncation criterion for the XQ should avoid
the presence of X+

k . Given that the πn(x) is the upper bound of In+k(x;X+
k ) (Eq. (33)), the In+k(x;X+

k )
fX(x)
hX(x)

will be close to 0, if the πn(x) fX(x)
hX(x) is very negligible. Hence, the quadrature point x with greater value of

πn(x)
fX(x)
hX(x) has higher probability of gaining significant value of In+k(x;X+

k )
fX(x)
hX(x) .

In this way, the XQ can be truncated to a subset of QT(� Q) quadrature points with the greatest values
of πn(x) fX(x)

hX(x) . First, the XQ is sorted in decreasing order of πn(x) fX(x)
hX(x) , resulting in

{
x(qj), j = 1, . . . , Q

}
,

where qj is the index of quadrature point with the j-th greatest value. Then, the truncated quadrature point
set XQT is obtained as

XQT
=
{
x(qj), j = 1, . . . , QT

}
, (39)

with the size QT adaptively determined as

QT = inf

Q ∈ N :

Q∑
j=1

πn(x
(qj)) fX(x(qj))

hX(x(qj))

Q∑
j=1

πn(x(qj)) fX(x(qj))

hX(x(qj))

≥ λ

 , (40)

where the ratio λ is set as 0.99 here. Obviously, the QT will alter in each iteration of BALR.
Therefore, Eq. (36) can be further reduced to

MSMRn+k(X+
k ) ≈

1

Q

QT∑
j=1

[
In+k

(
x(qj);X+

k

) fX (x(qj)
)

hX
(
x(qj)

)] , (41)

where the maximum size of matrix to store further reduces from Q× k to QT × k.
For illustration, Fig. 3 presents the truncation of XQ in an iteration of BALR for the shear frame example

(Section 5.3). First, the sample size Q of XQ is specified as 6× 105 in this iteration, and only a small portion
of them have significant values of πn(x) fX(x)

hX(x) (see the left panel of Fig. 3). Then, according to Eq. (40),
QT = 7560, and QT

Q = 1.26%, as shown in the right panel of Fig. 3. Clearly, the truncation of XQ greatly
facilitates a single computation of MSMRn+k(X+

k ).
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Figure 3: Illustration of truncating quadrature set XQ in the MSMR

3.7. Truncation of candidate pool in the MSMR
To deal with the massive candidate batches when maximizing the MSMRn+k(·) in Eq. (29), the candidate

pool XC can be greatly truncated according to the MSMR’s informed preference of some candidate batches
over others in the input space.

Eq. (33) indicates that πn(x(q)) fX(x(q))
hX(x(q))

varies with the location of quadrature point x(q), but it is always

the upper bound of In+k(x(q);X+
k )

fX(x(q))
hX(x(q))

, no matter where the batch of k new samples X+
k is. Then, Fig. 2

shows that In+k(x(q);X+
k )

fX(x(q))
hX(x(q))

is very close to its upper bound πn(x(q)) fX(x(q))
hX(x(q))

on those quadrature points
x(q) around the X+

k (i.e., ρn+k(x(q),X+
k )→ 1), but becomes almost 0 on the other quadrature points x(q) away

from the X+
k (i.e., ρn+k(x(q),X+

k )→ 0). Here, to clarify the impact of X+
k on the value of MSMRn+k(X+

k ), two
different situations are discussed for comparison.

• If the X+
k is placed in a local region featuring great value of πn(x) fX(x)

hX(x) , the resulting values of In+k(x(q);X+
k )

fX(x(q))
hX(x(q))

will be very close to πn(x) fX(x)
hX(x) and thus significant on those quadrature points x(q) in this local region.

Then, the values are negligible in other regions (see the boxes with cyan background in Table 2).

• If the X+
k is placed in a local region with small value of πn(x) fX(x)

hX(x) , the corresponding values of

In+k(x
(q);X+

k )
fX(x(q))
hX(x(q))

are close to πn(x)
fX(x)
hX(x) but very trivial in this local region. Hence, their val-

ues are almost negligible on those quadrature points x(q) in the entire input space (see the boxes with
yellow background in Table 2).

Obviously, the value of MSMRn+k(X+
k ) in the former case is much greater than that in the latter case. Hence,

the promising candidate batches X+
k are exactly those quadrature points with greatest values of πn(x) fX(x)

hX(x) .

Table 2: Characteristic of a promising candidate batch informed by the MSMR

ρn+k(x,X+
k )

In+k(x;X+
k )

fX (x)
hX (x)

πn(x)
fX (x)
hX (x) → 0 Great

→ 0 → 0 → 0
→ 1 → 0 Great

In this way, the candidate pool XC can be truncated to

XCT
=
{
x(qj), j = 1, . . . , CT

}
, (42)

where the size CT is set as 103 here, which will be justified in Section 5.
Then, Eq. (29) can be further reduced to

X ∗
k = argmax

X+
k ∈XCT

MSMRn+k(X+
k ), (43)

which only involves
(
CT

k

)
possible candidate batches but is still unaffordable to some extent. This will be further

addressed in Section 3.8.
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3.8. Heuristic MSMR-based multi-point enrichment process
A heuristic treatment of maximizing MSMR in Eq. (43) is devised here, owing to the attractive ability of

MSMRn+k(·) to work directly with a batch of k new samples X+
k . The basic idea is to sequentially select a

batch of k new samples, rather than selecting them once per iteration.
Specifically, when k = 1, the MSMRn+k(X+

k ) in Eq. (41) reduces to

MSMRn+1 (x+) ≈
1

Q

QT∑
j=1

In+1

(
x(qj);x+

) fX (x(qj)
)

hX
(
x(qj)

) , (44)

where In+1(·;x+) reminds that it is a function of a candidate point x+ ∈ XCT
solely. In this regard, the 1-st

best next point x(n+1) is selected as

x(n+1) = argmax
x+∈XCT

MSMRn+1(x+), (45)

then, XCT
= XCT

\
{
x(n+1)

}
, and X ∗

1 =
{
x(n+1)

}
.

When k ≥ 2, assume that the former (k − 1) best next points X ∗
k−1 =

{
x(n+1), . . . ,x(n+k−1)

}
have been

selected and are viewed as fixed arguments, the MSMRn+k(X+
k ) in Eq. (41) is recast as

MSMRn+k
(
X ∗
k−1,x+

)
≈ 1

Q

QT∑
j=1

In+k

(
x(qj);X ∗

k−1,x+

) fX(x(qj))

hX(x(qj))
, (46)

where In+k(·;X ∗
k−1,x+) reminds that it is also a function of a candidate point x+ ∈ XCT

solely. In this regard,
the k-th best next point x(n+k) can be selected as

x(n+k) = argmax
x+∈XCT

MSMRn+k
(
X ∗
k−1,x+

)
, (47)

then, XCT
= XCT

\X ∗
k−1, and X ∗

k = X ∗
k−1

⋃{
x(n+k)

}
.

In this way, Eq. (43) reduces to K consecutive runs of single-point selection in Eqs. (45) and (47). Then, the
number of candidate choices reduces from

(
CT

k

)
to CT ×K in total, much computationally cheaper to handle.

Until now, when to terminate the sequential increase of k in Eq. (46), or equivalently how to determine the
final size K of batch of new samples per iteration, has not been discussed yet. Here, two different schemes of
specifying the K value are developed here.

• Prescribed scheme. The batch size K is prescribed as a fixed value; then, according to Eqs. (45) and (47),
sequentially increasing k until K will result in X ∗

K =
{
x(n+k), k = 1, . . . ,K

}
readily.

• Adaptive scheme. The batch size K is automatically identified per iteration. First, Eqs. (45) and (47)
indicate that the expected gain of adding the k-th best next point x(n+k) can be expressed as

Gn+k =

{
MSMRn+k (X ∗

k)−MSMRn+k−1

(
X ∗
k−1

)
, k ≥ 2,

MSMRn+1 (X ∗
1) , k = 1,

(48)

which is essentially the expected reduction of IMP due to adding x(n+k) in the batch. As k increases, the
Gn+k reduces gradually. Then, if the Gn+k itself or the ratio Gn+k

Gn+1
becomes very small, adding x(n+k)

does not exert sufficient gain, and the sequential increase of k can be stopped. Therefore, the K value
can be determined as

K = inf
{
Gn+k ≤ 0

⋃ Gn+k
Gn+1

≤ εG
⋃
k ≤ ncore

}
, (49)

where the tolerance εG is set as 0.3; ncore is the number of available CPU cores. The condition Gn+k ≤ 0
should be satisfied twice in a row for reassurance.

Algorithm 1 provides the flowchart of MSMR-based multi-point enrichment process in a single iteration.
This flowchart involves a total of K×CT×QT calls to its integrand In+k(·; ·). Thanks to analytical tractability
of In+k(·; ·) (Eq. (30)), the computation of In+k(·; ·) on the XQT (Lines 8-9 in Algorithm 1) can be conducted
via the vectorization technique in MATLAB, as exemplified by the In+1(XQT ;x

(i)
+ ) in Fig. 4(a). As a result,

the number of element-wise evaluations of integrand reduces from K ×CT×QT to K ×CT in Algorithm 1 (the
“for-loop” in Lines 7-11), and they can be readily performed in parallel.
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Algorithm 1 MSMR-based multi-point enrichment process at an iteration

Input: The Kriging Ĝn
(
x
)
, the K value in the prescribed scheme, or the εG value in the adaptive scheme.

1: Specify the size Q of the quadrature point set XQ according to both CV
[
µ̃P̂f,n

]
and CV

[
H̃n

]
. ▷

Eqs. (10), (21) and (37)
2: The Kriging Ĝn

(
x
)

provides means
{
µn(x

(q))
}Q
q=1

and variances
{
σ2
n(x

(q))
}Q
q=1

at XQ. ▷ Eqs. (A.6), (A.7)

3: Obtain the truncated quadrature set XQT =
{
x(qj)

}QT

j=1
from the XQ. ▷ Eq. (40)

4: Obtain the truncated candidate pool XCT
=
{
x
(i)
+

}CT

i=1
from the XQ. ▷ Eq. (42)

5: Set k = 1, and X ∗
0 = {}.

6: while true do
7: for i = 1, . . . , CT, do
8: Compute

{
ρn+k

(
x(qj);X ∗

k−1,x
(i)
+

)}QT

j=1
on all quadrature points in the XQT . ▷ Eq. (32)

9: Compute
{
In+k

(
x(qj);X ∗

k−1,x
(i)
+

)}QT

j=1
on all quadrature points in the XQT

. ▷ Eq. (30)
10: Compute MSMRn+k

(
X ∗
k−1,x

(i)
+

)
. ▷ Eqs. (44) or (46)

11: end for
12: Select the k-th best next point x(n+k) from XCT

according to MSMRn+k(·). ▷ Eqs. (45) or (47)
13: Identify the batch size K in the adaptive scheme. ▷ Eqs. (48) and (49)
14: if k ≥ K then
15: Break;
16: else
17: Update: X ∗

k = X ∗
k−1

⋃{
x(n+k)

}
, XCT

= XCT
\
{
x(n+k)

}
, and k = k + 1.

18: end if
19: end while
Output: The batch of K best next samples X ∗

K =
{
x(n+1), . . . ,x(n+K)

}
obtained at this iteration.

Remark 1. The existing learning function SUR [25, 42] is outlined in Appendix F for comparison. Note
that the settings of both quadrature set and candidate pool for the SUR were not detailed in [42]. Hence, the
truncation of quadrature set and candidate pool, as well as the heuristic maximization of learning function,
developed in this study can be readily customized to the SUR, with just replacing πn(x) by σ2

1̂n
(x) in the three

workarounds. Then, the SUR-based multi-point enrichment process can be conducted in a similar way to the
MSMR (Algorithm 1). Similarly, there are also a total of K × CT × QT evaluations of its integrand in the
SUR. However, all those evaluations have to be conducted in an element-wise manner, due to the presence of
Φ2 (·; ·, ·). Hence, the SUR-based multi-point enrichment process will be very time-consuming, even resorting to
parallel computing.

TQ

( )jqx

TC


( )i
+x

( ) ( )
1( ; )jq i

nI + +x x ( )( )1MSMR i
n+ +x

T

( )
1 Q( , )inI + +x

(a) computation of MSMRn+1(x
(i)
+ ) (b) comparison of running time in an iteration

Figure 4: Comparison between the proposed MSMR and the existing SUR

For illustration, Fig. 4(b) shows a comparison of running time between the MSMR and the SUR in an
iteration, where QT = 2× 105, CT = 103, and K = 20. An Intel i9-14900KF CPU processor with 3.2 GHz, 64G
RAM, and 20 available CPU cores is utilized. The running time of MSMR at each loop is nearly 2 seconds,
giving rise to the total running time of 45 seconds in an iteration. By comparison, the SUR entails almost 43
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seconds per loop, giving rise to a total of 857 seconds in an iteration. Clearly, the MSMR needs much less
running time than the SUR in an iteration.

4. Multi-point Bayesian active learning reliability analysis based on the MSMR

The basic flowchart of MSMR-based multi-point Bayesian active learning reliability method is shown in
Fig. 5. The main steps are summarized as follows.

Step 1 Generation of the initial ED
The initial ED prefers to be as space-filling as possible, thereby gaining a fair Kriging in the initial
stage. To this end, the initial ED is generated following the so-called “four-sigma” rule [46]. First, the
sampling domain Xs is defined by

Xs =

d∏
l=1

[−4, 4] . (50)

Then, the Latin centroidal Voronoi tessellation method [47] is taken to generate a set of uniform samples
in the Xs, denoted as Xn0

=
{
x(i), i = 1, . . . , n0

}
of size n0 = max(10, d + 1). Perform G-function

evaluations on the Xn0
to obtain Yn0

=
{
y(i) = Ĝn

(
x(i)

)
, i = 1, . . . , n0

}
. Finally, the initial ED is

collected as Dn0
= {Xn0

,Yn0
}, and let n = n0;

Step 2 Kriging calibration
Training a Kriging Ĝn

(
x
)

based on the current ED Dn provides the posterior mean µn(x), variance
σn(x), and covariance cn(x,x′); see Eqs. (A.6), (A.7) and (A.8).

Step 3 Failure probability estimation
According to Eqs. (10) and (21), the µP̂f,n

and Hn are numerically computed based on the VAIS. Then,
the quadrature point set XQ is taken as the candidate pool XC in Step 5.
To facilitate numerical implementation, the XQ in each iteration can be sequentially specified as follows.
First, the final quadrature set in the last iteration is taken as the initial quadrature set X i

Q of size Qi in
the current iteration. Then, if both CV

[
µ̃P̂f,n

]
and CV

[
H̃n

]
meet Eq. (37), the final value of Q in this

iteration is exactly equal to Qi; otherwise, sequentially add sets of Qa new sample points until satisfying
Eq. (37), and the final sample size in this iteration is equal to Q = Qi+Qa×na, where na is the number
of steps to need. Here, set Qi = 2× 105 in the first iteration, and Qa = 2× 105 in all iterations.
Generally, after several initial iterations, the XQ remains unchanged during the remaining iterations.
Hence, this practice avoids frequently altering the XQ to a great extent.

Step 4 Check of convergence criterion
A hybrid convergence criterion combining two distinct ones is deployed here. First, recall that the Hn is
an upper-bounding metric about the mean absolute deviation of µP̂f,n

, the H̃n

µ̃P̂f,n

is naturally a favorable

metric for the precision of µ̃P̂f,n
. Here, the relative decrease of H̃n

µ̃P̂f,n

, rather than absolute one, is used
to define the convergence criterion, that is,

∆H =

H̃n

µ̃P̂f,n

max
i≤n

(
H̃i

µ̃P̂f,i

) ≤ εH , (51)

where the tolerance εH is set as 0.3 (resp., 0.5) in the static (resp., dynamic) reliability problems.
Second, the stabilization of µ̃P̂f,n

can be also taken as a convergence criterion, that is,

∆P̂f
=

∣∣∣µ̃P̂f,n
− µ̃P̂f,n−1

∣∣∣
µ̃P̂f,n−1

≤ εstab, (52)

where the tolerance εstab is set as 0.1 here.
According to Eqs. (51) and (52), the hybrid convergence criterion is given by

(∆H ≤ εH)
⋂(

∆Pf
≤ εstab

)
. (53)

Then, if Eq. (53) is met in 2 consecutive iterations, skip to Step 7, otherwise, continue to Step 5.
Step 5 MSMR-based multi-point selection process

According to Algorithm 1, select a batch of K best next samples X ∗
K =

{
x(n+k), k = 1, . . . ,K

}
from

the candidate pool XC via the MSMR, with the batch size K either prescribed or adaptively identified.
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Step 6 Enrichment of G-function evaluations
Perform G-function evaluations on X ∗

K in parallel, yielding Y∗
K =

{
y(n+k), k = 1, . . . ,K

}
. Then, conduct

the following updates: Dn+K = Dn
⋃
{X ∗

K ,Y
∗
K}, n = n+K, and return to Step 2.

Step 7 End of the algorithm
The final failure probability estimate µP̂f,n

, the total number of iterations niter, and the total number
of G-function evaluation neval are recorded in this algorithm.

Start

Initialization. Generate an initial ED Dn0
= {Xn0

,Yn0
} of size n0.

Kriging. Train a Kriging Ĝn
(
x
)

based on the current ED Dn; see Appendix A.

Failure probability. Conduct the VAIS-based estimation of µP̂f,n
and Hn based on

the quadrature set XQ, with its size Q sequentially identified according to Eq. (37).

Convergence criterion.
Eq. (53) is satisfied ?

Learning function. Select a
batch of K best next points X ∗

K ={
x(n+k)

}K
k=1

from the XC based
on the MSMR; see Algorithm 1.

Enrichment.
Y∗
K = G (X ∗

K) ,

Dn+K = Dn
⋃
{X ∗

K ,Y
∗
K} .

Finalization. The final results of
µP̂f,n

, neval, and niter are recorded
at the end of this algorithm.

End

niter ← 1, n← n0

XC ← XQ

N

niter ← niter + 1, n← n+K

Y

Figure 5: MSMR-based parallel Bayesian active learning reliability analysis

Remark 2. The total computational time Tc in Fig. 5 can be roughly computed as Tc = tc × niter, where tc is
the computational time for an iteration, and niter is the total number of iterations. Then, the tc can be basically
divided into two parts: (a) The G-function evaluation time tg (Step 6); (b) The running time ta of MSMR-based
multi-point enrichment process, comprising the training of Kriging, the computation of failure probability, and
the evaluation of MSMR (resp., Steps 2, 3 and 5). Basically, the tg depends on the complexity of G-function,
while the ta is related to the batch size K. If the tg is far greater than ta, the tc will be dominated by tg, and the
advantage of reducing niter is readily converted to that of Tc; otherwise, the advantage of Tc will be governed by
both ta/tc and niter. This will be exemplified in Section 5.

5. Illustrative examples

Four examples are investigated to test the performance of the proposed MSMR. The former two are the well-
known benchmark examples, while the latter two are the actual engineering problems. The MCS is conducted
to provide the reference failure probability P̂MCS

f .
In the MSMR, both the prescribed scheme (K = 5, 10, 15, and 20) and the adaptive scheme (ncore = 20)

are conducted. For comparison, several existing parallel (B)ALR methods are performed, including the PABQ
[22], the ALR module in UQLab [18], and the SUR [42]. The default settings are considered in the ALR module
in UQLab [18]; then, the settings of SUR are referred to Remark 1. In those reliability methods, the maximum
value of neval is set as 300 due to computational cost considerations. Besides, the results from other existing
reliability methods available in the literature are also provided.

All the (B)ALR methods are repeated 10 times to account for the randomness from both initial ED
and sampling. Four performance metrics are recorded, i.e., µP̂f

, niter, neval, and the relative error δP̂f
=∣∣∣µ̃P̂f

−P̂MCS
f

∣∣∣/P̂MCS
f × 100%. Then, the average of the four performance metrics, as well as the CV of µP̂f,n

, in
the 10 repetitions are computed for each example. Besides, the average of the total computational time Tc of
different reliability methods are also recorded in the two engineering problems for comparison purposes.
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5.1. Four-branch function
The first example considers a four-branch function, which is a typical benchmark in the reliability literature

[13, 18, 17]. The performance function is expressed as

G (X) = min



a+ 0.1(X1 −X2)
2 − X1 +X2√

2

a+ 0.1(X1 −X2)
2 +

X1 +X2√
2

(X1 −X2) +
b√
2

(X2 −X1) +
b√
2


, (54)

where X = {X1, X2} is a vector of two independent standard Gaussian variables; the two constants a and b are
set as 3 and 6, respectively.

Fig. 6 presents one run of the proposed MSMR (adaptive scheme) for the typical four-branch function.
The convergence of this algorithm is achieved with 6 iterations of multi-point enrichment. As marked as black
circles in Fig. 6(a), the initial training samples are scattered in the input space. Then, the first 3 batches of
new samples are far away from the limit state, due to the relatively poor accuracy of Kriging. By contrast, the
remaining 3 batches of new samples are located near the actual limit state. Fig. 6(b) shows the expected gain
Gn+k achieved by the k-th best next point x(n+k) in different batches. The values of Gn+k generally decrease
with the increasing of k and then determine the final batch size K per iteration. As illustrated in Fig. 6(c), the
batch sizes K identified in the latter iterations are greater than those in the former ones. Obviously, thanks
to the adaptive scheme, the MSMR avoids adding some ‘useless’ new samples when faced with a poor Kriging
in the initial stage. Figs. 6(d) and 6(e) show the performances of the hybrid convergence criterion (Eq. (53)).
Clearly, the IMP Hn is dramatically reduced by sequentially adding batches of new samples, and a favorable
accuracy of failure probability estimate µP̂f

is finally gained.

(a) sample distribution at each iteration (b) the expected gain Gn+k of x(n+k) at each iteration

(c) batch size K per iteration (d) convergence of Hn (e) convergence of µ
P̂f

Figure 6: The MSMR (adaptive scheme) for the four-branch function
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Table 3 gives a comparison between different parallel (B)ALR methods for the four-branch function. Overall,
all the reliability methods provide favorable estimates of Pf . Then, as the prescribed batch size K increases,
the number of iterations niter reduces, but the number of G-function evaluations neval increases. The MSMR
(prescribed scheme) needs comparable iterations to the existing PABQ. Then, in comparison with the prescribed
scheme (K = 20) needing 104 G-function evaluations in average, the adaptive scheme avoids adding some
unfavorable new samples, with only needing 47.5 G-function evaluations in average.

Table 3: Reliability results in the four-branch function

Method E [niter] E [neval] E
[
µP̂f

]
CV
[
µP̂f

]
E
[
δP̂f

]
References

MCS - - 106 4.416× 10−3 - - [13]

RBIK
K = 6 17.7 110 4.429× 10−3 0.07 % - [36]
K = 8 13.7 111.9 4.428× 10−3 0.07 % - [36]
K = 10 12.1 121.4 4.429× 10−3 0.07 % - [36]

PABQ

K = 6 6.6 43.6 4.440× 10−3 2.53 % - [22]
K = 10 5.2 52 4.400× 10−3 2.22 % - [22]
K = 15 4.65 64.75 4.440× 10−3 1.35 % - [22]

AK-KBn K = 3 22.5 74.6 4.419× 10−3 - - [48]
K = 6 11.5 73.1 4.411× 10−3 - - [48]

P-AK-MCS K = 4 15.6 70.4 4.490× 10−3 - - [49]
K = 8 8.8 74.4 4.560× 10−3 - - [49]

ALR in
UQLab

K = 5 20.3 106.5 4.571× 10−3 1.42 % 3.51 % -
K = 10 10.2 102 4.581× 10−3 2.22 % 3.74 % -
K = 15 8 115 4.541× 10−3 2.49 % 2.99 % -
K = 20 6.9 128 4.539× 10−3 1.78 % 2.79 % -

MSMR

K = 5 7.1 40.5 4.352× 10−3 2.14 % 2.23 % -
K = 10 6.5 65 4.410× 10−3 1.23 % 0.78 % -
K = 15 6 85 4.397× 10−3 0.68 % 0.43 % -
K = 20 5.7 104 4.412× 10−3 1.15 % 0.99 % -
Adaptive 7.1 47.5 4.394× 10−3 0.66 % 0.74 % -

5.2. Static reliability analysis of a planar truss
The second example addresses static reliability analysis of a planar truss under vertical loads. This is also a

typical benchmark in the reliability literature [12, 33, 17]. Fig. 7 shows that this truss consists of 23 bars and
13 nodes, with the vertical concentrated loads applied on the upper nodes. A total of 10 independent random
variables are considered, i.e., {E1, A1, E2, A2, P1, . . . , P6}, where E1, A1 denote the Young’s modulus and cross-
sectional area of horizontal bars, respectively; E2, A2 denote the Young’s modulus and cross-sectional area of
diagonal bars, respectively; P1, . . . , P6 represent the vertical concentrated loads. Table 4 lists the statistical
information of those random variables in the truss.

Figure 7: A planar truss under vertical loads

Table 4: Statistical information of random variables in the truss example [33]

Variable Unit Distribution Mean Standard deviation
E1, E2 Pa Lognormal 2.1× 1011 2.1× 1010

A1 m2 Lognormal 2.0× 10−3 2.0× 10−4

A2 m2 Lognormal 1.0× 10−3 1.0× 10−4

P1, . . . , P6 N Gumbel 5× 104 7.5× 103
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Of interest is the vertical mid-span deflection U(x) of the truss, which is computed with an in-house finite-
element analysis code developed in the MATLAB environment. The maximum allowable deflection is set as 14
cm. Therefore, the performance function is expressed as

G (x) = 14− U(x). (55)

Fig. 8 illustrates one run of the proposed MSMR (adaptive scheme) in the planar truss example. This
algorithm achieves its convergence with 6 iterations of multi-point enrichment. Informed by the MSMR, the
expected gain Gn+k brought by the k-th best next sample x(n+k) at each iteration is shown in Fig. 8(a). Due
to the inferior accuracy of the initial Kriging model, the Gn+k equals 0 in the first iteration, which is hence
invisible in the logarithmic scale. Then, unlike the first 3 iterations, the batches of new samples added in the
latter iterations are grossly located in the vicinity of limit state, and the corresponding batch size K increases
significantly, as shown in Figs. 8(b) and 8(c). Clearly, this behavior avoids selecting some ‘useless’ new samples
in the initial stage and then reduces the error of failure probability estimate with fewer iterations in the latter
stage. As a result, the IMP Hn is reduced remarkably, and the µP̂f,n

gradually converges to the reference value;
see Figs. 8(d) and 8(e).

(a) the expected gain Gn+k of x(n+k) at each iteration (b) G-function evaluations per iteration

(c) batch size K per iteration (d) convergence of Hn (e) convergence of µ
P̂f,n

Figure 8: The MSMR (adaptive scheme) for the truss example

Table 5 gives a comparison of different parallel (B)ALR methods for the planar truss example. In comparison
with the existing AK-MCS, the ALR module in UQLab, and the PABQ, the proposed MSMR (prescribed
scheme) needs much fewer iterations, whilst yielding better accuracy of µP̂f

, i.e., smaller values of relative error
δP̂f

. Although the neval value needed by the existing look-ahead learning function IPMR is comparable to that
of MSMR, the multi-point version of IPMR is still unavailable, failing to favor parallel computing by itself. In
comparison with the prescribed scheme (K = 20), the adaptive scheme of MSMR needs much smaller value of
neval, say 79.3%, but a slight increase of niter.

5.3. A lumped-mass shear frame under stochastic ground motion excitation
The third example tackles with a 10-story lumped-mass shear frame with random structural parameters

subjected to fully nonstationary stochastic seismic excitation. Fig. 9(a) shows the basic geometric information
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Table 5: Reliability results in the planar truss example

Method E [niter] E [neval] E
[
µP̂f

]
CV
[
µP̂f

]
E
[
δP̂f

]
References

MCS - - 2× 106 3.45× 10−5 - - [12]

AK-MCS K = 1 - 122 3.7× 10−5 - - [33]
K = 6 28 174 3.4× 10−5 - - [33]

IPMR K = 1 - 45.2 3.447× 10−5 - - [19]

ALR in
UQLab

K = 5 13.7 74.5 3.519× 10−5 4.83 % 4.51 % -
K = 10 9.6 97 3.538× 10−5 4.24 % 4.17 % -
K = 15 7.1 102.5 3.558× 10−5 3.56 % 4.24 % -
K = 20 6.4 119 3.535× 10−5 5.14 % 4.39 % -

PABQ

K = 5 21.3 111.5 3.125× 10−5 6.24 % 9.43 % -
K = 10 10.1 101 2.932× 10−5 2.69 % 15.01 % -
K = 15 7.9 113.5 3.065× 10−5 6.20 % 11.17 % -
K = 20 6.3 116 2.991× 10−5 4.16 % 13.31 % -

MSMR

K = 5 8.1 46.5 3.442× 10−5 1.64 % 1.23 % -
K = 10 6.3 64 3.436× 10−5 1.91 % 1.62 % -
K = 15 5.1 72.5 3.438× 10−5 1.31 % 1.04 % -
K = 20 5 91 3.427× 10−5 1.14 % 1.13 % -
Adaptive 7.8 72.2 3.427× 10−5 1.59 % 1.45 % -

of this frame, with the height of each floor 3600 mm. The equation of motion for this frame is given by [50]

MÜ(t) +CU̇(t) + f(U, U̇, t) = −MIüg(t), (56)

where Ü(t), U̇(t), and U(t) denote the 10× 1 vectors of acceleration, velocity, and displacement of this system,
respectively; M , C and f denote the 10× 10 mass matrix, the 10× 10 damping matrix, and the 10× 1 vector
of restoring force of this system, respectively; I is a 10 × 1 vector with elements all 1; üg(t) represents the
accelerogram of the earthquake excitation.

(a) geometric layout (b) hysteretic curve of the first floor

Figure 9: A 10-story lumped-mass shear frame

The mass matrix M = diag(m1 . . . ,m10) is a diagonal matrix, with the lumped masses from bottom to top
floor are taken as deterministic values: m1 = 3.478,m2 = 3.225,m3 = 2.887,m4 = 2.667,m5 =, · · · ,= m10 =
2.558 (×105kg) [10]. The stiffness matrix K is assembled by the inter-story stiffness values from bottom to top
floor. They are considered as independent random variables, with the statistical information listed in Table 6.
Rayleigh damping is considered such that C = aM + bK, with a = 0.2904s−1 and b = 0.0066s. The inter-story
relationship between restoring force and drift is described by the Bouc-Wen model [51], and the 13 related
parameters are valued as: αBW = 0.04, ABW = 1, nBW = 1, βBW = 320, γBW = 150, δvBW = 2000, δηBW =
2000, pBW = 1000, qBW = 0.25, ψBW = 0.05, δψBW

= 5, λBW = 0.5, ζBW = 0.99 [52]. Fig. 9(b) presents the
typical hysteretic curve of the first floor, where strong non-linearity is observed.

A fully non-stationary stochastic ground motion model called the modulated filtered white-noise process
(MFWNP) [53, 54, 55] is adopted to generate seismic excitation üg(t). It has the advantage of separating
temporal and spectral non-stationary characteristics of the process. Specifically, the üg(t; Ω) is expressed as [53]

üg(t; Ω) = q (t; Ω)

{
1

σh(t)

∫ t

0

h [t− τ,λ(τ ; Ω)]w(τ)dτ
}
, (57)
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Table 6: Initial inter-story stiffness from bottom to top floor
(
×102N/mm

)
[10]

Stiffness K1 K2 K3 K4 K5 −K10

Distribution Lognormal Lognormal Lognormal Lognormal Lognormal
Mean 1.962 1.875 1.758 1.754 1.662
COV 0.1 0.1 0.1 0.1 0.1

where q (t; Ω) is a time-modulation function; w(τ) is a Gaussian white-noise process; h [t− τ,λ(τ ; Ω)] is the
impulse-response function of a time-varying filter with parameters λ(τ ; Ω); σ2

h(t) =
∫ t
0
h2 [t− τ,λ(τ ; Ω)]w(τ)dτ

denotes the variance of the filtered white-noise process. In this way, the temporal non-stationarity is totally
determined by the modulation function q(t; Ω), while the spectral non-stationarity is defined by the time-variant
filter h [t− λ,λ(τ ; Ω)].

The ’Gamma’ modulation function is adopted as [54]

q (t; Ω) = α1t
α2−1 exp

(
− t

α3

)
, (58)

where α1 controls the intensity, α2 controls the shape; α3 controls the duration of ground motion. The three
parameters can be determined from the expected Arias intensity Ia, the effective duration D5−95 (i.e., the time
interval between the instants when 5% and 95% of Ia are reached), and the tmid (i.e., the instant when 45% of
Ia is reached). More details can refer to [54].

The impulse response function h [t− τ,λ(τ ; Ω)] of the time-variant filter takes the pseudo-acceleration re-
sponse of a single-degree-of-freedom linear oscillator, that is, [54]

h [t− τ,λ(τ ; Ω)] =


ωf (τ)√
1−ζ2f (τ)

· exp [−ζf (τ)ωf (τ)(t− τ)] · sin
[
ωf (τ)

√
1− ζ2f (τ)(t− τ)

]
, t ≥ τ,

0, otherwise,
(59)

where λ(τ ; Ω) = [ωf (τ), ζf (τ)], with the circular frequency ωf (τ) and damping ratio ζf (τ) expressed as [54]

ωf (τ) = ωmid + ω′ (τ − tmid) , (60)
ζf (τ) = ζf , (61)

where ωmid is the frequency at the time instant tmid; ω′ is the rate of change of the frequency with time; ζf is
a time-invariant damping ratio. Hence, Θ = {Ia, D5−95, tmid, ωmid, ω

′, ζf}. Since the ω′ has little effect on the
structural responses, it is viewed as a constant [56]. Then, statistical information of the remaining 5 parameters
is listed in Table 7.

Table 7: Statistical information of random parameters in the stochastic ground motion model [56]

Variables Units Description Distribution Parametersa

Ia m/s Arias intensity Lognormal 1.9 0.3
D5−95 s Time interval of 5% - 95% of Ia Lognormal 2.21 0.23
tmid s Time instant at 45% of Ia Lognormal 1.698 0.21
ωmid/2π Hz Filter frequncy at tmid Uniform 2.8 4.8
ζf - Filter damping ratio Uniform 0.25 0.45
a Parameters: the mean and standard deviation of the natural logarithm of a lognormal vari-

able; the lower and upper bounds of a uniform variable.

Finally, to secure zero residual velocity and displacement and yield reliable spectral response at long periods,
the accelerogram üg(t; Ω) in Eq. (57) is passed through a high-pass filter. Here, the Batterworth filter with the
cutoff frequency fc = 0.5π is employed. Besides, an identical white-noise process is considered in the generation
of seismic accelerograms. Fig. 10 presents the time histories of three typical seismic accelerograms generated
by the MFWNP model, where both temporal and spectral non-stationary characteristics are well observed.
Additionally, zero residual displacement is fairly observed at the end of seismic accelerogram.

To summarize, a total of 15 random variables are considered in this stochastic dynamic system, i.e.,
{K1,K2, . . . ,K10, Ia, D5−95, tmid, ωmid, ζf}. Then, of interest are the inter-story drifts Ui(X, t), i = 1, . . . , 10,
between the i-th and (i− 1)-th floor of this frame, which are computed with an in-house finite-element analysis
code in MATLAB. The maximum allowable inter-story drift is taken as 72 = 3600× 1

50 mm. In this regard, the
system failure probability Pf is defined as

Pf = P

(
10⋃
i=1

(∃t ∈ [0, 20s], 72− |Ui(X, t)| ≤ 0)

)
. (62)
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(a) (b) (c)

Figure 10: Three typical fully non-stationary seismic accelerograms

Then, Eq. (62) can be rewritten as the standard form in Eq. (1), with the G-function expressed as [57]

G (x) = 72− max
1≤i≤10

(
max

t∈[0,20s]
|Ui(x, t)|

)
. (63)

Fig. 11 shows a single run of the proposed MSMR (adaptive scheme) for the shear frame example. A total
of 9 iterations of multi-point enrichment are needed when this algorithm is converged, as shown in Fig. 11(a).
In comparison with the first 3 iterations, the batch sizes K in the latter iterations increase significantly and
even reach the number of available CPU cores ncore; see Fig. 11(c). If more CPU cores are available, the batch
sizes at the latter iterations will be further increased, and the average value of K is expected to rise to some
extent. To justify the rationality of CT = 103 in the truncation of candidate pool (Eq. (42)), Fig. 11(b) shows
the indexes of those best next samples selected from the XCT

in the 9 iterations, and most of the indexes are
less than 500. Hence, it is reassuring to select the X ∗

k from the XCT
, rather than from the entire XC. Finally,

Figs. 11(d) and 11(e) show that when the hybrid convergence criterion is satisfied, a good agreement between
µP̂f,n

and P̂MCS
f is gained.

Table 8 gives a comparison of different parallel (B)ALR methods for the shear frame example, where the
values of Tc are also listed for comparison. Both the ALR module in UQLab and the PABQ are not converged
when the neval exceeds 300. By comparison, both the SUR and the MSMR achieve their convergence with fewer
iterations. Since one run of finite element analysis of this shear frame is fast (< 1 second), the Tc values of
those reliability methods are mainly dominated by their running time of multi-point enrichment process (see
Remark 2). Hence, although the niter needed by the SUR is comparable to that of the MSMR, the Tc of the
SUR is far greater than that of the MSMR (see Remark 1).

5.4. Seismic reliability analysis of a planar reinforced concrete frame
The final example addresses a 3-bay, 6-storey planar reinforced concrete frame under fully nonstationary

stochastic seismic excitation. The basic geometric dimensions and reinforcement details of those members are
sketched in Fig. 12. Finite element analysis of this structure is performed using the OpenSees software [58].
Both beams and columns are modeled by the force-based elements with fiber-discretized cross section. The
uniaxial constitutive relationships of concrete and rebar are described by the Concrete-01 and Steel-01 models,
respectively. The thickness of concrete slabs at each floor is 100 mm, and their weights are applied on those
beams at each floor. Rayleigh damping is adopted, with the damping ratio 5%. The physical parameters
associated with concrete and rebars are viewed as random variables, with their statistical information listed in
Table 9. The MFWNP model (Section 5.3) is utilized to generate seismic accelerograms, and the associated
parameters are given in Table 7. Hence, this dynamic system consists of a total of 16 random variables, i.e.,
{fcc, ϵcc, fcu, ϵcu, fc, ϵc, fu, ϵu, fy, E0, b, Ia, D5−95, tmid, ωmid, ζf}.

Figs. 13(a) and 13(b) illustrate the stress-strain curves of concrete and rebar at the end section of the leftmost
bottom column, respectively. Then, Fig. 13(c) presents the hysteretic curve of the first floor. Obviously, strong
nonlinearity in both material- and structure-levels are witnessed.
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(a) the expected gain Gn+k of x(n+k) per iteration (b) the indexes of best next samples per iteration

(c) batch size K per iteration (d) convergence of Hn (e) convergence of µP̂f,n

Figure 11: The MSMR (adaptive scheme) for the shear frame example

Table 8: Reliability results in the shear frame example

Method E [niter] E [neval] E
[
µP̂f

]
CV
[
µP̂f

]
E
[
δP̂f

]
E [Tc] (s)

MCS - - 3× 106 1.8× 10−4 4.31 % - 5.02× 104

ALR in
UQLab

K = 5 > 58 > 300 1.832× 10−4 3.87 % 3.68 % > 675.3
K = 10 > 30 > 300 1.836× 10−4 3.83 % 3.16 % > 415.6
K = 15 > 20 > 300 1.788× 10−4 4.10 % 3.17 % > 312.9
K = 20 > 16 > 300 1.797× 10−4 4.05 % 1.79 % > 283.4

PABQ

K = 5 > 58 > 300 1.214× 10−4 36.51 % 34.87 % > 2.80× 103

K = 10 > 30 > 300 1.516× 10−4 22.17 % 21.34 % > 1.53× 103

K = 15 > 20 > 300 1.781× 10−4 17.38 % 13.86 % > 1.17× 103

K = 20 > 16 > 300 1.783× 10−4 32.77 % 25.83 % > 7.89× 102

SUR

K = 5 12.8 75 1.825× 10−4 5.67 % 4.06 % 2.51× 103

K = 10 8.1 87 1.816× 10−4 6.81 % 5.47 % 2.17× 103

K = 15 8 121 1.822× 10−4 1.97 % 1.66 % 3.49× 103

K = 20 7 136 1.822× 10−4 2.15 % 2.14 % 4.20× 103

MSMR

K = 5 11.8 70 1.792× 10−4 3.60 % 2.11 % 254.8
K = 10 8 86 1.816× 10−4 3.34 % 1.77 % 242.3
K = 15 7.5 113.5 1.789× 10−4 4.66 % 4.02 % 305.3
K = 20 7 136 1.793× 10−4 2.87 % 1.35 % 337.8
Adaptive 9 107 1.786× 10−4 3.62 % 3.92 % 266.1

Of interest are the inter-story drifts Ui(x, t), i = 1, . . . , 6, between the i-th and (i− 1)-th floor of this frame.
The failure threshold is set as 66 = 3300× 1/50 mm. In this way, the system failure probability is defined as

Pf = P

(
6⋃
i=1

(∃t ∈ [0, 20s], 66− |Ui(X, t)| ≤ 0)

)
, (64)
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Figure 12: A planar reinforced concrete frame

Table 9: Statistical information of random variables in the reinforced concrete frame

Variable Unit Description Distribution Mean COV
fcc MPa Maximum strength of confined concrete Lognormal 35 0.1
ϵcc - Strain at maximum strength of confined concrete Lognormal 0.005 0.05
fcu MPa Crushing strength of confined concrete Lognormal 25 0.1
ϵcu - Strain at crushing strength of confined concrete Lognormal 0.02 0.05
fc MPa Maximum strength of unconfined concrete Lognormal 27 0.1
ϵc - Strain at maximum strength of unconfined concrete Lognormal 0.002 0.05
fu MPa Crushing strength of unconfined concrete Lognormal 10 0.1
ϵu - Strain at crushing strength of unconfined concrete Lognormal 0.006 0.05
fy MPa Yield strength of rebar Lognormal 400 0.1
E0 GPa Initial Young’s modulus of rebar Lognormal 200 0.1
b - Strain-hardening ratio of rebar Lognormal 0.007 0.05

which can be then rewritten as the standard form in Eq. (1), with the G-function expressed as

G (x) = 66− max
1≤i≤6

(
max

t∈[0,20s]
|Ui(x, t)|

)
. (65)

(a) stress-strain curve of concrete (b) stress-strain curve of rebar (c) hysteretic curve of the bottom column

Figure 13: Nonlinear behaviors of the reinforced concrete frame
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Fig. 14 shows a single run of the proposed MSMR (adaptive scheme) for the reinforced concrete frame
example. A total of 10 iterations of multi-point enrichment are needed by the convergence of this algorithm;
see Fig. 14(a). After the first several iterations, the batch sizes K increase significantly and even reach the
ncore in the latter iterations; see Fig. 14(c). Besides, Fig. 14(b) shows that the indexes of those best next points
selected by the MSMR are mostly smaller than CT = 103. Hence, the practice of truncating the XC to the XCT

in Eq. (42) is very favorable and efficient. Further, Figs. 14(d) and 14(e) indicate that the hybrid convergence
criterion in Eq. (53) effectively secures the robust convergence of this algorithm.

(a) the expected gain Gn+k of x(n+k) per iteration (b) indexes of best next samples per iteration

(c) batch size K per iteration (d) convergence of Hn (e) convergence of µ
P̂f,n

Figure 14: The MSMR (adaptive scheme) for the reinforced concrete frame example

Table 10 gives a comparison between different parallel (B)ALR methods for the reinforced concrete frame
example. Both the ALR module in UQLab and the PABQ are not converged when the neval reaches 300.
Meanwhile, they produce significant values of relative error δP̂f

. By contrast, both the SUR and the SMR
achieve better accuracy of µP̂f

with much fewer iterations, say only 50% - 65%. Further, in comparison with
the SUR, the MSMR needs slightly fewer iterations and much less computational time, thanks to avoiding the
presence of Φ2 (·; ·, ·) in the expression of MSMR (see Remark 1). Further, in comparison with the prescribed
scheme (K = 20), much smaller niter but slightly greater niter is observed in the adaptive scheme of MSMR.

Additionally, the advantage of MSMR reducing niter does not give rise to a very remarkable reduction of Tc,
when compared with the ALR module in UQLab. This is due to that a single run of finite element analysis of
this reinforced concrete frame takes around 10 seconds; then, the running time of MSMR per iteration is still
greater than that of the ALR module in UQLab. Of course, when more computationally intensive reliability
problems are considered, the superior advantage of MSMR in terms of Tc will be manifested readily.

5.5. Discussions
To probe into the difference between the prescribed scheme and the adaptive scheme in the MSMR, Fig. 15

summarizes the results of MSMR in the four examples. Then, two critical findings are discussed here.

• In the prescribed scheme, the niter decreases as the increasing of the prescribed batch size K, but the
decreasing trend gradually slows down, as plotted as the solid lines in Fig. 15. This implies that when K
is significant, some ‘useless’ new samples are prone to be added due to the inferior accuracy of Kriging
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Table 10: Reliability results in the reinforced concrete frame example

Method E [niter] E [neval] E
[
µP̂f

]
CV
[
µP̂f

]
E
[
δP̂f

]
E [Tc] (s)

MCS - - 4× 105 7.3× 10−4 5.85 % - 6.14× 105

ALR in
UQLab

K = 5 > 58 > 300 6.423× 10−4 4.74 % 12.02 % > 1173.7
K = 10 > 30 > 300 6.728× 10−4 17.01 % 13.91 % > 882.5
K = 15 > 20 > 300 6.471× 10−4 9.33 % 11.36 % > 892.7
K = 20 > 16 > 300 6.246× 10−4 9.47 % 15.03 % > 947.3

PABQ

K = 5 > 58 > 300 2.803× 10−4 60.37 % 61.61 % > 3.23× 103

K = 10 > 30 > 300 3.300× 10−4 50.96 % 56.10 % > 1.83× 103

K = 15 > 20 > 300 4.161× 10−4 37.15 % 43.07 % > 1.54× 103

K = 20 > 16 > 300 3.743× 10−4 46.08 % 51.81 % > 1.34× 103

SUR

K = 5 29.9 161.5 7.545× 10−4 7.72 % 7.44 % 6.51× 103

K = 10 17.5 182 7.420× 10−4 9.14 % 6.89 % 6.89× 103

K = 15 13.7 207.5 7.737× 10−4 5.28 % 6.45 % 8.01× 103

K = 20 13.1 259 7.654× 10−4 3.41 % 5.21 % 9.42× 103

MSMR

K = 5 21.3 118.5 7.487× 10−4 4.44 % 4.28 % 656.1
K = 10 12.1 128 7.333× 10−4 3.63 % 2.84 % 635.7
K = 15 11.7 177.5 7.372× 10−4 6.92 % 4.77 % 790.3
K = 20 10.1 199 7.420× 10−4 3.06 % 3.08 % 902.6
Adaptive 10.9 147.6 7.365× 10−4 5.30 % 3.45 % 626.5

in initial iterations. Besides, when the decrease of niter becomes stalled, the Tc of MSMR will grow to
some extent due to the running time of multi-point enrichment process increasing with the batch size K;
see Tables 8 and 10. Obviously, the turning point (from fast to slow decrease of niter) may offer a good
balance between ncall (resp., computing resource consumption) and niter (resp., total computational time).
However, such a ‘balanced’ value of K can not known a priori. Hence, it is unwise to blindly increase the
K in the prescribed scheme.

• In the adaptive scheme, the average batch size K varies with the reliability problem at hand, as plotted as
dashed lines in Fig. 15. Basically, if the G-function is more complex, the average K will increase to some
extent. More importantly, the average K in the adaptive scheme is very close to the so-called ‘balanced’
batch size in the prescribed scheme. For example, the ‘balanced’ K value in the prescribed scheme falls
in the range between 10 and 15 in Example 4; then, the average K value in the adaptive scheme exactly
lies in this range. Hence, the adaptive scheme itself could achieve a good balance between the computing
resource consumption and the total computational time to some extent.

Figure 15: Results of MSMR (both prescribed and adaptive schemes) in the four examples

Besides, Tables 8 and 10 indicate that the proposed MSMR has significant advantage over the existing ALR
module in UQLab and the PABQ in terms of niter and neval. However, the MSMR only shows slightly better,
or comparable, performances of niter and neval to the existing SUR. The reasons are given as follows.

First, both the IMP Hn defined in the MSMR (Eq. (19)) and the uncertainty measure HS
n defined in the

SUR (Eq. (F.1)) are the upper bounds of the mean absolute deviation of failure probability estimated by
Kriging. According to Fig. B.16, the IMP Hn is slightly greater than the HS

n. Hence, comparable values of
niter and neval are achieved in the MSMR and the SUR. However, in comparison with the SUR, the major
contribution of MSMR lies in that it is analytically expressed as a function of Φ(·), avoiding Φ2 (·; ·, ·) which is
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more computationally intensive, and thus entailing much less running time, as shown in Remark 1 and Fig. 4(b).
Besides, the adaptive scheme in the MSMR could further reduce the neval to some extent.

Recall that the number of iteration niter and further the total computational time Tc are more concerned in
the parallel active learning reliability analysis. Hence, considering the two aforementioned aspects, the proposed
MSMR is very advantageous in terms of Tc, particularly when expensive-to-evaluate reliability problems are
addressed.

6. Concluding remarks

An efficient parallel Bayesian active learning reliability method is proposed based on devising a multi-point
look-ahead learning function MSMR. The MSMR is defined from Bayesian decision theory and is expressed as
a double integral. Then, the MSMR-based multi-point enrichment process is efficiently conducted. The efficacy
of the proposed approach is verified on four examples. Comparisons are made against several existing learning
functions and parallelization strategies. Some concluding remarks are given as follows.

• The IMP is proved as an upper-bounding metric for the mean absolute deviation of Kriging-based failure
probability estimation. Then, the resulting learning function MSMR enables explicitly quantifying the
expected gain of adding a batch of new points on improving the accuracy of failure probability.

• The MSMR-based multi-point enrichment process is cheaply implemented by three compatible workarounds,
i.e., the truncation of quadrature set, the truncation of candidate pool, and the heuristic treatment of
maximizing the MSMR. Actually, these three workarounds provide a unified paradigm and can be readily
customized to other look-ahead learning functions.

• Unlike those common parallel active learning reliability methods, the MSMR-based multi-point enrichment
process is based on the learning function itself, without resorting to any additional parallelization strategy.
Hence, it is more theoretically sound and numerically elegant.

• Both prescribed and adaptive schemes are devised in the MSMR to specify the batch size per iteration.
Notably, the adaptive scheme could gain a fair trade-off between the computing resource assumption and
the total computational time to some extent.

It is admitted that the running time of MSMR per iteration is slightly greater than that of performance
function itself in those numerical examples. Hence, the advantage of MSMR is not very remarkable in terms of
the total computational time. To highlight such advantage, the verification of MSMR in more expensive-to-run
reliability problems will be investigated in the near future.
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Appendix A. Kriging

The Kriging assumes the response of G (x) as one realization of a Gaussian process, expressed as [59]

G (x) ≈ Ĝn
(
x
)
= β⊤f(x) + σ2W (x), (A.1)

where the trend function β⊤f(x) = β0 +
∑d
l=1 βlxl, with f(x) = {1, x1, . . . , xd} a set of basis functions and

β = {βl, l = 0, . . . , d} a set of unknown coefficients. Then, σ2 is the variance of Gaussian process; W (x) is
a zero-mean, unit-variance Gaussian process described by a correlation function R (x,x′;θ). The Matern-5/2
kernel function is adopted as [59]

R (x,x′;θ) =

d∏
l=1

(
1 +
√
5
|xl − x′l|

θl
+

5

3

(
|xl − x′l|

θl

)2
)
exp

(
−
√
5
|xl − x′l|

θl

)
, (A.2)

where the kernel parameters θ = {θl > 0, l = 1, . . . , d}.
When providing an ED Dn = {Xn,Yn} of size n, both β and σ2 are estimated as

β̂ =
(
F⊤R−1F

)−1
F⊤R−1 Yn, (A.3)

σ̂2 =
1

n
(Yn−Fβ)⊤R−1(Yn−Fβ), (A.4)

where F :=
(
fj
(
x(i)

))
1≤i≤n,1≤j≤d+1

is the information matrix; R :=
(
R
(
x(i),x(j);θ

))
1≤i,j≤n is the correlation

matrix between all points in Xn. Then, the θ can be estimated as [59]

θ̂ = argmin
θ∈Θ

σ̂2 |R|
1
n , (A.5)

where Θ is the support of θ.
Finally, the Kriging prediction Ĝn

(
x
)

conditional onDn is still a Gaussian process, i.e., Ĝn
(
x
)
∼ GP(µn(·), cn(·, ·)),

with the posterior mean µn(x), variance σ2
n(x), and covariance cn (x,x′) expressed as [59]

µn(x) = f(x)⊤β̂ + r(x)⊤R−1
(
Yn−F β̂

)
, (A.6)

σ2
n(x) = σ̂2

(
1− r(x)⊤R−1r(x) + u(x)⊤

(
F⊤R−1F

)−1
u(x)

)
, (A.7)

cn (x,x
′) = σ̂2

(
R (x,x′)− r(x)⊤R−1r(x′) + u(x)⊤

(
F⊤R−1F

)−1
u(x′)

)
, (A.8)

where r(x) =
[
R
(
x,x(1)

)
, . . . , R

(
x,x(n)

)]⊤ and u(x) = F⊤R−1r(x)− f(x).

Appendix B. Proof of Proposition 1

Proof. First, the mean absolute deviation of P̂f,n satisfies the following inequality

En
[∣∣∣P̂f,n − µP̂f,n

∣∣∣] = En
[∣∣∣∣∫

X
1̂n (x) fX(x)dx−

∫
X
µ
1̂n

(x)fX(x)dx

∣∣∣∣] ,
= En

[∣∣∣∣∫
X

(
1̂n (x)− µ1̂n

(x)
)
fX(x)dx

∣∣∣∣] ,
≤ En

[∫
X

∣∣∣1̂n (x)− µ1̂n
(x)
∣∣∣ fX(x)dx

]
,

=

∫
X
En
[∣∣∣1̂n (x)− µ1̂n

(x)
∣∣∣] fX(x)dx,

= EX

[
En
[∣∣∣1̂n (x)− µ1̂n

(x)
∣∣∣]] .

(B.1)

Given that

∣∣∣1̂n (x)− µ1̂n
(x)
∣∣∣ = {∣∣1− µ1̂n

(x)
∣∣ , Ĝn(x) ≤ 0∣∣0− µ

1̂n
(x)
∣∣ , otherwise

=

Φ
(
µn(x)
σn(x)

)
, Ĝn(x) ≤ 0,

Φ
(
−µn(x)
σn(x)

)
, otherwise,

(B.2)
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the En
[∣∣∣1̂n (x)− µ1̂n

(x)
∣∣∣] is formulated as

En
[∣∣∣1̂n (x)− µ1̂n

(x)
∣∣∣] = ∫ 0

−∞
Φ

(
µn(x)

σn(x)

)
fŶ (ŷ)dŷ +

∫ +∞

0

Φ

(
−µn(x)
σn(x)

)
fŶ (ŷ)dŷ,

= Φ

(
µn(x)

σn(x)

)
Φ

(
−µn(x)
σn(x)

)
+Φ

(
−µn(x)
σn(x)

)
Φ

(
µn(x)

σn(x)

)
,

= 2Φ

(
−µn(x)
σn(x)

)
Φ

(
µn(x)

σn(x)

)
,

= 2σ2
1̂n

(x).

(B.3)

Substitute Eq. (B.3) into Eq. (B.1), resulting in

En
[∣∣∣P̂f,n − µP̂f,n

∣∣∣] ≤ 2EX

[
σ2
1̂n

(x)
]
. (B.4)

Based on Eq. (B.4), we look for the value β so that

πn(x) = Φ

(
−µn(x)
σn(x)

+ β

)
− Φ

(
−µn(x)
σn(x)

− β
)
≥ σ2

1̂n
(x), (B.5)

which would then provide an upper bound using Hn for the mean absolute deviation of P̂f,n in Eq. (B.1).
To this end, we study the properties of the function

hβ(t) = Φ(t+ β)− Φ(t− β)− Φ(t)(1− Φ(t)), (B.6)

where we have πn(x)− σ1̂n
(x) = hβ

(
−µn(x)
σn(x)

)
.

Taking the derivative of Eq. (B.6) with respect to t gives

h′β(t) = ϕ(t+ β)− ϕ(t− β)− ϕ(t) (1− 2Φ(t)) ,

=
exp(−t2/2)√

2π

(
exp(−β2/2) (exp(−βt)− exp(βt))− (1− 2Φ(t))

)
.

(B.7)

Therefore, the sign of h′β(t) only depends on the sign of

Jβ(t) = exp(−β2/2) (exp(−βt)− exp(βt))− (1− 2Φ(t)). (B.8)

To study the sign property of Jβ(t), we take its derivative with respect to t, i.e.,

J ′
β(t) = 2ϕ(t)− β exp(−β2/2) (exp(βt) + exp(−βt)) . (B.9)

ϕ(t) is increasing for t < 0 and decreasing for t > 0, while exp(βt) + exp(−βt) is decreasing for t < 0 and
increasing for t > 0. Therefore, J ′

β(t) is increasing for t < 0 and decreasing for t > 0, and thus its maximum is
reached at t = 0, i.e.,

J ′
β(t) ≤ J ′

β(0) =

√
2

π
− 2β exp(−β2/2). (B.10)

Taking the derivative of L(β) = 2β exp(−β2/2), we have L′(β) = 2(1 − β2) exp(−β2/2). This implies that
L is increasing for values β < 1 and decreasing for β > 1, so its maximum is give by L(1) = 2 exp(−0.5) >

√
2
π .

Since L is a continuous function and L(0) = lim
β→+∞

L(t) = 0 <
√

2
π , the intermediate value theorem guarantees

that the equation L(β) =
√

2
π has two roots 0 < β1 < 1 < β2.

In the following development, we will study the properties of J ′
β , Jβ , and hβ for β < β1. First, it is trivial

that J ′
β(0) > 0. Furthermore, because lim

t→∞
J ′
β(t) = −∞ and J ′

β is a continuous even function, J ′
β(0) = 0 has

two roots, which are denoted as −t1 and t1 with t1 > 0. Hence, J ′
β and Jβ have the following properties:

J ′
β(t)


< 0, for t < −t1, ⇒ Jβ is decreasing in (−∞,−t1);
> 0, for − t1 < t < t1, ⇒ Jβ is increasing in (−t1, t1);
< 0, for t > t1, ⇒ Jβ is decreasing in (t1,+∞).

(B.11)
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In addition, given that Jβ(0) = 0, Jβ is a continuous odd function, and lim
t→−∞

Jβ(t) = +∞, Jβ(t) = 0 has three
roots −t2, 0, and t2 with t2 > 0. As a result, we have

Jβ(t)


> 0, for t < −t2, ⇒ hβ is increasing in (−∞,−t2);
< 0, for − t2 < t < 0, ⇒ hβ is decreasing in (−t2, 0);
> 0, for 0 < t < t2, ⇒ hβ is increasing in (0, t2);

< 0, for t > t2, ⇒ hβ is decreasing in (t2,+∞).

(B.12)

Therefore, t = 0 is the only local minimum of hβ . Because lim
t→∞

hβ(t) = 0, hβ(t) ≥ 0 for all t ∈ R if and only if
hβ(0) ≥ 0. Following the definition of hβ in Eq. (B.6), we obtain

hβ(0) = Φ(β)− Φ(−β)− 1

4
= 2Φ(β)− 5

4
. (B.13)

Consequently, hβ(0) ≥ 0 ⇔ Φ(β) ≥ 5
8 ⇔ β ≥ β0 = Φ−1( 58 ). Note that these results are achieved for the case

where β < β1 (this is the condition upon which the derivation leads to the results). Numerically, it could be
easily verified that J ′

β0
(0) in Eq. (B.10) is greater than 0 and β0 < 1. As a result, β0 < β1, and thus hβ0

(t) ≥ 0
for all t ∈ R.

Because of the monotonicity of hβ(t) (in β) and β0 satisfying the required inequality with the equality being
reached for t = 0, β0 is the minimum admissible value of β, and for all β ≥ β0,

πn(x)− σ1̂n
(x) = hβ

(
−µn(x)
σn(x)

)
≥ 0, (B.14)

which gives
Hn = EX [πn(x)] ≥ EX

[
σ2
1̂n

(x)
]
. (B.15)

Fig. B.16 shows a comparison between πn(x) and σ2
1̂n

(x) with β = Φ−1( 58 ). Obviously, πn(x) is always
greater than σ2

1̂n
(x), regardless of x.

Figure B.16: Comparison of σ2
1̂n

(x) and the margin probability πn(x)

Finally, combining Eqs. (B.4) and (B.15) proves the inequality in Proposition 1, i.e.,

En
[∣∣∣P̂f,n − µP̂f,n

∣∣∣] ≤ 2Hn (B.16)

Appendix C. Multi-point Kriging update formulas

A Kriging Ĝn
(
x
)

can be trained from an ED Dn = {Xn,Yn} of size n; see Appendix A. Then, denote
X+
k =

{
x
(1)
+ , . . . ,x

(k)
+

}
and Y+

k =
{
y
(1)
+ , . . . , y

(k)
+

}
as a batch of k(≥ 1) new points and their G-function responses.

When the Dn is enriched with
{
X+
k ,Y

+
k

}
, the look-ahead posteriors of Kriging are expressed as [60]

µn+k(x) = µn(x) + cn(x,X+
k )

⊤(C+k )
−1
(
Y+
k −µn(X

+
k )
)
, (C.1)

σ2
n+k(x) = σ2

n(x)− cn(x,X
+
k )

⊤(C+k )
−1cn(x,X+

k ), (C.2)
cn+k(x,x

′) = cn(x,x
′)− cn(x,X+

k )
⊤(C+k )

−1cn(x
′,X+

k ), (C.3)
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where cn
(
x,X+

k

)
:=
[
cn
(
x,x

(1)
+

)
, . . . , cn

(
x,x

(k)
+

)]⊤ is a k × 1 vector of covariances between x and X+
k ; C+k :=[

cn
(
x
(i)
+ ,x

(j)
+

)]
1≤i,j≤k is a k × k matrix of covariances at X+

k ; µn(X+
k ) :=

[
µn
(
x
(1)
+

)
, . . . , µn

(
x
(k)
+

)]⊤ is a k × 1

vector of posterior means at X+
k .

Obviously, the look-ahead posterior of Kriging can be directly obtained from some matrix manipulations
on the current posteriors, without any optimization of Kriging parameters. Therefore, unlike the retraining of
Kriging, this update process is very computationally cheap.

Appendix D. Proof of Proposition 2

Proof. In the In+k(x;X+
k ) in Eq. (28), the term EU+

k

[
Πn+k(x;X+

k )
]

is derived as

EU+
k

[
Πn+k(x;X+

k )
]

=

∫
Rk

πn+k
(
x;X+

k ,U
+
k

)
fU+

k
(U+

k )dU
+
k ,

=

∫
Rk

Φ
(
a1(x) + b(x)⊤ U+

k

)
fU+

k
(U+

k )dU
+
k︸ ︷︷ ︸

a⃝

−
∫
Rk

Φ
(
a2(x) + b(x)⊤ U+

k

)
fU+

k
(U+

k )dU
+
k︸ ︷︷ ︸

b⃝

,

(D.1)

where fU+
k
(U+

k ) is the joint PDF of U+
k .

By the definition of Φ(·), the integrand in the component a⃝ can be expressed as

Φ
(
a1(x) + b(x)⊤ U+

k

)
= P

(
Γ ≤ a1(x) + b(x)⊤ U+

k

)
= P

(
Γ ≤ a1(x) + b(x)⊤U+

k |U
+
k = U+

k

)
, (D.2)

where Γ ∼ N (0, 1) is a standard Gaussian variable independent of U+
k . Then, according to the law of total

probability, the component a⃝ can be expressed as

a⃝ =

∫
Rk

P
(
Γ ≤ a1(x) + b(x)⊤U+

k |U
+
k = U+

k

)
fU+

k
(U+

k )dU
+
k = P

(
Γ ≤ a1(x) + b(x)⊤U+

k

)
, (D.3)

then, the component b⃝ can be obtained similarly.
In this way, Eq. (D.1) is rewritten as

EU+
k

[
Πn+k(x;X+

k )
]
= P

(
Γ ≤ a1(x) + b(x)⊤U+

k

)
− P

(
Γ ≤ a2(x) + b(x)⊤U+

k

)
,

= P
(
Γ− b(x)⊤U+

k ≤ a1(x)
)
− P

(
Γ− b(x)⊤U+

k ≤ a2(x)
)
,

= P (Λ ≤ a1(x))− P (Λ ≤ a2(x)) ,
(D.4)

where Λ = Γ− b(x)⊤U+
k is a Gaussian variable, with its mean µΛ and variance σ2

Λ expressed as
µΛ = 0− b(x)⊤0 = 0,

σ2
Λ = 1 + b(x)⊤ C+k b(x) = 1 +

−cn(x,X+
k )

⊤ (C+k )−1

σn+k(x)
C+k
−
(
C+k
)−1

cn(x,X+
k )

σn+k(x)
=

σ2
n(x)

σ2
n+k (x)

.
(D.5)

Hence, Eq. (D.4) can be further given as

EU+
k

[
Πn+k(x;X+

k )
]
= Φ

a1(x)− 0
σn(x)
σn+k(x)

− Φ

a2(x)− 0
σn(x)
σn+k(x)

 ,

= Φ

(
βσn+k(x)− µn(x)

σn(x)

)
− Φ

(
−βσn+k(x)− µn(x)

σn(x)

)
,

= Φ

(
−µn(x)
σn(x)

+ β
σn+k(x)

σn(x)

)
− Φ

(
−µn(x)
σn(x)

− β σn+k(x)
σn(x)

)
.

(D.6)

Combining Eqs. (D.6) and (28) proves the analytical expression of In+k(x;X+
k ) in Eq. (30), i.e.,

In+k(x;X+
k ) = Φ

(
−µn(x)
σn(x)

+ β

)
−Φ

(
−µn(x)
σn(x)

− β
)
−Φ

(
−µn(x)
σn(x)

+ β
σn+k(x)

σn(x)

)
+Φ

(
−µn(x)
σn(x)

− β σn+k(x)
σn(x)

)
.

(D.7)
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Furthermore, the partial derivative of In+k(x;X+
k ) with respect to σn+k(x)

σn(x)
is given as

∂In+k(x;X+
k )

∂ σn+k(x)
σn(x)

= −ϕ
(
−µn(x)
σn(x)

+ β
σn+k(x)

σn(x)

)
β + ϕ

(
−µn(x)
σn(x)

− β σn+k(x)
σn(x)

)
(−β),

= −β
[
ϕ

(
−µn(x)
σn(x)

+ β
σn+k(x)

σn(x)

)
+ ϕ

(
−µn(x)
σn(x)

− β σn+k(x)
σn(x)

)]
,

< 0,

(D.8)

where ϕ (·) is the standard Gaussian PDF.
Eq. (D.8) implies that In+k(x;X+

k ) is a monotonously decreasing function with respect to σn+k(x)
σn(x)

. When
σn+k(x)
σn(x)

= 0, In+k(x;X+
k ) = πn(x); when σn+k(x)

σn(x)
= 1, In+k(x;X+

k ) = 0. Hence, the lower and upper bounds of
In+k(x;X+

k ) in Eq. (33) can be proved.

Appendix E. Geometrical interpretation of ρn+k(x,X+
k )

Let (Ω,F ,P) the space of random variables of finite variance. Then, assume that U (resp. V ) is a random
variable with mean µU (resp. µV ) and variance σ2

U (resp. σ2
V ), and

〈U, V 〉 = E [UV ] (E.1)

is an inner product. In this way, the correlation coefficient between U and V can be expressed as

Corr
[
U, V

]
=

E [(U − µU )(V − µV )]
σUσV

=
〈U − µU , V − µV 〉
‖U − µU‖ · ‖V − µV ‖

= cos(θ), (E.2)

where ‖·‖ =
√
〈·, ·〉 denotes the Euclidean norm. Hence, the correlation coefficient of two random variables can

be interpreted as the cosine of the angle between them after centralization.
Denote Y = Ĝn

(
x
)

and Y +
k =

{
Ĝn
(
x
(1)
+

)
, . . . , Ĝn

(
x
(k)
+

)}
as the Kriging prediction at point x and the vector

of Kriging predictions at X+
k , respectively. Then, according to the Gaussian property of Kriging, there exists[

Ȳ
Ȳ +
k

]
=

[
Y − µn(x)

Y +
k − µn(X

+
k )

]
∼ Nk+1

([
0
0

]
,

[
σ2
n(x) cn(x,X+

k )
⊤

cn(x,X+
k ) C+k

])
. (E.3)

Then, the projection of Ȳ to the vector space spanned by Ȳ +
k can be assumed as

proj Ȳ +
k

(
Ȳ
)
= α⊤Ȳ +

k , (E.4)

where α is a vector of projection coefficients. The orthogonality between Ȳ − proj Ȳ +
k

(
Ȳ
)

and Ȳ +
k is equivalent

to their independence. Hence, Ȳ − proj Ȳ +
k

(
Ȳ
)

is independent of (and further uncorrelated to) Ȳ +
k , i.e.,

Cov
[
Ȳ − proj Ȳ +

k

(
Ȳ
)
, Ȳ +

k

]
= 0⇔ Cov

[
Ȳ, Ȳ +

k

]
− Cov

[
α⊤Ȳ +

k , Ȳ
+
k

]
= 0⇔ cn(x,X+

k )
⊤ −α⊤ C+k = 0, (E.5)

resulting in α = (C+k )−1cn(x,X+
k ). In this way, the orthogonal projection of Ȳ to the vector space spanned by

Ȳ +
k is expressed as proj Ȳ +

k

(
Ȳ
)
= cn(x,X+

k )
⊤(C+k )−1Ȳ +

k .
Further, the mean and variance of proj Ȳ +

k

(
Ȳ
)

are expressed as E
[
proj Ȳ +

k

(
Ȳ
)]

= α⊤E
[
Ȳ +
k

]
= α⊤0 = 0,

Var
[
proj Ȳ +

k

(
Ȳ
)]

= α⊤ C+k α = cn(x,X+
k )

⊤(C+k )
−1cn(x,X+

k ).
(E.6)

Besides, the covariance between Ȳ and proj Ȳ +
k

(
Ȳ
)

is expressed as

Cov
[
Ȳ, proj Ȳ +

k

(
Ȳ
)]

= cn(x,X+
k )

⊤(C+k )
−1Cov

[
Ȳ, Ȳ +

k

]
= cn(x,X+

k )
⊤(C+k )

−1cn(x,X+
k ). (E.7)

Hence, the correlation coefficient between Ȳ and proj Ȳ +
k

(
Ȳ
)

is given by

Corr
[
Ȳ, proj Ȳ +

k

(
Ȳ
)]

=
Cov

[
Ȳ, proj Ȳ +

k

(
Ȳ
)]√

Var
[
Ȳ
]√

Var
[
proj Ȳ +

k

(
Ȳ
)] =

√
cn(x,X+

k )
⊤
(
C+k
)−1

cn(x,X+
k )

σn(x)
,

= ρn+k
(
x,X+

k

)
≥ 0.

(E.8)

Since both Ȳ and proj Ȳ +
k

(
Ȳ
)

are centered variables, Corr
[
Ȳ, proj Ȳ +

k

(
Ȳ
)]

is directly the cosine of the angle
between them, as per Eq. (E.2). Hence, ρn+k(x,X+

k ) can be interpreted as the cosine of the angle between
Ĝn
(
x
)

and the vector space spanned by Ĝn
(
X+
k

)
. Generally, the closer between x and X+

k is, the greater
ρn(x,X+

k ) is.
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Appendix F. Stepwise uncertainty reduction (SUR)

An existing learning function SUR [25, 42] is outlined here for comparison. In the SUR, a measure of
epistemic uncertainty of failure probability is expressed as

HS
n = EX

[
σ2
1̂n

(x)
]
= EX

[
Φ

(
−µn(x)
σn(x)

)
Φ

(
µn(x)

σn(x)

)]
, (F.1)

which is also an upper bound of the mean absolute deviation of P̂f,n, as proved in Eq. (B.4).
Then, by quantifying the effect of adding a batch of k new samples on the reduction of HS

n, the SUR is
finally expressed as

SURn+k
(
X+
k

)
= HS

n − EX

Φ2

[ µn(x)
σn+k(x)

− µn(x)
σn+k(x)

]
;

[
0
0

]
,

 σ2
n(x)

σ2
n+k(x)

1− σ2
n(x)

σ2
n+k(x)

1− σ2
n(x)

σ2
n+k(x)

σ2
n(x)

σ2
n+k(x)

 . (F.2)

Finally, a batch of k best next points X ∗
k can be selected as

X ∗
k = argmax

X+
k ∈XC

SURn+k
(
X+
k

)
. (F.3)

For more details about the SUR, refer to [25, 42].
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